TL/F/10219
100328 Low Power Octal ECL/TTL Bi-Directional Translator with Latch
July 1992
100328
Low Power Octal ECL/TTL
Bi-Directional Translator with Latch
General Description
The 100328 is an octal latched bi-directional translator de-
signed to convert TTL logic levels to 100K ECL logic levels
and vice versa. The direction of this translation is deter-
mined by the DIR input. A LOW on the output enable input
(OE) holds the ECL outputs in a cut-off state and the TTL
outputs at a high impedance level. A HIGH on the latch
enable input (LE) latches the data at both inputs even
though only one output is enabled at the time. A LOW on LE
makes the 100328 transparent.
The cut-off state is designed to be more negative than a
normal ECL LOW level. This allows the output emitter-fol-
lowers to turn off when the termination supply is b2.0V,
presenting a high impedance to the data bus. This high im-
pedance reduces termination power and prevents loss of
low state noise margin when several loads share the bus.
The 100328 is designed with FASTÉTTL output buffers,
featuring optimal DC drive and capable of quickly charging
and discharging highly capacitive loads. All inputs have
50 kXpull-down resistors.
Features
YIdentical performance to the 100128 at 50% of the
supply current
YBi-directional translation
Y2000V ESD protection
YLatched outputs
YFASTÉTTL outputs
YTRI-STATEÉoutputs
YVoltage compensated operating range e
b4.2V to b5.7V
YAvailable to industrial grade temperature range
YAvailable to MIL-STD-883
Logic Symbol
TL/F/102191
Pin Names Description
E0–E7ECL Data I/O
T0–T7TTL Data I/O
OE Output Enable Input
LE Latch Enable Input
DIR Direction Control Input
All pins function at 100K ECL levels except for T0–T7.
Connection Diagrams
24-Pin DIP/SOIC
TL/F/102192
28-Pin PCC
TL/F/102193
24-Pin Quad Cerpak
TL/F/102194
FASTÉand TRI-STATEÉare registered trademarks of National Semiconductor Corporation.
C1995 National Semiconductor Corporation RRD-B30M105/Printed in U. S. A.
Functional Diagram
TL/F/102195
Note: LE, DIR, and OE use ECL logic levels
Detail
TL/F/102196
Truth Table
OE DIR LE ECL TTL Notes
Port Port
LXL LOW Z
(Cut-Off)
L L H Input Z 1, 3
LHH LOW Input 2, 3
(Cut-Off)
HLL L L 1,4
HLL H H 1,4
H L H X Latched 1, 3
HHL L L 2,4
HHL H H 2,4
H H H Latched X 2, 3
HeHIGH Voltage Level
LeLOW Voltage Level
XeDon’t Care
ZeHigh Impedance
Note 1: ECL input to TTL output mode.
Note 2: TTL input to ECL output mode.
Note 3: Retains data present before LE set HIGH.
Note 4: Latch is transparent.
2
Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales
Office/Distributors for availability and specifications.
Storage Temperature (TSTG)b65§Ctoa
150§C
Maximum Junction Temperature (TJ)
Ceramic a175§C
Plastic a150§C
VEE Pin Potential to
Ground Pin b7.0V to a0.5V
VTTL Pin Potential to
Ground Pin b0.5V to a6.0V
ECL Input Voltage (DC) VEE to a0.5V
ECL Output Current
(DC Output HIGH) b50 mA
TTL Input Voltage (Note 3) b0.5V to a6.0V
TTL Input Current (Note 3) b30 mA to a5.0 mA
Note 1: Absolute maximum ratings are those values beyond which the de-
vice may be damaged or have its useful life impaired. Functional operation
under these conditions is not implied.
Note 2: ESD testing conforms to MIL-STD-883, Method 3015.
Note 3: Either voltage limit or current limit is sufficient to protect inputs.
Voltage Applied to Output
in HIGH State
TRI-STATE Output b0.5V to a5.5V
Current Applied to TTL
Output in LOW State (Max) Twice the Rated IOL (mA)
ESD (Note 2) t2000V
Recommended Operating
Conditions
Case Temperature (TC)
Commercial 0§Ctoa
85§C
Industrial b40§Ctoa
85§C
Military b55§Ctoa
125§C
ECL Supply Voltage (VEE)b5.7V to b4.2V
TTL Supply Voltage (VTTL)a4.5V to a5.5V
Commercial Version
TTL-to-ECL DC Electrical Characteristics
VEE eb
4.2V to b5.7V, VCC eVCCA eGND, TCe0§Ctoa
85§C, VTTL ea
4.5V to a5.5V (Note 4)
Symbol Parameter Min Typ Max Units Conditions
VOH Output HIGH Voltage b1025 b955 b870 mV VIN eVIH(Max) or VIL(Min)
VOL Output LOW Voltage b1830 b1705 b1620 mV Loading with 50Xto b2V
Cutoff Voltage OE or DIR Low,
b2000 b1950 mV VIN eVIH(Max) or VIL(Min),
Loading with 50Xto b2V
VOHC Output HIGH Voltage b1035 mV VIN eVIH(Min) or VIL(Max)
Corner Point High Loading with 50Xto b2V
VOLC Output LOW Voltage b1610 mV
Corner Point Low
VIH Input HIGH Voltage 2.0 5.0 V Over VTTL,V
EE,T
CRange
VIL Input LOW Voltage 0 0.8 V Over VTTL,V
EE,T
CRange
IIH Input HIGH Current 70 mAV
IN ea
2.7V
Breakdown Test 1.0 mA VIN ea
5.5V
IIL Input LOW Current b700 mAV
IN ea
0.5V
VFCD Input Clamp b1.2 V IIN eb
18 mA
Diode Voltage
IEE VEE Supply Current LE Low, OE and DIR High
Inputs Open
b159 b75 mA VEE eb
4.2V to b4.8V
b169 b75 VEE eb
4.2V to b5.7V
Note 4: The specified limits represent the ‘‘worst case’’ value for the parameter. Since these values normally occur at the temperature extremes, additional noise
immunity and guardbanding can be achieved by decreasing the allowable system operating ranges. Conditions for testing shown in the tables are chosen to
guarantee operation under ‘‘worst case’’ conditions.
3
Commercial Version (Continued)
ECL-to-TTL DC Electrical Characteristics
VEE eb
4.2V to b5.7V, VCC eVCCA eGND, TCe0§Ctoa
85§C, CLe50 pF, VTTL ea
4.5V to a5.5V (Note)
Symbol Parameter Min Typ Max Units Conditions
VOH Output HIGH Voltage 2.7 3.1 V IOH eb
3 mA, VTTL e4.75V
2.4 2.9 V IOH eb
3 mA, VTTL e4.50V
VOL Output LOW Voltage 0.3 0.5 V IOL e24 mA, VTTL e4.50V
VIH Input HIGH Voltage b1165 b870 mV Guaranteed HIGH Signal for All Inputs
VIL Input LOW Voltage b1830 b1475 mV Guaranteed LOW Signal for All Inputs
IIH Input HIGH Current 350 mAV
IN eVIH (Max)
IIL Input LOW Current 0.50 mAV
IN eVIL (Min)
IOZHT TRI-STATE Current 70 mAV
OUT ea
2.7V
Output High
IOZLT TRI-STATE Current b700 mAV
OUT ea
0.5V
Output Low
IOS Output Short-Circuit b150 b60 mA VOUT e0.0V, VTTL ea
5.5V
Current
ITTL VTTL Supply Current 74 mA TTL Outputs LOW
49 mA TTL Outputs HIGH
67 mA TTL Outputs in TRI-STATE
DIP TTL-to-ECL AC Electrical Characteristics
VEE eb
4.2V to b5.7V, VTTL ea
4.5V to a5.5V, VCC eVCCA eGND (Note)
Symbol Parameter TCe0§CT
C
e
25§CT
C
e
85§CUnits Conditions
Min Max Min Max Min Max
tPLH TNto En1.1 3.5 1.1 3.6 1.1 3.8 ns
Figures1&2
t
PHL (Transparent) ns
tPLH LE to En1.7 3.6 1.7 3.7 1.9 3.9 ns
Figures1&2
t
PHL ns
tPZH OE to En1.3 4.2 1.5 4.4 1.7 4.8 ns
Figures1&2
(Cutoff to High)
tPHZ OE to En1.5 4.5 1.6 4.5 1.6 4.6 ns
Figures1&2
(High to Cutoff)
tPHZ DIR to En1.6 4.3 1.6 4.3 1.7 4.5 ns
Figures1&2
(High to Cutoff)
tset Tnto LE 1.1 1.1 1.1 ns
Figures1&2
t
hold Tnto LE 1.1 1.1 1.1 ns
Figures1&2
t
pw(H) Pulse Width LE 2.1 2.1 2.1 ns
Figures1&2
t
TLH Transition Time 0.6 1.6 0.6 1.6 0.6 1.6 ns
Figures1&2
t
THL 20% to 80%, 80% to 20%
Note: The specified limits represent the ‘‘worst’’ case value for the parameter. Since these values normally occur at the temperature extremes, additional noise
immunity and guardbanding can be achieved by decreasing the allowable system operating ranges. Conditions for testing shown in the tables are chosen to
guarantee operation under ‘‘worst case’’ conditions.
4
Commercial Version (Continued)
DIP ECL-to-TTL AC Electrical Characteristics
VEE eb
4.2V to b5.7V, VTTL ea
4.5V to a5.5V, VCC eVCCA eGND, CLe50 pF
Symbol Parameter TCe0§CT
C
e
25§CT
C
e
85§CUnits Conditions
Min Max Min Max Min Max
tPLH Ento Tn2.3 5.6 2.4 5.6 2.6 5.9 ns
Figures3&4
t
PHL (Transparent)
tPLH LE to Tn3.1 7.2 3.1 7.2 3.3 7.7 ns
Figures3&4
t
PHL
tPZH OE to Tn3.4 8.45 3.7 8.95 4.0 9.7 ns
Figures3&5
t
PZL (Enable Time) 3.8 9.2 4.0 9.2 4.3 9.95
tPHZ OE to Tn3.2 8.95 3.3 8.95 3.5 9.2 ns
Figures3&5
t
PLZ (Disable Time) 3.0 7.7 3.4 8.7 4.1 9.95
tPHZ DIR to Tn2.7 8.2 2.8 8.7 3.1 8.95 ns
Figures3&6
t
PLZ (Disable Time) 2.8 7.45 3.1 7.95 4.0 9.2
tset Ento LE 1.1 1.1 1.1 ns
Figures3&4
t
hold Ento LE 2.1 2.1 2.6 ns
Figures3&4
t
pw(H) Pulse Width LE 4.1 4.1 4.1 ns
Figures3&4
5
SOIC, PCC and Cerpak TTL-to-ECL AC Electrical Characteristics
VEE eb
4.2V to b5.7V, VTTL ea
4.5V to a5.5V
Symbol Parameter TCe0§CT
C
e
25§CT
C
e
85§CUnits Conditions
Min Max Min Max Min Max
tPLH Tnto En1.1 3.3 1.1 3.4 1.1 3.6 ns
Figures1&2
t
PHL (Transparent) ns
tPLH LE to En1.7 3.4 1.7 3.5 1.9 3.7 ns
Figures1&2
t
PHL ns
tPZH OE to En1.3 4.0 1.5 4.2 1.7 4.6 ns
Figures1&2
(Cutoff to High)
tPHZ OE to En1.5 4.3 1.6 4.3 1.6 4.4 ns
Figures1&2
(High to Cutoff)
tPHZ DIR to En1.6 4.1 1.6 4.1 1.7 4.3 ns
Figures1&2
(High to Cutoff)
tset Tnto LE 1.0 1.0 1.0 ns
Figures1&2
t
hold Tnto LE 1.0 1.0 1.0 ns
Figures1&2
t
pw(H) Pulse Width LE 2.0 2.0 2.0 ns
Figures1&2
t
TLH Transition Time 0.6 1.6 0.6 1.6 0.6 1.6 ns
Figures1&2
t
THL 20% to 80%, 80% to 20%
tOSHL Maximum Skew Common Edge PCC Only
Output-to-Output Variation 200 200 200 ps (Note 1)
Data to Output Path
tOSLH Maximum Skew Common Edge PCC Only
Output-to-Output Variation 200 200 200 ps (Note 1)
Data to Output Path
tOST Maximum Skew Opposite Edge PCC Only
Output-to-Output Variation 650 650 650 ps (Note 1)
Data to Output Path
tps Maximum Skew PCC Only
Pin (Signal) Transition Variation 650 650 650 ps (Note 1)
Data to Output Path
Note 1: Output-to-Output Skew is defined as the absolute value of the difference between the actual propagation delay for any outputs within the same packaged
device. The specifications apply to any outputs switching in the same direction either HIGH to LOW (tOSHL), or LOW to HIGH (tOSLH), or in opposite directions both
HL and LH (tOST). Parameters tOST and tps guaranteed by design.
6
Commercial Version (Continued)
SOIC, PCC and Cerpak ECL-to-TTL AC Electrical Characteristics
VEE eb
4.2V to b5.7V, VTTL ea
4.5V to a5.5V, CLe50 pF
Symbol Parameter TCe0§CT
C
e
25§CT
C
e
85§CUnits Conditions
Min Max Min Max Min Max
tPLH Ento Tn2.3 5.4 2.4 5.4 2.6 5.7 ns
Figures3&4
t
PHL (Transparent)
tPLH LE to Tn3.1 7.0 3.1 7.0 3.3 7.5 ns
Figures3&4
t
PHL
tPZH OE to Tn3.4 8.25 3.7 8.75 4.0 9.5 ns
Figures3&5
t
PZL (Enable Time) 3.8 9.0 4.0 9.0 4.3 9.75
tPHZ OE to Tn3.2 8.75 3.3 8.75 3.5 9.0 ns
Figures3&5
t
PLZ (Disable Time) 3.0 7.5 3.4 8.5 4.1 9.75
tPHZ DIR to Tn2.7 8.0 2.8 8.5 3.1 8.75 ns
Figures3&6
t
PLZ (Disable Time) 2.8 7.25 3.1 7.75 4.0 9.0
tset Ento LE 1.0 1.0 1.0 ns
Figures3&4
t
hold Ento LE 2.0 2.0 2.5 ns
Figures3&4
t
pw(H) Pulse Width LE 4.0 4.0 4.0 ns
Figures3&4
t
OSHL Maximum Skew Common Edge PCC Only
Output-to-Output Variation 600 600 600 ps (Note 1)
Data to Output Path
tOSLH Maximum Skew Common Edge PCC Only
Output-to-Output Variation 850 850 850 ps (Note 1)
Data to Output Path
tOST Maximum Skew Opposite Edge PCC Only
Output-to-Output Variation 1350 1350 1350 ps (Note 1)
Data to Output Path
tps Maximum Skew PCC Only
Pin (Signal) Transition Variation 950 950 950 ps (Note 1)
Data to Output Path
Note 1: Output-to-Output Skew is defined as the absolute value of the difference between the actual propagation delay for any outputs within the same packaged
device. The specifications apply to any outputs switching in the same direction either HIGH to LOW (tOSHL), or LOW to HIGH (tOSLH), or in opposite directions both
HL and LH (tOST). Parameters tOST and tps guaranteed by design.
7
Industrial Version
PCC TTL-to-ECL DC Electrical Characteristics
VEE eb
4.2V to b5.7V, VCC eVCCA eGND, TCeb
40§Ctoa
85§C, VTTL ea
4.5V to a5.5V (Note)
Symbol Parameter TCeb
40§CT
C
e
0
§
Ctoa
85§CUnits Conditions
Min Max Min Max
VOH Output HIGH Voltage b1085 b870 b1025 b870 mV VIN eVIH(Max) or VIL(Min)
VOL Output LOW Voltage b1830 b1575 b1830 b1620 mV Loading with 50Xto b2V
Cutoff Voltage OE or DIR Low,
b1900 b1950 mV VINeVIH(Max) or VIL(Min),
Loading with 50Xto b2V
VOHC Output HIGH Voltage b1095 b1035 mV VIN eVIH(Min) or VIL(Max)
Corner Point High Loading with 50Xto b2V
VOLC Output LOW Voltage b1565 b1610 mV
Corner Point Low
VIH Input HIGH Voltage 2.0 5.0 2.0 5.0 V Over VTTL,V
EE,T
CRange
VIL Input LOW Voltage 0 0.8 0 0.8 V Over VTTL,V
EE,T
CRange
IIH Input HIGH Current 70 70 mAV
IN ea
2.7V
Breakdown Test 1.0 1.0 mA VIN ea
5.5V
IIL Input LOW Current b700 b700 mAV
IN ea
0.5V
VFCD Input Clamp Diode Voltage b1.2 b1.2 V IIN eb
18 mA
IEE VEE Supply Current LE Low, OE and DIR High
Inputs Open
b159 b70 b159 b75 mA VEE eb
4.2V to b4.8V
b169 b70 b169 b75 VEE eb
4.2V to b5.7V
PCC ECL-to-TTL DC Electrical Characteristics
VEE eb
4.2V to b5.7V, VCC eVCCA eGND, TCeb
40§Ctoa
85§C, CLe50 pF, VTTL ea
4.5V to a5.5V (Note)
Symbol Parameter TCeb
40§CT
C
e
0
§
Ctoa
85§CUnits Conditions
Min Max Min Max
VOH Output HIGH Voltage 2.7 2.7 V IOH eb
3 mA, VTTL e4.75V
2.4 2.4 V IOH eb
3 mA, VTTL e4.50V
VOL Output LOW Voltage 0.5 0.5 V IOL e24 mA, VTTL e4.50V
VIH Input HIGH Voltage b1170 b870 b1165 b870 mV Guaranteed HIGH Signal for All Inputs
VIL Input LOW Voltage b1830 b1480 b1830 b1475 mV Guaranteed LOW Signal for All Inputs
IIH Input HIGH Current 425 350 mAV
IN eVIH (Max)
IIH Input LOW Current 0.50 0.50 mAV
IN eVIH (Min)
IOZHT TRI-STATE Current 70 70 mAV
OUT ea
2.7V
Output High
IOZLT TRI-STATE Current b700 b700 mAV
OUT ea
0.5V
Output Low
IOS Output Short-Circuit b150 b60 b150 b60 mA VOUT e0.0V, VTTL ea
5.5V
Current
ITTL VTTL Supply Current 74 74 mA TTL Outputs LOW
49 49 mA TTL Outputs HIGH
67 67 mA TTL Outputs in TRI-STATE
Note: The specified limits represent the ‘‘worst case’’ value for the parameter. Since these values normally occur at the temperature extremes, additional noise
immunity and guardbanding can be achieved by decreasing the allowable system operating ranges. Conditions for testing shown in the tables are chosen to
guarantee operation under ‘‘worst case’’ conditions.
8
Industrial Version (Continued)
PCC TTL-to-ECL AC Electrical Characteristics
VEE eb
4.2V to b5.7V, VTTL ea
4.5V to a5.5V
Symbol Parameter TCeb
40§CT
C
e
25§CT
C
e
85§CUnits Conditions
Min Max Min Max Min Max
tPLH Tnto En1.0 3.3 1.1 3.4 1.1 3.6 ns
Figures1&2
t
PHL (Transparent) ns
tPLH LE to En1.7 3.4 1.7 3.5 1.9 3.7 ns
Figures1&2
t
PHL ns
tPZH OE to En1.2 4.0 1.5 4.2 1.7 4.6 ns
Figures1&2
(Cutoff to High)
tPHZ OE to En1.5 4.5 1.6 4.3 1.6 4.4 ns
Figures1&2
(High to Cutoff)
tPHZ DIR to En1.6 4.1 1.6 4.1 1.7 4.3 ns
Figures1&2
(High to Cutoff)
tset Tnto LE 2.5 1.0 1.0 ns
Figures1&2
t
hold Tnto LE 1.0 1.0 1.0 ns
Figures1&2
t
pw(H) Pulse Width LE 2.5 2.0 2.0 ns
Figures1&2
t
TLH Transition Time 0.4 2.3 0.6 1.6 0.6 1.6 ns
Figures1&2
t
THL 20% to 80%, 80% to 20%
PCC ECL-to-TTL AC Electrical Characteristics
VEE eb
4.2V to b5.7V, VTTL ea
4.5V to a5.5V, CLe50 pF
Symbol Parameter TCe0§CT
C
e
25§CT
C
e
85§CUnits Conditions
Min Max Min Max Min Max
tPLH Ento Tn2.3 5.4 2.4 5.4 2.6 5.7 ns
Figures3&4
t
PHL (Transparent)
tPLH LE to Tn3.1 7.4 3.1 7.0 3.3 7.5 ns
Figures3&4
t
PHL
tPZH OE to Tn3.4 8.3 3.7 8.75 4.0 9.5 ns
Figures3&5
t
PZL (Enable Time) 3.7 9.0 4.0 9.0 4.3 9.75
tPHZ OE to Tn3.2 9.0 3.3 8.75 3.5 9.0 ns
Figures3&5
t
PLZ (Disable Time) 3.0 7.5 3.4 8.5 4.1 9.75
tPHZ DIR to Tn2.7 8.0 2.8 8.5 3.1 8.75 ns
Figures3&6
t
PLZ (Disable Time) 2.8 7.3 3.1 7.75 4.0 9.0
tset Ento LE 2.5 1.0 1.0 ns
Figures3&4
t
hold Ento LE 2.3 2.0 2.5 ns
Figures3&4
t
pw(H) Pulse Width LE 4.0 4.0 4.0 ns
Figures3&4
9
Military Version
TTL-to-ECL DC Electrical Characteristics
VEE eb
4.2V to b5.7V, VCC eVCCA eGND, TCeb
55§Ctoa
125§C, VTTL ea
4.5V to a5.5V
Symbol Parameter Min Max Units TCConditions Notes
VOH Output HIGH Voltage b1025 b870 mV 0§Cto
a
125§C
b1085 b870 mV b55§CV
IN eVIH (Max)
VOL Output LOW Voltage b1830 b1620 mV 0§Cto or VIL (Min)
Loading with
a125§C50Xto b2.0V 1, 2, 3
b1830 b1555 mV b55§C
Cutoff Voltage b1950 mV 0§Cto
a
125§C OE or DIR Low
b1850 mV b55§C
VOHC Output HIGH Voltage b1035 mV 0§Cto
a
125§C
b1085 mV b55§CV
IN eVIH (Min) Loading with 1, 2, 3
VOLC Output LOW Voltage b1610 mV 0§Cto or VIL (Max) 50X0tob
2.0V
a125§C
b1555 mV b55§C
VIH Input HIGH Voltage 2.0 V b55§C to Over VTTL,V
EE,T
CRange 1, 2, 3, 4
a125§C
VIL Input LOW Voltage 0.8 V b55§C to Over VTTL,V
EE,T
CRange 1, 2, 3, 4
a125§C
IIH Input HIGH Current 70 mAb55§Cto V
IN ea
2.7V
125§C1, 2, 3
Breakdown Test 1.0 mA b55§Cto V
IN ea
5.5V
a125§C
IIL Input LOW Current b1.0 mA b55§Cto V
IN ea
0.5V 1, 2, 3
a125§C
VFCD Input Clamp b1.2 V b55§Cto I
IN eb
18 mA 1, 2, 3
Diode Voltage a125§C
IEE VEE Supply Current LE Low, OE and DIR High
b55§C to Inputs Open 1, 2, 3
b165 b65 mA a125§CV
EE eb
4.2V to b4.8V
b175 b65 VEE eb
4.2V to b5.7V
10
Military Version (Continued)
ECL-to-TTL DC Electrical Characteristics
VEE eb
4.2V to b5.7V, VCC eVCCA eGND, TCeb
55§Ctoa
125§C, CLe50 pF, VTTL ea
4.5V to a5.5V
Symbol Parameter Min Max Units TCConditions Notes
VOH Output HIGH Voltage 2.5 mV 0§Ctoa
125§CI
OH eb
1 mA, VTTL e4.50V
2.4 b55§CI
OH eb
3 mA, VTTL e4.50V 1, 2, 3
VOL Output LOW Voltage 0.5 mV b55§CIOL e24 mA, VTTL e4.50V
a125§C
VIH Input HIGH Voltage b1165 b870 mV b55§C Guaranteed HIGH Signal 1, 2, 3, 4
a125§C for All Inputs
VIL Input LOW Voltage b1830 b1475 mV b55§C to Guaranteed LOW Signal 1, 2, 3, 4
a125§C for All Inputs
IIH Input HIGH Current 350 mA0§Cto V
EE eb
5.7V 1, 2, 3
500 a125§CV
IN eVIH (Max)
IIL Input LOW Current 0.50 mAb55§Cto V
EE eb
4.2V 1, 2, 3
a125§CV
IN eVIL (Min)
IOZHT TRI-STATE Current 70 mAb55§Cto V
OUT ea
2.7V 1, 2, 3
Output High a125§C
IOZLT TRI-STATE Current b1.0 mA b55§Cto V
OUT ea
0.5V 1, 2, 3
Output Low a125§C
IOS Output Short-Circuit b150 b60 mA b55§Cto V
OUT e0.0V, VTTL ea
5.5V 1, 2, 3
CURRENT a125§C
ITTL VTTL Supply Current 75 mA b55§Cto TTL Outputs Low
50 mA a125§CTTL Output High 1, 2, 3
70 mA TTL Output in TRI-STATE
Note 1: F100K 300 Series cold temperature testing is performed by temperature soaking (to guarantee junction temperature equals b55§C), then testing
immediately without allowing for the junction temperature to stabilize due to heat dissipation after power-up. This provides ‘‘cold start’’ specs which can be
considered a worst case condition at cold temperatures.
Note 2: Screen tested 100% on each device at b55§C, a25§C, and a125§C, Subgroups, 1, 2 3, 7, and 8.
Note 3: Sample tested (Method 5005, Table I) on each manufactured lot at b55§C, a25§C, and a125§C, Subgroups A1, 2, 3, 7, and 8.
Note 4: Guaranteed by applying specified input condition and testing VOH/VOL.
TTL-to-ECL AC Electrical Characteristics
VEE eb
4.2V to b5.7V, VTTL ea
4.5V to a5.5V, VCC eVCCA eGND
Symbol Parameter TCeb
55§CT
C
e
25§CT
C
ea
125§CUnits Conditions Notes
Min Max Min Max Min Max
tPLH TNto En0.8 3.4 1.1 3.6 0.8 3.7 ns
Figures1&2
t
PHL (Transparent) ns 1, 2, 3
tPLH LE to En1.2 3.8 1.4 3.7 1.1 3.8 ns
Figures1&2
t
PHL ns
tPZH OE to En0.8 3.6 1.5 4.0 2.0 5.2 ns
Figures1&2
(Cutoff to HIGH)
tPHZ OE to En1.5 4.6 1.6 4.2 1.6 4.3 ns
Figures1&2
(HIGH to Cutoff)
tPHZ DIR to En1.6 4.7 1.6 4.3 1.7 4.3 ns
Figures1&2
1, 2, 3
(HIGH to Cutoff)
tset Tnto LE 2.5 2.0 2.5 ns
Figures1&2
4
t
hold Tnto LE 2.5 2.0 2.5 ns
Figures1&2
t
pw(H) Pulse Width LE 2.5 2.0 2.5 ns
Figures1&2
4
t
TLH Transition Time 0.4 2.3 0.5 2.1 0.4 2.4 ns
Figures1&2
4
t
THL 20% to 80%, 80% to 20%
11
Military Version (Continued)
ECL-to-TTL AC Electrical Characteristics
VEE eb
4.2V to b5.7V, VTTL ea
4.5V to a5.5V, VCC eVCCA eGND, CLe50 pF
Symbol Parameter TCeb
55§CT
C
e
25§CT
C
ea
125§CUnits Conditions Notes
Min Max Min Max Min Max
tPLH Ento Tn2.1 6.0 2.0 5.6 2.2 6.3 ns
Figures3&4
t
PHL (Transparent) 1, 2, 3
tPLH LE to Tn3.1 7.0 3.1 6.5 3.3 7.5 ns
Figures3&4
t
PHL
tPZH OE to Tn3.2 8.0 3.7 8.0 4.0 9.2 ns
Figures3&5
t
PZL (Enable Time) 3.6 8.0 4.0 8.5 4.3 9.6
tPHZ OE to Tn3.2 8.5 3.3 8.0 3.5 8.4 ns
Figures3&5
1, 2, 3
tPLZ (Disable Time) 3.0 8.0 3.4 7.5 4.1 10.0
tPHZ DIR to Tn2.6 7.0 2.6 7.0 2.9 8.0 ns
Figures3&6
t
PLZ (Disable Time) 2.7 7.0 3.1 7.0 4.0 10.0
tset Ento LE 2.5 2.0 2.5 ns
Figures3&4
4
t
hold Ento LE 3.0 2.5 3.0 ns
Figures3&4
t
pw(H) Pulse Width LE 2.5 2.0 5.0 ns
Figures3&4
4
Note 1: F100K 300 Series cold temperature testing is performed by temperature soaking (to guarantee junction temperature equals b55§C), then testing
immediately after power-up. This provides ‘‘cold start’’ specs which can be considered a worst case condition at cold temperatures.
Note 2: Screen tested 100% on each device at a25§C, temperature only, Subgroup A9.
Note 3: Sample tested (Method 5005, Table I) on each mfg. lot at a25§C, Subgroup A9, and at a125§C and b55§C temperatures, Subgroups A10 and A11.
Note 4: Not tested at a25§C, a125§C and b55§C temperature (design characterization data).
12
Test Circuitry (TTL-to-ECL)
TL/F/102197
Note 1: Rte50Xtermination. When an input or output is being monitored by a scope, Rtis supplied by the scope’s 50Xresistance. When an input or output is not
being monitored, an external 50Xresistance must be applied to serve as Rt.
Note 2: TTL and ECL force signals are brought to the DUT via 50Xcoax lines.
Note 3: VTTL is decoupled to ground with 0.1 mF to ground, VEE is decoupled to ground with 0.01 mF and VCC is connected to ground.
Note 4: For ECL input pins, the equivelent force/sense circuitry is optional.
FIGURE 1. TTL-to-ECL AC Test Circuit
Switching Waveforms (TTL-to-ECL)
TL/F/102199
FIGURE 2. TTL to ECL TransitionÐPropagation Delay and Transition Times
13
Test Circuitry (ECL-to-TTL)
TL/F/1021910
Note 1: Rte50Xtermination. When an input or output is being monitored by a scope, Rtis supplied by the scope’s 50Xresistance. When an input or output is not
being monitored, an external 50Xresistance must be applied to serve as Rt.
Note 2: The TTL Tri-State pull up switch is connected to a7V only for ZL and LZ tests.
Note 3: TTL and ECL force signals are brought to the DUT via 50Xcoax lines.
Note 4: VTTL is decoupled to ground with 0.1 mF, VEE is decoupled to ground with 0.01 mF and VCC is connected to ground.
FIGURE 3. ECL-to-TTL AC Test Circuit
14
Switching Waveforms (ECL-to-TTL)
TL/F/1021911
Note: DIR is LOW, and OE is HIGH
FIGURE 4. ECL-to-TTL TransitionÐPropagation Delay and Transition Times
Note: DIR is LOW, LE is HIGH TL/F/1021914
FIGURE 5. ECL-to-TTL Transition, OE to TTL Output, Enable and Disable Times
Note: OE is HIGH, LE is HIGH TL/F/1021915
FIGURE 6. ECL-to-TTL Transition, DIR to TTL Output, Disable Time
15
Applications
TL/F/1021912
FIGURE 7. Applications DiagramÐMOS/TTL SRAM Interface Using 100328 ECL TTL Latched Translator
Ordering Information
The device number is used to form part of a simplified purchasing code where A package type and temperature range are
defined as follows:
100328 D C QB
Device Type (Basic) Special Variation
QB eMilitary grade device with
Package Code environmental and burn-in
DeCeramic DIP processing
FeQuad Cerpak
PePlastic DIP Temperature Range
QePlastic Leaded Chip Carrier (PCC) C eCommercial (0§Ctoa
85§C)
SeSmall Outline (SOIC) I eIndustrial (b40§Ctoa
85§C)
(PCC Only)
MeMilitary (b55§Ctoa
125§C)
16
17
Physical Dimensions inches (millimeters)
24-Lead Ceramic Dual-In-Line Package (0.400×Wide) (D)
NS Package Number J24E
24-Lead Molded Package (0.300×Wide) (S)
NS Package Number M24B
18
Physical Dimensions inches (millimeters) (Continued)
24-Lead Plastic Dual-In-Line Packakge (P)
NS Package Number N24E
28-Lead Plastic Chip Carrier (V)
NS Package Number V28A
19
100328 Low Power Octal ECL/TTL Bi-Directional Translator with Latch
Physical Dimensions inches (millimeters) (Continued)
24-Lead Quad Cerpak (F)
NS Package Number W24B
LIFE SUPPORT POLICY
NATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT
DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL
SEMICONDUCTOR CORPORATION. As used herein:
1. Life support devices or systems are devices or 2. A critical component is any component of a life
systems which, (a) are intended for surgical implant support device or system whose failure to perform can
into the body, or (b) support or sustain life, and whose be reasonably expected to cause the failure of the life
failure to perform, when properly used in accordance support device or system, or to affect its safety or
with instructions for use provided in the labeling, can effectiveness.
be reasonably expected to result in a significant injury
to the user.
National Semiconductor National Semiconductor National Semiconductor National Semiconductor
Corporation Europe Hong Kong Ltd. Japan Ltd.
1111 West Bardin Road Fax: (
a
49) 0-180-530 85 86 13th Floor, Straight Block, Tel: 81-043-299-2309
Arlington, TX 76017 Email: cnjwge
@
tevm2.nsc.com Ocean Centre, 5 Canton Rd. Fax: 81-043-299-2408
Tel: 1(800) 272-9959 Deutsch Tel: (
a
49) 0-180-530 85 85 Tsimshatsui, Kowloon
Fax: 1(800) 737-7018 English Tel: (
a
49) 0-180-532 78 32 Hong Kong
Fran3ais Tel: (
a
49) 0-180-532 93 58 Tel: (852) 2737-1600
Italiano Tel: (
a
49) 0-180-534 16 80 Fax: (852) 2736-9960
National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.