03H9038
SA14-4657-02
Revised 09/95
©IBM Corporation, 1995. All rights reserved.
Use is further subject to the provisions at the end of this document.
Page 1 of 20
IBM043610QLA
IBM041810QLA
Preliminary 32K X 36 & 64K X 18 SRAM
Features
32K x 36 or 64K x 18 Organizations
0.5 Micron CMOS Technology
Synchronous Flow-Thru Mode Of Operation
with Self-Timed Late Write
Dual Differential Input and Output Clocks.
Single +3.3V Power Supply and Ground
GTL/HSTL Input and Output levels
Registered Addresses, Write Enables, Sync
Select and Data Ins.
Common I/O
Asynchronous Output Enable and Power Down
Inputs
Boundary Scan using limited set of JTA G 1149.1
functions
Byte Write Capability & Global Write Enable
7 X 17 Bump Ball Grid Array Package with
SRAM JEDEC Standard Pinout and Boundary
SCAN Order.
Programmable Impedance Output Drivers
Description
The IBM043610QLA and IBM04180QLA 1Mb
SRAMS are Synchronous Flow-Thru Mode, high
performance CMOS Static Random Access Memo-
ries that are versatile, wide I/O, and achieves 5 nsec
cycle times. Dual differential K clocks are used to ini-
tiate the read/write operation and all internal opera-
tions are self-timed. At the rising edge of the K
Clock, all Addresses, Write-Enables, Sync Select
and Data Ins are registered internally. Differential
clocks C and C are used to control the Output Data
hold time by allowing output data to change after the
rising edge of the C clock. An internal Write buffer
allows write data to follow one cycle after addresses
and controls. The chip is operated with a single
+3.3V power supply and is compatible with
GTL/HSTL I/O interfaces.
.
IBM043610QLA
IBM041810QLA
32K X 36 & 64K X 18 SRAM Preliminary
©IBM Corporation, 1995. All rights reserved.
Use is further subject to the provisions at the end of this document.
Page 2 of 20
03H9038
SA14-4657-02
Revised 09/95
X36 BGA Bump Layout (Top View)
1 2 3 4 5 6 7
A VDDQ SA8 SA7 NC SA4 SA3 VDDQ
B NC NC NC NC NC NC NC
C NC SA9 SA6 VDD SA5 SA2 NC
D DQ23 DQ18 VSS ZQ VSS DQ17 DQ12
E DQ19 DQ24 VSS SS VSS DQ11 DQ16
F VDDQ DQ20 VSS G VSS DQ15 VDDQ
G DQ21 DQ25 SBWc C SBWb DQ10 DQ14
H DQ26 DQ22 VSS C VSS DQ13 DQ9
J VDDQ VDD VREF VDD VREF VDD VDDQ
K DQ27 DQ31 VSS K VSS DQ4 DQ8
L DQ32 DQ28 SBWd K SBWa DQ7 DQ3
M VDDQ DQ33 VSS SW VSS DQ2 VDDQ
N DQ34 DQ29 VSS SA1 VSS DQ6 DQ1
P DQ30 DQ35 VSS SA0 VSS DQ0 DQ5
R NC SA14 M1* VDD M2* SA10 NC
T NC NC SA13 SA12 SA11 NC ZZ
U VDDQ TMS TDI TCK TDO NC VDDQ
Note: * M1 and M2 are clock mode pins. For this application, M1 and M2 need to connect to VDD.
X18 BGA Bump Layout (Top View)
1 2 3 4 5 6 7
A VDDQ SA8 SA7 NC SA4 SA3 VDDQ
B NC NC NC NC NC NC NC
C NC SA9 SA6 VDD SA5 SA2 NC
D DQ9 NC VSS ZQ VSS DQ8 NC
E NC DQ10 VSS SS VSS NC DQ7
F VDDQ NC VSS G VSS DQ6 VDDQ
G NC DQ11 SBWb C VSS NC DQ5
H DQ12 NC VSS C VSS DQ4 NC
J VDDQ VDD VREF VDD VREF VDD VDDQ
K NC DQ13 VSS K VSS NC DQ3
L DQ14 NC VSS K SBWa DQ2 NC
M VDDQ DQ15 VSS SW VSS NC VDDQ
N DQ16 NC VSS SA1 VSS DQ1 NC
P NC DQ17 VSS SA0 VSS NC DQ0
R NC SA15 M1 VDD M2 SA11 NC
T NC SA13 SA14 NC SA12 SA10 ZZ
U VDDQ TMS TDI TCK TDO NC VDDQ
Note: * M1 and M2 are clock mode pins. For this application, M1 and M2 need to connect to VDD .
IBM043610QLA
IBM041810QLA
Preliminary 32K X 36 & 64K X 18 SRAM
03H9038
SA14-4657-02
Revised 09/95
©IBM Corporation, 1995. All rights reserved.
Use is further subject to the provisions at the end of this document.
Page 3 of 20
Pin Description
SA0-SA15 Address Input G Asynchronous Output Enable
DQ0-DQ35 Data I/O SS Synchronous Select
K, K Differential Input Register Clocks M1, M2 Clock Mode Inputs- Selects Single or Dual
Clock Operation.
C,C Differential Output Data Hold Control Clocks VREF(2) GTL/HSTL Input Reference Voltage
SW Write Enable, Global VDD Power Supply (+3.3V)
SBWa Write Enable, Byte a (DQ0-DQ8) VSS Ground
SBWb Write Enable, Byte b (DQ9-DQ17) VDDQ Output Power Supply
SBWc Write Enable, Byte c (DQ18-DQ26) ZZ Asynchronous Sleep Mode
SBWd Write Enable, Byte d (DQ27-DQ35) ZQ Output Driver Impedance Control
TMS,TDI,TCK IEEE 1149.1 Test Inputs (LVTTL levels) NC No Connect
TDO IEEE 1149.1 Test Output (LVTTL level)
Block Diagram
32Kx36
Buffer
Write
Column Decode
Read/Write Amp
Row Dec
2:1 MUX
2:1 MUX
Data Out
Latch
DQ0-DQ35
WR Add
Reg
RD Add
Reg
Match
Register
SW
Register
Register Register
Lat
Lat
Register
Register
K
ZZ
SA0-SA15
Set
Res
Set
Res
C
Lat
Lat
64Kx18
or
Array
SW
SBW SBW SBW
SS
SS
SS
SW
G
IBM043610QLA
IBM041810QLA
32K X 36 & 64K X 18 SRAM Preliminary
©IBM Corporation, 1995. All rights reserved.
Use is further subject to the provisions at the end of this document.
Page 4 of 20
03H9038
SA14-4657-02
Revised 09/95
SRAM FEATURES
Late Write
Late Write function allows for write data to be registered one cycle after addresses and controls. This feature
will alleviate SRAM data bus contention going from a Read to Write cycle by eliminating one dead cycle. Late
Write is accomplished by buffering write addresses and data so that the write operation occurs during the
next write cycle. In the case a read cycle occurs after a write cycle, the address and write data information are
stored temporarily in holding registers. During the first write cycle preceded by a read cycle, the SRAM array
will be updated with address and data in the holding registers. Read cycle addresses are monitored to deter-
mine if read data is to be supplied from the SRAM array or the write buffer. The bypassing of the SRAM array
occurs on a byte by byte basis. When one byte is written during a write cycle, read data from the last written
address will have new byte data from the write buffer and remaining bytes from the SRAM array.
Dual Clock Operation
In Dual Clock Operation, the K Clocks are used to register all synchronous inputs and start the SRAM opera-
tion. The C Clocks are used to control the output data timings. During Write (SW=L) or Deselect (SS=H) oper-
ations, the rising edge of C Clock triggers the time to HI-Z. During Read operations the location of the rising
edge of the C Clock will determine the output data valid placement by allowing SRAM output data to flow
through after the rising edge. When the rising edge of the C Clock occurs early in a Read cycle (e.g. tKHCH =
Min.), data from the SRAM will become available at a tKHQV time, as it would in a Flow-Through Read imple-
mentation (see Dual Clock Diagram #1 below). As the C Clock rising edge moves away from tKHCH = Min.,
towards a tCHKH = Min., of the next K Clock rising edge, the output data may become “gated” by the C Clock
(see Dual Clock Diagram #2 below). The SRAM access time will then become referenced to the C Clock (i.e.
tCHQV). This feature allows SRAM users to fully control the output data hold time over voltage, temperature
and process variations, and provide minimum output data latency.
Dual Clock Diagram #1: Output data becomes
available as a result of internal data lines flowing
through the output latch unrestrained by the C clock.
Dual Clock Dia gram #2: Internal data lines await at
the output latch for the rising edge of C clock.The C
clock enables the output latch and allowsoutput data
to become available.
*Data Lines refer to internal data lines connecting to Data Output Latch See Block Diagram on page 3.
K
DQ
tKHQV
C
tKHCH=min
QA QB
Data
Lines*
QA QB
K
DQ
C
tCHQV
tCHKH=min
QA QB
Data
Lines*
QA QB
IBM043610QLA
IBM041810QLA
Preliminary 32K X 36 & 64K X 18 SRAM
03H9038
SA14-4657-02
Revised 09/95
©IBM Corporation, 1995. All rights reserved.
Use is further subject to the provisions at the end of this document.
Page 5 of 20
Mode Control
Mode control pins: M1 and M2 are used to select four different JEDEC standard read protocols. This SRAM
supports both the Single Clock, Flow-Through (M1 = VSS, M2 = VSS) and Dual Clock Flow-Through proto-
cols (M1 = VDD, M2 = VDD). This data sheet only describes Dual Clock Flow-Through functionality. Mode
control inputs must be set with power up and must not change during SRAM operation.
Power Down Mode
Power Down Mode or “Sleep” Mode is enabled by switching asynchronous signal ZZ High. When the SRAM
is in Sleep mode, the outputs will go to a HI-Z state and the SRAM will draw standby current. SRAM data will
be preserved and a recovery time (tZZR) is required before the SRAM resumes to normal operation.
Programmable Impedance/Power Up Requirements
An external resistor, RQ, must be connected between the ZQ pin on the SRAM and VSS to allow for the
SRAM to adjust its output driver impedance. The value of RQ must be 5X the value of the intended line
impedance driven by the SRAM. The allowable range of RQ to guarantee impedance matching with a toler-
ance of 7.5% is between 175 and 350. Periodic readjustment of the output driver impedance is necessary
as the impedance is greatly affected by drifts in supply voltage and temperature. One evaluation occurs every
64 clock cycles and each evaluation may move the output driver impedance level only one step at a time
towards the optimum level. The output driver has 16 discrete binary weighted steps. The impedance update
of the output driver occurs when the SRAM is in HI-Z. Write and Deselect operations will synchronously
switch the SRAM into and out of HI-Z, therefore, triggering an update. The user may choose to invoke asyn-
chronous G updates by providing a G setup and hold about the K Clock to guarantee the proper update.
There are no power up requirements for the SRAM; however, to guarantee optimum output driver impedance
after power up, the SRAM needs 1024 clock cycles followed by a LO-Z to HI-Z transition.
Ordering Information
Part Number Organization Speed Leads
IBM041810QLA - 5 64K x 18 7.0ns Access / 5 ns Cycle 7 X 17 BGA
IBM041810QLA - 6 64K x 18 7.5ns Access / 6ns Cycle 7 X 17 BGA
IBM041810QLA - 7 64K x 18 8.0ns Access / 7ns Cycle 7 X 17 BGA
IBM043610QLA - 5 32K x 36 7.0ns Access / 5 ns Cycle 7 X 17 BGA
IBM043610QLA - 6 32K x 36 7.5ns Access / 6ns Cycle 7 X 17 BGA
IBM043610QLA - 7 32K x 36 8.0ns Access / 7ns Cycle 7 X 17 BGA
IBM043610QLA
IBM041810QLA
32K X 36 & 64K X 18 SRAM Preliminary
©IBM Corporation, 1995. All rights reserved.
Use is further subject to the provisions at the end of this document.
Page 6 of 20
03H9038
SA14-4657-02
Revised 09/95
Clock Truth Table
K, C CLK ZZ SS SW SBWASBWBSBWCSBWDDQ (n) DQ (n+1) Mode
LHL L H X X X X Dout 0-35 X Read Cycle All Bytes
LHL L L L H H H HIZ Din 0-8 Write Cycle 1st Byte
LHL L L H L H H HIZ Din 9-17 Write Cycle 2nd Byte
LHL L L H H L H HIZ Din 18-26 Write Cycle 3rd Byte
LHL L L H H H L HIZ Din 27-35 Write Cycle 4th Byte
LHLLLLLLLHIZDin 0-35 Write Cycle All Bytes
LHL L L H H H H HIZ HIZ Abort Write Cycle
LHLHXXXXXHIZX Deselect Cycle
X HXXXXXXHIZHIZ Sleep Mode
Output Enable Truth Table
Operation GDQ
Read L Dout 0-35
Read H HIZ
Sleep (ZZ=H) X HIZ
Write (SW=L) X HIZ
Deselect (SS=H) X HIZ
Absolute Maximum Ratings
Item Symbol Rating Units Notes
Power Supply Voltage VDD -0.5 to 4.6 V 1
Input Voltage VIN -0.5 to VDD+0.5 V1
Output Voltage VOUT -0.5 to VDD+0.5 V1
Operating Temperature TA0 to +70 °C 1
Storage Temperature TSTG -55 to +125 °C 1
Short Circuit Output Current IOUT 25 mA 1
1.Stresses greater than those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress
rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of
this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
IBM043610QLA
IBM041810QLA
Preliminary 32K X 36 & 64K X 18 SRAM
03H9038
SA14-4657-02
Revised 09/95
©IBM Corporation, 1995. All rights reserved.
Use is further subject to the provisions at the end of this document.
Page 7 of 20
Recommended DC Operating Conditions (TA=0 to 70°C)
Parameter Symbol Min. Typ. Max. Units Notes
Supply Voltage VDD 3.15 3.3 3.60 V 1
Output Driver Supply Voltage VDDQ 1.14 1.4 1.6 V 1
Input High Voltage VIH VREF +0.1 VDDQ + 0.3 V 1,2
Input Low Voltage VIL -0.3 VREF -0.1 V 1,3
Input Reference Voltage VREF 0.55 0.70 0.90 V 1
Clocks Signal Voltage VIN - CLK -0.3 VDDQ + 0.3 V 1,4
Differential Clocks Signal Voltage VDIF - CLK 0.1 VDDQ + 0.6 V 1,5
Clocks Common Mode Voltage VCM - CLK 0.55 0.90 V 1
Output Current IOUT —5 8 mA
1.All voltages referenced to VSS. All VDD,VDDQ and VSS pins must be connected.
2.VIH(Max)DC = VDDQ + 0.3 V, VIH(Max)AC = VDD + 1.5 V (pulse width 4.0ns)
3.VIL(Min)DC = - 0.3 V, VIL(Min)AC= -1.5 V (pulse width 4.0ns)
4.VIN-CLK specifies the maximum allowable DC excursions of each differential clock (K, K, C, C)
5.VDIF-CLK specifies the minimum Clock differential voltage required for switching.
Capacitance (TA=0 to +70°C, VDD=3.3 5% + 10% V, f=1MHz)
Parameter Symbol Test Condition Max Units
Input Capacitance CIN VIN = 0V 3pF
Data I/O Capacitance (DQ0-DQ35) COUT VOUT = 0V 4pF
DC Electrical Characteristics (TA= 0 to +70°C, VDD=3.3 ±5% V)
Parameter Symbol Min. Max. Units Notes
Average Power Supply Operating Current- X36
(IOUT = 0, VIN = VIH or VIL, ZZ & SS = VIL)IDD5
IDD6
IDD7
675
580
510 mA 1
Average Power Supply Operating Current - X18
(IOUT = 0, VIN = VIH or VIL, ZZ & SS = VIL)IDD5
IDD6
IDD7
500
450
400 mA 1
Power Supply Standby Current
(ZZ= VIH, All other inputs = VIH or VIL, IOUT = 0) ISB —10mA1
Input Leakage Current, any input
(VIN = Vss or VDD)ILI —+1
µA
Output Leakage Current
(VOUT = Vss or VDD, DQ in HIZ ILO —+1
µA
Output “High” Level Voltage (IOH=-6mA @ VDDQ / 2 + 0.3)VOH VDDQ / 2 + 0.3 VDDQ V2
Output “Low” Level Voltage (IOL=+6mA @ VDDQ / 2 -0.3)VOL Vss VDDQ / 2 -0.3 V2
1. IOUT = Chip Output Current
2. Minimum Impedance Output Driver
IBM043610QLA
IBM041810QLA
32K X 36 & 64K X 18 SRAM Preliminary
©IBM Corporation, 1995. All rights reserved.
Use is further subject to the provisions at the end of this document.
Page 8 of 20
03H9038
SA14-4657-02
Revised 09/95
Programmable Impedance Output Driver DC Electrical Characteristics (TA= 0 to +70°C, VDD=3.3 5% + 10% V)
Parameter Symbol Min. Max. Units Notes
Output “High” Level Voltage VOH VDDQ / 2 VDDQ V1
Output “Low” Level Voltage VOL Vss VDDQ / 2 V2
1. IOH = (VDDQ / 2) / (RQ / 5)  7.5% @ VOH = VDDQ / 2 For: 150Ω≤RQ 350
2. IOL = (VDDQ / 2) / (RQ / 5)  7.5% @ VOL = VDDQ / 2 For: 150Ω≤RQ 350
AC Test Conditions (TA=0 to +70°C, VDD=3.3 5% + 10% V)
Parameter Symbol Conditions Units Notes
Input High Level VIH 1.4 V
Input Low Level VIL VSS V
Input Reference Voltage VREF 0.7 V
Differential Clocks Voltage VDIF-CLK 0.7 V
Clocks Common Mode Voltage VCM-CLK 0.7 V
Input Rise Time TR0.5 ns
Input Fall Time TF0.5 ns
I/O Signals Reference Level (except K, C Clocks) 0.7 V
Clocks Reference Level Differential Cross Point V
Output Load Conditions 1
1.See AC Test Loading figure on page 8
AC Test Loading
DQ
0.7V
50
50
16.7
16.7
5pF
0.7V
50
50
16.7
5pF
0.7V
IBM043610QLA
IBM041810QLA
Preliminary 32K X 36 & 64K X 18 SRAM
03H9038
SA14-4657-02
Revised 09/95
©IBM Corporation, 1995. All rights reserved.
Use is further subject to the provisions at the end of this document.
Page 9 of 20
AC Characteristics (TA=0 to +70°C, VDD=3.3 5% + 10% V)
Parameter Symbol -5 -6 -7 Units Notes
Min. Max. Min. Max. Min. Max.
K Clock Cycle Time tKHKH 5.0 6.0 7.0 ns
K Clock High Pulse Width tKHKL 1.5 1.5 1.5 ns
K Clock Low Pulse Width tKLKH 1.5 1.5 1.5 ns
C Clock Cycle Time tCHCH tKHKH tKHKH tKHKH —ns
C Clock High Pulse Width tCHCL 1.5 1.5 1.5 ns
C Clock Low Pulse Width tCLCH 1.5 1.5 1.5 ns
K to C Clock Delay tKHCH 1.5 1.5 1.5 ns
C to K Clock Delay tCHKH 1.0 1.0 1.0 ns
K Clock to Output Valid tKHQV 7.0 7.5 8.0 ns 1
Data Out Hold Time from K Clock tKHQX 2.5 3.0 3.5 ns 1,2,4
K Clock High to Output Active tKHQX4 2.5 3.0 3.5 ns 1,2,4
C Clock to Output Valid tCHQV 3.0 3.5 3.5 ns 1,5
Data Out Hold Time from C clock tCHQX 0.5 0.5 0.5 ns 1,2,5
C Clock High to Output High Z tCHQZ 2.5 3.0 3.5 ns 1,2
C Clock High to Output Active tCHQX2 0.5 0.5 0.5 ns 1,2,5
Address Setup Time tAVKH 0.5 0.5 0.5 ns
Address Hold Time tKHAX 1.0 1.0 1.0 ns
Synchronous Select Setup Time tSVKH 0.5 0.5 0.5 ns
Synchronous Select Hold Time tKHSX 1.0 1.0 1.0 ns
Write Enables Setup Time tWVKH 0.5 0.5 0.5 ns
Write Enables Hold Time tKHWX 1.0 1.0 1.0 ns
Data In Setup Time tDVKH 0.5 0.5 0.5 ns
Data In Hold Time tKHDX 1.0 1.0 1.0 ns
Output Enable to Output Valid tGLQV 2.5 3.0 3.5 ns 1
Output Enable to Low Z tGLQX 0.5 0.5 0.5 ns 1,2
Output Enable to High Z tGHQZ 2.5 3.0 3.5 ns 1,2
Output Enable Set-up Time tGHKH 0.5 0.5 0.5 ns 1,3
Output Enable Hold TIme tKHGX 1.5 1.5 1.5 ns 1,3
Sleep Mode Recovery TIme tZZR 5—6—7— ns
Sleep Mode Enable TIme tZZE 5—6—7ns
1.See AC Test Loading figure on page 8
2.Transitions are measured ±tbd mV from steady state voltage.
3.Output Driver Impedance update specifications for G induced updates. Write and Deselect cycles will also induce Output Driver updates during High Z.
4.tKHQX and tKHQX4 are used in instances where tKHCH = Min. and, therefore, the C Clock may not gate the output data.
5.tCHQV,tCHQX and tCHQX2 are used in instances where the output data is gated by the C Clock.
IBM043610QLA
IBM041810QLA
32K X 36 & 64K X 18 SRAM Preliminary
©IBM Corporation, 1995. All rights reserved.
Use is further subject to the provisions at the end of this document.
Page 10 of 20
03H9038
SA14-4657-02
Revised 09/95
Timing Diagram (Read and Deselect Cycles)
K
SS
SW
G
DQ
SA
tKHKH
Q2 Q3 Q4
tKLKH
tKHKL
tAVKH
tKHAX
tSVKH
tKHSX
tKHWX
tWVKH
tKHQV
tKHQX4
tGHQZ
tGLQX
tGLQV
C
tCHQX
tCHQV
tKHQV
tKHCH tCHKH
tCHQZ
tCHQZ
A1 A3 A3 A4
A2
tKHQX
tCHCH
tCHCL tCLCH
tCHQX2
IBM043610QLA
IBM041810QLA
Preliminary 32K X 36 & 64K X 18 SRAM
03H9038
SA14-4657-02
Revised 09/95
©IBM Corporation, 1995. All rights reserved.
Use is further subject to the provisions at the end of this document.
Page 11 of 20
Timing Diagram (Read Followed by Write)
K
SS
SW
G
DQ
SA
tKHKH
A3
Q1 D2 Q3 D4
tKLKH
tKHKL
tKHQV
tAVKH
tKHAX
tSVKH
tKHSX tKHWX
tWVKH
tDVKH
SBW
tKHWX
tWVKH
tDVKH
tKHDX
tKHQV
Q2
tKHDX
Notes:
1. D2 is the input data written in memory location A2.
2. Q2 is output data read from the write buffer, as a result of address A2 being a match from
write cycle address.
C
tKHCH tCHQV
the last
tCHQZ
tGHQZ
A4
A2
A1 A2
tCHCH
tCHCL tCLCH
IBM043610QLA
IBM041810QLA
32K X 36 & 64K X 18 SRAM Preliminary
©IBM Corporation, 1995. All rights reserved.
Use is further subject to the provisions at the end of this document.
Page 12 of 20
03H9038
SA14-4657-02
Revised 09/95
Timing Diagram (Sleep Mode)
K
ZZ
DQ
tKHKH
tZZR tZZE
IBM043610QLA
IBM041810QLA
Preliminary 32K X 36 & 64K X 18 SRAM
03H9038
SA14-4657-02
Revised 09/95
©IBM Corporation, 1995. All rights reserved.
Use is further subject to the provisions at the end of this document.
Page 13 of 20
IEEE 1149.1 Tap And Boundary Scan
The SRAM provides a limited set of JTAG functions intended to test the interconnection between SRAM I/Os
and printed circuit board traces or other components. There is no multiplexer in the path from I/O pins to the
RAM core.
In conformance with IEEE std. 1149.1, the SRAMs contain a TAP controller, Instruction register, Boundary
Scan register, Bypass register and ID register.
The TAP controller has a standard 16-state state machine that resets internally upon power-up, therefore,
TRST signal is not required.
Signal List
TCK: Test Clock
TMS: Test Mode Select
TDI: Test Data In
TDO: Test Data Out
Caution: TCK, TMS, TDI inputs must be biased down, even if JTAG is not used.
JTAG Recommended DC Operating Conditions (TA=0 to 70°C)
Parameter Symbol Min. Typ. Max. Units Notes
JTAG Input High Voltage VIH1 2.2 VDD+0.3 V1
JTAG Input Low Voltage VIL1 -0.3 0.8 V 1
JTAG Output High Level VOH1 2.4 V 1,2
JTAG Output Low Level VOL1 0.4 V 1,3
1. All JTAG Inputs/Outputs are LVTTL Compatible only.
2. IOH1 = -8mA at 2.4V.
3. IOL1 = +8mA at 0.4V.
JTAG AC Test Conditions (TA=0 to +70°C, VDD=3.3 -5% + 10% V)
Parameter Symbol Conditions Units Notes
Input Pulse High Level VIH1 3.0 V
Input Pulse Low Level VIL1 0.0 V
Input Rise Time TR1 2.0 ns
Input Fall Time TF1 2.0 ns
Input and Output Timing Reference Level 1.5 V 1
1. See AC Test Loading figure on page 8
IBM043610QLA
IBM041810QLA
32K X 36 & 64K X 18 SRAM Preliminary
©IBM Corporation, 1995. All rights reserved.
Use is further subject to the provisions at the end of this document.
Page 14 of 20
03H9038
SA14-4657-02
Revised 09/95
JTAG AC Characteristics (TA=0 to +70°C, VDD=3.3 -5% + 10% V)
Parameter Symbol Min. Max. Units Notes
TCK Cycle Time tTHTH 20 ns
TCK High Pulse Width tTHTL 7— ns
TCK Low Pulse Width tTLTH 7— ns
TMS Setup tMVTH 4— ns
TMS Hold tTHMX 4— ns
TDI Setup tDVTH 4— ns
TDI Hold tTHDX 4— ns
TCK Low to Valid Data tTLOV 7 ns 1
1. See AC Test Loading figure on page 8
JTAG Timing Diagram
TCK
TMS
TDI
TDO
tTHTL tTLTH tTHTH
tTHMX
tMVTH
tDVTH
tTHDX
tTLOV
IBM043610QLA
IBM041810QLA
Preliminary 32K X 36 & 64K X 18 SRAM
03H9038
SA14-4657-02
Revised 09/95
©IBM Corporation, 1995. All rights reserved.
Use is further subject to the provisions at the end of this document.
Page 15 of 20
List of IEEE 1149.1 standard violations:
7.2.1.b, e
7.7.1.a-f
10.1.1.b, e
10.7.1.a-d
Scan Register Definition
Register Name Bit Size X18 Bit Size X36
Instruction 3 3
Bypass 1 1
ID 32 32
Boundary Scan * 51 70
* The Boundary Scan chain consists of the following bits:
36 or 18 bits for Data Inputs Depending on X18 or X36 Configuration
15 bits for SA0 - SA14 for X36, 16 bits for SA0 - SA15 for X18
4 bits for SBWa - SBWd in X36, 2 bits for SBWa and SBWb in X18
11 bits for K, K, C, C, ZQ, SS, G, SW, ZZ, M1 and M2
4 bits for Place Holders
* K, K, C, C clocks connect to a differential receiver that generates a single-ended clock signal. This signal and its inverted value are
used for Boundary Scan sampling.
ID Register Definition
Part
Field Bit Number and Description
Revision Number
(31:28) Device Density and
Configuration (27:18) Vendor Definition
(17:12) Manufacture JEDEC
Code (11:1) Start
Bit (0)
64K X18 0000 001 000 0011 000000 000 101 001 00 1
32K X36 0000 000 110 0100 000000 000 101 001 00 1
Instruction Set
Code Instruction Notes
000 SAMPLE-Z 1,5
001 IDCODE 2
010 SAMPLE-Z 1,5
011 BYPASS 3
100 SAMPLE 4,5
101 BYPASS 3
110 BYPASS 3
111 BYPASS 3
1. Places DQs in HIZ in order to sample all input data regardless of other SRAM inputs.
2. TDI is sampled as an input to the first ID register to allow for the serial shift of the external TDI data.
3. BYPASS register is initiated to VSS when BYPASS instruction is invoked. The BYPASS register also holds the last serially loaded
TDI when exiting the Shift DR state.
4. SAMPLE instruction does not place DQs in HIZ.
5. SRAM must not be in Sleep mode (ZZ = H) when SAMPLE-Z or SAMPLE instructions are invoked.
IBM043610QLA
IBM041810QLA
32K X 36 & 64K X 18 SRAM Preliminary
©IBM Corporation, 1995. All rights reserved.
Use is further subject to the provisions at the end of this document.
Page 16 of 20
03H9038
SA14-4657-02
Revised 09/95
Boundary Scan Order (X36)
(PH =Place Holder)
Exit Order Signal Bump # Exit Order Signal Bump # Exit Order Signal Bump #
1 M2 5R 25 DQ15 6F 49 DQ22 2H
2 SA0 4P 26 DQ16 7E 50 DQ26 1H
3 SA12 4T 27 DQ11 6E 51 SBWc 3G
4 SA10 6R 28 DQ12 7D 52 ZQ 4D
5 SA11 5T 29 DQ17 6D 53 SS 4E
6 ZZ 7T 30 SA3 6A 54 C 4G
7 DQ0 6P 31 SA2 6C 55 C 4H
8 DQ5 7P 32 SA5 5C 56 SW 4M
9 DQ6 6N 33 SA4 5A 57 SBWd 3L
10 DQ1 7N 34 PH* 6B 58 DQ27 1K
11 DQ2 6M 35 PH* 5B 59 DQ31 2K
12 DQ7 6L 36 PH* 3B 60 DQ32 1L
13 DQ3 7L 37 PH* 2B 61 DQ28 2L
14 DQ4 6K 38 SA7 3A 62 DQ33 2M
15 DQ8 7K 39 SA6 3C 63 DQ34 1N
16 SBWa 5L 40 SA9 2C 64 DQ29 2N
17 K 4L 41 SA8 2A 65 DQ30 1P
18 K 4K 42 DQ18 2D 66 DQ35 2P
19 G 4F 43 DQ23 1D 67 SA13 3T
20 SBWb 5G 44 DQ24 2E 68 SA14 2R
21 DQ9 7H 45 DQ19 1E 69 SA1 4N
22 DQ13 6H 46 DQ20 2F 70 M1 3R
23 DQ14 7G 47 DQ25 2G
24 DQ10 6G 48 DQ21 1G
1. * Input of PH register connected to VSS
2. ** Input of PH register connected to VDD
IBM043610QLA
IBM041810QLA
Preliminary 32K X 36 & 64K X 18 SRAM
03H9038
SA14-4657-02
Revised 09/95
©IBM Corporation, 1995. All rights reserved.
Use is further subject to the provisions at the end of this document.
Page 17 of 20
Boundary Scan Order (X18)
(PH =Place Holder)
Exit Order Signal Bump # Exit Order Signal Bump #
1 M2 5R 27 PH* 2B
2 SA10 6T 28 SA7 3A
3 SA0 4P 29 SA6 3C
4 SA11 6R 30 SA9 2C
5 SA12 5T 31 SA8 2A
6 ZZ 7T 32 DQ9 1D
7 DQ0 7P 33 DQ10 2E
8 DQ1 6N 34 DQ11 2G
9 DQ2 6L 35 DQ12 1H
10 DQ3 7K 36 SBWb 3G
11 SBWa 5L 37 ZQ 4D
12 K 4L 38 SS 4E
13 K 4K 39 C 4G
14 G 4F 40 C 4H
15 DQ4 6H 41 SW 4M
16 DQ5 7G 42 DQ13 2K
17 DQ6 6F 43 DQ14 1L
18 DQ7 7E 44 DQ15 2M
19 DQ8 6D 45 DQ16 1N
20 SA3 6A 46 DQ17 2P
21 SA2 6C 47 SA14 3T
22 SA5 5C 48 SA15 2R
23 SA4 5A 49 SA1 4N
24 PH* 6B 50 SA13 2T
25 PH* 5B 51 M1 3R
26 PH* 3B
1. * Input of PH register connected to VSS
2. ** Input of PH register connected to VDD
.
IBM043610QLA
IBM041810QLA
32K X 36 & 64K X 18 SRAM Preliminary
©IBM Corporation, 1995. All rights reserved.
Use is further subject to the provisions at the end of this document.
Page 18 of 20
03H9038
SA14-4657-02
Revised 09/95
TAP Controller State Machine
Test Logic Reset
Run Test Idle Select DR
Capture DR
Shift DR
Exit1 DR
Pause DR
Exit2 DR
Update DR
Select IR
Capture IR
Shift IR
Exit1 IR
Pause IR
Exit2 IR
Update IR
1
1
1
00
0
0
1
0
1
1
0
1
1
1
0
01
1
1
0
1
0
0
0
1
1
0
0
0
0
1
IBM043610QLA
IBM041810QLA
Preliminary 32K X 36 & 64K X 18 SRAM
03H9038
SA14-4657-02
Revised 09/95
©IBM Corporation, 1995. All rights reserved.
Use is further subject to the provisions at the end of this document.
Page 19 of 20
7 x 17 BGA Dimensions
Note: All dimensions in Millimeters
14.00
12.00 ± 0.25
22.00
Overmold
0.600 ± 0.10 Typ
1.0 ± 0.1
20 ± 0.25
1
2
3
4
5
6
7
7.62
1.27
20.32
(119X) 0.75 ± 0.15 Solder Ball
0.84 REF
UTRPNML K J H FGEDCB
A
±
0.030”  0.006
3.19 REF
1± 0.25
Feature is for Lead Pin IDENTIFICATION
0.66 ± 0.05
2.26 ± 0.15
Indicates A1 Location
IBM043610QLA
IBM041810QLA
32K X 36 & 64K X 18 SRAM Preliminary
©IBM Corporation, 1995. All rights reserved.
Use is further subject to the provisions at the end of this document.
Page 20 of 20
03H9038
SA14-4657-02
Revised 09/95
Revision Log
Rev Contents of Modification
6/94 Initial Release of the 32K x 36 & 64K x 18 (5/6/7) BGA FLOW THRU Application Spec.
1/95 Addition of SRAM Features section. Changed parameter/signal names for JEDEC compatibility.
2/95 Add package dimensions and identify SA and DQ pins.
4/95 Correct ZQ in X36 pinout.
5/95 Release to Fax Server.
7/95 WWW Release.
9/95 Change tCHQV specs.
International Business Machines Corp.1996
Printed in the United States of America
All rights reserved
IBM and the IBM logo are registered trademarks of the IBM Corporation.
This document may contain preliminary information and is subject to change by IBM without notice. IBM assumes no responsibility or
liability for any use of the information contained herein. Nothing in this document shall operate as an express or implied license or
indemnity under the intellectual property rights of IBM or third parties. The products described in this document are not intended for
use in implantation or other direct life support applications where malfunction may result in direct physical harm or injury to persons.
NO WARRANTIES OF ANY KIND, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
OR FITNESS FOR A PARTICULAR PURPOSE, ARE OFFERED IN THIS DOCUMENT.
For more information contact your IBM Microelectronics sales representative or
visit us on World Wide Web at http://www.chips.ibm.com