Single/Dual/Triple E3/DS3/STS-1
Line Interface Unit
Data Sheet
CX28331/CX28332/CX28333 (–3x)
28333-DSH-002-B
Feb 2003
© 2002, 2003 Mindspeed Technologies™, a Conexant business
All Rights Reserved.
Information in this document is provided in connection with Mindspeed Technologies (“Mindspeed”) products. These materials are provided by
Mindspeed as a service to its customers and may be used for informational purposes only. Mindspeed assumes no responsibility for errors or
omissions in these materials. Mindspeed may make changes to specifications and product descriptions at any time, without notice. Mindspeed
makes no commitment to update the information and shall have no responsibility whatsoever for conflicts or incompatibilities arisi n g f r om fu t u re
changes to its specifications and product descriptions.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in
Mindspeed’s Terms and Conditions of Sale for such products, Mindspeed assumes no liability whatsoever.
THESE MATERIALS ARE PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, RELATING TO
SALE AND/OR USE OF MINDSPEED PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A
PARTICULAR PURPOSE, CONSEQUENTIAL OR INCIDENTAL DAMAGES, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT,
COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. MINDSPEED FURTHER DOES NOT WARRANT THE ACCURACY OR
COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHE R ITEMS CONTAINED WITHIN THESE MATERIALS. MINDSPEED
SHALL NOT BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT
LIMITA TI ON, LOST RE VE N U ES OR LO ST PR O F IT S, WHICH MAY R ESULT FROM THE USE O F T H ES E MATER IA L S.
Mindspeed products are not intended for use in medical, lifesaving or life sustaining applications. Mindspeed customers using or selling
Mindspeed products for use in such applications do so at their own risk and agree to fully indemnify Mindspeed for any damages resulting from
such improper use or sale.
The following are trademarks of Conexant Systems, Inc.: Mindspeed Technologies™, the Mindspeed™ logo, and “Build It First”™. Product
names or services listed in this publication are for identification purposes only, and may be trademarks of third parties. Third-party brands and
names are the property of their respective owners.
For additional disclaimer information, please consult Mindspeed Technologies Legal Information posted at www.mindspeed.com which is
incorporated by reference.
28333-DSH-002-B Mindspeed Technologies
Mindspeed Proprietary and Confidential
Revision History
Revision Level Date Description
A 6/2001 Initial Release [Document number 28333-DSH-002-A]
B 2/2003 Removed CX2833i-1x information (see separate document)
Updated LBO to 450 feet
Incorporated Errata #500371A
Removed EVM, IBIS, and JAT Appendices
Fixed description of transmit AIS during loopback operations
Added loopback diagrams
Updated PCB design considerations
Added power sequencing requirements
General corrections
28333-DSH-002-B Mindspeed Technologiesiii
Mindspeed Proprietary and Confidential
CX28331/CX28332/CX28333 (–3x)
Single/Dual/Triple E3/DS3/STS-1 Line Interface Unit
The CX28333 is a three-channel, DS3/E3/STS-1, fully integrated Line Interface Unit
(LIU) device. It is configured via external pins and does not require a microprocessor
interface. Each channel has an independent receive equalizer requiring no user
configuration. Additionally, each channel has a programmable transmit pulse shaper
that can be set to ensure that the transmit pulse meets the pulse mask requirement
for the digital cross-connect. The CX28332 is a dual-channel, and the CX28331 is a
single-channel LIU with performance identical to the CX28333.
The CX28333 gives the user new economies of scale in concentrator applications
where three DS3 or STS-1 channels are concentrated into a single STS-3 channel.
Each line interface is reduced to 1:1 coupling transformers, terminating resistors, and
a capacitor. The Transmit Line Driver Monitor checks for a faulty transmitter or
shorted output.
NOTE: In this document, "i" is used to represent the number of channels:
i = 1 (CX28331), i = 2 (CX28332), and i = 3 (CX28333).
Functional Block Diagram
NOTE(S):
The TX Monitor is only used with the 100-pin CX2833i-3X.
TPOS
TNEG
TCLK ENCODER
TAIS
Pulse
Shaper
E3MODE
LINE
DRIVER
PDB
DATA
MUX
RLOOP
ENDECDIS
LLOOP
LBO
XOE
TLINEP
TLINEM/N
DECODER
RPOS
RNEG
RCLK
RLOS
TCLK
Clock/
Data
Recovery
PDATA
PDATA/
NDATA
NDATA
DATCLK
P
NReceiver
TX
Monitor
ALOS
RLINEP
RLINEM/N
TMONP
TMONM
TXMON
TMONTST
REFCLK
REQH
Channel 1
Channel 2
Channel 3
Distinguishing Features
Programmable pulse shaper to meet
cross-connect pulse masks (ANSI T1.102-
1993)
Meets jitter tolerance and jitter generation
specifications of Bellcore GR499, GR253
and ETSI TBR24
Alarms for coding violation and loss of
signal
Full diagnostic loopback capability
Uses a minimum of external components
Compliant with ITU-G.703 and ETSI
TBR24
Independent power down mode per
channel
Easily interfaced to the DS3/E3 Framer IC
(CX28342/3/4/6/8 and CN8330)
Selectable B3ZS/HDB3 encoding/
decoding
Transmit monitor inputs
Physical Characteristics
100-pin ETQFP package
Single 3.3 V power supply
1 W maximum power dissipation
(CX28333)
- 40 °C to +85 °C temperature range
5 V-tolerant pins
TTL digital pins
Applications
Digital Cross-Connect Systems
Routers
ATM Switches
Channelized Line Aggregation Units
Test Equipment
Channel Service Units
Multiplexers
iv Mindspeed Technologies 28333-DSH-002-B
Mindspeed Proprietary and Confidential
CX28333EVM
Ordering Information
Model Number Package Description Operating Temperature
CX28331-3x 100-Pin ETQFP Single channel with Transmit Monitoring 40 °C to +85 °C
CX28332-3x 100-Pin ETQFP Dual channel with Transmit Monitoring 40 °C to +85 °C
CX28333-3x 100-Pin ETQFP Triple channel with Transmit Monitoring 40 °C to +85 °C
CH2
CH3
CX28333
NRZTX DATA and CLK in
Loss of Signal
Code Violation
Clock Input
Control
TX B3ZS/HDB3 analog out
RX B3ZS/HDB3 analog in
NRZRX DATA and CLK out
NRZTX DATA and CLK in
NRZRX DATA and CLK out
NRZTX DATA and CLK in
NRZRX DATA and CLK out
CH1
CH2
CH3
CH1
TX B3ZS/HDB3 analog out
RX B3ZS/HDB3 analog in
TX B3ZS/HDB3 analog out
RX B3ZS/HDB3 analog in
L
I
N
E
S
I
D
E
F
R
A
M
E
R
S
I
D
E
100985_002
28333-DSH-002-B Mindspeed Technologiesv
Mindspeed Proprietary and Confidential
Table of Contents
Table of Contents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
List of Figures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii
List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix
1.0 Pin Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-1
1.1 Pin Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1
2.0 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1
2.1 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1
2.2 Transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-3
2.2.1 AMI B3ZS/HDB3 Encoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-3
2.2.2 Pulse Shaper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-3
2.2.3 Line Driver. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-4
2.2.3.1 Transmit Pulse Mask Templates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-5
2.2.4 Alarm Indication Signal (AIS) Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-8
2.2.5 Transmit Monitor Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-9
2.2.6 Jitter Generation (Intrinsic). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-9
2.3 Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-10
2.3.1 Receive Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-10
2.3.2 AGC/VGA Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-10
2.3.3 Receive Equalizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-10
2.3.4 The PLL Clock Recovery Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-11
2.3.5 Loss Of Signal (LOS) Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-11
2.3.6 B3ZS/HDB3 Decoder With Bipolar Violation Detector. . . . . . . . . . . . . . . . . . . . . . . . . . . 2-11
2.3.7 Data Squelching. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-12
2.4 Jitter Tolerance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-13
2.4.1 Jitter Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-14
2.5 Additional CX2833i Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-15
2.5.1 Bias Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-15
2.5.2 Power-On Reset (POR). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-15
2.5.3 Loopback Multiplexers (MUXes) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-15
Table of Contents CX28331/CX28332/CX28333 (-3x)
Single/Dual/Triple E3/DS3/STS-1 Line Interface Unit
vi Mindspeed Technologies28333-DSH-002-B
Mindspeed Proprietary and Confidential
2.6 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-18
2.6.1 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-18
2.6.2 ESD Ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-19
2.6.3 Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-19
2.7 DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-20
2.8 AC Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-21
3.0 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1
3.1 PCB Design Considerations for the CX2833i . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1
3.1.1 Power Supply and Ground Plane. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1
3.1.2 Component Placement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1
3.1.2.1 RBIAS Resistor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1
3.1.2.2 VGG Decoupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-2
3.1.2.3 Termination Resistors and Capacitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-2
3.1.3 Impedance Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-2
3.1.4 Other Passive Parts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-2
3.1.5 IBIS Models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-2
3.1.6 Recommended Vendors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-3
Appendix A:Applicable Standards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-1
Appendix B:Exposed Thin Quad Flat (ETQFP) Pack. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-1
B.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-2
B.2 Package Thermal Characterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-3
B.2.1 Heat Removal Path. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-3
B.2.2 Thermal Lands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-3
B.2.3 PCB Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-5
B.2.4 Thermal Test Structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-6
B.2.4.1 Test Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-6
B.2.4.2 Thermal Test Boards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-6
B.2.5 Package Thermal Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-7
B.2.5.1 Calculation Guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-7
B.2.5.2 Package Thermal Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-7
B.3 Solder Stencil Determination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-9
B.4 Solder Reflow Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-9
Appendix C: Power Sequencing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C-1
CX28331/CX28332/CX28333 (-3x) List of Figures
Single/Dual/Triple E3/DS3/STS-1 Line Interface Unit
28333-DSH-002-B Mindspeed Technologiesvii
Mindspeed Proprietary and Confidential
List of Figures
Figure 1-1. CX28331-3x Pin Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-2
Figure 1-2. CX28332-3x Pin Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-3
Figure 1-3. CX28333-3x Pin Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-4
Figure 2-1. Typical Application Of Single CX2833i Channel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-2
Figure 2-2. Pulse Shaper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-3
Figure 2-3. Pulse Measurement Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-4
Figure 2-4. Transmit Pulse Mask for DS3 Rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-5
Figure 2-5. Transmit Pulse Mask for STS-1 Rates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-6
Figure 2-6. Transmit Pulse Mask for E3 Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-7
Figure 2-7. AIS Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-8
Figure 2-8. Minimum Jitter Tolerance Requirement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-13
Figure 2-9. Maximum Jitter Transfer Curve Requirement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-14
Figure 2-10. Remote Loopback Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-16
Figure 2-11. Local Loopback Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-17
Figure 2-12. Timing Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-22
Figure 3-1. DS3/E3 Application Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-4
Figure B-1. Schematic Representation of the Package Components . . . . . . . . . . . . . . . . . . . . . . . . . . . B-2
Figure B-2. Package and PCB Land Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-3
Figure B-3. Internal Structure for a Two-Layer PCB. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .B-5
Figure B-4. Internal Structure For a Six-Layer PCB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .B-5
Figure B-5. Test Performance Structure (A = 100 mm, B = 100 mm, LP = 1.40 mm, LB = 1.60 mm) . . B-6
Figure B-6. Package Thermal Resistance as a Function of Airflow Velocity for a 48-ETQFP Package . . B-7
Figure B-7. Package Thermal Resistance as a Function of Airflow Velocity for an 64 ETQFP. . . . . . . . . B-8
Figure B-8. Package Thermal Resistance as a Function of Airflow Velocity for an 80 ETQFP. . . . . . . . . B-8
Figure B-9. Typical IR Reflow Profile for Eutectic Sn63:Pb37 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-10
Figure B-10. Typical Forced Convection Reflow Profile for Eutectic Sn63:Pb37 . . . . . . . . . . . . . . . . . . B-11
Figure C-1. Power -up sequence of VGG and VDD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C-1
Figure C-2. Power-down sequence of VGG and VDD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C-1
List of Figures CX28331/CX28332/CX28333 (-3x)
Single/Dual/Triple E3/DS3/STS-1 Line Interface Unit
viii Mindspeed Technologies28333-DSH-002-B
Mindspeed Proprietary and Confidential
CX28331/CX28332/CX28333 (-3x) List of Tables
Single/Dual/Triple E3/DS3/STS-1 Line Interface Unit
28333-DSH-002-B Mindspeed Technologiesix
Mindspeed Proprietary and Confidential
List of Tables
Table 1-1. CX2833i-3x Pin Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-5
Table 2-1. DS3 Transmit Template Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-5
Table 2-2. STS-1 Transmit Template Specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-6
Table 2-3. Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-18
Table 2-4. ESD Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-19
Table 2-5. Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-19
Table 2-6. DC Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-20
Table 2-7. AC Characteristics (Logic Timing). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-21
Table B-1. Dimensional Parameters (mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-4
Table B-2. Specification for a Two-Layer Test Board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .B-6
Table B-3. Specification for a Four-Layer Test Board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .B-6
Table B-4. Specification for Delco Thermal Test Chips. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-7
Table B-5. Test Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-8
List of Tables CX28331/CX28332/CX28333 (-3x)
Single/Dual/Triple E3/DS3/STS-1 Line Interface Unit
xMindspeed Technologies28333-DSH-002-B
Mindspeed Proprietary and Confidential
28333-DSH-002-B Mindspeed Technologies1-1
Mindspeed Proprietary and Confidential
1
1.0 Pin Description
1.1 Pin Assignments
Figures 1-1 (CX28331-3x), 1-2 (CX28332-3x), and 1-3 (CX28333-3x) illustrate
pin assignments for the 100-pin ETQFP. See Table 1-1 for the CX2833i-3x pin
descriptions.
The input/output (I/O) column is coded as follows:
I = Input
O = Output
I/O = Bidirectional
P = Power
NOTE: All digital inputs and outputs contain 75 k pull-down resistors.
When a channel is disabled (i.e., the PDx pin is tied low or not connected), all
receive and transmit analog circuitry powers down. Analog inputs (RLINE) are
ignored and analog outputs (TLINE) are high impedance. Digital inputs of a
powered-down channel are still active, but ignored. Overall noise on the device
can be lowered by not driving the digital inputs of a powered-down channel.
NOTE: When power is disconnected from the device, TLINE pins are low
impedance to ground if driven by more than one forward-bias diode
voltage (0.7 V) below ground. Additionally, driving TLINE, a
forward-bias diode voltage above the VGG pin, creates a low impedance
path from the TLINE pin to the VGG pin. Otherwise, the TLINE pins are
high impedance.
1.0 Pin Description CX28331/CX28332/CX28333 (-3x)
1.1 Pin Assignments Single/Dual/Triple E3/DS3/STS-1 Line Interface Unit
1-2 Mindspeed Technologies28333-DSH-002-B
Mindspeed Proprietary and Confidential
Figure 1-1. CX28331-3x Pin Diagram
100985_015
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
60
59
58
57
56
55
54
53
52
51
100
99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
80
79
78
77
76
DVDDC
ENDECDIS
PD
RLOOP
LLOOP
RNEG/RLCV
RPOS/RNRZ
RCLK
RLOS
NC
NC
NC
TAIS
TCLK
TPOS/TNRZ
TNEG/NC
TLOS
REFCLK
REQH
XOE
LBO
TMONTST
E3MODE
NC
DVSSC
VSS
RBIAS
VGG
RESET
GPD
NC
NC
NC
DVDDIO
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
NC
NC
NC
NC
VDD
VDD
NC
NC
VSS
TVSS
TMONP
TLINEP
TLINEM
TMONM
TVDD
RVDD
RLINEP
RLINEM
RVSS
VSS
NC
NC
NC
NC
VDD
VDD
NC
NC
VSS
NC
NC
NC
DVSSIO
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
CX28331-3x
CX28331/CX28332/CX28333 (-3x) 1.0 Pin Description
Single/Dual/Triple E3/DS3/STS-1 Line Interface Unit 1.1 Pin Assignments
28333-DSH-002-B Mindspeed Technologies1-3
Mindspeed Proprietary and Confidential
Figure 1-2. CX28332-3x Pin Diagram
100985_016
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
60
59
58
57
56
55
54
53
52
51
100
99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
80
79
78
77
76
DVDDC
ENDECDIS
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
TMONTST
E3MODE
NC
DVSSC
TVSS1
RBIAS
VGG
RESET
GPD
PD1
RLOOP1
LLOOP1
DVDDIO
LBO1
XOE1
REQH1
NC
NC
NC
RNEG1/RLCV1
RPOS1/RNRZ1
RCLK1
RLOS1
REFCLK1
TLOS1
TNEG1/NC1
TPOS1/TNRZ1
TCLK1
TAIS1
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
TMON1P
TLINE1P
TLINE1M
TMON1M
TVDD1
RVDD1
RLINE1P
RLINE1M
RVSS1
VSS
NC
NC
NC
NC
VDD
VDD
NC
NC
VSS
TVSS2
TMON2P
TLINE2P
TLINE2M
TMON2M
TVDD2
RVDD2
RLINE2P
RLINE2M
RVSS2
PD2
RLOOP2
LLOOP2
DVSSIO
LBO2
XOE2
REQH2
NC
NC
NC
RNEG2/RLCV2
RPOS2/RNRZ2
RCLK2
RLOS2
REFCLK2
TLOS2
TNEG2/NC2
TPOS2/TNRZ2
TCLK2
TAIS2
NC
CX28332-3x
1.0 Pin Description CX28331/CX28332/CX28333 (-3x)
1.1 Pin Assignments Single/Dual/Triple E3/DS3/STS-1 Line Interface Unit
1-4 Mindspeed Technologies28333-DSH-002-B
Mindspeed Proprietary and Confidential
Figure 1-3. CX28333-3x Pin Diagram
100985_006
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
60
59
58
57
56
55
54
53
52
51
100
99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
80
79
78
77
76
DVDDC
ENDECDIS
PD2
RLOOP2
LLOOP2
RNEG2 / RLCV2
RPOS2 / RNRZ2
RCLK2
RLOS2
NC
NC
NC
TAIS2
TCLK2
TPOS2/TNRZ2
TNEG2/NC2
TLOS2
REFCLK2
REQH2
XOE2
LBO2
TMONTST
E3MODE
NC
DVSSC
TVSS1
RBIAS
VGG
RESET
GPD
PD1
RLOOP1
LLOOP1
DVDDIO
LBO1
XOE1
REQH1
NC
NC
NC
RNEG1/RLCV1
RPOS1/RNRZ1
RCLK1
RLOS1
REFCLK1
TLOS1
TNEG1/NC1
TPOS1/TNRZ1
TCLK1
TAIS1
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
TMON1P
TLINE1P
TLINE1M
TMON1M
TVDD1
RVDD1
RLINE1P
RLINE1M
RVSS1
TVSS2
TMON2P
TLINE2P
TLINE2M
TMON2M
TVDD2
RVDD2
RLINE2P
RLINE2M
RVSS2
TVSS3
TMON3P
TLINE3P
TLINE3M
TMON3M
TVDD3
RVDD3
RLINE3P
RLINE3M
RVSS3
PD3
RLOOP3
LLOOP3
DVSSIO
LBO3
XOE3
REQH3
NC
NC
NC
RNEG3/RLCV3
RPOS3/RNRZ3
RCLK3
RLOS3
REFCLK3
TLOS3
TNEG3/NC3
TPOS3/TNRZ3
TCLK3
TAIS3
NC
CX28333-3x
CX28331/CX28332/CX28333 (-3x) 1.0 Pin Description
Single/Dual/Triple E3/DS3/STS-1 Line Interface Unit 1.1 Pin Assignments
28333-DSH-002-B Mindspeed Technologies1-5
Mindspeed Proprietary and Confidential
Table 1-1. CX2833i-3x Pin Definitions (1 of 8)
Pin #
Signal Name Description I/O/P Notes
CX28331-3x CX28332-3x CX28333-3x
Coaxial Line Pins
17 ——RLINEP Ch1 positive
receive data
I Differential inputs for each channel from its
respective receive coax line. The RX expects
balanced differential inputs, usually
achieved using a 1:1 transformer.
The inputs are internally DC biased to 1.9 V.
77RLINE1P
18 ——RLINEM Ch1 negative
receive data
I
88RLINE1M
27 17 RLINE2P Ch2 positive
receive data
I
28 18 RLINE2M Ch2 negative
receive data
I
——27 RLINE3P Ch3 positive
receive data
I
——28 RLINE3M Ch3 negative
receive data
I
12 ——TLINEP Ch1 positive
transmit data
O Differential, coax-driver balanced outputs
for pulse-shaped AMI B3ZS/HDB3 encoded
waveforms for each channel.
These pins should be connected to the
primary side of the 1:1 transformer through
two backmatch resistors, refer to Figure
3-1.
22TLINE1P
13 ——TLINEM Ch1 negative
transmit data
O
33TLINE1M
22 12 TLINE2P Ch2 positive
transmit data
O
23 13 TLINE2M Ch2 negative
transmit data
O
——22 TLINE3P Ch3 positive
transmit data
O
——23 TLINE3M Ch3 negative
transmit data
O
1.0 Pin Description CX28331/CX28332/CX28333 (-3x)
1.1 Pin Assignments Single/Dual/Triple E3/DS3/STS-1 Line Interface Unit
1-6 Mindspeed Technologies28333-DSH-002-B
Mindspeed Proprietary and Confidential
Digital Data Pins
69 ——RPOS/
RNRZ
Ch1 receive
Positive rail or
NRZ data
O Resynchronized receive data intended to be
strobed out by the corresponding RCLK.
When ENDECDIS = 1, these outputs are
positive and negative AMI data (RPOS and
RNEG).
When ENDECDIS = 0, these outputs are
decoded NRZ data (RNRZ) and line code
violation (RLCV). A line code violation is
indicated when RLCV = 1.
See notes on the ENDECDIS pin in the
Control Signals section.
84 84 RPOS1/
RNRZ1
70 ——RNEG/
RLCV
Ch1 receive
Negative rail or
line code
violation
O
85 85 RNEG1/
RLCV1
41 69 RPOS2/
RNRZ2
Ch2 receive
Positive rail or
NRZ data
O
40 70 RNEG2/
RLCV2
Ch2 receive
Negative rail or
line code
violation
O
——41 RPOS3/
RNRZ3
Ch3 receive
Positive rail or
NRZ data
O
——40 RNEG3/
RLCV3
Ch3 receive
Negative rail or
line code
violation
O
68 ——RCLK Receive clock
Ch1
O Recovered clock for each channel receiver,
intended for strobing the corresponding
RDAT into the following framer or logic.
83 83 RCLK1
42 68 RCLK2 Receive clock
Ch2
O
——42 RCLK3 Receive clock
Ch3
O
Table 1-1. CX2833i-3x Pin Definitions (2 of 8)
Pin #
Signal Name Description I/O/P Notes
CX28331-3x CX28332-3x CX28333-3x
CX28331/CX28332/CX28333 (-3x) 1.0 Pin Description
Single/Dual/Triple E3/DS3/STS-1 Line Interface Unit 1.1 Pin Assignments
28333-DSH-002-B Mindspeed Technologies1-7
Mindspeed Proprietary and Confidential
61 ——TPOS/
TNRZ
Ch1 transmit
Positive rail or
NRZ data
I Synchronized transmit data intended to be
strobed in by the corresponding TCLK.
When ENDECDIS = 1, these inputs are
expected to be positive and negative AMI
data (TPOS and TNEG).
When ENDECDIS = 0, these inputs are
expected to be uncoded NRZ data (TNRZ)
and no connects (NC).
See notes on the ENDECDIS pin in the
Control Signal section.
78 78 TPOS1/
TNRZ1
60 ——TNEG/
NC
Ch1 transmit
Negative rail or
no connect data
I
79 79 TNEG1/
NC1
47 61 TPOS2/
TNRZ2
Ch2 transmit
Positive or NRZ
data
I
46 60 TNEG2/
NC2
Ch2 transmit
Negative data or
no connect data
I
——47 TPOS3/
TNRZ3
Ch3 transmit
Positive or NRZ
data
I
——46 TNEG3/NC3 Ch3 transmit
Negative data or
no connect data
I
62 ——TCLK Transmit clock
Ch1
I Transmit bit clock input for strobing with
transmit data into the CX2833i.
77 77 TCLK1
48 62 TCLK2 Transmit clock
Ch2
I
——48 TCLK3 Transmit clock
Ch3
I
67 ——RLOS Loss of signal
Ch1
O Loss Of Signal (LOS) indication for each
channel, as determined by insufficient pulse
density. Signal loss detected when RLOS =
1. Loss of Signal is asserted and deasserted
under conditions discussed in section
2.3.5.
82 82 RLOS1
43 67 RLOS2 Loss of signal
Ch2
O
——43 RLOS3 Loss of signal
Ch3
O
Table 1-1. CX2833i-3x Pin Definitions (3 of 8)
Pin #
Signal Name Description I/O/P Notes
CX28331-3x CX28332-3x CX28333-3x
1.0 Pin Description CX28331/CX28332/CX28333 (-3x)
1.1 Pin Assignments Single/Dual/Triple E3/DS3/STS-1 Line Interface Unit
1-8 Mindspeed Technologies28333-DSH-002-B
Mindspeed Proprietary and Confidential
Control Signals
74 74 74 ENDECDIS Encoder/decoder
disable (for all
channels)
I For testing purposes and in applications
where the decoder needs to be bypassed,
the decoder can be enabled/disabled as
follows:
1 = Dual rail pulse coded data format. Input
transmit data pins TPOS, TNRZ, TNEG and
NC are interpreted as TPOS and TNEG
(encoded positive and negative rail data).
Output receive data pins RPOS and RNRZ,
and RNEG and RLCV are interpreted as
RPOS and RNEG, with RPOS having a
positive pulse in place of every positive AMI
pulse and RNEG having a negative pulse in
place of every negative AMI pulse.
0 = NRZ format. Transmit data pins TPOS
and TNEG are interpreted as TNRZ and NC
(not connected). Receive data pins RPOS
and RNEG are interpreted as RNRZ and
RLCV. In this mode, all line code violations
are reported as active high on RLCV.
63 ——TAIS Transmit Ch1
AIS mode enable
I Transmission of Alarm Indication Signal
(AIS) for a given channel. Replace transmit
data with AIS signal. The AMI form of AIS
supported is alternating 1s.
(+1, -1, +1, -1, +1, ...)
AIS will overwrite data during local
loopback..
1 = AIS mode enabled
0 = AIS mode disabled
76 76 TAIS1
49 63 TAIS2 Transmit Ch2
AIS mode enable
I
——49 TAIS3 Transmit Ch3
AIS mode enable
53 53 53 E3MODE E3MODE I When the pin is set to high, it enables the
E3 mode on all channels, instead of the
DS3/STS-1 mode. This also changes the
pulse shaper to E3 mode and overrides all
LBO pins. It also changes the
encoder/decoder from B3ZS mode to HDB3
mode.
1 = E3 mode
0 = DS3/STS-1 mode
Table 1-1. CX2833i-3x Pin Definitions (4 of 8)
Pin #
Signal Name Description I/O/P Notes
CX28331-3x CX28332-3x CX28333-3x
CX28331/CX28332/CX28333 (-3x) 1.0 Pin Description
Single/Dual/Triple E3/DS3/STS-1 Line Interface Unit 1.1 Pin Assignments
28333-DSH-002-B Mindspeed Technologies1-9
Mindspeed Proprietary and Confidential
55 ——LBO Transmit line
Ch1 build-out
mode
I Line build-out mode per channel, based on
the length of cable on the transmit side of
the cross-connect block. This bit is
overridden and the pulse shaper is disabled
(no pulse shaping) if E3MODE = 1.
1 = Inserts line build-out into the transmit
channel. Usually used when the transmit
cable is less than 450 feet in length.
0 = Line build-out bypassed (not inserted).
Usually used when the transmit cable is
greater than 450 feet in length.
91 91 LBO1
34 55 LBO2 Transmit line
Ch2 build-out
mode
I
——34 LBO3 Transmit line
Ch3 build-out
mode
I
71 ——LLOOP Local loopback
enable Ch1
I Local loopback enable per channel. The
transmit data is looped back immediately
from the encoder to the decoder in place of
the received data.
1 = local loopback enabled
0 = local loopback disabled
93 93 LLOOP1
32 71 LLOOP2 Local loopback
enable Ch2
I
——32 LLOOP3 Local loopback
enable Ch3
I
72 ——RLOOP Remote
loopback enable
Ch1
I Remote loopback enable per channel. The
receive data, retimed after clock recovery, is
looped back into the AMI generator in place
of the transmit data.
1 = remote loopback enabled
0 = remote loopback disabled
94 94 RLOOP1
31 72 RLOOP2 Remote
loopback enable
Ch2
I
——31 RLOOP3 Remote
loopback enable
Ch3
I
56 ——XOE Transmit output
enable Ch1
I Transmit output enable per channel.
1 = transmit line output driver enabled
0 = transmit output driver set to high
impedance state
90 90 XOE1
35 56 XOE2 Transmit output
enable Ch2
I
——35 XOE3 Transmit output
enable Ch3
I
Table 1-1. CX2833i-3x Pin Definitions (5 of 8)
Pin #
Signal Name Description I/O/P Notes
CX28331-3x CX28332-3x CX28333-3x
1.0 Pin Description CX28331/CX28332/CX28333 (-3x)
1.1 Pin Assignments Single/Dual/Triple E3/DS3/STS-1 Line Interface Unit
1-10 Mindspeed Technologies28333-DSH-002-B
Mindspeed Proprietary and Confidential
57 ——REQH Ch1 Receive
High EQ Gain
Enable
I The equalizer in the CX2833i has two gain
settings. The higher gain setting is designed
to optimally equalize a nominally-shaped
(meets the pulse template), pulse-driven
DS3 or STS-1 waveform that is driven
through 0900 feet of cable.
Square-shaped pulses such as E3 or
DS3-HIGH require less high-frequency gain
and should use the low EQ gain setting.
REQH = 1 high EQ gain (DS3/STS-1 modes)
REQH = 0 low EQ gain (E3/DS3
Square Modes)
89 89 REQH1
36 57 REQH2 Ch2 Receive
High EQ Gain
Enable
I
——36 REQH3 Ch3 Receive
High EQ Gain
Enable
I
Power/Ground
15 ——TVDD TX power Ch1 P Power pins for transmit circuitry per
channel (3.3 V).
55TVDD1
25 15 TVDD2 TX power Ch2 P
——25 TVDD3 TX power Ch3 P
10 ——TVSS TX ground Ch1 P Ground pins for transmit circuitry per
channel.
100 100 TVSS1
20 10 TVSS2 TX ground Ch2 P
——20 TVSS3 TX ground Ch3 P
16 ——RVDD RX power Ch1 P Power pins for receive circuitry per channel
(3.3 V).
Connect to 3.3 V power.
6 6 RVDD1
26 16 RVDD2 RX power Ch2 P
——26 RVDD3 RX power Ch3 P
19 ——RVSS RX ground Ch1 P Ground pins for receive circuitry per
channel.
Connect to ground.
9 9 RVSS1
29 19 RVSS2 RX ground Ch2 P
——29 RVSS3 RX ground Ch3 P
75 75 75 DVDDC Digital core
power
P Digital core power for all channels (3.3 V).
51 51 51 DVSSC Digital core
ground
P Digital core ground for all channels.
98 98 98 VGG 5 V/3.3 V ESD
pin (1)
P 5 V supply for 5 V-tolerant, digital pad ESD
diodes. No static power is drawn from pin.
92 92 92 DVDDIO Digital I/O power P Connect to 3.3 V digital power.
33 33 33 DVSSIO Digital ground P Digital ground.
5, 6, 25, 26 15, 16 VDD Power P Connect to 3.3 V power.
Table 1-1. CX2833i-3x Pin Definitions (6 of 8)
Pin #
Signal Name Description I/O/P Notes
CX28331-3x CX28332-3x CX28333-3x
CX28331/CX28332/CX28333 (-3x) 1.0 Pin Description
Single/Dual/Triple E3/DS3/STS-1 Line Interface Unit 1.1 Pin Assignments
28333-DSH-002-B Mindspeed Technologies1-11
Mindspeed Proprietary and Confidential
9, 20, 29,
100
10, 19 VSS Ground P Connect to ground.
Miscellaneous
73 —— PD Power down for
Ch1
I Power down transceiver channel
0 = Power down channel (off)
1 = Channel active (on)
Note: A special power-down mode exists
when all three PDBs are set low. This
special mode shuts off the entire chip
(including biasing).
95 95 PD1
30 73 PD2 Power down for
Ch2
I
——30 PD3 Power down for
Ch3
I
58 ——REFCLK Reference clock
for Ch1
I Reference clock from off-chip.
This clock should be set to one of the
following with all rates = ±20 ppm
tolerance:
E3 rate (34.368 MHz)
DS3 rate (44.736 MHz)
STS-1 rate (51.84 MHz)
The clock rate should correspond to the
mode of operation that has been chosen for
the channel. See Section 2.5.2, Power-On
Reset, about the valid clock available during
power-up.
81 81 REFCLK1
44 58 REFCLK2 Reference clock
for Ch2
I
——44 REFCLK3 Reference clock
for Ch3
I
99 99 99 RBIAS Bias resistor O A 12.1 k ± 1% resistor tied from this pin
to ground provides the current reference to
the entire chip.(2)
97 97 97 Reset Reset I Asynchronous reset (reset entire device).
Active high input.
96 96 96 GPD Global Power
down
I Power down (Static Idd testing).
0 = Power down disable
1 = Power down active
Global Power Down (GPD), when
deasserted, places the device in a reset
condition. See section 2.5.2, Power-on
Reset.
Table 1-1. CX2833i-3x Pin Definitions (7 of 8)
Pin #
Signal Name Description I/O/P Notes
CX28331-3x CX28332-3x CX28333-3x
1.0 Pin Description CX28331/CX28332/CX28333 (-3x)
1.1 Pin Assignments Single/Dual/Triple E3/DS3/STS-1 Line Interface Unit
1-12 Mindspeed Technologies28333-DSH-002-B
Mindspeed Proprietary and Confidential
11 ——TMONP Ch1 positive
input
I Transmit monitor input pins are normally
tied to their respective transmit line
outputs, i.e., (TMON1P TLINE1P and
TMON1M TLINE1M).
Loss of signal outputs are active high
when the monitor inputs detect no signal.
The TX monitor test pin will assert all
TLOS outputs when TMONTST is high.
This is used to test board level functionality
downstream from the TLOS outputs.
11TMON1P
14 ——TMONM Ch1 negative
input
I
44TMON1M
21 11 TMON2P Ch2 positive
input
I
24 14 TMON2M Ch2 negative
input
I
——21 TMON3P Ch3 positive
input
I
——24 TMON3M Ch3 negative
input
I
59 ——TLOS TX loss of signal
Ch1 Output
O
80 80 TLOS1
45 59 TLOS2 TX loss of signal
Ch2 Output
O
——45 TLOS3 TX loss of signal
Ch3 Output
O
54 54 54 TMONTST TX monitor test
pin
I
14, 7, 8,
2124, 27,
28, 3032,
3450, 52,
6466,
7691,
9395
1114,
1718,
3739, 50,
52, 5573,
8688
37, 38, 39,
50, 52, 64,
65, 66, 86,
87, 88
No connect Not connected.
NOTE(S):
(1) This pin should be connected to 3.3 V in an all-3.3 V design.
(2) Placing a capacitor from this pin to ground may result in instabilities.
3. All digital input pins contain a 75 k pull-down resistor from input to DVSS.
Table 1-1. CX2833i-3x Pin Definitions (8 of 8)
Pin #
Signal Name Description I/O/P Notes
CX28331-3x CX28332-3x CX28333-3x
28333-DSH-002-B Mindspeed Technologies2-1
Mindspeed Proprietary and Confidential
2
2.0 Functional Description
2.1 Overview
The CX28333 is a triple E3/DS3/STS-1 Line Interface Unit (LIU). It is the
physical layer interface between the data framer (or other terminal-side
equipment) and the electrical cable used for data transmission.
The CX28333 LIU consists of three independent data transceivers that can
operate over type 734/728 coaxial cable at the rates of 34.368 Mbps (E3), 44.736
Mbps (DS3), and 51.84 Mbps (STS-1). The transmit side takes an NRZ or
already-encoded dual rail input and encodes it into AMI B3ZS (for DS3/STS-1)
or HDB3 (for E3) analog waveforms to be transmitted over 75 coaxial cable.
The receiver side takes in the attenuated and distorted analog receive signal and
equalizes, slices, and resynchronizes the signal before decoding it to the NRZ
output or sending out a non-decoded dual rail.
CX28331 and CX28332 are single- and dual-E3/DS3/STS-1 LIUs,
respectively. In all respects, their performance and features are identical to the
CX28333.
The architecture of the CX2833i includes the following internal functions for
each channel:
Transmitter:
•AMI B3ZS/HDB3 encoder
pulse shaper
line driver
Alarm Indication Signal (AIS) insertion
transmit monitor
Receiver:
receive sensitivity
Automatic Gain Control (AGC)
receive equalizer
Clock Recovery circuit
Loss Of Signal (LOS) detector
B3ZS/HDB3 decoder with bipolar violation detector
data squelching
2.0 Functional Description CX28331/CX28332/CX28333 (-3x)
2.1 Overview Single/Dual/Triple E3/DS3/STS-1 Line Interface Unit
2-2 Mindspeed Technologies28333-DSH-002-B
Mindspeed Proprietary and Confidential
Additional Functions:
bias generator
power-on reset
loopback MUXes
In addition, each channel has the ability to perform remote and local
loopbacks. Figure 2-1 illustrates a typical application using the CX2833i in a
channel.
External pins are provided to configure the various line rates and formats for
each channel.
The CX2833i is used as a data transceiver over a coaxial cable that is up to
900 feet long (or up to 450 feet from the DSX) in an on-premise environment
within any public or private networks which use these data rates.
Figure 2-1. Typical Application Of Single CX2833i Channel
0450 ft COAX
(type 734/728) DSX
0450 ft COAX
(type 734/728) DSX
0450 ft COAX
(type 734/728)
0450 ft COAX
(type 734/728)
TX
RX
RX
TX
100604_012
CX28331/CX28332/CX28333 (-3x) 2.0 Functional Description
Single/Dual/Triple E3/DS3/STS-1 Line Interface Unit 2.2 Transmitter
28333-DSH-002-B Mindspeed Technologies2-3
Mindspeed Proprietary and Confidential
2.2 Transmitter
This section describes the detailed operation of the various blocks in the CX2833i
transmitter.
2.2.1 AMI B3ZS/HDB3 Encoder
The ENDECDIS and E3MODE pins configure the encoder mode.
When ENDECDIS = 0, the encoder is receiving non-encoded Nonreturn to
Zero (NRZ) data on the TNRZ (TPOS) pin alone, and the NC (no connect)
(TNEG) pin is ignored.
Data is encoded into a representation of a three-level B3ZS (E3MODE = 0) or
HDB3 (E3MODE = 1) signal before going on to the pulse shaper in the form of
two binary signals representing the positive and negative three-level pulses.
When ENDECDIS = 1, the encoder is disabled. The encoder passes
already-encoded data over TPOS (TNRZ) and TNEG (NC) to the pulse shaper.
The transmit digital data is clocked into the chip via a rising TCLK edge,
which must be equal to the symbol rate (line rate). A small delay added to the data
provides a certain amount of negative data hold time.
2.2.2 Pulse Shaper
The pulse shaper converts the two digital (clocked) positive and negative pulses
into a single analog three-level Alternate Mark Inversion (AMI) pulse. The pulses
are in Return to Zero (RZ) format, meaning that all positive and negative pulses
have a duration of the first half of the symbol period.
For the E3 rate (E3MODE = 1), the AMI pulse is a full-amplitude,
square-shaped pulse with very little slope.
Figure 2-2. Pulse Shaper
500020_010
Pulse
Shaper
LBO
E3
Mode
LBO = 0
LBO = 1
+ Pulse – Pulse
Line Driver
2.0 Functional Description CX28331/CX28332/CX28333 (-3x)
2.2 Transmitter Single/Dual/Triple E3/DS3/STS-1 Line Interface Unit
2-4 Mindspeed Technologies28333-DSH-002-B
Mindspeed Proprietary and Confidential
For DS3/STS-1 rates, a pulse-shaper block is used to shape the transmit
waveform and reduce its high-frequency energy content. This ensures that the
transmit pulse template is met at the cross-connect block, which follows 0450
feet of transmit-side coaxial cable.
2.2.3 Line Driver
The differential line driver takes the filtered transmit waveform, increases it to the
proper level, and drives it into the transmit magnetics. The two external discrete
back-matching resistors (31.6 ) aid in line matching. The driver is presented
with an approximately 150 differential load. Driver gain accounts for the 6 dB
gain loss in the back-matching resistors.
Figure 2-3 illustrates the Pulse/Power template measurement points for the
various data rates.
Figure 2-3. Pulse Measurement Points
0450 ft COAX
(type 734/728) DSX
0450 ft COAX
Pulse/Power Template for E3
Pulse/Power Template for DS3/STS-1
(type 734/728) DSX
0450 ft COAX
(type 734/728)
0450 ft COAX
(type 734/728)
TX
RX
RX
TX
100604_013
CX28331/CX28332/CX28333 (-3x) 2.0 Functional Description
Single/Dual/Triple E3/DS3/STS-1 Line Interface Unit 2.2 Transmitter
28333-DSH-002-B Mindspeed Technologies2-5
Mindspeed Proprietary and Confidential
2.2.3.1 Transmit Pulse
Mask Templates
The Transmit Pulse Mask characteristics of the CX2833i device are designed so
that the transmitted output meets the Pulse Shape mask specified in ITU-T
Recommendation G.703.
Figure 2-4. Transmit Pulse Mask for DS3 Rates
Transmit Pulse Mask for DS3 Rates
-0.2
0
0.2
0.4
0.6
0.8
1
1.2
-1.0
-0.5
0.0
0.5
1.0
1.5
Normalized Symbol Time
Normalized Pulse Amplitude
NOTE(S):
An Isolated Pulse is a pulse preceded by at least two zeros and followed by one or more zeros.
In judging the conformance of an isolated pulse to the mask, it is permissable to do the following:
1. Position the mask horizontally as necessary to encompass the pulse
2. Uniformly scale the amplitude of the isolated pulse to fit the mask
Table 2-1. DS3 Transmit Template Specifications
Time Axis Range (UI)(1) Normalized Amplitude Equation
Upper Curve
0.85 T 0.68 0.03
0.68 T 0.36 0.03 + 0.5 {1 + sin [(π / 2)(1 + T / 0.34)]}
0.36 T 1.4 0.08 + 0.407 e 1.84(T 0.36)
Lower Curve
0.85T 0.36 0.03
0.36 T 0.36 0.03 + 0.5{1 + sin[(π / 2)(1 + T / 0.18)]}
0.36 T 1.4 0.03
NOTE(S):
(1) UI = 1 / (System Clock Frequency)
2.0 Functional Description CX28331/CX28332/CX28333 (-3x)
2.2 Transmitter Single/Dual/Triple E3/DS3/STS-1 Line Interface Unit
2-6 Mindspeed Technologies28333-DSH-002-B
Mindspeed Proprietary and Confidential
Figure 2-5. Transmit Pulse Mask for STS-1 Rates
NOTE(S):
An Isolated Pulse is a pulse preceded by at least two zeros and followed by one or more zeros.
In judging the conformance of an isolated pulse to the mask, it is permissable to do the following:
1. Position the mask horizontally as necessary to encompass the pulse
2. Uniformly scale the amplitude of the isolated pulse to fit the mask
Transmit Pulse Mask for STS-1 Rates
-0.2
0
0.2
0.4
0.6
0.8
1
1.2
-1.0
-0.5
0.0
0.5
1.0
1.5
Normalized Symbol Time
Normalized Pulse Amplitude
Table 2-2. STS-1 Transmit Template Specifications
Time Axis Range (UI)(1) Normalized Amplitude Equation
Upper Curve
0.85 T 0.68 0.03
0.68 T 0.26 0.03 + 0.5 {1 + sin [(π / 2)(1 + T / 0.34)]}
0.26 T 1.4 0.1 + 0.61 e 2.4(T 0.26)
Lower Curve
0.85T 0.36 0.03
0.36 T 0.36 0.03 + 0.5 {1 + sin[(π / 2)(1 + T / 0.18)]}
0.36 T 1.4 0.03
NOTE(S):
(1) UI = 1 / (System Clock Frequency)
CX28331/CX28332/CX28333 (-3x) 2.0 Functional Description
Single/Dual/Triple E3/DS3/STS-1 Line Interface Unit 2.2 Transmitter
28333-DSH-002-B Mindspeed Technologies2-7
Mindspeed Proprietary and Confidential
Figure 2-6. Transmit Pulse Mask for E3 Rate
500118a_1
17 ns
0.1
1.0
0.1
0.1
0.1
0.2
0.2
14.55 ns
8.65 ns
12.1 ns
24.5 ns
29.1 ns
Time
Volts
0.2
0.5
2.0 Functional Description CX28331/CX28332/CX28333 (-3x)
2.2 Transmitter Single/Dual/Triple E3/DS3/STS-1 Line Interface Unit
2-8 Mindspeed Technologies28333-DSH-002-B
Mindspeed Proprietary and Confidential
2.2.4 Alarm Indication Signal (AIS) Generator
When TAIS is asserted, an AIS replaces the transmit data at TPOS and TNEG.
The E3 type of AIS signal (all 1s) is supported. In three-level signal form, this is a
continuously alternating positive and negative pulse stream, as if the transmit data
were a continuous string of logical 1s. Figure 2-7 illustrates the AIS signal.
The TAIS pin has the same data latency as the TX data pins and can be used to
replace single symbols within a data stream. When the encoder is disabled
(ENDECDIS = 1), the TAIS mode maintains the proper phase, based upon the
polarity of the last 1 received.
The transmit AIS generator overwrites data during local loopback operation, it
does not affect remote loopback operation.
Figure 2-7. AIS Signal
POSITIVE
PULSE
NEGATIVE
PULSE
TLINEP
(output voltage)
TLINEN
(output voltage)
8333_009
CX28331/CX28332/CX28333 (-3x) 2.0 Functional Description
Single/Dual/Triple E3/DS3/STS-1 Line Interface Unit 2.2 Transmitter
28333-DSH-002-B Mindspeed Technologies2-9
Mindspeed Proprietary and Confidential
2.2.5 Transmit Monitor Block
The Transmit (TX) Monitor pins allow the CX2833i to monitor for certain fault
condition occurrences such as short circuits or defective channel output drivers in
the device. The TX Monitor inputs (TMONP and TMONM) are independent
functions where TMONP and TMONM must be externally connected (via 0-
resistors or directly) to the TLINEP and TLINEM/N pins.
The TX monitors are designed to monitor the line driver outputs for pulses
greater than the threshold of ±0.5 V and to assert a Loss Of Signal (TLOS)
indicator when no output pulse has been detected for 32 TCLK periods. When the
TMONP/TMONM pins are connected, the TX Monitor circuitry only responds to
a voltage difference between the pair, i.e., if TLINEP stops working but
TLINEM/N is still swinging ±1 V, the TX Monitor circuit reports a Not Asserted
status.
After a TLOS condition is asserted, it will not deassert until a pulse is again
detected. TLOS Output pins are active-high when the monitor inputs do not
detect a signal. A special pin (TMONTST) is available for testing board-level
functionality downstream from the TLOS outputs. When TMONTST is high, it
asserts all TLOS channel outputs.
Other typical TMON circuit applications are for transmitter device
redundancy. This is where the TX monitor of one device is used to monitor a
second active device. When the TMON circuit detects an output driver failure, it
asserts a TLOS, which can now be used to activate the second devices
transmitter and output disable the primary device.
2.2.6 Jitter Generation (Intrinsic)
The CX2833i device meets the jitter generation requirements for various rates
with large margins, with the condition that the input transmit clock (TCLK) is
jitter-free. Data rates and jitter generation requirements are defined in the
following documents:
E3 rateETSI TBR24, ITU-T G.823 (Section 3.1.2)
DS3 rateBellcore GR499, AT&T Accunet TR54014, ITU-T G.824
STS-1 rate
Bellcore GR253
2.0 Functional Description CX28331/CX28332/CX28333 (-3x)
2.3 Receiver Single/Dual/Triple E3/DS3/STS-1 Line Interface Unit
2-10 Mindspeed Technologies28333-DSH-002-B
Mindspeed Proprietary and Confidential
2.3 Receiver
This section describes the detailed operation of the various blocks in the CX2833i
receiver.
2.3.1 Receive Sensitivity
The receiver recovers data from the coaxial cable that is attenuated due to the
frequency-dependent characteristics of the cable. In addition, the receiver
compensates for the flat loss (across all frequencies) in the various electrical
components and the variation in transmitted signal power.
The CX2833i device is able to recover data that has been attenuated by a
maximum of 900 feet of coax having characteristics and attenuation consistent
with ANSI T1.102-1993, Annex C, Figure C.2. This approximates the
characteristics of AT&T type 734/728 cable; almost the same attenuation
characteristic is achieved by one-half the length of AT&T type 735 cable.
2.3.2 AGC/VGA Block
The Variable Gain Amplifier (VGA) receives the AMI input signal from the
coaxial cable. The VGA supplies flat gain (independent of frequency) to make up
for various flat losses in the transmission channel and for loss at one-half the
symbol rate that cannot be made up by the equalizer. The VGA gain is controlled
by a feedback loop which senses the amplitude of the equalizer output, acting to
servo this amplitude for optimal slicing.
2.3.3 Receive Equalizer
The receive equalizer receives the differential signal from a VGA and boosts the
high frequency content of the signal to reduce intersymbol interference (ISI) to
the point that correct decisions can be made by the slicer with a minimum of jitter
in the recovered data.
The REQH pin when set high (REQH = 1) boosts the amount of equalization in
the receive side of the LIU. DS3/STS-1 pulses require a greater amount of
equalization then standard E3 pulses. REQH is therefore normally set high
(REQH = 1) for standard DS3/STS-1 pulses.
For cases where a square-shaped DS3/STS-1 pulse (that does not meet the
DS3/STS-1 standards) is transmitted to the receiver REQH can be set low (REQH
= 0).
In E3 mode, the REQH pin should always be set low (REQH = 0) to prevent
over-equalization.
CX28331/CX28332/CX28333 (-3x) 2.0 Functional Description
Single/Dual/Triple E3/DS3/STS-1 Line Interface Unit 2.3 Receiver
28333-DSH-002-B Mindspeed Technologies2-11
Mindspeed Proprietary and Confidential
2.3.4 The PLL Clock Recovery Circuit
The clock recovery circuit (RX PLL) extracts the embedded clock from the sliced
data and provides this clock and the retimed data to the decoder (data mode).
Upon startup (after the internal reset is deasserted), the RX PLL uses a reference
clock (REFCLK) and a phase-frequency detector to lock to the correct data rate
(reference mode). During reference mode, the data outputs are squelched (set to
0). The RX PLL is kept in reference mode until a valid input is detected.
2.3.5 Loss Of Signal (LOS) Detector
The Receive Loss Of Signal (RLOS) is a digital function which monitors the
retimed data from the clock recovery block. The AMI data is checked for a
continuous run of zeroes. When a continuous run of 128 ± 1 consecutive zeroes
occurs, the RLOS signal is asserted. After the RLOS signal is asserted, a 1s count
is made on every block of 128 AMI symbols. The RLOS signal is deasserted
when the 1s count within a block of 128 symbols is at least:
B3ZS: Minimum 1s density = 39 ± 1 count out of 128 (~30.5%)
HDB3: Minimum 1s density = 29 ± 1 count out of 128 (~22.7%)
The RLOS detector will always monitor the cable-side RX inputs. The
detector is not affected by the state of remote or local looping.
2.3.6 B3ZS/HDB3 Decoder With Bipolar Violation Detector
In the CX2833i device, when ENDECDIS = 0 (encoder/decoder enabled), the
decoder takes the output from the clock recovery circuit and decodes the data
(HDB3 or B3ZS) into a single retimed NRZ data signal. The data signal is then
sent out of the CX2833i over the RNRZ (RPOS) pin. Any detected Line Code
Violations (LCV) are sent out over the corresponding RLCV (RNEG) pin. The
RLCV pin is asserted for one symbol period at the time the violation appears on
the RX output pin (RNRZ).
The following shows data sequence criteria for LCV; violations are indicated
in bold text. A valid bipolar pulse is indicated by a B. A bipolar violation
(non-alternating positive or negative) pulse is indicated by a V.
Excessive zeros: 0, 0, 0, 0 (HDB3) or 0, 0, 0 (B3ZS). These violations are
passed on as 0 data on the RNRZ pin.
Bipolar violation: B, 0, V (i.e., +1, 0, +1 or -1, 0, -1 for HDB3) B, V
(B3ZS and HDB3). These violations are passed on as 1 data on the RNRZ
pin.
Coding violation: 0, 0, V (HDB3) or 0, V (B3ZS) with an even number of
Bs since the last valid 0 substitution V (follows coding rule). These
violations are passed on as 0 data on the RNRZ pin.
The even/odd counter (used to count the number of Bs between Vs) will count
a bipolar violation as a B. A coding violation or a valid 0 substitution resets the
counter.
2.0 Functional Description CX28331/CX28332/CX28333 (-3x)
2.3 Receiver Single/Dual/Triple E3/DS3/STS-1 Line Interface Unit
2-12 Mindspeed Technologies28333-DSH-002-B
Mindspeed Proprietary and Confidential
When ENDECDIS = 1, the decoder is disabled, and the retimed slicer outputs
are sent out over RPOS (RNRZ) and RNEG (RLCV) pins. These outputs are then
decoded by the Framer or other downstream device. Line code violations are not
detected in this mode of operation. The decoder is configurable for either:
E3 mode using HDB3 coding (E3MODE = 1)
DS3/STS-1 mode using B3ZS coding (E3MODE = 0)
The receiver digital data outputs are centered on the rising edge of RCLK
(see Section 2.8).
2.3.7 Data Squelching
A counter in the receiver keeps track of the number of consecutive symbol
periods without a valid data pulse. When 128 or more 0s in a row are counted, the
receiver assumes that it has lost the signal and resets itself to try and regain the
signal. While the receiver is reacquiring the signal, the clock recovery block locks
to the reference clock and the data squelching is achieved by forcing the data bits
to zero. The data squelching is true in both NRZ and dual rail mode. When the
input signal has been properly amplified and equalized, the clock recovery PLL
will then switch to the incoming data.
CX28331/CX28332/CX28333 (-3x) 2.0 Functional Description
Single/Dual/Triple E3/DS3/STS-1 Line Interface Unit 2.4 Jitter Tolerance
28333-DSH-002-B Mindspeed Technologies2-13
Mindspeed Proprietary and Confidential
2.4 Jitter Tolerance
The CX2833i receiver is able to tolerate a specified amount of high-frequency
jitter in the received signal while providing error-free operation (generally
defined as a bit error rate of less than 10-9). The specifications (illustrated in
Figure 2-9) for jitter tolerance are discussed in the following documents:
E3 rate ITU-T G.823 and ETSI TBR24 contain frequency masks for input
jitter tolerance.
NOTE: To meet jitter transfer requirements for loop-timed operation, an external
jitter attenuator is required. The jitter attenuator lessens jitter from the
receive clock.
DS3 rate Bellcore GR499 specifies jitter tolerance frequency masks for
Category I and Category II interfaces.
STS-1 rate Bellcore GR253 specifies a jitter tolerance. It is noted that the
STS-1 jitter tolerance differs from DS3 requirements only for Category II
interfaces.
Figure 2-8. Minimum Jitter Tolerance Requirement
Receiver Jitter Tolerance
1.0 UI
10 UI
0.1 UI
Jitter Frequency (Hz)
Input Jitter Amplitude
10 Hz 100 Hz 10 kHz 100 kHz1 kHz
100604_014
1 MHz
2.3K 22.3K 60K 800K
300K
10
5
0.3
0.1
T3 [GR-499 (1995)]
Category II
T3 [GR-499 (1995)]
Category I
E3 [GR.823 (1993)] 1.5
0.15
Jitter Tolerance
CX28333
2.0 Functional Description CX28331/CX28332/CX28333 (-3x)
2.4 Jitter Tolerance Single/Dual/Triple E3/DS3/STS-1 Line Interface Unit
2-14 Mindspeed Technologies28333-DSH-002-B
Mindspeed Proprietary and Confidential
2.4.1 Jitter Transfer
The receiver must meet certain jitter transfer specifications between the input and
output jitter as a function of frequency. These specifications are only intended to
be met with the use of a jitter attenuator. Because the CX2833i does not contain a
jitter attenuator, one will have to be supplied externally. For reference purposes,
the specifications are discussed in the following documents and shown in
Figure 2-9.
E3 rateAssume the same as DS3.
DS3 rateBellcore GR499, section 7.3.2 and figures 7-3, 7-4, and 7-5,
defines and describes DS3 jitter transfer.
STS-1 rateBellcore GR253, section 5.6.2.1, defines and describes jitter
transfer for the STS-1 rate.
Figure 2-9. Maximum Jitter Transfer Curve Requirement
0.1 dB
Jitter Frequency
Jitter Gain
19.9 dB
STS-1 Category II
DS3 Category I
DS3 Category II
(Note: All slopes are 20 dB/decade)
10 Hz 100 Hz 1 kHz 10 kHz 100 kHz
100985_012
CX28331/CX28332/CX28333 (-3x) 2.0 Functional Description
Single/Dual/Triple E3/DS3/STS-1 Line Interface Unit 2.5 Additional CX2833i Functions
28333-DSH-002-B Mindspeed Technologies2-15
Mindspeed Proprietary and Confidential
2.5 Additional CX2833i Functions
2.5.1 Bias Generator
To achieve good isolation between the channels, each channel utilizes an
independent power and ground to both transmit and receive. Additionally, each
channel has its own band gap voltage reference. Because only one external
resistor for current generation exists, only one band gap voltage can be used. The
band gap from Ch1 has been chosen for this task.
The 12.1 k external resistor from pin RBIAS to ground, is specified to have
a tolerance of ±1%. This helps to keep tighter control on power dissipation and
circuit performance.
NOTE: Capacitance should be kept to a minimum on the RBIAS pin.
2.5.2 Power-On Reset (POR)
If the system cannot guarantee a valid REFCLK frequency input during the POR
cycle, the CX2833i devices require assertion (active-high input pulse width, 1 µs
minimum) of the external reset signal (RESET, Pin 78 [80-pin package], Pin 97
[100-pin package]). Valid operation frequencies are DS3 (44.768 MHz ±20
ppm), E3 (34.368 MHz ±20 ppm), and STS-1 (51.84 MHz ±20 ppm). Please
refer to the CX28331/2/3 Evaluation Module User Guide for crystal oscillator
specifications and vendor listings.
A POR circuit is provided in the CX2833i device to initialize all resettable
digital logic and analog control lines. The POR circuit uses a fixed RC timer
(~1µs) to deassert itself when the power supply voltage reaches a minimum level
(~2 V). When the minimum supply voltage is reached (see Table 2-5), the
REFCLK input is counted for 128 clocks before the internal reset is deasserted.
At this time, the receiver block attempts to frequency lock (±5% tolerance) onto a
valid incoming REFCLK input. After frequency lock is achieved, the receiver
attempts to phase lock onto the valid RLINE receive signal.
NOTE: If a valid REFCLK input is not present when POR releases the internal
reset, the receiver block may be unable to lock to the RLINE receive
signal. It is common for some crystal oscillator types oscillate at a lower
fundamental frequency if the crystal oscillator supply has not reached its
minimum operation voltage.
2.5.3 Loopback Multiplexers (MUXes)
Two loopback MUXes per channel in the CX2833i allow for local loopback
(terminal or framer side), remote loopback (cable side), or both. The RLOS signal
monitors the RX cable inputs irrespective of any loopback.
In remote loopback, set by asserting pin RLOOP high, the receive data
(retimed after clock recovery but not decoded) loops back into the pulse shaper in
place of the transmit data. Additionally, this data is sent out the RPOS, RNEG,
and RCLK pins.
2.0 Functional Description CX28331/CX28332/CX28333 (-3x)
2.5 Additional CX2833i Functions Single/Dual/Triple E3/DS3/STS-1 Line Interface Unit
2-16 Mindspeed Technologies28333-DSH-002-B
Mindspeed Proprietary and Confidential
In local loopback, set by asserting pin LLOOP, the transmit data loops back
immediately from the encoder output to the decoder input in place of the received
data. Additionally, this data is sent out the TLINEP and TLINEM/N pins.
Figures 2-10 and 2-11 illustrate remote and local loopback flow.
NOTE: Transmit AIS operation overwrites data with an all 1s pattern during local
loopback, it does not affect remote loopback operation.
Figure 2-10. Remote Loopback Diagram
DECODER
TX
Monitor
PDATA
NDATA
DATCLK
P
N
ALOS REQH
REFCLK
RLINEP
RLINEM/N
TMONTST
TXMON
TMONM
TMONP
TLINEP
TLINEM/N
PDATA/
NDATA
TCLK
XOE
LBO
E3MODE
PDB
TPOS
TNEG
TCLK
TAIS
RLOOP
LLOOP
RPOS
RNEG
RCLK
RLOS
Pulse
Shaper
LINE
DRIVER
Encoder
ENDECDIS
Clock/
Data
Recovery
Receiver
DATA
MUX
RLOSTHR
RLOSMAX
RLOSMDIS
CX28331/CX28332/CX28333 (-3x) 2.0 Functional Description
Single/Dual/Triple E3/DS3/STS-1 Line Interface Unit 2.5 Additional CX2833i Functions
28333-DSH-002-B Mindspeed Technologies2-17
Mindspeed Proprietary and Confidential
Figure 2-11. Local Loopback Diagram
DECODER
TX
Monitor
PDATA
NDATA
DATCLK
P
N
ALOS REQH
REFCLK
RLINEP
RLINEM/N
TMONTST
TXMON
TMONM
TMONP
TLINEP
TLINEM/N
PDATA/
NDATA
TCLK
XOE
LBO
E3MODE
PDB
TPOS
TNEG
TAIS
RLOOP
LLOOP
RPOS
RNEG
RCLK
RLOS
Pulse
Shaper
LINE
DRIVER
Encoder
ENDECDIS
Clock/
Data
Recovery
Receiver
DATA
MUX
TCLK
RLOSTHR
RLOSMAX
RLOSMDIS
2.0 Functional Description CX28331/CX28332/CX28333 (-3x)
2.6 Electrical Characteristics Single/Dual/Triple E3/DS3/STS-1 Line Interface Unit
2-18 Mindspeed Technologies28333-DSH-002-B
Mindspeed Proprietary and Confidential
2.6 Electrical Characteristics
2.6.1 Absolute Maximum Ratings
Table 2-3. Absolute Maximum Ratings
Symbol Parameter Min Max Unit
DVDDC/
RVDD/
TVDD/
VDD/
VGG
Power Supply Voltage 0.3 6 V
VIVoltage on Any Signal Pin 1.0 VGG + 0.3 V V
TST Storage Temperature 40 125 °C
TVSOL Vapor Phase Soldering
Temperature (1 min.)
220 °C
θJA Thermal Resistance (Still
air, socketed)
40 °C/W
θJA Thermal Resistance (Still
air, soldered)
24 °C/W
θJc ——7.40 °C/W
FIT Failures in time @ 89,000
device hours, temperature
of 55 °C, 0 failures.
313 fits
NOTE(S):
1. Stresses above those listed as absolute maximum ratings may cause permanent damage
to the device. This is a stress rating only, and functional operation of the device at these or
any other conditions beyond those indicated in the other sections of this document is not
implied. Exposure to absolute maximum rating conditions for extended periods may affect
device reliability.
CX28331/CX28332/CX28333 (-3x) 2.0 Functional Description
Single/Dual/Triple E3/DS3/STS-1 Line Interface Unit 2.6 Electrical Characteristics
28333-DSH-002-B Mindspeed Technologies2-19
Mindspeed Proprietary and Confidential
2.6.2 ESD Ratings
Testing MethodThe devices were subjected to ESD events at the rated voltage
with both positive and negative polarities relative to each other pin or supply
domain on the device. The given pin was then curve-traced to detect leaky or
shorted ESD diodes. The criterion for passing is 3 devices that withstand voltage
without any leaky pins or functional failures.
2.6.3 Recommended Operating Conditions
Table 2-5 specifies various operating conditions, power supplies, and the bias
resistor.
Table 2-4. ESD Ratings
Model Required Minimum Observed
Human Body 1,000 V 2,000 V
Machine 100 V 200 V
Charged Device 400 V 700 V
Table 2-5. Recommended Operating Conditions
Parameter Conditions Min Nom Max Unit
Power supply voltage
(±5%)
DVDDC, RVDD, TVDD,
VDD
3.135 3.3 3.465 V
ESD voltage(1, 2) VGG 3.135 5 5.5 V
External bias resistor Pin RBIAS to GND; ±1% 11.98 12.1 12.22 k
NOTE(S):
(1) With 5 V logic input, VGG should be tied to 5 V. With 3.3 V logic input, VGG should be tied
to 3.3 V. VGG must be equal or greater than power supply voltage.
(2) When VGG is operated at 5V, sequence VGG with respect to DVDDC, RVDD, TVDD, and
VDD as discussed in Appendix D.
2.0 Functional Description CX28331/CX28332/CX28333 (-3x)
2.7 DC Characteristics Single/Dual/Triple E3/DS3/STS-1 Line Interface Unit
2-20 Mindspeed Technologies28333-DSH-002-B
Mindspeed Proprietary and Confidential
2.7 DC Characteristics
Table 2-6. DC Characteristics
Parameter Conditions Min Nom Max Unit
Vih high threshold Digital inputs (Logic 1) 2.0 VGG + 0.3 V
Vil low threshold Digital inputs (Logic 0) 0.3 0.8 V
Voh high threshold Digital outputs, Ioh = 4 mA 2.4 —— V
Vol low threshold Digital outputs, Iol = 4 mA —— 0.4 V
ILEAK
(digital inputs and outputs)
0 V digital Vin VGG 10 200 µA
ILEAK (analog inputs and outputs:
RLINExP, RLINExM,
TLINExP, TLINExM,
TMONxP, TMONxM)
270 270 µA
Input capacitance ——10 pF
Load capacitance Digital outputs —— 15 pF
RLine/TLine capacitance Maximum load —— 50 pF
Transmit Monitor
Input impedance TMONP, TMONM to 0.25 V 7.5 10 12.5 k
Input voltage range TMONP, TMONM to ground 0 Vdd V
Input pulse threshold (TMONP, TMONM) ±0.4 ±0.5 ±0.6 V
TLOS asserted Number of TCLKs with no input 30 32 34 # TSYM
Power Dissipation
Power dissipation CX28333
(3x) Total chip(3) 0.83 1.0 W
Power dissipation
(CX28332)
Total chip —— 0.8 W
Power dissipation
(CX28331)
Total chip —— .450 W
NOTE(S):
1. The digital inputs of CX2833i are TTL 5 V compliant when VGG = 5V. These inputs are diode protected to the VGG pin.
Additionally, all of the CX2833i digital inputs contain 75 k pull-down resistors.
2. The digital outputs of CX2833i are also TTL 5 V compliant when VGG = 5V. However, these outputs do not drive to 5 V, nor
do they accept 5 V external pull-ups.
3. Measured while transmitting and receiving all-1s pattern.
CX28331/CX28332/CX28333 (-3x) 2.0 Functional Description
Single/Dual/Triple E3/DS3/STS-1 Line Interface Unit 2.8 AC Characteristics
28333-DSH-002-B Mindspeed Technologies2-21
Mindspeed Proprietary and Confidential
2.8 AC Characteristics
Table 2-7. AC Characteristics (Logic Timing)
Parameter Conditions Min Nom Max Unit
Tosym, Tisym
RCLK and TCLK
E3 (34.368 MHz)
DS-3 (44.736 MHz)
STS-1 (51.84 MHz)
29.10
22.35
19.29
ns
ns
ns
Clock Duty Cycle Towidth/Tosym, RCLK
Tiwidth/Tisym, TCLK
Tiwidth/Tisym, REFCLK
45
40
40
55
60
60
%
%
%
Todelay ——3ns
Tisetup TPOS/TNRZ, TNEG,
TAIS
4——ns
Tihold TPOS/TNRZ, TNEG,
TAIS
0——ns
NOTE(S):
1. The description applies to the DS3, E3, and STS-1 clock rates and other parameters such
as pulse width, set-up time, hold time, and duty cycle.
2. The timing diagram, illustrated in Figure 2-12, describes the logical relationship between
various clock and data signals, and parameter values.
3. Todelay is measure with a 1015 pF loading characteristic.
2.0 Functional Description CX28331/CX28332/CX28333 (-3x)
2.8 AC Characteristics Single/Dual/Triple E3/DS3/STS-1 Line Interface Unit
2-22 Mindspeed Technologies28333-DSH-002-B
Mindspeed Proprietary and Confidential
Figure 2-12. Timing Diagram
TCLK
TPOS/TNRZ,
TNEG, TAIS,
Tisym
Tisetup Tihold
DATA INPUTS
Don't
Care Valid Data
Tiwidth
RCLK
RPOS/RNRZ,
RNEG/RLCV
Tosym
Todelay
DATA OUTPUTS
Towidth
Don't
Care
100604_016
28333-DSH-002-B Mindspeed Technologies3-1
Mindspeed Proprietary and Confidential
3
3.0 Applications
The CX28331/CX28332/CX28333 can be used in a variety of applications.
Figure 3-1 illustrates an example of three DS3 lines being terminated by the
CX28333. The data and clock are extracted and passed on to the framer chip for
further data manipulation and user interface.
It is important to employ high-frequency design techniques for the printed
board layout.
3.1 PCB Design Considerations for the CX2833i
The CX28333 device is a mixed signal triple-port LIU device operating at
frequencies up to 51.84 MHz. This calls for a careful design of the PCB layout.
Some design considerations are outlined below.
3.1.1 Power Supply and Ground Plane
A single power plane with bulk capacitors (typically 10 µf) distributed throughout
the board will mitigate most power rail-related voltage transients. A bulk
capacitor should also be placed where the power enters the board. It is
recommended that decoupling capacitors only be routed directly to each of the
power pins. It is recommended that 0.1 µf, 0.01 µf, and 0.001 µf decoupling
capacitors be used. All three values are not required on each pin, but values
should be dispersed uniformly to filter different frequencies of noise. 10 µf
tantalum capacitors should be placed on all four corners of the chip.
A continuous ground plane is the best way to minimize ground impedance. Most
ground noise is produced by the return currents and power supply transients
during switching. This effect is minimized by reducing the ground plane
impedance.
3.1.2 Component Placement
3.1.2.1 RBIAS Resistor It is important to keep the RBAIS pins quiet, as any noise coupled to these pins
affect the internal references. The RBIAS resistors should be placed as close as
possible to the RBIAS pins and no digital signals should be routed near the pins
or the resistors. It is recommended to guard the pin, resistor, and traces with
ground vias.
3.0 Applications CX28331/CX28332/CX28333 (-3x)
3.1 PCB Design Considerations for the CX2833i Single/Dual/Triple E3/DS3/STS-1 Line Interface Unit
3-2 Mindspeed Technologies28333-DSH-002-B
Mindspeed Proprietary and Confidential
3.1.2.2 VGG Decoupling It is recommended that the VGG pin be decoupled with a 0.1 µf, 0.01 µF and
0.001 µf capacitors. These capacitors should be placed close to the VGG pin.
3.1.2.3 Termination
Resistors and Capacitors
The termination resistors and capacitors on the receive RLINE pins should be
placed as close the receiver input on the chip as possible. The series resistors for
the transmit TLINE pins should also be placed as close to the transmitter output
pins as possible, but are less of a priority then the RLINE.
3.1.3 Impedance Matching
It is critical that both the transmit and receive traces around the transformers and
the matching resistors be kept to a minimum length and that the trace impedance
be matched to 75 ohms.
The transmit signals between the device and the transformer should be routed 75
ohm differentially. The transmit signals should be routed single ended between
the transformer and the BNC connector.
The receive signals should be routed differentially between the transformers and
either differentially or single ended from the transformers to the BNC connectors,
depending on the application. If the application requires ground termination it is
recommended that the signals be routed single ended. If the application does not
require ground termination, then the signals can be routed differentially.
To route signals differentially, the signal pair (positive and negative) should be 75
ohm coupled and should be surrounded by solid power/ground planes (buried
strip line) or be coupled to a power/ground plane (microstrip). Buried strip line is
recommended for internal layers while microstrip line is used for signals routed
on surface layers. There should be no discontinuity in the planes during the path
of the signal traces.
Single ended signals should be 75 ohm coupled between power/ground planes for
inner layers or 75 ohm coupled to a power/ground plane on the outer layers.
There should be no discontinuities in the power/ground planes over the trace path.
Impedance discontinuities occur when a signal passes through vias and travels
between layers. It is recommended to minimize the number of vias and layers
that the transmit/receive signals travel through in the design.
3.1.4 Other Passive Parts
Mindspeed recommends the use of 1:1 transformers for coupling the BNC
connectors to the device. The CX28333 uses six Pulse T3001 transformer devices
to handle the 3 Tx and 3 Rx channels.
It is recommended that a 220 µF tantalum capacitor be used where the power
enters the board.
3.1.5 IBIS Models
IBIS (Input/Output Buffer Interface Specification) models for the
CX28331/CX28332/CX28333-3x are available from Mindspeeds web site
(www.mindspeed.com).
CX28331/CX28332/CX28333 (-3x) 3.0 Applications
Single/Dual/Triple E3/DS3/STS-1 Line Interface Unit 3.1 PCB Design Considerations for the CX2833i
28333-DSH-002-B Mindspeed Technologies3-3
Mindspeed Proprietary and Confidential
3.1.6 Recommended Vendors
Product: Transformers Product: Crystals
America
Address:
Telo:
Fax:
Pulse
Corporate Office
12220 World Trade Drive
San Diego, CA 92128
858-674-8100
858-674-8262
Telo:
Fax:
E-mail:
Web site:
Crystek Corp.
12730 Commonwealth Drive
Fort Myers, FL 33913
800-237-3061
941-561-1025
sales@crystek.com
www.crystek.com
Northern Asia
Telo:
Pulse
3F-4, No. 81, Sec. 1
Hsin Tai Wu Road
Hsi-Chih
Tapei Hsien, Taiwan
R.O.C.
886-2-26980228
886-2-26980948
Northern Europe
Telo:
Fax:
Pulse
1S2 Huxley Road
The Surrey Research Park
Guildford, Surrey GU2 5RE
United Kingdom
44-1483-401700
44-1483-401701
3.0 Applications CX28331/CX28332/CX28333 (-3x)
3.1 PCB Design Considerations for the CX2833i Single/Dual/Triple E3/DS3/STS-1 Line Interface Unit
3-4 Mindspeed Technologies28333-DSH-002-B
Mindspeed Proprietary and Confidential
Figure 3-1. DS3/E3 Application Diagram
NOTE(S):
1. All transformers are part number T3001 from Pulse Technology. See Recommended Vendors, Section 3.1.6.
TX
TPOS
TNEG
TCLK
TLINEP
TLINEN
RX
RLINEP
RNEG RLINEN
RPOS
RCLK
MODE BIAS RESET
Channel 1
CX28333
Framer
37.4
W
37.4
W
31.6
W
31.6
W
0.01µF
1:1
1:1
Type 728, 734, 735
75
W
Type 728, 734, 735
75
W
TX
TPOS
TNEG
TCLK TLINEN
RX
RLINEP
RNEG RLINEN
RPOS
RCLK
MODE BIAS RESET
Channel 2
TLINEP
TLINEP
TMONP
TMONM
TMONP
TMONM
TMONP
TMONM
Framer
37.4
W
37.4
W
31.6
W
31.6
W
0.01µF
1:1
1:1
Type 728, 734, 735
75
W
Type 728, 734, 735
75
W
TX
TPOS
TNEG
TCLK TLINEN
RX
RLINEP
RNEG RLINEN
RPOS
RCLK
MODE BIAS RESET
Channel 2
Framer
37.4
W
37.4
W
31.6
W
31.6
W
0.01µF
1:1
1:1
Type 728, 734, 735
75
W
Type 728, 734, 735
75
W
MODE BIAS RESET
RBIAS 12.1K
W
Mode/Status Pins
100985_009
28333-DSH-002-B Mindspeed TechnologiesA-1
Mindspeed Proprietary and Confidential
A
Appendix A: Applicable Standards
The applicable standards documents are as follows:
ANSI T1.102-1993 (DS3 and STS-1 standard)
ANSI T1.404a-1996 (DS3 metallic interface)
ITU Recommendation G.703 (DS3 and E3 standard)
ITU Recommendation G.823 and G.824 (jitter and wander)
Bellcore GR499, Issue 1, 12/89 (formerly TR-TSY-000499)
(DS3 and STS-1 requirements)
Bellcore GR253, Issue 2, 12/91 (formerly TA-NWT-000253)
(STS-1 Requirements and Jitter)
Bellcore TR-TSY-000191, Issue 1, 5/86 (AIS and LOS)
ETSI TBR24 and TBR25 (E3 terminal equipment interface)
ETSI ETS 300 686 and ETS 300 687 (E3 standard)
AT&T Technical Reference TR54014, May 1992 (Accunet Interface
Specification for DS-3 jitter only)
ETSI ETS 300 687, 1996, Business Telecommunications; 34 Mbps Digital
Leased Lines (D34U and D34S); Connection Characteristics
ETSI ETS 300 686, 1996, Business Telecommunication; 34 Mbps and 140
Mbps digital Leased Lines (D34U, D34S, D140U, and D140S); Network
Interface presentation
ANSI T1.102-1993, Digital HierarchyElectrical Interfaces
ANSI T1.107-1995, Digital HierarchyFormats Specification
ANSI T1.231-1997, Draft, Digital HierarchyLayer 1 In-Service Digital
Transmission Performance Monitoring
ANSI T1.231-1993, Digital HierarchyLayer 1 In-Service Digital
Transmission Performance Monitoring
ANSI T1.404-1994, Network-to-Customer InstallationDS3 Metallic
Interface Specification
Bellcore GR-499-CORE, Issue 1, December 1995, Transport Systems
Generic Requirements (TSGR): Common Requirements
Bellcore GR-253-CORE, Issue 2, December 1995, SONET Transport
Systems: Common Generic Criteria
ITU Recommendation G.703, 1991, Physical/Electrical Characteristics of
Hierarchical Digital Interfaces
ITU Recommendation G.823, 1993, The Control of Jitter and Wander
Within Digital Networks Which are Based on the 2,048 kbps Hierarchy
ITU Recommendation O.151, 1992, Error Performance Measuring
Equipment Operating at the Primary Rate and Above
ETSI TBR 24, 1997, Business Telecommunication; 34 Mbps Digital
Unstructured and Structured Lease Lines; Attachment Requirements for
Terminal Equipment Interface
Appendix A: Applicable Standards CX28331/CX28332/CX28333 (-3x)
Single/Dual/Triple E3/DS3/STS-1 Line Interface Unit
A-2 Mindspeed Technologies28333-DSH-002-B
Mindspeed Proprietary and Confidential
28333-DSH-002-B Mindspeed TechnologiesB-1
Mindspeed Proprietary and Confidential
B
Appendix B: Exposed Thin Quad Flat
(ETQFP) Pack
NOTE: Mindspeed recommends that the exposed paddle on the CX2833i3x be
soldered to the ground side of the PCB for reasons described below. Do
not route PCB traces or vias under the exposed paddle area of the
CX2833i3x device.
The Exposed Thin Quad Flat Pack (ETQFP) package provides greater design
flexibility and increased thermal efficiency, while using a standard size IC
package. The exposed pad improves performance by permitting higher clock
speeds, more compact systems, and a more aggressive design criteria. ETQFP
thermal performance is better than standard packages; however, to make
optimum use of the thermal efficiencies designed into the ETQFP, the PCB must
be designed with this package in mind. The following sections of this document
provide more information regarding the thermal performance and PCB design for
Mindspeed ETQFPs.
Appendix B: Exposed Thin Quad Flat (ETQFP) Pack CX28331/CX28332/CX28333 (-3x)
B.1 Introduction Single/Dual/Triple E3/DS3/STS-1 Line Interface Unit
B-2 Mindspeed Technologies28333-DSH-002-B
Mindspeed Proprietary and Confidential
B.1 Introduction
The ETQFP is implemented using a standard epoxy-resin package mold
compound. The integrated circuit die is attached to the lead-frame die pad with a
thermally conductive epoxy. The leadframe is designed with a deep downset of
the die attach pad so it will be exposed on the bottom surface of the package after
mold. This provides an extremely low thermal resistance between the IC junction
and the exterior of the surface.
The die pads external surface can be attached to the PCB using standard
solder reflow techniques. This allows efficient attachment to the board, and
permits the board structure to be used as a heat sink for the IC. Using thermal
vias, the lead frame die pad can be attached to a ground plane or special heat sink
structure designed into the PCB. Figure B-1 illustrates the schematic of the
package components.
Figure B-1. Schematic Representation of the Package Components
100998_030
Lead Frame
Lead Frame
Mold Compound Die
Die Attach
CX28331/CX28332/CX28333 (-3x) Appendix B: Exposed Thin Quad Flat (ETQFP) Pack
Single/Dual/Triple E3/DS3/STS-1 Line Interface Unit B.2 Package Thermal Characterization
28333-DSH-002-B Mindspeed TechnologiesB-3
Mindspeed Proprietary and Confidential
B.2 Package Thermal Characterization
B.2.1 Heat Removal Path
The internal heat removal path is designed to transfer heat from the top surface of
the die to the die pad and then directly to the Printed Circuit Board (PCB) through
a center solder pad. The PCB must have features designed to remove heat from
the package efficiently. At a minimum, there must be an area of solder-tinned
copper underneath the ETQFP, called a thermal land. Heat is transferred from the
thermal land to the environment through thermal vias designed within the PCB
structure.
B.2.2 Thermal Lands
A thermal land is required on the surface of the PCB directly under the body of
the exposed package. During normal surface mount reflow, the exposed pad on
the underside of the package will be soldered to this thermal land creating an
efficient thermal path. The size of the thermal path is as large as needed to
dissipate the required heat.
For double-sided PCBs having no internal layers, the surface layers must be
used to remove heat. Figure B-2 illustrates a sample package detail, including the
required solder mask and thermal land pattern for an EQTFP. The designer may
consider external means of heat conduction, such as attaching the copper planes
to a convenient chassis member or other hardware convection.
Figure B-2. Package and PCB Land Configuration
PCB Center Pad = Body Size - 2.0 mm
Thermal Via x N,
0.33 mm Dia.
Via Dia. + 0.1 mm
Mask Opening, F sq.
A
Metalization Pattern
Comp Side Solder Mask
Comp Side
B
C
D
E
100998_024
Appendix B: Exposed Thin Quad Flat (ETQFP) Pack CX28331/CX28332/CX28333 (-3x)
B.2 Package Thermal Characterization Single/Dual/Triple E3/DS3/STS-1 Line Interface Unit
B-4 Mindspeed Technologies28333-DSH-002-B
Mindspeed Proprietary and Confidential
An array of 0.33 mm diameter thermal vias plated with 1 oz. copper must be
placed on the pad and shorted to the PCBs ground plane. If the plating thickness
in the exposed region of the center pad is not sufficient to effectively plug the
barrel of the via when plated, use solder mask to cap the vias; the mask diameter
should have a dimension equal to the via diameter + 0.1 mm minimum. This
prevents the solder from wicking through the thermal via, potentially creating a
solder void in the region between the package bottom and the center pad on the
surface of the PCB. Table B-1 lists the dimensions for the entire ETQFP package
family.
Table B-1. Dimensional Parameters (mm)
Package Type A B C D E F N(1)
48-lead ETQFP 5.40 5.40 0.50 0.25 1.00 4.70 sq. 3 x 3; 9
80-lead ETQFP 14.40 14.40 0.65 0.35 1.00 6.50 sq. 7 x 7; 49
100-lead ETQFP 14.40 14.40 0.50 0.25 1.00 8.00 sq. 7 x 7; 49
NOTE(S):
(1) N represents the total number of thermal vias to be placed evenly across the entire PCB center pad. In the case of the 48-lead
ETQFP, all thermal vias are located within the exposed region of the center pad.
CX28331/CX28332/CX28333 (-3x) Appendix B: Exposed Thin Quad Flat (ETQFP) Pack
Single/Dual/Triple E3/DS3/STS-1 Line Interface Unit B.2 Package Thermal Characterization
28333-DSH-002-B Mindspeed TechnologiesB-5
Mindspeed Proprietary and Confidential
B.2.3 PCB Design
Thermal vias are the primary method of heat transfer from the PCB thermal land
to the internal copper planes or to other heat removal sinks. The number, size, and
construction of the vias is important in obtaining the best package thermal
performance and package/PCB assembly. Thermal performance analysis
indicates there is a point of diminishing returns where additional vias will not
improve heat transfer through the board.
The PCB internal structure plays a very important role in package thermal
performance. Figures B-3 and B-4 illustrate the PCB structure for a two- and
six-layer design, respectively. PCB designs with more than two layers should
have all thermal vias connected to the ground plane.
Figure B-3. Internal Structure for a Two-Layer PCB
100998_029
1/2 Oz Copper Layer
60 Micron Solder Mask Layer
60 Micron Solder Mask Layer
1.50 mm
Core Laminate LayerThermal Via
1/2 Oz Copper Layer
Figure B-4. Internal Structure For a Six-Layer PCB
Core Laminate Layer
Thermal Via
Electrical Isolation
100998_028
1/2 Oz Copper Layer
60 Micron Solder Mask Layer
60 Micron Solder Mask Layer
1 Oz Copper Layer
1 Oz Copper Layer 1.50 mm
1 Oz Copper Layer
1 Oz Copper Layer
1/2 Oz Copper Layer
Appendix B: Exposed Thin Quad Flat (ETQFP) Pack CX28331/CX28332/CX28333 (-3x)
B.2 Package Thermal Characterization Single/Dual/Triple E3/DS3/STS-1 Line Interface Unit
B-6 Mindspeed Technologies28333-DSH-002-B
Mindspeed Proprietary and Confidential
B.2.4 Thermal Test Structure
B.2.4.1 Test
Environment
Package thermal performance has been tested following JEDEC standards. The
ETQFP package is mounted at the center of a 100 mm × 100 mm, six layer test
board and is tested under different air flow velocities. Figure B-5 illustrates the
system configuration.
B.2.4.2 Thermal Test
Boards
Two different test boards have been used to evaluate package thermal
performance for both worst and best conditions. Table B-2 lists specifications of
these test boards.
Figure B-5. Test Performance Structure (A = 100 mm, B = 100 mm, LP = 1.40 mm, LB = 1.60 mm)
100998_027a
Air Flow
AB
L
B
L
P
Table B-2. Specification for a Two-Layer Test Board
Drawing Number TR03-T1
Substrate Material FR-4
Thickness 1.6 mm
Stackup (signal layers, Cu planes) 1S0P
Cu Coverage (signal layertop/bottom) 10%
Cu Coverage (power/ground layer) 100%
Inner Cu Thickness (spec) 35 x 3.5
Table B-3. Specification for a Four-Layer Test Board
Drawing Number TR03-T2
Substrate Material FR-4
Thickness 1.6 mm
Stackup (signal layers, Cu planes) 1S2P
Cu Coverage (signal layertop/bottom) 10%
Cu Coverage (power/ground layer) 100%
Inner Cu Thickness (spec) 35 x 3.5
CX28331/CX28332/CX28333 (-3x) Appendix B: Exposed Thin Quad Flat (ETQFP) Pack
Single/Dual/Triple E3/DS3/STS-1 Line Interface Unit B.2 Package Thermal Characterization
28333-DSH-002-B Mindspeed TechnologiesB-7
Mindspeed Proprietary and Confidential
B.2.5 Package Thermal Performance
B.2.5.1 Calculation
Guidelines
Maximum junction temperature can be calculated as:
Tj = P x θ ja + Ta
Where:
θ ja = Equivalent Package Thermal Resistance (C/W)
Tj= Maximum Junction Temperature (C)
Ta= Ambient Temperature (C)
P = Package Total Power Dissipation Value (W)
B.2.5.2 Package
Thermal Resistance
Delco thermal test chips are used to estimate package thermal performance.
Table B-4 lists thermal die specifications.
Figure B-6 illustrates package thermal resistance as a function of airflow velocity
for a 48-pin ETQFP package using two different test boards, specified in
Tables B-2 and B-3, and a prediction for a six-layer PCB design. Figures B-7 and
B-8 illustrates the similar information for a 64- and 80-pin ETQFP package.
Table B-5 lists the test condition for each package type.
Table B-4. Specification for Delco Thermal Test Chips
Dimensions 3.81 mm x 3.81 mm 6.35 mm x 6.35 mm 7.8 mm x 7.8 mm
Thickness 0.33 mm 0.45 mm 0.5 mm
Figure B-6. Package Thermal Resistance as a Function of Airflow Velocity for a 48-ETQFP Package
0
10
20
30
40
50
60
70
80
0 50 100 150 200 250 300 350 400 450 500
Air Flow Velocity (LFM)
Package Thermal Resistance
Two Layer PCB
Four Layer PCB
Six Layer PCB
100998_031
Appendix B: Exposed Thin Quad Flat (ETQFP) Pack CX28331/CX28332/CX28333 (-3x)
B.2 Package Thermal Characterization Single/Dual/Triple E3/DS3/STS-1 Line Interface Unit
B-8 Mindspeed Technologies28333-DSH-002-B
Mindspeed Proprietary and Confidential
Table B-5 lists the test conditions for Figures B-6 through B-8.
Table B-5. Test Conditions
Package Type: 48 EQTFP 64 ETQFP 80 ETQFP
Body Size 7 mm x 7 mm 10 mm x 10 mm 14 mm x 14 mm
Die Size 3.81 mm x 3.81 mm 6.35 mm x 6.35 mm 7.8 mm x 7.8 mm
Die Pad Size 5 mm x 5 mm 7.50 mm x 7.50 mm 9.50 mm x 9.50 mm
Figure B-7. Package Thermal Resistance as a Function of Airflow Velocity for an 64 ETQFP
0
10
20
30
40
50
60
0 50 100 150 200 250 300 350 400 450 500
Air Flow Velocity (LFM)
Package Thermal Resistance
Two Layer PCB
Four Layer PCB
Six Layer PCB
100998_032
Figure B-8. Package Thermal Resistance as a Function of Airflow Velocity for an 80 ETQFP
0
10
20
30
40
50
60
0 50 100 150 200 250 300 350 400 450 500
Air Flow Velocity (LFM)
Package Thermal Resistance
Two Layer PCB
Four Layer PCB
Six Layer PCB
100998_033
CX28331/CX28332/CX28333 (-3x) Appendix B: Exposed Thin Quad Flat (ETQFP) Pack
Single/Dual/Triple E3/DS3/STS-1 Line Interface Unit B.3 Solder Stencil Determination
28333-DSH-002-B Mindspeed TechnologiesB-9
Mindspeed Proprietary and Confidential
B.3 Solder Stencil Determination
Use the thickest possible solder mask, consistent with the components being
assembled to the PWB surface mount process. A standoff height of 2.04.2 mils
provides good solder joints for both the leads and the center pad. This is achieved
using a stencil thickness of 5, 6, or 7 mils.
B.4 Solder Reflow Profile
The ETQFP uses the standard TQFP reflow profile because the ETQFP package
construction does not add thermal mass. There is minimal additional thermal load
due to the increased solder area between the exposed die pad on the package and
the center pad on the PCB. Figures B-9 and B-10 illustrate typical IR reflow
profiles for Sn63:Pb37 solder in the cases of natural convection and forced
convection ovens.
Appendix B: Exposed Thin Quad Flat (ETQFP) Pack CX28331/CX28332/CX28333 (-3x)
B.4 Solder Reflow Profile Single/Dual/Triple E3/DS3/STS-1 Line Interface Unit
B-10 Mindspeed Technologies28333-DSH-002-B
Mindspeed Proprietary and Confidential
Figure B-9. Typical IR Reflow Profile for Eutectic Sn63:Pb37
100998_025
NOTE(S):
Peak temperature should be approximately 220 °C, and the exposure time should normally be less
than 1.0 minutes at temperature above 183 °C.
300
270
240
210
180
150
120
90
60
30
0
Temperature (°C)
1234 5 678910
0.0
219Peak: Max Slope: –3.2 Seconds Over 183: 48 Time
Minute 0.6
1
160
9
265
2
125
10
260
3
115
4
110
ZONE SETPOINTS
5
190
6
190
8
190
7
160
1.2 1.9 2.5 3.1 3.7 4.4
Belt Speed = 38.00 inches/minute
CX28331/CX28332/CX28333 (-3x) Appendix B: Exposed Thin Quad Flat (ETQFP) Pack
Single/Dual/Triple E3/DS3/STS-1 Line Interface Unit B.4 Solder Reflow Profile
28333-DSH-002-B Mindspeed TechnologiesB-11
Mindspeed Proprietary and Confidential
Peak temperature should be approximately 235 °C, and the exposure time should
normally be less than 1.2 minutes at temperature above 183 °C. Belt Speed = 30
inches/minute (top and bottom setting), FAN SPEED = 2500 RPM, NITROGEN
LEVEL = 1200 SCFH.
Figure B-10. Typical Forced Convection Reflow Profile for Eutectic Sn63:Pb37
2470
1700
920
150
100998_026
File = SMOLE42
TWO2 - D675-001
MAXIMA
X
1= 221
2 = 225
3 = 227
4 = 226
Deg.
236.7
236.1
232.3
233.3
MAX SLOPES
X
1= 27
2 = 33
3 = 31
4 = 32
5 = 0
Deg./Point
4.4
6.7
6.7
9.4
0.0
Thermocouple Location
1 = BOTTOM GROUND
2 = TQFP4B
3 = BBA
4 = MCM
F1F4 = Sample 14;
Temp
35.0
36.7
32.8
33.9
OPEN
F5 - ReScale X:
Slope
1.1
1.1
1.1
1.1
0.0
SAMP 1 X = ?3 SAMP 2 X = 67 SAMP 3 X = 182 SAMP 4 X = 244
Temp
147.2
157.8
153.9
160.0
OPEN
F6 - ReScale Y:
Slope
1.1
0.9
1.7
1.1
0.0
Temp
185.6
186.7
182.2
183.3
OPEN
F7 = PRINT:
Slope
1.1
1.7
1.7
1.1
0.0
Temp
185.0
181.1
187.8
182.2
OPEN
Msc = Menu:
Slope
2.2
4.4
2.8
3.3
0.0
+X----->
STATUS3
TEMP = 68
BATT = 5.893
P1s = 350
Act = X4321
00:00:01.0
04/29/98
12:00:08
ZONE 1 = 185 °C ZONE 2 = 185 °C ZONE 3 = 175 °C ZONE 4 = 175 °C
ZONE 5 = 180 °C ZONE 6 = 190 °C ZONE 7 = 230 °C ZONE 8 = 270 °C
Appendix B: Exposed Thin Quad Flat (ETQFP) Pack CX28331/CX28332/CX28333 (-3x)
B.4 Solder Reflow Profile Single/Dual/Triple E3/DS3/STS-1 Line Interface Unit
B-12 Mindspeed Technologies28333-DSH-002-B
Mindspeed Proprietary and Confidential
28333-DSH-002-B Mindspeed TechnologiesC-1
Mindspeed Proprietary and Confidential
C
Appendix C: Power Sequencing
When VGG is operated at 5V, use the power-up and power-down sequencing
between VGG and VDD (DVDDC, RVDD, TVDD, VDD) as described in the
diagrams below (See note below).
NOTE: VGG can exceed VDD by up to 5V(±10%) for short durations of less than 10 ms.
VGG must never be less than VDD by more than 0.5V.
Figure C-1. Power -up sequence of VGG and VDD.
VGGmax
VDD
VGGmin
VSS
3.6V Max.
3.6V Max.
0.5V Max.
0.5V Max.
3.6V Max.
Time
3.6V Max.
5.5V Max.
Figure C-2. Power-down sequence of VGG and VDD.
VGGmax
VDD
VGGmin
VSS
3.6V Max.
3.6V Max.
0.5V Max.
0.5V Max.
3.6V Max.
Time
3.6V Max.
5.5V Max.
Appendix C: Power Sequencing CX28331/CX28332/CX28333 (-3x)
Single/Dual/Triple E3/DS3/STS-1 Line Interface Unit
C-2 Mindspeed Technologies28333-DSH-002-B
Mindspeed Proprietary and Confidential
www.mindspeed.com
General Information:
U.S. and Canada: (800) 854-8099
International: (949) 483-6996
Headquarters - Newport Beach
4311 Jamboree Rd. P.O. Box C
Newport Beach, CA. 92658-8902