January 2000 1
© 2000 Actel Corporation
v3.0
HiRel FPGAs
Features
Highly Predictable Performance with 100% Automatic
Placement and Routing
Device Sizes from 1,200 to 20,000 Gates
Up to 6 Fast, Low-Skew Clock Networks
Up to 202 User-Programmable I/O Pins
More Than 500 Macro Functions
Up to 1,276 Dedicated Flip-Flops
I/O Drive to 10 mA
Devices Available to DSCC SMD
CQFP and CPGA Packaging
Nonvolatile, User Programmable
Logic Fully Tested Prior to Shipment
100% Military Temperature Tested (–55°C to +125°C)
QML Certified Devices
Proven Reliability Data Available
Successful Military/Avionics Supplier for Over 10 Years
ACT 3 Features
Highest-Performance, Highest-Capacity FPGA Family
System Performance to 60 MHz over Military Temperature
Low-Power 0.8µ CMOS Technology
3200DX Features
100 MHz System Logic Integration
Highest Speed FPGA SRAM, up to 2.5 kbits Configurable
Dual-Port SRAM
Fast Wide-Decode Circuitry
Low-Power 0.6µ CMOS Technology
1200XL Features
Pin for Pin Compatible with ACT 2
System Performance to 50 MHz over Military Temperature
Low-Power 0.6µ CMOS Technology
ACT 2 Features
Best-Value, High-Capacity FPGA Family
System Performance to 40 MHz over Military Temperature
Low-Power 1.0µ CMOS Technology
ACT 1 Features
Lowest-Cost FPGA Family
System Performance to 20 MHz over Military Temperature
Low-Power 1.0µ CMOS Technology
Product Family Profile (more devices on page 2)
Family 3200DX ACT 3 1200XL
Device A32100DX A32200DX A1425A A1460A A14100A A1280XL
Capacity
System Gates
Logic Gates
SRAM Bits
15,000
10,000
2,048
30,000
20,000
2,560
3,750
2,500
NA
9,000
6,000
NA
15,000
10,000
NA
12,000
8,000
Logic Modules
S-Modules
C-Modules
Decode
1,362
700
662
20
2,414
1,230
1,184
24
310
160
150
NA
848
432
416
NA
1,377
697
680
NA
1,232
624
608
NA
Flip-Flops (Maximum) 738 1,276 435 976 1,493 998
User I/Os (Maximum) 152 202 100 168 228 140
Performance
System Speed (maximum) 55 MHz 55 MHz 60 MHz 60 MHz 60 MHz 50 MHz
Packages (by Pin Count)
CPGA
CQFP 84 208, 256 133
132 207
196 257
256 176
172
2
High-Reliability, Low-Risk Solution
Actel builds the most reliable field programmable gate arrays
(FPGAs) in the industry, with overall antifuse reliability
ratings of less than 10 Failures-In-Time (FITs),
corresponding to a useful life of more than 40 years. Actel
FPGAs have been production proven, with more than five
million devices shipped and more than one trillion antifuses
manufactured. Actel devices are fully tested prior to
shipment, with an outgoing defect level of less than 100 ppm.
(Further reliability data is available in the Actel Device
Reliability Report, at http://www.actel.com/hirel).
Benefits
Minimized Cost Risk
With Actel’s line of development tools, designers can produce
as many chips as they choose for just the cost of the device
itself. There will be no NRE charges to cut into the
development budget each time a new design is tried.
Minimized Time Risk
After the design is entered, placement and routing is
automatic, and programming the device takes only about 5 to
15 minutes for an average design. Designers save time in the
design entry process by using tools with which they are
familiar.
Minimized Reliability Risk
The PLICE antifuse is a one-time programmable, nonvolatile
connection. Since Actel devices are permanently
programmed, no downloading from EPROM or SRAM storage
is required. Inadvertent erasure is impossible, and there is no
need to reload the program after power disruptions.
Fabrication using a low-power CMOS process means cooler
junction temperatures. Actel’s non-PLD architecture delivers
lower dynamic operating current. Our reliability tests show a
very low failure rate of 6.6 FITs at 90°C junction temperature
with no degradation in AC performance. Special stress testing
at wafer test eliminates infant mortalities prior to packaging.
Minimized Security Risk
Reverse engineering of programmed Actel devices from
optical or electrical data is extremely difficult. Programmed
antifuses cannot be identified from a photograph or by using
an SEM. The antifuse map cannot be deciphered either
electrically or by microprobing. Each device has a silicon
signature that identifies its origins, down to the wafer lot and
fabrication facility.
Minimized Testing Risk
Unprogrammed Actel parts are extensively tested at the
factory. Routing tracks, logic modules, and programming,
debug and test circuits are 100 percent tested before
shipment. AC performance is ensured by special speed path
tests, and programming circuitry is verified on test antifuses.
During the programming process, an algorithm is run to
ensure that all antifuses are correctly programmed. In
addition, Actel’s Silicon Explorer diagnostic tool uses
ActionProbe circuitry, allowing 100 percent observability of
all internal nodes to check and debug the design.
Actel FPGA Description
The Actel families of FPGAs offer a variety of packages,
speed/performance characteristics, and processing levels for
use in all high reliability and military applications. Devices
are implemented in a silicon gate, two-level metal CMOS
process, utilizing Actel’s PLICE antifuse technology. This
Product Family Profile
Family ACT 2 ACT 1
Device A1240A A1280A A1010B A1020B
Capacity
System Gates
Logic Gates
SRA M Bi t s
6,000
4,000
NA
12,000
8,000
NA
1,800
1,200
NA
3,000
2,000
NA
Logic Modules
S-Modules
C-Modules
Decode
684
348
336
NA
1,232
624
608
NA
295
295
NA
547
547
NA
Flip-Flops (maximum) 568 998 147 273
User I/Os (maximum) 104 140 57 69
Packages (by pin count)
CPGA
CQFP 132
176
172 84
84
84
Performance
System Speed (maximum) 40 MHz 40 MHz 20 MHz 20 MHz
3
HiRel FPGAs
unique architecture offers gate array flexibility, high
performance, and quick turnaround through user
programming. Device utilization is typically 95 percent of
available logic modules. All Actel devices include on-chip
clock drivers and a hard-wired distribution network.
User-definable I/Os are capable of driving at both TTL and
CMOS drive levels. Available packages for the military are the
Ceramic Quad Flat Pack (CQFP) and the Ceramic Pin Grid
Array (CPGA). See the “Product Plan” section on page 6 for
details.
QML Certification
Actel has achieved full QML certification, demonstrating
that quality management, procedures, processes, and
controls are in place and comply with MIL-PRF-38535, the
performance specification used by the Department of
Defense for monolithic integrated circuits. QML
certification is a good example of Actel's commitment to
supplying the highest quality products for all types of
high-reliability, military and space applications.
Many suppliers of microelectronics components have
implemented QML as their primary worldwide business
system. Appropriate use of this system not only helps in the
implementation of advanced technologies, but also allows
for a quality, reliable and cost-effective logistics support
throughout QML products’ life cycles.
Development Tool Support
The HiRel devices are fully supported by Actel’s line of FPGA
development tools, including the Actel DeskTOP series and
Designer Advantage tools. The Actel DeskTOP Series is an
integrated design environment for PCs that includes design
entry, simulation, synthesis, and place and route tools.
Designer Advantage is Actel’s suite of FPGA development
point tools for PCs and Workstations that includes the
ACTgen Macro Builder, Designer with DirectTime timing
driven place and route and analysis tools, and device
programming software.
In addition, the HiRel devices contain ActionProbe circuitry
that provides built-in access to every node in a design,
enabling 100 percent real-time observation and analysis of a
device’s internal logic nodes without design iteration. The
probe circuitry is accessed by Silicon Explorer, an easy to use
integrated verification and logic analysis tool that can sample
data at 100 MHz (asynchronous) or 66 MHz (synchronous).
Silicon Explorer attaches to a PC’s standard COM port,
turning the PC into a fully functional 18 channel logic
analyzer. Silicon Explorer allows designers to complete the
design verification process at their desks and reduces
verification time from several hours per cycle to a few
seconds.
ACT 3 Description
The ACT 3 family is the third-generation Actel FPGA
family. This family offers the highest-performance and
highest-capacity devices, ranging from 2,500 to 10,000 gates,
with system performance up to 60 MHz over the military
temperature range. The devices have four clock distribution
networks, including dedicated array and I/O clocks. In
addition, the ACT 3 family offers the highest I/O-to-gate ratio
available. ACT 3 devices are manufactured using 0.8µ CMOS
technology.
1200XL/3200DX Description
3200DX and 1200XL FPGAs were designed to integrate
system logic which is typically implemented in multiple
CPLDs, PALs, and FPGAs. These devices provide the features
and performance required for today’s complex, high-speed
digital logic systems. The 3200DX family offers the industry’s
fastest dual-port SRAM for implementing fast FIFOs, LIFOs,
and temporary data storage.
ACT 2 Description
The ACT 2 family is the second-generation Actel FPGA family.
This family offers the best-value, high-capacity devices,
ranging from 4,000 to 8,000 gates, with system performance
up to 40 MHz over the military temperature range. The
devices have two routed array clock distribution networks.
ACT 2 devices are manufactured using 1. CMOS technology.
ACT 1 Description
The ACT 1 family is the first Actel FPGA family and the first
antifuse-based FPGA. This family offers the lowest-cost logic
integration, with devices ranging from 1,200 to 2,000 gates,
with system performance up to 20 MHz over the military
temperature range. The devices have one routed array clock
distribution network. ACT 1 devices are manufactured using
1.0µ CMOS technology.
4
Military Device Ordering Information
Application (Temperature Range)
C=Commercial (0 to +70°C)
M = Military (–55 to +125°C)
B = MIL-STD-883 Class B
E = Extended Flow (Space Level)
Package Type
CQ = Ceramic Quad Flat Pack (CQFP)
PG = Ceramic Pin Grid Array (CPGA)
Speed Grade
Std = Standard Speed
–1 = Approximately 15% faster than Standard
Part Number
A1010 = 1,200 Gates—ACT 1
A1020 = 2,000 Gates—ACT 1
A1240 = 4,000 Gates—ACT 2
A1280 = 8,000 Gates—ACT 2/1200XL
A1425 = 2,500 Gates—ACT 3
A1460 = 6,000 Gates—ACT 3
A14100 = 10,000 Gates—ACT 3
A32100 = 10,000 Gates—3200DX
A32200 = 20,000 Gates—3200DX
Device Revision
Package Lead Count
A14100 CQ 256 B1A
5
HiRel FPGAs
DESC SMD/Actel Part Number Cross Reference
Actel Part Number DSCC SMD DSCC SMD
(Gold Leads) (Gold Leads) (Solder Dipped)
A1010B-PG84B 5962-9096403MXC 5962-9096403MXA
A1010B-1PG84B 5962-9096404MXC 5962-9096404MXA
A1020B-PG84B 5962-9096503MUC 5962-9096503MUA
A1020B-1PG84B 5962-9096504MUC 5962-9096504MUA
A1020B-CQ84B 5962-9096503MTC 5962-9096503MTA
A1020B-1CQ84B 5962-9096504MTC 5962-9096504MTA
A1240A-PG132B 5962-9322101MXC 5962-9322101MXA
A1240A-1PG132B 5962-9322102MXC 5962-9322102MXA
A1280A-PG176B 5962-9215601MXC 5962-9215601MXA
A1280A-1PG176B 5962-9215602MXC 5962-9215602MXA
A1280A-CQ172B 5962-9215601MYC 5962-9215601MYA
A1280A-1CQ172B 5962-9215602MYC 5962-9215602MYA
A1425A-PG133B 5962-9552001MXC N/A
A1425A-1PG133B 5962-9552002MXC N/A
A1425A-CQ132B 5962-9552001MYC N/A
A1425A-1CQ132B 5962-9552002MYC N/A
A1460A-PG207B 5962-9550801MXC N/A
A1460A-1PG207B 5962-9550802MXC N/A
A1460A-CQ196B 5962-9550801MYC N/A
A1460A-1CQ196B 5962-9550802MYC N/A
A14100A-PG257B 5962-9552101MXC N/A
A14100A-1PG257B 5962-9552102MXC N/A
A14100A-CQ256B 5962-9552101MYC N/A
A14100A-1CQ256B 5962-9552102MYC N/A
A32100DX-CQ84B 5962-9875901QXC N/A
A32100DX-1CQ84B 5962-9857902QXC N/A
A32200DX-CQ256B 5962-9952701QXC N/A
A32200DX-1CQ256B 5962-9952702QXC N/A
A32200DX-CQ208B 5962-9952701QYC N/A
A32200DX-1CQ208B 5962-9952702QYC N/A
6
Product Plan
Applications: C = Commercial Availability: = Available *Speed Grade: –1 = Approx. 15% faster than Standard
M= Military = Not Planned
B = MIL-STD-883
E = Extended Flow
Speed Grade Application
3200DX Family Std –1* C M B E
A32100DX Device
84-pin Ceramic Quad Flat Pack (CQFP) ✔✔ ✔✔✔
A32200DX Device
208-pin Ceramic Quad Flat Pack (CQFP) ✔✔ ✔✔
256-pin Ceramic Quad Flat Pack (CQFP) ✔✔ ✔✔
ACT 3 Family
A1425A Dev ice
132-pin Ceramic Quad Flat Pack (CQFP) ✔✔ ✔✔✔✔
133-pin Ceramic Pin Grid Array (CPGA) ✔✔ ✔✔✔✔
A1460A Dev ice
196-pin Ceramic Quad Flat Pack (CQFP) ✔✔ ✔✔✔✔
207-pin Ceramic Pin Grid Array (CPGA) ✔✔ ✔✔✔✔
A14100A Device
256-pin Ceramic Quad Flat Pack (CQFP) ✔✔ ✔✔✔✔
257-pin Ceramic Pin Grid Array (CPGA) ✔✔ ✔✔✔✔
1200XL Family
A1280XL Device
172-pin Ceramic Quad Flat Pack (CQFP) ✔✔ ✔✔
176-pin Ceramic Pin Grid Array (CPGA) ✔✔ ✔✔✔
ACT 2 Family
A1240A Dev ice
132-pin Ceramic Pin Grid Array (CPGA) ✔✔ ✔✔✔
A1280A Dev ice
172-pin Ceramic Quad Flat Pack (CQFP) ✔✔ ✔✔✔✔
176-pin Ceramic Pin Grid Array (CPGA) ✔✔ ✔✔✔✔
ACT 1 Family
A1010B Dev ice
84-pi n Ceramic Pin Gri d Array ( CPGA) ✔✔ ✔✔✔
A1020B Dev ice
84-pin Ceramic Quad Flat Pack (CQFP) ✔✔ ✔✔✔✔
84-pi n Ceramic Pin Gri d Array ( CPGA) ✔✔ ✔✔✔✔
7
HiRel FPGAs
3200DX Device Resources
ACT 3 Device Resources
1200XL Device Resources
ACT 2 Device Resources
ACT 1 Device Resources
User I/Os
FPGA
Device Type Logic
Modules
Gate Array
Equivalent
Gates
CQFP
84-pin 208-pin 256-pin
A32100DX 1,362 10,000 60 ——
A32200DX 2,414 20,000 176 202
User I/Os
FPGA
Device Type Logic
Modules
Gate Array
Equivalent
Gates
CQFP CPGA
132-pin 196-pin 256-pin 133-pin 207-pin 257-pin
A1425A 310 2,500 100 100
A1460A 848 6,000 168 168
A14100A 1,377 10,000 228 228
User I/Os
FPGA
Device Type Logic
Modules
Gate Array
Equivalent
Gates
CQFP CPGA
172-pin 176-pin
A1280XL 1,232 8,000 140 140
User I/Os
FPGA
Device Type Logic
Modules
Gate Array
Equivalent
Gates
CQFP CPGA
172-pin 132-pin 176-pin
A1240A 684 4,000 104
A1280A 1,232 8,000 140 140
User I/Os
FPGA
Device Type Logic
Modules
Gate Array
Equivalent
Gates
CQFP CPGA
84-pin 84-pin
A1010B 295 1,200 57
A1020B 547 2,000 69 69
8
Actel MIL-STD-883 Product Flow
Step Screen 883 Method 883—Class B
Requirement
1. Internal Visual 2010, Test Condition B 100%
2. Temperature Cycling 1010, Test Condition C 100%
3. Constant Acceleration 2001, Test Condition D or E,
Y1, Orientation Only 100%
4. Seal
a. Fine
b. Gross
1014 100%
100%
5. Visual Inspection 2009 100%
6. Pre-Burn-In
Electrical Parameters In accordance with applicable Actel
device specification 100%
7. Burn-in Test 1015, Condition D,
160 hours @ 125°C or 80 hours @ 150°C 100%
8. Interim (Post-Burn-In)
Electrical Parameters In accordance with applicable Actel
device specification 100%
9. Percent Defective Allowable 5% All Lots
10. Final Electrical Test
a. Static Tests
(1) 25°C
(Subgroup 1, Table I)
(2) –55°C and +125°C
(Subgroups 2, 3, Table I)
b. Functional Tests
(1) 25°C
(Subgroup 7, Table I)
(2) –55°C and +125°C
(Subgroups 8A and 8B, Table I)
c. Switching Tests at 25°C
(Subgroup 9, Table I)
In accordance with applicable Actel
device specification, which includes a, b, and c:
5005
5005
5005
5005
5005
100%
100%
100%
11. External Visual 2009 100%
Note: When Destructive Physical Analysis (DPA) is performed on Class B devices, the step coverage requirement as specified in Method 2018
must be waived.
9
HiRel FPGAs
Actel Extended Flow1
Notes:
1. Actel offers the extended flow for customers who require additional screening beyond the requirements of the MIL-STD-833, Class B. Actel is
compliant to the requirements of MIL-STD-883, Paragraph 1.2.1, and MIL-I-38535, Appendix A. Actel is offering this extended flow
incorporating the majority of the screening procedures as outlined in Method 5004 of MIL-STD-883, Class S. The exceptions to Method 5004
are shown in notes 2 and 3 below.
2. Wafer lot acceptance is performed to Method 5007; however, the step coverage requirement as specified in Method 2018 must be waived.
3. MIL-STD-883, Method 5004 requires 100 percent Radiation latch-up testing (Method 1020). Actel will not be performing any radiation testing,
and this requirement must be waived in its entirety.
Step Screen Method Require-
ment
1. Wafer Lot Acceptance25007 with Step Coverage Waiver All Lots
2. Destructive In-Line Bond Pull32011, Condition D Sample
3. Internal Visual 2010, Condition A 100%
4. Serialization 100%
5. Temperature Cycling 1010, Condition C 100%
6. Constant Acceleration 2001, Condition D or E, Y1 Orientation Only 100%
7. Particle Impact Noise Detection 2020, Condition A 100%
8. Radiographic 2012 (one view only) 100%
9. Pre-Burn-In Test In accordance with applicable Actel device specification 100%
10. Burn-in Test 1015, Condition D, 240 hours @ 125°C minimum 100%
11. Interim (Post-Burn-In) Electrical Pa rameters In accordance with applicable Actel device specification 100%
12. Reverse Bias Burn-In 1015, Condition C, 72 hours @ 150°C minimum 100%
13. Interim (Post-Burn-In) Electrical Pa rameters In accordance with applicable Actel device specification 100%
14. Percen t Defective Allowable (PDA)
Calculation 5%, 3% Functional Parameters @ 25°C All Lots
15. Final Electrical Test
a. S tatic Tests
(1) 25°C
(Subgroup 1, Table1)
(2) –55°C and +125°C
(Subgroups 2, 3, Table 1)
b . Functiona l Tests
(1) 25°C
(Subg roup 7, Table 15)
(2) 55°C an d +125 °C
(Subg roup s 8A and B, Tab le 1)
c. Switching Tests at 25°C
(Subgroup 9, Table 1)
In accordance with Actel applicable device specification
which includes a, b, and c:
5005
5005
5005
5005
5005
100%
100%
100%
100%
16. Seal
a. Fine
b. Gross
1014 100%
17. External Visual 2009 100%
10
Absolute Maximum Ratings1
Free air temperature range
Notes:
1. Stresses beyond those listed under “Absolute Maximum Ratings”
may cause permanent damage to the device. Exposure to
absolute maximum rated conditions for extended periods may
affect device reliability. Devices should not be operated outside
the recommended operating conditions.
2. VPP = VCC , except during device programming.
3. VSV = VCC , except during device programming.
4. VKS = GND , except during device programming.
5. Device inputs are normally high impedance and draw extremely
low current. However, when input voltage is greater than VCC +
0.5V or less than GND – 0.5V, the internal protection diode will be
forward biased and can draw excessive current.
Recommended Operating Conditions
Notes:
1. Ambient temperature (TA) is used for commercial and
industrial; case temperature (TC) is used for military.
2. All power supplies must be in the recommended operating range.
For more information, refer to the Power-Up Design Considerations
application note at http://www.actel.com/appnotes.
Electrical Specifications
Notes:
1. Actel devices can drive and receive either CMOS or TTL signal levels. No assignment of I/Os as TTL or CMOS is required.
2. Tested one output at a time, VCC = min.
3. Not tested; for information only.
4. VOUT = 0V, f = 1 MHz
Symbol Parameter Limits Units
VCC DC Suppl y Voltage2, 3, 4 –0.5 to +7.0 V
VIInput Voltage –0.5 to VCC +0.5 V
VOOutput Voltage –0.5 to VCC +0.5 V
IIO I/O Source Sink
Current5±20 mA
TSTG Storage Temperature –65 to +150 °C
Parameter Commercial Military Units
Temperature
Range10 to +70 –55 to +125 °C
Power Supply
Tolerance2±5 ±10 %VCC
Symbol Parameter Test Co ndition
Commercial Military
UnitsMin. Max. Min. Max.
VOH1, 2 HIGH Level Output IOH = –4 mA (CMOS) 3.7 V
IOH = –6 mA (CMOS) 3.84 V
VOL1, 2 LOW Level Output IOL = +6 mA (CMOS) 0.33 0.4 V
VIH HIGH Level Input TTL Inputs 2.0 V CC + 0.3 2.0 VCC + 0.3 V
VIL LOW Level Input TTL Inputs –0.3 0.8 –0.3 0.8 V
IIN Input Leakage VI = VCC or GND –10 +10 –10 +10 µA
IOZ 3-state Output Leakage VO = VCC or GND –10 +10 –10 +10 µA
CIO I/O Capacitance3, 4 10 10 pF
ICC(S) Standby VCC Supply Current VI = VCC or GND, IO = 0 mA
ACT 1 3 20 m A
ACT 2/3/1200XL/3200DX 2 20 mA
ICC(D) Dynamic VCC Supply Current See the “Power Dissipation” section on page 11.
11
HiRel FPGAs
Package Thermal Characteristics
The device junction to case thermal characteristic is θjc, and
the junction to ambient air characteristic is θja. The thermal
characteristics for θja are shown with two different air flow
rates.
Maximum junction temperature is 150°C.
A sample calculation of the absolute maximum power
dissipation allowed for a CPGA 176-pin package at military
temperature is as follows:
Power Dissipation
General Power Equation
P = [ICCstandby + ICCactive] * VCC + IOL * VOL * N +
IOH * (VCC – VOH) * M
where:
ICCstandby is the current flowing when no inputs or outputs
are changing.
ICCactive is the current flowing due to CMOS switching.
IOL, IOH are TTL sink/source currents.
VOL, VOH are TTL level output voltages.
N equals the number of outputs driving TTL loads to
VOL.
M equals the number of outputs driving TTL loads to
VOH.
Accurate values for N and M are difficult to determine
because they depend on the family type, on the design, and on
the system I/O. The power can be divided into two
components—static and active.
Static Power Component
Actel FPGAs have small static power components that result
in power dissipation lower than that of PALs or PLDs. By
integrating multiple PALs or PLDs into one FPGA, an even
greater reduction in board-level power dissipation can be
achieved.
The power due to standby current is typically a small
component of the overall power. Standby power is calculated
below for commercial, worst-case conditions.
The static power dissipated by TTL loads depends on the
number of outputs driving high or low and the DC load
current. Again, this value is typically small. For instance, a
32-bit bus sinking 4 mA at 0.33V will generate 42 mW with all
outputs driving low, and 140 mW with all outputs driving high.
Active Power Component
Power dissipation in CMOS devices is usually dominated by
the active (dynamic) power dissipation. This component is
frequency dependent, a function of the logic and the external
I/O. Active power dissipation results from charging internal
chip capacitances of the interconnect, unprogrammed
antifuses, module inputs, and module outputs, plus external
capacitance due to PC board traces and load device inputs.
An additional component of the active power dissipation is
the totempole current in CMOS transistor pairs. The net
effect can be associated with an equivalent capacitance that
Package Type Pin Count θjc
θja
Still Air θja
300 ft/min Units
Ceramic Pin Grid Array 84
132
133
176
207
257
6.0
4.8
4.8
4.6
3.5
2.8
33
25
25
23
21
15
20
16
15
12
10
8
°C/W
°C/W
°C/W
°C/W
°C/W
°C/W
Ceramic Quad Flat Pack 84
132
172
196
256
7.8
7.2
6.8
6.4
6.2
40
35
25
23
20
30
25
20
15
10
°C/W
°C/W
°C/W
°C/W
°C/W
Max. junction temp. (°C) – Max. military temp.
θja (°C/W)
------------------------------------------------------------------------------------------------------------------ 150°C 125°C
23°C/W
------------------------------------ 1 . 1 W==
Family ICC VCC Power
ACT 3 2 mA 5.25V 10.5 mW
1200XL/3200DX 2 mA 5.25V 10.5 mW
ACT 2 2 mA 5.25V 10.5 mW
ACT 1 3 mA 5.25V 15.8 mW
12
can be combined with frequency and voltage to represent
active power dissipation.
Equivalent Capacitance
The power dissipated by a CMOS circuit can be expressed by
Equation 1:
Power (uW) = CEQ * VCC2 * F (1)
where:
Equivalent capacitance is calculated by measuring ICCactive
at a specified frequency and voltage for each circuit
component of interest. Measurements are made over a range
of frequencies at a fixed value of VCC. Equivalent capacitance
is frequency independent so that the results can be used over
a wide range of operating conditions. Equivalent capacitance
values are shown below.
CEQ Values for Actel FPGAs
To calculate the active power dissipated from the complete
design, the switching frequency of each part of the logic must
be known. Equation 2 shows a piecewise linear summation
over all components that applies to all ACT 1, 1200XL,
3200DX, ACT 2, and ACT 3 devices. Since the ACT 1 family has
only one routed array clock, the terms labeled routed_Clk2,
dedicated_Clk, and IO_Clk do not apply. Similarly, the ACT 2
family has two routed array clocks, and the dedicated_Clk
and IO_Clk terms do not apply. For ACT 3 devices, all terms
will apply.
Power = VCC2 * [(m * CEQM* fm)modules + (n * CEQI* fn)inputs +
(p * (CEQO+ CL) * fp)outputs + 0.5 * (q1 * CEQCR * fq1)routed_Clk1
+ (r1 * fq1)routed_Clk1 + 0.5 * (q2 * CEQCR * fq2)routed_Clk2 +
(r2 * fq2)routed_Clk2 + 0.5 * (s1 * CEQCD * fs1)dedicated_Clk +
(s2 * CEQCI * fs2)IO_Clk](2)
where:
CEQ = Equivalent capacitance in pF
VCC = Power supply in volts (V)
F = Switching frequency in MHz
ACT 3
1200XL
3200DX ACT 2 ACT 1
Modules (CEQM) 6.7 5.2 5.8 3.7
Input Buffers (CEQI) 7.2 11.6 12.9 22.1
Output Buffers (CEQO) 10.4 23.8 23.8 31.2
Routed Array Clock
Buffer Loads (CEQCR) 1.6 3.5 3.9 4.6
Dedicated Clock Buffer
Loads (CEQCD) 0.7N/AN/AN/A
I/O Clock Buffer Loads
(CEQCI) 0.9N/AN/AN/A
m = Number of logic modules switching at fm
n = Number of input buffers switching at fn
p = Number of output buffers switching at fp
q1= Number of clock loads on the first routed
array clock (all families)
q2= Number of clock loads on the second routed
array clock (ACT 2, 1200XL, 3200DX, ACT 3
only)
r1= Fixed capacitance due to first routed array
clock (all families)
r2= Fixed capacitance due to second routed array
clock (ACT 2, 1200XL, 3200DX, ACT 3 only)
s1= Fixed number of clock loads on the dedicated
array clock (ACT 3 only)
s2= Fixed number of clock loads on the dedicated
I/O clock (ACT 3 only)
CEQM = Equivalent capacitance of logic modules in pF
CEQI = Equivalent capacitance of input buffers in pF
CEQO = Equivalent capacitance of output buffers
in pF
CEQCR = Equivalent capacitance of routed array clock
in pF
CEQCD = Equivalent capacitance of dedicated array
clock in pF
CEQCI = Equivalent capacitance of dedicated I/O clock
in pF
CL= Output lead capacitance in pF
fm= Average logic module switching rate in MHz
fn= Average input buffer switching rate in MHz
fp= Average output buffer switching rate in MHz
fq1 = Average first routed array clock rate in MHz
(all families)
fq2 = Average second routed array clock rate in
MHz (ACT 2, 1200XL, 3200DX, ACT 3 only)
fs1 = Average dedicated array clock rate in MHz
(ACT 3 only)
fs2 = Average dedicated I/O clock rate in MHz
(ACT 3 only)
13
HiRel FPGAs
Fixed Capacitance Values for
Actel FPGAs (pF)
Fixed Clock Loads (s1/s2—ACT 3 Only)
Determining Average Switching Frequency
To determine the switching frequency for a design, you must
have a detailed understanding of the data values input to the
circuit. The guidelines in the table below are meant to
represent worst-case scenarios so that they can be generally
used to predict the upper limits of power dissipation.
Device Type
r1
routed_Clk1
r2
routed_Clk2
A1010B 41 n/a
A1020B 69 n/a
A1240A 134 134
A1280A 168 168
A1280XL 168 168
A1425A 75 75
A1460A 165 165
A14100A 195 195
A32100DX 178 178
A32200DX 230 230
Device Type
s1
Clock Loads on
Dedicated
Array Clock
s2
Clock Loads on
Dedicated
I/O Clock
A1425A 160 100
A1460A 432 168
A14100A 697 228
Type ACT 3 3200DX/ACT 2/1200XL ACT 1
Logic modules (m) 80% of modules 80% of modules 90% of modules
Input switching (n) # inputs/4 # inputs/4 # inputs/4
Outputs switching (p) #outputs/4 #outputs/4 #outputs/4
First routed array clock load s (q1) 40% of sequential
modules 40% of sequential
modules 40% of modules
Second routed array clock loads (q2) 40% of sequential
modules 40% of sequential
modules n/a
Load capacitance (CL) 35 pF 35 pF 35 pF
Average logic module switching rate (fm) F/10 F/10 F/10
Average input switching rate (fn) F/5 F/5 F/5
Average output switching rate (fp) F/10 F/10 F/10
Average first routed array clock rate (fq1)F/2 F F
Average second routed array clock rate (fq2) F/2 F/2 n/a
Average dedicated array clock rate (fs1)F n/a n/a
Average dedicated I/O clock ra te (fs2)F n/a n/a
14
3200DX Timing Model (Logic Functions using Array Clocks)*
*Values shown for A32100DX–1 at worst-case military conditions.
Output DelaysInternal D elaysInput Delays
tINH = 0.0 ns
tINSU = 0.7 ns
I/O Module
DQ
tINGO = 4.0 ns
tINPY = 1.9 ns tIRD1 = 2.2 ns Combinatorial
Module
tPD = 3.1 ns
Sequential
Logic Module
I/O Module
tRD1 = 1.3 ns tDLH = 6.3 ns
I/O Modu le
ARRAY
CLOCKS
FMAX = 140 MHz
Combin-
atorial
Logic
included
in tSUD
DQDQ
tLH = 0.0 ns
tLSU = 0.4 ns
tGHL= 12.4 ns
tDLH = 6.3 ns
tENHZ = 11.5 ns
tRD1 = 1.3 ns
tCO = 3.1 ns
tSU = 0.5 ns
tHD = 0.0 ns
Predicted
Routing
Delays
G
G
Decode
Module
tPDD = 3.3 ns
tRDD = 0.5 ns
tRD2 = 1.9 ns
tRD4 = 3.3 ns
tCKH = 6.5 ns
15
HiRel FPGAs
3200DX Timing Model (Logic Functions using Quadrant Clocks)*
* Values shown for A32100DX–1 at worst-case military conditions.
** Load dependent.
Output DelaysInternal D elaysInput Delays
tINH = 0.0 ns
tINSU = 0.7 ns
I/O Module
DQ
tINGO = 4.0 ns
tINPY = 1.9 ns tIRD1 = 2.2 ns Combinatorial
Module
tPD = 3.1 ns
Sequential
Logic Module
I/O Module
tRD1 = 1.3 ns tDLH = 6.3 ns
I/O Modu le
QUADRANT
CLOCKS
FMAX = 100 MHz
Combin-
atorial
Logic
included
in tSUD
DQDQ
tLH = 0.0 ns
tLSU = 0.4 ns
tGHL= 12.4 ns
tDLH = 6.3 ns
tENHZ = 11.5 ns
tRD1 = 1.3 ns
tCO = 3.1 ns
tSU = 0.5 ns
tHD = 0.0 ns
Predicted
Routing
Delays
G
G
Decode
Module
tPDD = 3.3 ns
tRDD = 0.5 ns
tRD2 = 1.9 ns
tRD4 = 3.3 ns
tCKH = 12 ns**
16
3200DX Timing Model (SRAM Functions)*
*Values shown for A32100DX–1 at worst-case military conditions.
tINH = 0.0 ns
tINSU = 0.7 n s
Input Delays
I/O Module
DQ
tINGO = 4.0 ns
tINPY = 1.9 ns tIRD1 = 2.2 ns
ARRAY
CLOCKS
FMAX = 140 MHz
G
tGHL = 12.4 ns
tLSU = 0.4 ns
I/O Modu le
DQ
tLH = 0.0 ns
tDLH = 6.3 ns
G
WD [7:0]
WRAD [5:0]
BLKEN
WEN
WCLK
tADSU = 2.1 ns
tADH = 0.0 ns
tWENSU = 3.5 ns
tBENS = 3.6 ns
RD [7:0]
RDAD [5:0]
REN
RCLK
tADSU = 2.1 ns
tADH = 0.0 ns
tRENSU = 0.8 ns
tRD1 = 1.3 ns
Predicted
Routing
Delays
tRCO = 4.4 ns
17
HiRel FPGAs
1200XL Timing Model*
*Values shown for A1280XL–1 at worst-case military conditions.
† Input module predicted routing delay.
Output DelaysInternal D elaysInput Delays
tINH = 0.0 ns
tINSU = 0.4 ns
I/O Module
DQ
tINGL = 3.7 ns
tINYL = 1.7 ns tIRD2 = 5.2 ns
Combinatorial
Logic Modul e
tPD = 3.7 ns
Sequential
Logic Module
I/O Module
tRD1 = 1.7 ns tDLH = 6.6 ns
I/O Modu le
ARRAY
CLOCKS
FMAX = 110 MHz
Combin-
atorial
Logic
included
in tSUD
DQDQ
tOUTH = 0.0 ns
tOUTSU = 0.4 ns
tGLH = 5.9 ns
tDLH = 6.6 ns
tENHZ = 7.5 ns
tRD1 = 1.7 ns
tCO = 3.7 ns
tSU = 0.4 ns
tHD = 0.0 ns
tRD4 = 3.7 ns
tRD8 = 7.0 ns
Predicted
Routing
Delays
tCKH = 7.1 ns
G
G
FO = 256
tRD2 = 2.5 ns
tLCO = 10.7 ns (64 loads, pad-pad)
18
Parameter Measurement
Output Buffer Delays
AC Test Load
Input Buffer Delays Combinatorial Macro Delays
PAD To AC test loads (shown below)
D
E
TRIBUFF
In VCC GND
50%
PAD
VOL
VOH
1.5V
tDLH
50%
1.5V
tDHL
EVCC GND
50%
PAD VOL
1.5V
tENZL
50%
10%
tENLZ
EVCC GND
50%
PAD
GND
VOH
1.5V
tENZH
50%
90%
tENHZ
VCC
PAD
Load 1
(Used to measure propagation delay) Load 2
(Used to measure risin g/fallin g edges)
50 pF
To the output under test VCC GND
50 pF
To the output under test
R to VCC for tPLZ/tPZL
R to GND for tPHZ/tPZH
R = 1 k
PAD Y
INBUF
PAD 3V 0V
1.5V
Y
GND
VCC
50%
tINYH
1.5V
50%
tINYL
PAD
S
A
BY
S, A, or B
Y
GND
VCC
50%
tPLH
Y
GND
GND
VCC
50%
50% 50%
VCC
50% 50%
tPHL
tPHL
tPLH
19
HiRel FPGAs
Sequential Timing Characteristics
Flip-Flops and Latches (ACT 3)
Note:
1. D represents all data functions involving A, B, and S for multiplexed flip-flops.
(Positive edge triggered)
D
E
CLK CLR
Y
D1
G, CLK
E
Q
CLR
tWCLKA
tWASYN
tHD
tSUENA
tSUD
tCLR
tA
tCO
tHENA
20
Sequential Timing Characteristics (continued)
Flip-Flops and Latches (1200XL/3200DX, ACT 2, and ACT 1)
Note:
1. D represents all data functions involving A, B, and S for multiplexed flip-flops.
(Positive edge triggered)
D
E
CLK CLR
PRE Y
D1
G, CLK
E
Q
PRE, CLR
tWCLKA
tWASYN
tHD
tSUENA
tSUD
tRS
tA
tCO
tHENA
21
HiRel FPGAs
Sequential Timing Characteristics (continued)
Input Buffer Latches (ACT 2 and 1200XL/3200DX)
Output Buffer Latches (ACT 2 and 1200XL/3200DX)
G
PAD
PAD
CLK
PAD
G
CLK
tINH
CLKBUF
tINSU
tSUEXT
tHEXT
IBDL
D
G
tOUTSU
tOUTH
PAD
OBDLHS
D
G
22
Decode Module Timing
SRAM Timing Characteristics
A–G, H
Y
tPLH
50%
VCC
VCC
tPHL
Y
A
B
C
D
E
F
GH
WRAD [5:0]
BLKEN
WEN
WCLK
RDAD [5:0]
LEW
REN
RCLK
RD [7:0]
WD [7:0]
Write Port Read Port
RAM Array
32x8 or 64x4
(256 bits)
23
HiRel FPGAs
Dual-Port SRAM Timing Waveforms
3200DX SRAM Write Operation
Note: Identical timing for falling-edge clock.
3200DX SRAM Synchronous Read Operation
Note: Identical timing for falling-edge clock.
WCLK
WD[7:0]
WRAD[5:0]
WEN
BLKEN Valid
Valid
tRCKHL
tRCKHL
tWENSU
tBENSU
tWENH
tBENH
tADSU tADH
RCLK
REN
RDAD[5:0]
RD[7:0] Old Data
Valid
tRCKHL
tCKHL
tRENH
tRCO
tADH
tDOH
tADSU
New Data
tRENSU
24
3200DX SRAM Asynchronous Read Operation—Type 1
(R ead Address Controll ed)
3200DX SRAM Asynchronous Read Operation—Type 2
(Write Address Controlled)
RDAD[5:0]
RD[7:0] Data 1
tRDADV
tDOH
ADDR2ADDR1
Data 2
tRPD
WEN
WD[7:0]
WCLK
RD[7:0] Old Data
Valid
tWENH
tRPD
tWENSU
Ne w Data
tDOH
tADSU
WRAD[5:0]
BLKEN
tADH
25
HiRel FPGAs
ACT 1 Timing Characteristics
(Worst-Case Military Conditions, VCC = 4.5V, TJ = 125°C)
‘–1’ Speed ‘Std’ Speed
Parameter Description Min. Max. Min. Max. Units
Logic Module Prop agation Delays
tPD1 Single Module 4.7 5.5 ns
tPD2 Dual Module Macros 10.8 12.7 ns
tCO Sequential Clk to Q 4.7 5.5 ns
tGO Latch G to Q 4.7 5.5 ns
tRS Flip-Flop (Latch) Reset to Q 4.7 5.5 ns
Logic Module Predicted Routing Delays1
tRD1 FO=1 Routing Delay 1.5 1.7 ns
tRD2 FO=2 Routing Delay 2.3 2.7 ns
tRD3 FO=3 Routing Delay 3.4 4.0 ns
tRD4 FO=4 Routing Delay 5.0 5.9 ns
tRD8 FO=8 Routing Delay 10.6 12.5 ns
Logic Mod ule Sequen tial Tim ing 2
tSUD Flip-Flop (Latch) Data Input Setup 8.8 10.4 ns
tHD Flip-Flop (Latch) Data Input Hold 0.0 0.0 ns
tSUENA Flip-Flop (Latch) Enable Setup 8.8 10.4 ns
tHENA Flip-Flop (Latch) Enable Hold 0.0 0.0 ns
tWCLKA Flip-Flop (Latch) Clock Active Pulse
Width 10.9 12.9 ns
tWASYN Flip-Flop (Latch) Asynchronous Pulse
Width 10.9 12.9 ns
tAFlip-Flop Clock Input Period 23.2 27.3 ns
fMAX Flip-Flop (Latch) Clock
Frequency 44 37 MHz
Input Module Propagation Delays
tINYH Pad to Y High 4.9 5.8 ns
tINYL Pad to Y Low 4.9 5.8 ns
Input Module Predicted Routing Delays1, 3
tIRD1 FO=1 Routing Delay 1.5 1.7 ns
tIRD2 FO=2 Routing Delay 2.3 2.7 ns
tIRD3 FO=3 Routing Delay 3.4 4.0 ns
tIRD4 FO=4 Routing Delay 5.0 5.9 ns
tIRD8 FO=8 Routing Delay 10.6 12.5 ns
Notes:
1. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device
performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is based
on actual routing delay measurements performed on the device prior to shipment.
2. Setup times assume fanout of 3. Further derating information can be obtained from the DirectTime Analyzer utility.
3. Optimization techniques may further reduce delays by 0 to 4 ns.
26
ACT 1 Timing Characteristics (continued)
(Worst-Case Military Conditions, VCC = 4.5V, TJ = 125°C)
‘–1’ Speed ‘Std’ Speed
Parameter Description Min. Max. Min. Max. Units
Gl obal Clock Network
tCKH Input Low to High FO = 16
FO = 128 7.8
8.9 9.2
10.5 ns
tCKL Input High to Low FO = 16
FO = 128 10.3
11.2 12.1
13.2 ns
tPWH Minimum Pulse Width High FO = 16
FO = 128 10.4
10.9 12.2
12.9 ns
tPWL Minimum Pulse Width Low FO = 16
FO = 128 10.4
10.9 12.2
12.9 ns
tCKSW Maximum Skew FO = 16
FO = 128 1.9
2.9 2.2
3.4 ns
tPMinimum Period FO = 16
FO = 128 21.7
23.2 25.6
27.3 ns
fMAX Maximum Frequency FO = 16
FO = 128 46
44 40
37 MHz
TTL Output Module Timing1
tDLH Data to Pad High 12.1 14.2 ns
tDHL Data to Pad Low 13.8 16.3 ns
tENZH Enable Pad Z to High 12.0 14.1 ns
tENZL Enable Pad Z to Low 14.6 17.1 ns
tENHZ Enable Pad High to Z 16.0 18.8 ns
tENLZ Enable Pad Low to Z 14.5 17.0 ns
dTLH Delta Low to High 0.09 0.11 ns/pF
dTHL Delta High to Low 0.12 0.15 ns/pF
CMOS Output Module Timing1
tDLH Data to Pad High 15.1 17.7 ns
tDHL Data to Pad Low 11.5 13.6 ns
tENZH Enable Pad Z to High 12.0 14.1 ns
tENZL Enable Pad Z to Low 14.6 17.1 ns
tENHZ Enable Pad High to Z 16.0 18.8 ns
tENLZ Enable Pad Low to Z 14.5 17.0 ns
dTLH Delta Low to High 0.16 0.18 ns/pF
dTHL Delta High to Low 0.09 0.11 ns/pF
Notes:
1. Delays based on 50 pF loading.
2. SSO information can be found in the Simultaneously Switching Output Limits for Actel FPGAs application note at
http://www.actel.com/appnotes.
27
HiRel FPGAs
A1240A Timing Characteristics
(Worst-Case Military Conditions, VCC = 4.5V, TJ = 125°C)
‘–1’ Speed ‘Std’ Speed
Parameter Description Min. Max. Min. Max. Units
Logic Module Prop agation Delays1
tPD1 Single Module 5.2 6.1 ns
tCO S eq uentia l Clk to Q 5.2 6.1 ns
tGO Latch G to Q 5.2 6.1 ns
tRS Flip-Flop (Latch) Reset to Q 5.2 6.1 ns
Logic Module Predicted Routing Delays2
tRD1 FO=1 Routing Delay 1.9 2. 2 ns
tRD2 FO=2 Routing Delay 2.4 2. 8 ns
tRD3 FO=3 Routing Delay 3.1 3. 7 ns
tRD4 FO=4 Routing Delay 4.3 5. 0 ns
tRD8 FO=8 Routing Delay 6.6 7. 7 ns
Logic Mod ule Sequen tial Tim ing 3, 4
tSUD Flip-Flop (Latch) Data Input Setup 0.5 0.5 ns
tHD Flip-Flop (Latch) Data Input Hold 0.0 0.0 ns
tSUENA Flip-Flop (Latch) Enable Setup 1.3 1.3 ns
tHENA Flip-Flop (Latch) Enable Hold 0.0 0.0 ns
tWCLKA Flip-Flop (Latch) Clock Active Pulse
Width 7.4 8.1 ns
tWASYN Flip-Flop (Latch) Asynchronous Pulse
Width 7.4 8.1 ns
tAFlip-Flop Clock Input Period 14.8 18.6 ns
tINH Input Buffer Latch Hold 2.5 2.5 ns
tINSU Input Buffer Latch Setup –3.5 –3.5 ns
tOUTH Output Buffer Latch Hold 0.0 0.0 ns
tOUTSU Output Buffer Latch Setup 0.5 0.5 ns
fMAX Flip-Flop (Latch) Clock Frequency 63 54 MHz
Notes:
1. For dual-module macros, use tPD1 + tRD1 + tPDn , tCO + tRD1 + tPDn , or tPD1 + tRD1 + tSUD , whichever is appropriate.
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device
performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is based
on actual routing delay measurements performed on the device prior to shipment.
3. Data applies to macros based on the S-module. Timing parameters for sequential macros constructed from C-modules can be obtained from
the DirectTime Analyzer utility.
4. Setup and hold timing parameters for the Input Buffer Latch are defined with respect to the PAD and the D input. External setup/hold
timing parameters must account for delay from an external PAD signal to the G inputs. Delay from an external PAD signal to the G input
subtracts (adds) to the internal setup (hold) time.
28
A1240A Timing Characteristics (continued)
(Worst-Case Military Conditions, VCC = 4.5V, TJ = 125°C)
‘–1’ Speed ‘Std’ Speed
Parameter Description Min. Max. Min. Max. Units
Input Module Propagation Delays
tINYH Pad to Y High 4.0 4.7 ns
tINYL Pad to Y Low 3.6 4.3 ns
tINGH G to Y High 6.9 8.1 ns
tINGL G to Y Low 6.6 7.7 ns
Input Module Predicted Routing Delays1
tIRD1 FO=1 Routing Delay 5.8 6.9 ns
tIRD2 FO=2 Routing Delay 6.7 7.8 ns
tIRD3 FO=3 Routing Delay 7.5 8.8 ns
tIRD4 FO=4 Routing Delay 8.2 9.7 ns
tIRD8 FO=8 Routing Delay 10.9 12.9 ns
Global Clock Network
tCKH Input Low to High FO = 32
FO = 256 13.3
16.3 15.7
19.2 ns
tCKL Input High to Low FO = 32
FO = 256 13.3
16.5 15.7
19.5 ns
tPWH Minimum Pulse Width High FO = 32
FO = 256 5.7
6.0 6.7
7.1 ns
tPWL Minimum Pulse Width Low FO = 32
FO = 256 5.7
6.0 6.7
7.1 ns
tCKSW Maximum Skew FO = 32
FO = 256 0.6
3.1 0.6
3.1 ns
tSUEXT Input Latch External Setup FO = 32
FO = 256 0.0
0.0 0.0
0.0 ns
tHEXT Input Latch External Hold FO = 32
FO = 256 8.6
13.8 8.6
13.8 ns
tPMinimum Period FO = 32
FO = 256 11.5
12.2 13.5
14.3 ns
fMAX Maximum Frequency FO = 32
FO = 256 87
82 74
70 MHz
Note:
1. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device
performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is
based on actual routing delay measurements performed on the device prior to shipment. Optimization techniques may further reduce
delays by 0 to 4 ns.
29
HiRel FPGAs
A1240A Timing Characteristics (continued)
(Worst-Case Military Conditions, VCC = 4.5V, TJ = 125°C)
‘–1’ Speed ‘Std’ Speed
Parameter Description Min. Max. Min. Max. Units
TTL Output Module Timing1
tDLH Data to Pad High 11.0 13.0 ns
tDHL Data to Pad Low 13.9 16.4 ns
tENZH Enable Pad Z to High 12.3 14.4 ns
tENZL Enable Pad Z to Low 16.1 19.0 ns
tENHZ Enable Pad High to Z 9.8 11.5 ns
tENLZ Enable Pad Low to Z 11.5 13.6 ns
tGLH G to Pad High 12.4 14.6 ns
tGHL G to Pad Low 15.5 18.2 ns
dTLH Delta Low to High 0.09 0.11 ns/pF
dTHL Delta High to Low 0.17 0.20 ns/pF
CMOS Outpu t Module Timing1
tDLH Data to Pad High 14.0 16.5 ns
tDHL Data to Pad Low 11.7 13.7 ns
tENZH Enable Pad Z to High 12.3 14.4 ns
tENZL Enable Pad Z to Low 16.1 19.0 ns
tENHZ Enable Pad High to Z 9.8 11.5 ns
tENLZ Enable Pad Low to Z 11.5 13.6 ns
tGLH G to Pad High 12.4 14.6 ns
tGHL G to Pad Low 15.5 18.2 ns
dTLH Delta Low to High 0.17 0.20 ns/pF
dTHL Delta High to Low 0.12 0.15 ns/pF
Notes:
1. Delays based on 50 pF loading.
2. SSO information can be found in the Simultaneously Switching Output Limits for Actel FPGAs application note at
http://www.actel.com/appnotes.
30
A1280A Timing Characteristics
(Worst-Case Military Conditions, VCC = 4.5V, TJ = 125°C)
‘–1’ Speed ‘Std’ Speed
Parameter Description Min. Max. Min. Max. Units
Logic Module Propagation Delays1
tPD1 Single Module 5.2 6.1 ns
tCO Sequential Clk to Q 5.2 6.1 ns
tGO Latch G to Q 5.2 6.1 ns
tRS Flip-Flop (Latch) Reset to Q 5.2 6.1 ns
Logic Module Predicted Routing Delays2
tRD1 FO=1 Routing Delay 2.4 2.8 ns
tRD2 FO=2 Routing Delay 3.4 4.0 ns
tRD3 FO=3 Routing Delay 4.2 4.9 ns
tRD4 FO=4 Routing Delay 5.1 6.0 ns
tRD8 FO=8 Routing Delay 9.2 10.8 ns
Logic Module Sequ ential Timing3, 4
tSUD Flip-Flop (Latch) Data Input Setup 0.5 0.5 ns
tHD Flip-Flop (Latch) Data Input Hold 0.0 0.0 ns
tSUENA Flip-Flop (Latch) Enable Setup 1.3 1.3 ns
tHENA Flip-Flop (Latch) Enable Hold 0.0 0.0 ns
tWCLKA Flip-Flop (Latch) Clock Active Pulse
Width 7.4 8.6 ns
tWASYN Flip-Flop (Latch) Asynchronous Pulse
Width 7.4 8.6 ns
tAFlip-Flop Clock Input Period 16.4 22.1 ns
tINH Input Buffer Latch Hold 2.5 2.5 ns
tINSU Input Buffer Latch Setup –3.5 –3.5 ns
tOUTH Output Buffer Latch Hold 0.0 0.0 ns
tOUTSU Output Buffer Latch Setup 0.5 0.5 ns
fMAX Flip-Flop (Latch) Clock Frequency 60 41 MHz
Notes:
1. For dual-module macros, use tPD1 + tRD1 + tPDn , tCO + tRD1 + tPDn , or tPD1 + tRD1 + tSUD , whichever is appropriate.
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device
performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is
based on actual routing delay measurements performed on the device prior to shipment.
3. Data applies to macros based on the S-module. Timing parameters for sequential macros constructed from C-modules can be obtained
from the DirectTime Analyzer utility.
4. Setup and hold timing parameters for the input buffer latch are defined with respect to the PAD and the D input. External setup/hold
timing parameters must account for delay from an external PAD signal to the G inputs. Delay from an external PAD signal to the G input
subtracts (adds) to the internal setup (hold) time.
31
HiRel FPGAs
A1280A Timing Characteristics (continued)
(Worst-Case Military Conditions, VCC = 4.5V, TJ = 125°C)
‘–1’ Speed ‘Std’ Speed
Parameter Description Min. Max. Min. Max. Units
Input Module Propagation Delays
tINYH Pad to Y High 4.0 4.7 ns
tINYL Pad to Y Low 3.6 4.3 ns
tINGH G to Y High 6.9 8.1 ns
tINGL G to Y Low 6.6 7.7 ns
Input Module Predicted Routing Delays1
tRD1 FO=1 Routing Delay 6.2 7.3 ns
tRD2 FO=2 Routing Delay 7.2 8.4 ns
tRD3 FO=3 Routing Delay 7.7 9.1 ns
tRD4 FO=4 Routing Delay 8.9 10.5 ns
tRD8 FO=8 Routing Delay 12.9 15.2 ns
Gl obal Clock Network
tCKH Input Low to High FO = 32
FO = 384 13.3
17.9 15.7
21.1 ns
tCKL Input High to Low FO = 32
FO = 384 13.3
18.2 15.7
21.4 ns
tPWH Minimum Pulse Width High FO = 32
FO = 384 6.9
7.9 8.1
9.3 ns
tPWL Minimum Pulse Width Low FO = 32
FO = 384 6.9
7.9 8.1
9.3 ns
tCKSW Maximum Skew FO = 32
FO = 384 0.6
3.1 0.6
3.1 ns
tSUEXT Input Latch External Setup FO = 32
FO = 384 0.0
0.0 0.0
0.0 ns
tHEXT Input Latch External Hold FO = 32
FO = 384 8.6
13.8 8.6
13.8 ns
tPMinimum Period FO = 32
FO = 384 13.7
16.0 16.2
18.9 ns
fMAX Maximum Frequency FO = 32
FO = 384 73
63 62
53 MHz
Note:
1. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device
performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is based
on actual routing delay measurements performed on the device prior to shipment. Optimization techniques may further reduce delays by 0
to 4 ns.
32
A1280A Timing Characteristics (continued)
(Worst-Case Military Conditions, VCC = 4.5V, TJ = 125°C)
‘–1’ Speed ‘Std’ Speed
Parameter Description Min. Max. Min. Max. Units
TTL Output Module Timing1
tDLH Data to Pad High 11.0 13.0 ns
tDHL Data to Pad Low 13.9 16.4 ns
tENZH Enable Pad Z to High 12.3 14.4 ns
tENZL Enable Pad Z to Low 16.1 19.0 ns
tENHZ Enable Pad High to Z 9.8 11.5 ns
tENLZ Enable Pad Low to Z 11.5 13.6 ns
tGLH G to Pad High 12.4 14.6 ns
tGHL G to Pad Low 15.5 18.2 ns
dTLH Delta Low to High 0.09 0.11 ns/pF
dTHL Delta High to Low 0.17 0.20 ns/pF
CMOS Outpu t Module Timing1
tDLH Data to Pad High 14.0 16.5 ns
tDHL Data to Pad Low 11.7 13.7 ns
tENZH Enable Pad Z to High 12.3 14.4 ns
tENZL Enable Pad Z to Low 16.1 19.0 ns
tENHZ Enable Pad High to Z 9.8 11.5 ns
tENLZ Enable Pad Low to Z 11.5 13.6 ns
tGLH G to Pad High 12.4 14.6 ns
tGHL G to Pad Low 15.5 18.2 ns
dTLH Delta Low to High 0.17 0.20 ns/pF
dTHL Delta High to Low 0.12 0.15 ns/pF
Notes:
1. Delays based on 50 pF loading.
2. SSO information can be found in the Simultaneously Switching Output Limits for Actel FPGAs application note at
http://www.actel.com/appnotes.
33
HiRel FPGAs
A1280XL Timing Characteristics
(Worst-Case Military Conditions, VCC = 4.5V, TJ = 125°C)
‘–1’ Speed ‘Std’ Speed
Parameter Description Min. Max. Min. Max. Units
Logic Module Propagation Delays1
tPD1 Single Module 3.7 4.3 ns
tCO Sequential Clk to Q 3.7 4.3 ns
tGO Latch G to Q 3.7 4.3 ns
tRS Flip-Flop (Latch) Reset to Q 3.7 4.3 ns
Logic Module Predicted Routing Delays2
tRD1 FO=1 Routing Delay 1.7 2.1 ns
tRD2 FO=2 Routing Delay 2.5 3.0 ns
tRD3 FO=3 Routing Delay 3.1 3.6 ns
tRD4 FO=4 Routing Delay 3.7 4.3 ns
tRD8 FO=8 Routing Delay 7.0 8.3 ns
Logic Module Sequ ential Timing3, 4
tSUD Flip-Flop (Latch) Data Input Setup 0.4 0.5 ns
tHD Flip-Flop (Latch) Data Input Hold 0.0 0.0 ns
tSUENA Flip-Flop (Latch) Enable Setup 1.1 1.2 ns
tHENA Flip-Flop (Latch) Enable Hold 0.0 0.0 ns
tWCLKA Flip-Flop (Latch) Clock Active Pulse
Width 5.3 6.1 ns
tWASYN Flip-Flop (Latch) Asynchronous Pulse
Width 5.3 6.1 ns
tAFlip-Flop Clock Input Period 10.7 12.3 ns
tINH Input Buffer Latch Hold 0.0 0.0 ns
tINSU Input Buffer Latch Setup 0.4 0.4 ns
tOUTH Output Buffer Latch Hold 0.0 0.0 ns
tOUTSU Output Buffer Latch Setup 0.4 0.4 ns
fMAX Flip-Flop (Latch) Clock Frequency 90 75 MHz
Notes:
1. For dual-module macros, use tPD1 + tRD1 + tPDn , tCO + tRD1 + tPDn , or tPD1 + tRD1 + tSUD , whichever is appropriate.
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device
performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is
based on actual routing delay measurements performed on the device prior to shipment.
3. Data applies to macros based on the S-module. Timing parameters for sequential macros constructed from C-modules can be obtained
from the DirectTime Analyzer utility.
4. Setup and hold timing parameters for the input buffer latch are defined with respect to the PAD and the D input. External setup/hold
timing parameters must account for delay from an external PAD signal to the G inputs. Delay from an external PAD signal to the G input
subtracts (adds) to the internal setup (hold) time.
34
A1280XL Timing Characteristics (continued)
(Worst-Case Military Conditions, VCC = 4.5V, TJ = 125°C)
‘–1’ Speed ‘Std’ Speed
Parameter Description Min. Max. Min. Max. Units
Input Module Propagation Delays
tINYH Pad to Y High 1.5 1.7 ns
tINYL Pad to Y Low 1.7 2.1 ns
tINGH G to Y High 2.8 3.3 ns
tINGL G to Y Low 3.7 4.3 ns
Input Module Predicted Routing Delays1
tRD1 FO=1 Routing Delay 4.6 5.3 ns
tRD2 FO=2 Routing Delay 5.2 6.1 ns
tRD3 FO=3 Routing Delay 5.5 6.5 ns
tRD4 FO=4 Routing Delay 6.4 7.5 ns
tRD8 FO=8 Routing Delay 9.2 10.8 ns
Gl obal Clock Network
tCKH Input Low to High FO = 32
FO = 384 7.1
8.0 8.4
9.5 ns
tCKL Input High to Low FO = 32
FO = 384 7.0
8.0 8.3
9.5 ns
tPWH Minimum Pulse Width High FO = 32
FO = 384 4.3
4.8 5.3
5.7 ns
tPWL Minimum Pulse Width Low FO = 32
FO = 384 4.3
4.8 5.3
5.7 ns
tCKSW Maximum Skew FO = 32
FO = 384 1.1
1.1 1.2
1.2 ns
tSUEXT Input Latch External Setup FO = 32
FO = 384 0.0
0.0 0.0
0.0 ns
tHEXT Input Latch External Hold FO = 32
FO = 384 3.6
4.6 4.2
5.3 ns
tPMinimum Period FO = 32
FO = 384 9.1
9.8 10.7
11.8 ns
fMAX Maximum Frequency FO = 32
FO = 384 110
100 90
85 MHz
Note:
1. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device
performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is based
on actual routing delay measurements performed on the device prior to shipment. Optimization techniques may further reduce delays by 0
to 4 ns.
35
HiRel FPGAs
A1280XL Timing Characteristics (continued)
(Worst-Case Military Conditions, VCC = 4.5V, TJ = 125°C)
‘–1’ Speed ‘Std’ Speed
Parameter Description Min. Max. Min. Max. Units
TTL Output Module Timing1
tDLH Data to Pad High 5.3 6.2 ns
tDHL Data to Pad Low 5.7 6.6 ns
tENZH Enable Pad Z to High 5.3 6.2 ns
tENZL Enable Pad Z to Low 5.8 6.8 ns
tENHZ Enable Pad High to Z 7.5 8.9 ns
tENLZ Enable Pad Low to Z 7.5 8.9 ns
tGLH G to Pad High 5.9 6.9 ns
tGHL G to Pad Low 6.6 7.8 ns
dTLH Delta Low to High 0.05 0.06 ns/pF
dTHL Delta High to Low 0.05 0.09 ns/pF
CMOS Outpu t Module Timing1
tDLH Data to Pad High 6.6 7.9 ns
tDHL Data to Pad Low 4.7 5.5 ns
tENZH Enable Pad Z to High 5.3 6.2 ns
tENZL Enable Pad Z to Low 5.8 6.8 ns
tENHZ Enable Pad High to Z 7.5 8.9 ns
tENLZ Enable Pad Low to Z 7.5 8.9 ns
tGLH G to Pad High 5.9 6.9 ns
tGHL G to Pad Low 6.6 7.8 ns
dTLH Delta Low to High 0.07 0.09 ns/pF
dTHL Delta High to Low 0.06 0.09 ns/pF
Notes:
1. Delays based on 50 pF loading.
2. SSO information can be found in the Simultaneously Switching Output Limits for Actel FPGAs application note at
http://www.actel.com/appnotes.
36
A1425A Timing Characteristics
(Worst-Case Military Conditions, VCC = 4.5V, TJ = 125°C)
‘–1’ Speed ‘Std’ Speed
Parameter Description Min. Max. Min. Max. Units
Logic Module Propagation Delays1
tPD Internal Array Module 3.0 3.5 ns
tCO Sequential Clock to Q 3.0 3.5 ns
tCLR Asynchronous Clear to Q 3.0 3.5 ns
Logic Module Predicted Routing Delays2
tRD1 FO=1 Routing Delay 1.3 1 .5 ns
tRD2 FO=2 Routing Delay 1.9 2 .1 ns
tRD3 FO=3 Routing Delay 2.1 2 .5 ns
tRD4 FO=4 Routing Delay 2.6 2 .9 ns
tRD8 FO=8 Routing Delay 4.2 4 .9 ns
Logic Module Sequ ential Timing
tSUD Flip-Flop (Latch) Data Input Setup 0.9 1.0 ns
tHD Flip-Flop (Latch) Data Input Hold 0.0 0.0 ns
tSUENA Flip-Flop (Latch) Enable Setup 0.9 1.0 ns
tHENA Flip-Flop (Latch) Enable Hold 0.0 0.0 ns
tWASYN Asynchronous Pulse Width 3.8 4.4 ns
tWCLKA Flip-Flop Clock Pulse Width 3.8 4.4 ns
tAFlip-Flop Clock Input Period 7.9 9.3 ns
fMAX Flip-Flop Clock Frequency 125 100 MHz
Input Module Propagation Delays
tINY Input Data Pad to Y 4.2 4.9 ns
tICKY Input Reg IOCLK Pad to Y 7.0 8.2 ns
tOCKY Output Reg IOCLK Pad to Y 7.0 8.2 ns
tICLRY Input Asynchronous Clear to Y 7.0 8.2 n s
tOCLRY Output Asynchronous Clear to Y 7.0 8.2 ns
Input Module Predicted Routing Delays1, 3
tIRD1 FO=1 Routing Delay 1.3 1.5 ns
tIRD2 FO=2 Routing Delay 1.9 2.1 ns
tIRD3 FO=3 Routing Delay 2.1 2.5 ns
tIRD4 FO=4 Routing Delay 2.6 2.9 ns
tIRD8 FO=8 Routing Delay 4.2 4.9 ns
Notes:
1. For dual-module macros, use tPD + tRD1 + tPDn , tCO + tRD1 + tPDn , or tPD1 + tRD1 + tSUD , whichever is appropriate.
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device
performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is
based on actual routing delay measurements performed on the device prior to shipment.
3. Optimization techniques may further reduce delays by 0 to 4 ns.
37
HiRel FPGAs
A1425A Timing Characteristics (continued)
(Worst-Case Military Conditions, VCC = 4.5V, TJ = 125°C)
‘–1’ Speed ‘Std’ Speed
Parameter Description Min. Max. Min. Max. Units
I/O Module Sequential Timing
tINH Input F-F Data Hold
(w.r.t. IOCLK Pad) 0.0 0.0 ns
tINSU Input F-F Data Setup
(w.r.t. IOCLK Pad) 2.1 2.4 ns
tIDEH Input Data Enable Hold
(w.r.t. IOCLK Pad) 0.0 0.0 ns
tIDESU Input Data Enable Setup
(w.r.t. IOCLK Pad) 8.7 10.0 ns
tOUTH Output F-F Data Hold
(w.r.t. IOCLK Pad) 1.1 1.2 ns
tOUTSU Output F-F Data Setup
(w.r.t. IOCLK Pad) 1.1 1.2 ns
tODEH Output Data Enable Hold
(w.r.t. IOCLK Pad) 0.5 0.6 ns
tODESU Output Data Enable Setup
(w.r.t. IOCLK Pad) 2.0 2.4 ns
TTL Output Module Timing1
tDHS Data to Pad, High Slew 7.5 8.9 ns
tDLS Data to Pad, Low Slew 11.9 14.0 ns
tENZHS Enable to Pad, Z to H/L, High Slew 6.0 7.0 ns
tENZLS Enable to Pad, Z to H/L, Low Slew 10.9 12.8 ns
tENHSZ Enable to Pad, H/L to Z, High Slew 9.9 11.6 ns
tENLSZ Enable to Pad, H/L to Z, Low Slew 9.9 11.6 ns
tCKHS IOCLK Pad to Pad H/L, High Slew 10.5 11.6 ns
tCKLS IOCLK Pad to Pad H/L, Low Slew 15.7 17.4 ns
dTLHHS Delta Low to High, High Slew 0.04 0.04 ns/pF
dTLHLS Delta Low to High, Low Slew 0.07 0.08 ns/pF
dTHLHS Delta High to Low, High Slew 0.05 0.06 ns/pF
dTHLLS Delta High to Low, Low Slew 0.07 0.08 ns/pF
Note:
1. Delays based on 35 pF loading.
38
A1425A Timing Characteristics (continued)
(Worst-Case Military Conditions, VCC = 4.5V, TJ = 125°C)
‘–1’ Speed ‘Std’ Speed
Parameter Description Min. Max. Min. Max. Units
CMOS Outpu t Module Timing1
tDHS Data to Pad, High Slew 9.2 10.8 ns
tDLS Data to Pad, Low Slew 17.3 20.3 ns
tENZHS Enable to Pad, Z to H/L, High Slew 7.7 9.1 ns
tENZLS Enable to Pad, Z to H/L, Low Slew 13.1 15.5 ns
tENHSZ Enable to Pad, H/L to Z, High Slew 9.9 11.6 ns
tENLSZ Enable to Pad, H/L to Z, Low Slew 10.5 11.6 ns
tCKHS IOCLK Pad to Pad H/L, High Slew 12.5 13.7 ns
tCKLS IOCLK Pad to Pad H/L, Low Slew 18.1 20.1 ns
dTLHHS Delta Low to High, High Slew 0.06 0.07 ns/pF
dTLHLS Delta Low to High, Low Slew 0.11 0.13 ns/pF
dTHLHS Delta High to Low, High Slew 0.04 0.05 ns/pF
dTHLLS Delta High to Low, Low Slew 0.05 0.06 ns/pF
Dedicated (Hard-Wired) I/O Clock Network
tIOCKH Input Low to High
(Pad to I/O Module Input) 3.0 3.5 ns
tIOPWH Minimum Pulse Width High 3.9 4.4 ns
tIOPWL Minimum Pulse Width Low 3.9 4.4 ns
tIOSAPW Minimum Asynchronous Pulse Width 3.9 4.4 ns
tIOCKSW Maximum Skew 0.5 0.5 ns
tIOP Mini m um Period 7.9 9.3 ns
fIOMAX Maximum Frequency 125 100 MHz
Dedicated (Hard-Wired) Array Clock Network
tHCKH Input Low to High
(Pad to S-Module Input) 4.6 5.3 ns
tHCKL Input High to Low
(Pad to S-Module Input) 4.6 5.3 ns
tHPWH Minimum Pulse Width High 3.9 4.4 ns
tHPWL Minimum Pulse Width Low 3.9 4.4 ns
tHCKSW Maximum Skew 0.4 0.4 ns
tHP Mini m um Period 7.9 9.3 ns
fHMAX Maximum Frequency 125 100 MHz
Notes:
1. Delays based on 35 pF loading.
2. SSO information can be found in the Simultaneously Switching Output Limits for Actel FPGAs application note at
http://www.actel.com/appnotes.
39
HiRel FPGAs
A1425A Timing Characteristics (continued)
(Worst-Case Military Conditions, VCC = 4.5V, TJ = 125°C)
‘–1’ Speed ‘Std’ Speed
Parameter Description Min. Max. Min. Max. Units
Routed Array Clock Networks
tRCKH Input Low to High (FO=64) 5.5 6.4 ns
tRCKL Input High to Low (FO=64) 6.0 7.0 ns
tRPWH Min. Pulse Width High (FO=64) 4.9 5.7 ns
tRPWL Min. Pulse Width Low (FO=64) 4.9 5.7 ns
tRCKSW Maximum Skew (FO=128) 1.1 1.2 ns
tRP Minimum Period (FO=64) 10.1 11.6 ns
fRMAX Maximum Frequency (FO=64) 100 85 MHz
Clock-to-Clock Skews
tIOHCKSW I/O Clock to H-Clock Skew 0.0 3.0 0.0 3.0 ns
tIORCKSW I/O Clock to R-Clock Skew 0.0 3.0 0.0 3.0 ns
tHRCKSW H-Clock to R-Clock Skew
(FO = 64)
(FO = 50% max.) 0.0
0.0 1.0
3.0 0.0
0.0 1.0
3.0 ns
ns
40
A1460A Timing Characteristics
(Worst-Case Military Conditions, VCC = 4.5V, TJ = 125°C)
‘–1’ Speed ‘Std’ Speed
Parameter Description Min. Max. Min. Max. Units
Logic Module Propagation Delays1
tPD Internal Array Module 3.0 3.5 ns
tCO Sequential Clock to Q 3.0 3.5 ns
tCLR Asynchronous Clear to Q 3.0 3.5 ns
Logic Module Predicted Routing Delays2
tRD1 FO=1 Routing Delay 1.3 1 .5 ns
tRD2 FO=2 Routing Delay 1.9 2 .1 ns
tRD3 FO=3 Routing Delay 2.1 2 .5 ns
tRD4 FO=4 Routing Delay 2.6 2 .9 ns
tRD8 FO=8 Routing Delay 4.2 4 .9 ns
Logic Module Sequ ential Timing
tSUD Flip-Flop (Latch) Data Input Setup 0.9 1.0 ns
tHD Flip-Flop (Latch) Data Input Hold 0.0 0.0 ns
tSUENA Flip-Flop (Latch) Enable Setup 0.9 1.0 ns
tHENA Flip-Flop (Latch) Enable Hold 0.0 0.0 ns
tWASYN Asynchronous Pulse Width 4.8 5.6 ns
tWCLKA Flip-Flop Clock Pulse Width 4.8 5.6 ns
tAFlip-Flop Clock Input Period 9.9 11.6 ns
fMAX Flip-Flop Clock Frequency 100 85 MHz
Input Module Propagation Delays
tINY Input Data Pad to Y 4.2 4.9 ns
tICKY Input Reg IOCLK Pad to Y 7.0 8.2 ns
tOCKY Output Reg IOCLK Pad to Y 7.0 8.2 ns
tICLRY Input Asynchronous Clear to Y 7.0 8.2 ns
tOCLRY Output Asynchronous Clear to Y 7.0 8.2 ns
Input Module Predicted Routing Delays2, 3
tIRD1 FO=1 Routing Delay 1.3 1.5 ns
tIRD2 FO=2 Routing Delay 1.9 2.1 ns
tIRD3 FO=3 Routing Delay 2.1 2.5 ns
tIRD4 FO=4 Routing Delay 2.6 2.9 ns
tIRD8 FO=8 Routing Delay 4.2 4.9 ns
Notes:
1. For dual-module macros, use tPD + tRD1 + tPDn , tCO + tRD1 + tPDn , or tPD1 + tRD1 + tSUD , whichever is appropriate.
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device
performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is
based on actual routing delay measurements performed on the device prior to shipment.
3. Optimization techniques may further reduce delays by 0 to 4 ns.
41
HiRel FPGAs
A1460A Timing Characteristics (continued)
(Worst-Case Military Conditions, VCC = 4.5V, TJ = 125°C)
‘–1’ Speed ‘Std’ Speed
Parameter Description Min. Max. Min. Max. Units
I/O Module Sequential Timing
tINH Input F-F Data Hold
(w.r.t. IOCLK Pad) 0.0 0.0 ns
tINSU Input F-F Data Setup
(w.r.t. IOCLK Pad) 2.1 2.4 ns
tIDEH Input Data Enable Hold
(w.r.t. IOCLK Pad) 0.0 0.0 ns
tIDESU Input Data Enable Setup
(w.r.t. IOCLK Pad) 8.7 10.0 ns
tOUTH Output F-F Data Hold
(w.r.t. IOCLK Pad) 1.1 1.2 ns
tOUTSU Output F-F Data Setup
(w.r.t. IOCLK Pad) 1.1 1.2 ns
tODEH Output Data Enable Hold
(w.r.t. IOCLK Pad) 0.5 0.6 ns
tODESU Output Data Enable Setup
(w.r.t. IOCLK Pad) 2.0 2.4 ns
TTL Output Module Timing1
tDHS Data to Pad, High Slew 7.5 8.9 ns
tDLS Data to Pad, Low Slew 11.9 14.0 ns
tENZHS Enable to Pad, Z to H/L, High Slew 6.0 7.0 ns
tENZLS Enable to Pad, Z to H/L, Low Slew 10.9 12.8 ns
tENHSZ Enable to Pad, H /L to Z, High Slew 11.5 13.5 ns
tENLSZ Enable to Pad, H/L to Z, Low Slew 10.9 12.8 ns
tCKHS IOCLK Pad to Pad H/L, High Slew 11.6 13.4 ns
tCKLS IOCLK Pad to Pad H/L, Low Slew 17.8 19.8 ns
dTLHHS Delta Low to High, High Slew 0.04 0.04 ns/pF
dTLHLS Delta Low to High, Low Slew 0.07 0.08 ns/pF
dTHLHS Delta High to Low, High Slew 0.05 0.06 ns/pF
dTHLLS Delta High to Low, Low Slew 0.07 0.08 ns/pF
Note:
1. Delays based on 35 pF loading.
42
A1460A Timing Characteristics (continued)
(Worst-Case Military Conditions, VCC = 4.5V, TJ = 125°C)
‘–1’ Speed ‘Std’ Speed
Parameter Description Min. Max. Min. Max. Units
CMOS Outpu t Module Timing1
tDHS Data to Pad, High Slew 9.2 10.8 ns
tDLS Data to Pad, Low Slew 17.3 20.3 ns
tENZHS Enable to Pad, Z to H/L, High Slew 7.7 9.1 ns
tENZLS Enable to Pad, Z to H/L, Low Slew 13.1 15.5 ns
tENHSZ Enable to Pad, H/L to Z, High Slew 10.9 12.8 ns
tENLSZ Enable to Pad, H/L to Z, Low Slew 10.9 12.8 ns
tCKHS IOCLK Pad to Pad H/L, High Slew 14.1 16.0 ns
tCKLS IOCLK Pad to Pad H/L, Low Slew 20.2 22.4 ns
dTLHHS Delta Low to High, High Slew 0.06 0.07 ns/pF
dTLHLS Delta Low to High, Low Slew 0.11 0.13 ns/pF
dTHLHS Delta High to Low, High Slew 0.04 0.05 ns/pF
dTHLLS Delta High to Low, Low Slew 0.05 0.06 ns/pF
Dedicated (Hard-Wired) I/O Clock Network
tIOCKH Input Low to High
(Pad to I/O Module Input) 3.5 4.1 ns
tIOPWH Minimum Pulse Width High 4.8 5.7 ns
tIOPWL Minimum Pulse Width Low 4.8 5.7 ns
tIOSAPW Minimum Asynchronous Pulse Width 3.9 4.4 ns
tIOCKSW Maximum Skew 0.9 1.0 ns
tIOP Mini m um Period 9.9 11.6 ns
fIOMAX Maximum Frequency 100 85 MHz
Dedicated (Hard-Wired) Array Clock Network
tHCKH Input Low to High
(Pad to S-Module Input) 5.5 6.4 ns
tHCKL Input High to Low
(Pad to S-Module Input) 5.5 6.4 ns
tHPWH Minimum Pulse Width High 4.8 5.7 ns
tHPWL Minimum Pulse Width Low 4.8 5.7 ns
tHCKSW Maximum Skew 0.9 1.0 ns
tHP Mini m um Period 9.9 11.6 ns
fHMAX Maximum Frequency 100 85 MHz
Notes:
1. Delays based on 35 pF loading.
2. SSO information can be found in the Simultaneously Switching Output Limits for Actel FPGAs application note at
http://www.actel.com/appnotes.
43
HiRel FPGAs
A1460A Timing Characteristics (continued)
(Worst-Case Military Conditions, VCC = 4.5V, TJ = 125°C)
‘–1’ Speed ‘Std’ Speed
Parameter Description Min. Max. Min. Max. Units
Routed Array Clock Networks
tRCKH Input Low to High (FO=256) 9.0 10.5 ns
tRCKL Input High to Low (FO=256) 9.0 10.5 ns
tRPWH Min. Pulse Width High (FO=256) 6.3 7.1 ns
tRPWL Min. Pulse Width Low (FO=256) 6.3 7.1 ns
tRCKSW Maximum Skew (FO=128) 1.9 2.1 ns
tRP Minimum Period (FO=256) 12.9 14.5 ns
fRMAX Maximum Frequency (FO=256) 75 65 MHz
Clock-to-Clock Skews
tIOHCKSW I/O Clock to H-Clock Skew 0.0 3.0 0.0 3.0 ns
tIORCKSW I/O Clock to R-Clock Skew 0.0 5.0 0.0 5.0 ns
tHRCKSW H-Clock to R-Clock Skew
(FO = 64)
(FO = 50% max.) 0.0
0.0 1.0
3.0 0.0
0.0 1.0
3.0 ns
ns
44
A14100A Timing Characteristics
(Worst-Case Military Conditions, VCC = 4.5V, TJ = 125°C)
‘–1’ Speed ‘Std’ Speed
Parameter Description Min. Max. Min. Max. Units
Logic Module Propagation Delays1
tPD Internal Array Module 3.0 3.5 ns
tCO Sequential Clock to Q 3.0 3.5 ns
tCLR Asynchronous Clear to Q 3.0 3.5 ns
Logic Module Predicted Routing Delays2
tRD1 FO=1 Routing Delay 1.3 1 .5 ns
tRD2 FO=2 Routing Delay 1.9 2 .1 ns
tRD3 FO=3 Routing Delay 2.1 2 .5 ns
tRD4 FO=4 Routing Delay 2.6 2 .9 ns
tRD8 FO=8 Routing Delay 4.2 4 .9 ns
Logic Module Sequ ential Timing
tSUD Flip-Flop (Latch) Data Input Setup 1.0 1.0 ns
tHD Flip-Flop (Latch) Data Input Hold 0.6 0.6 ns
tSUENA Flip-Flop (Latch) Enable Setup 1.0 1.0 ns
tHENA Flip-Flop (Latch) Enable Hold 0.6 0.6 ns
tWASYN Asynchronous Pulse Width 4.8 5.6 ns
tWCLKA Flip-Flop Clock Pulse Width 4.8 5.6 ns
tAFlip-Flop Clock Input Period 9.9 11.6 ns
fMAX Flip-Flop Clock Frequency 100 85 MHz
Input Module Propagation Delays
tINY Input Data Pad to Y 4.2 4.9 ns
tICKY Input Reg IOCLK Pad to Y 7.0 8.2 ns
tOCKY Output Reg IOCLK Pad to Y 7.0 8.2 ns
tICLRY Input Asynchronous Clear to Y 7.0 8.2 ns
tOCLRY Output Asynchronous Clear to Y 7.0 8.2 ns
Input Module Predicted Routing Delays2, 3
tIRD1 FO=1 Routing Delay 1.3 1.5 ns
tIRD2 FO=2 Routing Delay 1.9 2.1 ns
tIRD3 FO=3 Routing Delay 2.1 2.5 ns
tIRD4 FO=4 Routing Delay 2.6 2.9 ns
tIRD8 FO=8 Routing Delay 4.2 4.9 ns
Notes:
1. For dual-module macros, use tPD + tRD1 + tPDn , tCO + tRD1 + tPDn , or tPD1 + tRD1 + tSUD , whichever is appropriate.
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device
performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is
based on actual routing delay measurements performed on the device prior to shipment.
3. Optimization techniques may further reduce delays by 0 to 4 ns.
45
HiRel FPGAs
A14100A Timing Characteristics (continued)
(Worst-Case Military Conditions, VCC = 4.5V, TJ = 125°C)
‘–1’ Speed ‘Std’ Speed
Parameter Description Min. Max. Min. Max. Units
I/O Module Sequential Timing
tINH Input F-F Data Hold
(w.r.t. IOCLK Pad) 0.0 0.0 ns
tINSU Input F-F Data Setup
(w.r.t. IOCLK Pad) 2.1 2.4 ns
tIDEH Input Data Enable Hold
(w.r.t. IOCLK Pad) 0.0 0.0 ns
tIDESU Input Data Enable Setup
(w.r.t. IOCLK Pad) 8.7 10.0 ns
tOUTH Output F-F Data Hold
(w.r.t. IOCLK Pad) 1.2 1.2 ns
tOUTSU Output F-F Data Setup
(w.r.t. IOCLK Pad) 1.2 1.2 ns
tODEH Output Data Enable Hold
(w.r.t. IOCLK Pad) 0.6 0.6 ns
tODESU Output Data Enable Setup
(w.r.t. IOCLK Pad) 2.4 2.4 ns
TTL Output Module Timing1
tDHS Data to Pad, High Slew 7.5 8.9 ns
tDLS Data to Pad, Low Slew 11.9 14.0 ns
tENZHS Enable to Pad, Z to H/L, High Slew 6.0 7.0 ns
tENZLS Enable to Pad, Z to H/L, Low Slew 10.9 12.8 ns
tENHSZ Enable to Pad, H /L to Z, High Slew 11.9 14.0 ns
tENLSZ Enable to Pad, H/L to Z, Low Slew 10.9 12.8 ns
tCKHS IOCLK Pad to Pad H/L, High Slew 12.2 14.0 ns
tCKLS IOCLK Pad to Pad H/L, Low Slew 17.8 17.8 ns
dTLHHS Delta Low to High, High Slew 0.04 0.04 ns/pF
dTLHLS Delta Low to High, Low Slew 0.07 0.08 ns/pF
dTHLHS Delta High to Low, High Slew 0.05 0.06 ns/pF
dTHLLS Delta High to Low, Low Slew 0.07 0.08 ns/pF
Note:
1. Delays based on 35 pF loading.
46
A14100A Timing Characteristics (continued)
(Worst-Case Military Conditions, VCC = 4.5V, TJ = 125°C)
‘–1’ Speed ‘Std’ Speed
Parameter Description Min. Max. Min. Max. Units
CMOS Outpu t Module Timing1
tDHS Data to Pad, High Slew 9.2 10.8 ns
tDLS Data to Pad, Low Slew 17.3 20.3 ns
tENZHS Enable to Pad, Z to H/L, High Slew 7.7 9.1 ns
tENZLS Enable to Pad, Z to H/L, Low Slew 13.1 15.5 ns
tENHSZ Enable to Pad, H/L to Z, High Slew 11.6 14.0 ns
tENLSZ Enable to Pad, H/L to Z, Low Slew 10.9 12.8 ns
tCKHS IOCLK Pad to Pad H/L, High Slew 14.4 16.0 ns
tCKLS IOCLK Pad to Pad H/L, Low Slew 20.2 22.4 ns
dTLHHS Delta Low to High, High Slew 0.06 0.07 ns/pF
dTLHLS Delta Low to High, Low Slew 0.11 0.13 ns/pF
dTHLHS Delta High to Low, High Slew 0.04 0.05 ns/pF
dTHLLS Delta High to Low, Low Slew 0.05 0.06 ns/pF
Dedicated (Hard-Wired) I/O Clock Network
tIOCKH Input Low to High
(Pad to I/O Module Input) 3.5 4.1 ns
tIOPWH Minimum Pulse Width High 4.8 5.7 ns
tIOPWL Minimum Pulse Width Low 4.8 5.7 ns
tIOSAPW Minimum Asynchronous Pulse Width 3.9 4.4 ns
tIOCKSW Maximum Skew 0.9 1.0 ns
tIOP Mini m um Period 9.9 11.6 ns
fIOMAX Maximum Frequency 100 85 MHz
Dedicated (Hard-Wired) Array Clock Network
tHCKH Input Low to High
(Pad to S-Module Input) 5.5 6.4 ns
tHCKL Input High to Low
(Pad to S-Module Input) 5.5 6.4 ns
tHPWH Minimum Pulse Width High 4.8 5.7 ns
tHPWL Minimum Pulse Width Low 4.8 5.7 ns
tHCKSW Maximum Skew 0.9 1.0 ns
tHP Mini m um Period 9.9 11.6 ns
fHMAX Maximum Frequency 100 85 MHz
Notes:
1. Delays based on 35 pF loading.
2. SSO information can be found in the Simultaneously Switching Output Limits for Actel FPGAs application note at
http://www.actel.com/appnotes.
47
HiRel FPGAs
A14100A Timing Characteristics (continued)
(Worst-Case Military Conditions, VCC = 4.5V, TJ = 125°C)
‘–1’ Speed ‘Std’ Speed
Parameter Description Min. Max. Min. Max. Units
Routed Array Clock Networks
tRCKH Input Low to High (FO=256) 9.0 10.5 ns
tRCKL Input High to Low (FO=256) 9.0 10.5 ns
tRPWH Min. Pulse Width High (FO=256) 6.3 7.1 ns
tRPWL Min. Pulse Width Low (FO=256) 6.3 7.1 ns
tRCKSW Maximum Skew (FO=128) 1.9 2.1 ns
tRP Minimum Period (FO=256) 12.9 14.5 ns
fRMAX Maximum Frequency (FO=256) 75 65 MHz
Clock-to-Clock Skews
tIOHCKSW I/O Clock to H-Clock Skew 0.0 3.5 0.0 3.5 ns
tIORCKSW I/O Clock to R-Clock Skew 0.0 5.0 0.0 5.0 ns
tHRCKSW H-Clock to R-Clock Skew
(FO = 64)
(FO = 50% max.) 0.0
0.0 1.0
3.0 0.0
0.0 1.0
3.0 ns
48
A32100DX Timing Characteristics
(Worst-Case Military Conditions, VCC = 4.5V, TJ = 125°C)
‘–1’ Speed ‘Std’ Speed
Parameter Description Min. Max. Min. Max. Units
Logic Module Combinatorial Functions
tPD Internal Array Module Delay 3.1 4.1 ns
tPDD Internal Decode Module Delay 3.3 4.3 ns
Logic Module Predicted Routing Delays1
tRD1 FO=1 Routing Delay 1.3 1.8 ns
tRD2 FO=2 Routing Delay 1.9 2.6 ns
tRD3 FO=3 Routing Delay 2.6 3.4 ns
tRD4 FO=4 Routing Delay 3.3 4.3 ns
tRD5 FO=8 Routing Delay 0.6 0.8 ns
tRDD Decode-to-Output Routing Delay 0.5 0.6 ns
Logic Module Sequ ential Timing
tCO Flip-Flop Clock-to-Output 3.1 4.1 ns
tGO Latch Gate-to-Output 3.1 4.1 ns
tSU Flip-Flop (Latch) Setup Time 0.5 0.6 ns
tHFlip-Flop (Latch) Hold Time 0.0 0.0 ns
tRO Flip-Flop (Latch) Reset to Output 3.1 4.1 ns
tSUENA Flip-Flop (Latch) Enable Setup 0.9 1.2 ns
tHENA Flip-Flop (Latch) Enable Hold 0.0 0.0 ns
tWCLKA Flip-Flop (Latch) Clock Active Pulse
Width 4.3 5.8 ns
tWASYN Flip-Flop (Latch) Asynchronous Pulse
Width 5.6 7.5 ns
Note:
1. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device
performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is
based on actual routing delay measurements performed on the device prior to shipment.
49
HiRel FPGAs
A32100DX Timing Characteristics (continued)
(Worst-Case Military Conditions, VCC = 4.5V, TJ = 125°C)
’–1’ Speed ‘Std’ Speed
Parameter Description Min. Max. Min. Max. Units
Synchronous SRAM Operations
tRC Read Cycle Time 8.8 11.8 ns
tWC Write Cycle Time 8.8 11.8 ns
tRCKHL Clock High/Low Time 4.4 5.9 ns
tRCO Data Valid After Clock High/Low 4.4 5.9 ns
tADSU Address/Data Setup Time 2.1 2.8 ns
tADH Address/Data Hold Time 0. 0 0.0 ns
tRENSU Read Enable Setup 0.8 1.1 ns
tRENH Read Enable Ho ld 4.4 5.9 ns
tWENSU Write Enable Setup 3.5 4.7 ns
tWENH Write Enable Hold 0.0 0.0 ns
tBENS Block Enable Setup 3.6 4.8 ns
tBENH Block Enable Hold 0.0 0.0 ns
Asynch ronous SRAM Operations
tRPD Asynchronous Access Time 10.6 14.1 ns
tRDADV Read Address Valid 11.5 15.3 ns
tADSU Address/Data Setup Time 2.1 2.8 ns
tADH Address/Data Hold Time 0. 0 0.0 ns
tRENSUA Read Enable Setup to Address Valid 0.8 1.1 ns
tRENHA Read Enable Ho ld 4.4 5.9 ns
tWENSU Write Enable Setup 3.5 4.7 ns
tWENH Write Enable Hold 0.0 0.0 ns
tDOH Data Out Hold Time 1.6 2.1 ns
50
A32100DX Timing Characteristics (continued)
(Worst-Case Military Conditions, VCC = 4.5V, TJ = 125°C)
‘–1’ Speed ‘Std’ Speed
Parameter Description Min. Max. Min. Max. Units
Input Module Propagation Delays
tINPY Input Data Pad to Y 1.9 2.6 ns
tINGO Input Latch Gate-to-Output 4.0 5.3 ns
tINH Input Latch Hold 0.0 0.0 ns
tINSU Input Latch Setup 0.7 0.9 ns
tILA Latch Active Pulse Width 6.1 8.1 ns
Input Module Predicted Routing Delays1
tIRD1 FO=1 Routing Delay 2.2 2. 9 ns
tIRD2 FO=2 Routing Delay 2.8 3. 8 ns
tIRD3 FO=3 Routing Delay 3.5 4. 7 ns
tIRD4 FO=4 Routing Delay 3.5 4. 7 ns
tIRD8 FO=8 Routing Delay 5.6 7. 5 ns
Global Clock Network
tCKH Input Low to High FO=32
FO=635 6.5
7.9 8.7
10.6 ns
ns
tCKL Input High to Low FO=32
FO=635 6.6
8.8 8.8
11.8 ns
ns
tPWH Minimum Pulse Width High FO=32
FO=635 4.1
4.6 5.5
6.1 ns
ns
tPWL Minimum Pulse Width Low FO=32
FO=635 4.1
4.6 5.5
6.1 ns
ns
tCKSW Maximum Skew FO=32
FO=635 1.8
1.8 2.4
2.4 ns
ns
tSUEXT Input Latch External Setup FO=32
FO=635 0.0
0.0 0.0
0.0 ns
ns
tHEXT Input Latch External Hold FO=32
FO=635 3.0
3.8 4.0
5.1 ns
ns
tPMinimum Period (1/fmax) FO=32
FO=635 7.1
7.9 9.5
10.5 ns
ns
fHMAX Maximum Datapath Frequency FO=32
FO=635 140
126 105
95 MHz
MHz
Note:
1. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device
performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is
based on actual routing delay measurements performed on the device prior to shipment. Optimization techniques may further reduce
delays by 0 to 4 ns.
51
HiRel FPGAs
A32100DX Timing Characteristics (continued)
(Worst-Case Military Conditions, VCC = 4.5V, TJ = 125°C)
‘–1’ Speed ‘Std’ Speed
Parameter Description Min. Max. Min. Max. Units
TTL Output Module Timing1
tDLH Data to Pad High 5.1 6.8 ns
tDHL Data to Pad Low 6.3 8.3 ns
tENZH Enable Pad Z to High 6.6 8.8 n s
tENZL Enable Pad Z to Low 7.1 9.4 ns
tENHZ Enable Pad High to Z 11.5 15.3 ns
tENLZ Enabl e Pad Low to Z 11.5 15.3 ns
tGLH G to Pad High 11.5 15.3 ns
tGHL G to Pad Low 12.4 16.6 ns
tLSU I/O Latch Output Setup 0.4 0.5 ns
tLH I/O Latch Output Hold 0.0 0.0 ns
tLCO I/O Latch Clock-Out (Pad-to-Pad) 32 I/O 11.5 15.4 ns
tACO Array Latch Clock-Out (Pad -to-Pad) 32 I/O 16.3 21.7 ns
dTLH Capacitive Loading, Low to High 0.04 0.06 ns/pF
dTHL Capacitive Loading, High to Low 0.06 0.08 ns/pF
tWDO Hard-Wired Wide Decode Output 0.05 0.07 ns
CMOS Outpu t Module Timing1
tDLH Data to Pad High 6.3 8.3 ns
tDHL Data to Pad Low 5.1 6.8 ns
tENZH Enable Pad Z to High 6.6 8.8 n s
tENZL Enable Pad Z to Low 7.1 9.4 ns
tENHZ Enable Pad High to Z 11.5 15.3 ns
tENLZ Enabl e Pad Low to Z 11.5 15.3 ns
tGLH G to Pad High 11.5 15.3 ns
tGHL G to Pad Low 12.4 16.6 ns
tLSU I/O Latch Setup 0.4 0.5 ns
tLH I/O Latch Hold 0.0 0.0 ns
tLCO I/O Latch Clock-Out (Pad-to-Pad) 32 I/O 13.7 18.2 ns
tACO Array Latch Clock-Out (Pad -to-Pad) 32 I/O 19.2 25.6 ns
dTLH Capacitive Loading, Low to High 0.06 0.08 ns/pF
dTHL Capacitive Loading, High to Low 0.05 0.07 ns/pF
tWDO Hard-Wired Wide Decode Output 0.05 0.07 ns
Notes:
1. Delays based on 35 pF loading.
2. SSO information can be found in the Simultaneously Switching Output Limits for Actel FPGAs application note at
http://www.actel.com/appnotes.
52
A32200DX Timing Characteristics
(Worst-Case Military Conditions, VCC = 4.5V, TJ = 125°C)
‘–1’ Speed ‘Std’ Speed
Parameter Description Min. Max. Min. Max. Units
Logic Module Combinatorial Functions
tPD Internal Array Module Delay 2.8 3.8 n s
tPDD Internal Decode Module Delay 3.4 4.6 ns
Logic Module Predicted Routing Delays1
tRD1 FO=1 Routing Delay 1.6 2.1 ns
tRD2 FO=2 Routing Delay 2.3 3.1 ns
tRD3 FO=3 Routing Delay 2.9 3.9 ns
tRD4 FO=4 Routing Delay 3.5 4.7 ns
tRD5 FO=8 Routing Delay 6.2 8.2 ns
tRDD Decode-to-Output Routing Delay 0.8 1.1 ns
Logic Module Sequential Timing Characteristics
tCO Flip-Flop Clock-to-Output 3.2 4.2 ns
tGO Latch Gate-to-Output 2.8 3.8 ns
tSU Flip-Flop (Latch) Setup Time 0.5 0.6 ns
tHFlip-Flop (Latch) Hold Time 0.0 0.0 ns
tRO Flip-Flop (Latch) Reset to Output 3.2 4.2 ns
tSUENA Flip-Flop (Latch) Enable Setup 0.9 1.2 ns
tHENA Flip-Flop (Latch) Enable Hold 0.0 0.0 ns
tWCLKA Flip-Flop (Latch) Clock Active Pulse Width 4.3 5.8 ns
tWASYN Flip-Flop (Latch) Asynchronous Pulse Width 5.7 7.6 ns
Note:
1. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device
performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is
based on actual routing delay measurements performed on the device prior to shipment.
53
HiRel FPGAs
A32200DX Timing Characteristics (continued)
(Worst-Case Military Conditions, VCC = 4.5V, TJ = 125°C)
‘–1’ Speed ‘Std’ Speed
Parameter Description Min. Max. Min. Max. Units
Synchronous SRAM Operations
tRC Read Cycle Time 8.8 11.8 ns
tWC Write Cycle Time 8.8 11.8 ns
tRCKHL Clock High/Low Time 4.4 5.9 ns
tRCO Data Valid After Clock High/Low 4.4 5.9 ns
tADSU Address/Data Setup Time 2.1 2.8 ns
tADH Address/Data Hold Time 0.0 0.0 ns
tRENSU Read Enable Setup 0.8 1.1 ns
tRENH Read Enable Hold 4.4 5.9 ns
tWENSU Write Enable Setup 3.5 4.7 ns
tWENH Write Enable Hold 0.0 0.0 ns
tBENS Block Enable Setup 3.6 4.8 n s
tBENH Block Enable Hold 0.0 0.0 ns
Asynch ronous SRAM Operations
tRPD Asynchro nous Access Time 10.6 14.1 ns
tRDADV Read Address Valid 11.5 15.3 ns
tADSU Address/Data Setup Time 2.1 2.8 ns
tADH Address/Data Hold Time 0.0 0.0 ns
tRENSUA Read Enable Setup to Address Va lid 0.8 1.1 ns
tRENHA Read Enable Hold 4.4 5.9 ns
tWENSU Write Enable Setup 3.5 4.7 ns
tWENH Write Enable Hold 0.0 0.0 ns
tDOH Data Out Hold Time 1.6 2.1 ns
54
A32200DX Timing Characteristics (continued)
(Worst-Case Military Conditions, VCC = 4.5V, TJ = 125°C)
‘–1’ Speed ‘Std’ Speed
Parameter Description Min. Max. Min. Max. Units
Input Module Propagation Delays
tINPY Input Data Pad to Y 1.9 2.6 ns
tINGO Input Latch Gate-to-Output 4.6 6.0 ns
tINH Input Latch Hold 0.0 0.0 ns
tINSU Input Latch Setup 0.7 0.9 ns
tILA Latch Active Pulse Width 6.1 8.1 ns
Input Module Predicted Routing Delays1
tIRD1 FO=1 Routing Delay 2.6 3. 5 ns
tIRD2 FO=2 Routing Delay 3.4 4. 6 ns
tIRD3 FO=3 Routing Delay 4.6 6. 1 ns
tIRD4 FO=4 Routing Delay 5.4 7. 2 ns
tIRD5 FO=8 Routing Delay 7.0 9. 3 ns
Global Clock Network
tCKH Input Low to High FO=32
FO=635 7.3
8.5 9.8
11.3 ns
ns
tCKL Input High to Low FO=32
FO=635 7.2
9.3 9.6
12.5 ns
ns
tPWH Minimum Pulse Width High FO=32
FO=635 3.2
3.9 4.3
5.2 ns
ns
tPWL Minimum Pulse Width Low FO=32
FO=635 3.2
3.9 4.3
5.2 ns
ns
tCKSW Maximum Skew FO=32
FO=635 1.8
1.8 2.4
2.4 ns
ns
tSUEXT Input Latch External Setup FO=32
FO=635 0.0
0.0 0.0
0.0 ns
ns
tHEXT Input Latch External Hold FO=32
FO=635 3.0
3.8 4.0
5.1 ns
ns
tPMinimum Period (1/fmax) FO=32
FO=635 5.8
6.8 7.7
9.1 ns
ns
fHMAX Maximum Datapath Frequency FO=32
FO=635 172
147 130
110 MHz
MHz
Note:
1. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device
performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is
based on actual routing delay measurements performed on the device prior to shipment. Optimization techniques may further reduce
delays by 0 to 4 ns.
55
HiRel FPGAs
A32200DX Timing Characteristics (continued)
(Worst-Case Military Conditions, VCC = 4.5V, TJ = 125°C)
‘–1’ Speed ‘Std’ Speed
Parameter Description Min. Max. Min. Max. Units
TTL Output Module Timing1
tDLH Data to Pad High 5.1 6.8 ns
tDHL Data to Pad Low 6.3 8.3 ns
tENZH Enable Pad Z to High 6.6 8.8 n s
tENZL Enable Pad Z to Low 7.1 9.5 ns
tENHZ Enable Pad High to Z 11.5 15.3 ns
tENLZ Enabl e Pad Low to Z 11.5 15.3 ns
tGLH G to Pad High 11.5 15.3 ns
tGHL G to Pad Low 12.3 16.5 ns
tLSU I/O Latch Output Setup 0.4 0.5 ns
tLH I/O Latch Output Hold 0.0 0.0 ns
tLCO I/O Latch Clock-Out (Pad-to-Pad) 32 I/O 11.5 15.4 ns
tACO Array Latch Clock-Out (Pad -to-Pad) 32 I/O 16.3 21.7 ns
dTLH Capacitive Loading, Low to High 0.04 0.06 ns/pF
dTHL Capacitive Loading, High to Low 0.06 0.08 ns/pF
tWDO Hard-Wired Wide Decode Output 0.05 0.07 ns
CMOS Outpu t Module Timing1
tDLH Data to Pad High 5.1 6.8 ns
tDHL Data to Pad Low 6.3 8.3 ns
tENZH Enable Pad Z to High 6.6 8.8 n s
tENZL Enable Pad Z to Low 7.1 9.5 ns
tENHZ Enable Pad High to Z 11.5 15.3 ns
tENLZ Enabl e Pad Low to Z 11.5 15.3 ns
tGLH G to Pad High 11.5 15.3 ns
tGHL G to Pad Low 12.3 16.5 ns
tLSU I/O Latch Setup 0.4 0.5 ns
tLH I/O Latch Hold 0.0 0.0 ns
tLCO I/O Latch Clock-Out (Pad-to-Pad) 32 I/O 13.7 18.2 ns
tACO Array Latch Clock-Out (Pad -to-Pad) 32 I/O 19.2 25.6 ns
dTLH Capacitive Loading, Low to High 0.06 0.08 ns/pF
dTHL Capacitive Loading, High to Low 0.05 0.07 ns/pF
tWDO Hard-Wired Wide Decode Output 0.05 0.07 ns
Notes:
1. Delays based on 35 pF loading.
2. SSO information can be found in the Simultaneously Switching Output Limits for Actel FPGAs application note at
http://www.actel.com/appnotes.
56
Pin Description
CLK Clock (Input)
ACT 1 only. TTL Clock input for global clock distribution
network. The Clock input is buffered prior to clocking the
logic modules. This pin can also be used as an I/O.
CLKA Clock A (Input)
ACT 2, 1200XL, 3200DX, and ACT 3 only. TTL Clock input for
global clock distribution networks. The Clock input is
buffered prior to clocking the logic modules. This pin can also
be used as an I/O.
CLKB Clock B (Input)
ACT 2, 1200XL, 3200DX, and ACT 3 only. TTL Clock input for
global clock distribution networks. The Clock input is
buffered prior to clocking the logic modules. This pin can also
be used as an I/O.
DCLK Diagnostic Clock (Input)
TTL Clock input for diagnostic probe and device
programming. DCLK is active when the MODE pin is HIGH.
This pin functions as an I/O when the MODE pin is LOW.
GND Ground
LOW supply voltage.
HCLK Dedicated (Hard-wired) Array
Clock (Input)
ACT 3 only. TTL Clock input for sequential modules. This
input is directly wired to each S-module and offers clock
speeds independent of the number of S-modules being driven.
This pin can also be used as an I/O.
I/O Input/Output (Input, Output)
I/O pin functions as an input, output, tristate, or
bi-directional buffer. Input and output levels are compatible
with standard TTL and CMOS specifications. In the ACT 3 and
3200DX families, unused I/Os are automatically tri-stated.
With this configuration, the input buffer internal to the I/O
module is disabled. In the ACT 1, ACT 2 and 1200XL families,
unused I/Os are automatically configured as bi-directional
buffers where each buffer is configured as a LOW driver.
IOCLK Dedicated (Hard-wired) I/O
Clock (Input)
ACT 3 only. TTL Clock input for I/O modules. This input is
directly wired to each I/O module and offers clock speeds
independent of the number of I/O modules being driven. This
pin can also be used as an I/O.
IOPCL Dedicated (Hard-wired) I/O
Preset/Clear (Input)
ACT 3 only. TTL input for I/O preset or clear. This global input
is directly wired to the preset and clear inputs of all I/O
registers. This pin functions as an I/O when no I/O preset or
clear macros are used.
MODE Mode (Input)
The MODE pin controls the use of diagnostic pins (DCLK,
PRA, PRB, SDI). When the MODE pin is HIGH, the special
functions are active. When the MODE pin is LOW, the pins
function as I/Os. To provide debugging capability, the MODE
pin should be terminated to GND through a 10 k resistor so
that the MODE pin can be pulled high when required.
NC No Connection
This pin is not connected to circuitry within the device.
PRA, I/O Probe A (Output)
The Probe A pin is used to output data from any user-defined
design node within the device. This independent diagnostic
pin can be used in conjunction with the Probe B pin to allow
real-time diagnostic output of any signal path within the
device. The Probe A pin can be used as a user-defined I/O
when debugging has been completed. The pin’s probe
capabilities can be permanently disabled to protect
programmed design confidentiality. PRA is accessible when
the MODE pin is HIGH. This pin functions as an I/O when the
MODE pin is LOW.
PRB, I/O Probe B (Output)
The Probe B pin is used to output data from any user-defined
design node within the device. This independent diagnostic
pin can be used in conjunction with the Probe A pin to allow
real-time diagnostic output of any signal path within the
device. The Probe B pin can be used as a user-defined I/O
when verification has been completed. The pin’s probe
capabilities can be permanently disabled to protect
programmed design confidentiality. PRB is accessible when
the MODE pin is HIGH. This pin functions as an I/O when the
MODE pin is LOW.
SDI Serial Data Input (Input)
Serial data input for diagnostic probe and device
programming. SDI is active when the MODE pin is HIGH. This
pin functions as an I/O when the MODE pin is LOW.
VCC 5.0V Supply Voltage
HIGH supply voltage.
QCLKA/B,C,D Quadrant Clock (Input/Output)
3200DX only. These four pins are the quadrant clock inputs.
When not used as a register control signal, these pins can
function as general purpose I/O.
TCK Test Clock
Clock signal to shift the JTAG data into the device. This pin
functions as an I/O when the JTAG fuse is not programmed.
JTAG pins are only available in the 3200DX device.
57
HiRel FPGAs
TDI Test Data In
Serial data input for JTAG instructions and data. Data is
shifted in on the rising edge of TCLK. This pin functions as an
I/O when the JTAG fuse is not programmed. JTAG pins are
only available in the 3200DX device.
TDO Test Data Out
Serial data output for JTAG instructions and test data. This pin
functions as an I/O when the JTAG fuse is not programmed.
JTAG pins are only available in the 3200DX device.
TMS Test Mode Select
Serial data input for JTAG test mode. Data is shifted in on the
rising edge of TCLK. This pin functions as an I/O when the
JTAG fuse is not programmed. JTAG pins are only available in
the 3200DX device.
58
Package Pin Assignments
84-Pin CPGA (Top View)
Orientation Pin (C3)
A
B
C
D
E
F
G
H
J
K
L
1 2 3 4 5 6 7 8 9 10 11
1 2 3 4 5 6 7 8 9 10 11
84-Pin
CPGA
A
B
C
D
E
F
G
H
J
K
L
59
HiRel FPGAs
84-Pin CPGA
Pin Number A1010B
Function A1020B
Function Pin Number A1010B
Function A1020B
Function
A1 I/O I/O F9 CLK, I/O CLK, I/O
A2 I/O I/O F10 GND GND
A3 I/O I/O F11 I/O I/O
A4 I/O I/O G1 I/O I/O
A5 I/O I/O G2 VCC VCC
A6 I/O I/O G3 I/O I/O
A7 I/O I/O G9 I/O I/O
A8 I/O I/O G10 GND GND
A9 I/O I/O G11 I/O I/O
A10 I/O I/O H1 I/O I/O
A11 PRA, I/O PRA, I/O H2 I/O I/O
B1 NC I/O H10 I/O I/O
B2 NC NC H11 I/O I/O
B3 I/O I/O J1 I/O I/O
B4 I/O I/O J2 NC I/O
B5 VCC VCC J5 I/O I/O
B6 I/O I/O J6 I/O I/O
B7 GND GND J7 I/O I/O
B8 I/O I/O J10 NC I/O
B9 I/O I/O J11 I/O I/O
B10 PRB, I/O PRB, I/O K1 NC I/O
B11 SDI, I/O SDI, I/O K2 VCC VCC
C1 NC I/O K3 I/O I/O
C2 NC I/O K4 I/O I/O
C5 I/O I/O K5 GND GND
C6 I/O I/O K6 I/O I/O
C7 I/O I/O K7 VCC VCC
C10 DCLK, I/O DCLK, I/O K8 I/O I/O
C11 NC I/O K9 I/O I/O
D1 I/O I/O K10 NC I/O
D2 I/O I/O K11 NC I/O
D10 NC I/O L1 NC I/O
D11 NC I/O L2 I/O I/O
E1 I/O I/O L3 I/O I/O
E2 GND GND L4 I/O I/O
E3 GND GND L5 I/O I/O
E9 VCC VCC L6 I/O I/O
E10 VCC VCC L7 I/O I/O
E11 MODE MODE L8 I/O I/O
F1 VCC VCC L9 I/O I/O
F2 I/O I/O L10 I/O I/O
F3 I/O I/O L11 I/O I/O
60
Package Pin Assignments (continued)
132-Pin CPGA (Top View)
1 2 3 4 5 6 7 8 9 10 11 12 13
1 2 3 4 5 6 7 8 9 10 11 12 13
A
B
C
D
E
F
G
H
J
K
L
M
N
A
B
C
D
E
F
G
H
J
K
L
M
N
Orientation Pin
132-Pin
CPGA
61
HiRel FPGAs
132-Pin CPGA
Pin Numb er A1240A
Function Pin Number A1240A
Functio n Pin Number A1240A
Function
A1 MODE D8 I/O K7 VCC
A2 I/O D11 I/O K8 I/O
A3 I/O D12 I/O K11 I/O
A4 I/O D13 I/O K12 GND
A5 I/O E1 I/O K13 I/O
A6 I/O E2 I/O L1 I/O
A7 I/O E3 GND L2 I/O
A8 I/O E11 GND L3 I/O
A9 I/O E12 GND L4 I/O
A10 I/O E13 I/O L5 GND
A11 I/O F1 I/O L6 I/O
A12 I/O F2 I/O L7 VCC
A13 I/O F3 I/O L8 I/O
B1 I/O F4 GND L9 GND
B2 I/O F10 I/O L10 I/O
B3 I/O F11 I/O L11 I/O
B4 I/O F12 I/O L12 I/O
B5 GND F13 I/O L13 I/O
B6 CLKB, I/O G1 I/O M1 I/O
B7 CLKA, I/O G2 VCC M2 I/O
B8 PRA, I/O G3 VCC M3 I/O
B9 GND G4 VCC M4 I/O
B10 I/O G10 VCC M5 I/O
B11 I/O G11 VCC M6 I/O
B12 SDI, I/O G12 VCC M7 I/O
B13 I/O G13 VCC M8 I/O
C1 I/O H1 I/O M9 GND
C2 I/O H2 I/O M10 I/O
C3 DCLK, I/O H3 I/O M11 I/O
C4 I/O H4 I/O M12 I/O
C5 GND H10 I/O M13 I/O
C6 PRB, I/O H11 I/O N1 I/O
C7 VCC H12 I/O N2 I/O
C8 I/O H13 GND N3 I/O
C9 GND J1 I/O N4 I/O
C10 I/O J2 GND N5 I/O
C11 I/O J3 GND N6 I/O
C12 I/O J11 GND N7 I/O
C13 I/O J12 I/O N8 I/O
D1 I/O J13 I/O N9 I/O
D2 I/O K1 I/O N10 I/O
D3 I/O K2 I/O N11 I/O
D6 I/O K3 I/O N12 I/O
D7 VCC K6 I/O N13 I/O
62
Package Pin Assignments (continued)
133-Pin CPGA (Top View)
1 2 3 4 5 6 7 8 9 10 11 12 13
A
B
C
D
E
F
G
H
J
K
L
M
N
133-Pin
CPGA
A
B
C
D
E
F
G
H
J
K
L
M
N
1 2 3 4 5 6 7 8 9 10 11 12 13
Orientation Pin
63
HiRel FPGAs
133-Pin CPGA
Pin Numb er A1425A
Function Pin Number A1425A
Functio n Pin Number A1425A
Function
A1 NC D8 I/O K8 I/O
A2 GND D11 I/O K11 I/O
A3 I/O D12 I/O K12 I/O
A4 I/O D13 I/O K13 I/O
A5 I/O E1 I/O L1 I/O
A6 PRA, I/O E2 I/O L2 I/O
A7 NC E3 MODE L3 GND
A8 I/O E11 VCC L4 I/O
A9 I/O E12 I/O L5 I/O
A10 I/O E13 I/O L6 PRB, I/O
A11 I/O F1 I/O L7 GND
A12 I/O F2 I/O L8 I/O
A13 NC F3 I/O L9 I/O
B1 I/O F4 I/O L10 IOPCL, I/O
B2 VCC F10 GND L11 GND
B3 I/O F11 I/O L12 I/O
B4 I/O F12 I/O L13 I/O
B5 I/O F13 I/O M1 I/O
B6 CLKB, I/O G1 NC M2 VCC
B7 VCC G2 VCC M3 GND
B8 I/O G3 GND M4 I/O
B9 I/O G4 I/O M5 I/O
B10 I/O G10 I/O M6 I/O
B11 I/O G11 GND M7 VCC
B12 VCC G12 VCC M8 I/O
B13 I/O G13 NC M9 I/O
C1 I/O H1 I/O M10 I/O
C2 SDI, I/O H2 I/O M11 I/O
C3 GND H3 I/O M12 VCC
C4 I/O H4 I/O M13 I/O
C5 I/O H10 I/O N1 NC
C6 I/O H11 I/O N2 I/O
C7 GND H12 I/O N3 I/O
C8 I/O H13 I/O N4 I/O
C9 I/O J1 I/O N5 I/O
C10 IOCLK, I/O J2 VCC N6 I/O
C11 GND J3 I/O N7 NC
C12 GND J11 I/O N8 I/O
C13 I/O J12 VCC N9 I/O
D1 I/O J13 I/O N10 I/O
D2 I/O K1 I/O N11 I/O
D3 I/O K2 I/O N12 GND
D4 DCLK, I/O K3 I/O N13 NC
D6 CLKA, I/O K6 I/O
D7 I/O K7 HCLKA, I/O
64
Package Pin Assignments (continued)
176-Pin CPGA (Top View)
.
1
A
234567891011
B
C
D
E
F
G
H
J
K
L
176-Pin
CPGA
1234567891011
12
12
13
13
14
14
15
15
M
N
P
R
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
65
HiRel FPGAs
176-Pin CPGA
Pin Num ber A1280A
Function A1280 XL
Func tion Pin Number A1280A
Function A1280XL
Function
A1 I/O I/O C15 I/O I/O
A2 I/O I/O D1 I/O I/O
A3 I/O I/O D2 I/O I/O
A4 I/O I/O D3 I/O I/O
A5 I/O I/O D4 GND GND
A6 I/O I/O D5 VCC VCC
A7 I/O I/O D6 GND GND
A8 I/O I/O D7 PRB, I/O PRB, I/O
A9 CLKA, I/O CLKA, I/O D8 VCC VCC
A10 I/O I/O D9 I/O I/O
A11 I/O I/O D10 GND GND
A12 I/O I/O D11 VCC VCC
A13 I/O I/O D12 GND GND
A14 I/O I/O D13 I/O I/O
A15 I/O I/O D14 I/O I/O
B1 I/O I/O D15 I/O I/O
B2 I/O I/O E1 I/O I/O
B3 DCLK, I/O DCLK, I/O E2 I/O I/O
B4 I/O I/O E3 I/O I/O
B5 I/O I/O E4 GND GND
B6 I/O I/O E12 GND GND
B7 I/O I/O E13 I/O I/O
B8 CLKB, I/O CLKB, I/O E14 I/O I/O
B9 I/O I/O E15 I/O I/O
B10 I/O I/O F1 I/O I/O
B11 I/O I/O F2 I/O I/O
B12 I/O I/O F3 I/O I/O
B13 I/O I/O F4 VCC VCC
B14 SDI, I/O SDI, I/O F12 GND GND
B15 I/O I/O F13 I/O I/O
C1 I/O I/O F14 I/O I/O
C2 I/O I/O F15 I/O I/O
C3 MODE MODE G1 I/O I/O
C4 I/O I/O G2 I/O I/O
C5 I/O I/O G3 I/O I/O
C6 I/O I/O G4 GND GND
C7 I/O I/O G12 VCC VCC
C8 GND GND G13 I/O I/O
C9 PRA, I/O PRA, I/O G14 I/O I/O
C10 I/O I/O G15 I/O I/O
C11 I/O I/O H1 I/O I/O
C12 I/O I/O H2 VCC VCC
C13 I/O I/O H3 VCC VCC
C14 I/O I/O H4 GND GND
66
H12 GND GND N2 I/O I/O
H13 VCC VCC N3 I/O I/O
H14 VCC VCC N4 I/O I/O
H15 I/O I/O N5 I/O I/O
J1 I/O I/O N6 I/O I/O
J2 I/O I/O N7 I/O I/O
J3 I/O I/O N8 VCC VCC
J4 VCC VCC N9 I/O I/O
J12 GND GND N10 I/O I/O
J13 GND GND N11 I/O I/O
J14 VCC VCC N12 I/O I/O
J15 I/O I/O N13 I/O I/O
K1 I/O I/O N14 I/O I/O
K2 I/O I/O N15 I/O I/O
K3 I/O I/O P1 I/O I/O
K4 GND GND P2 I/O I/O
K12 GND GND P3 I/O I/O
K13 I/O I/O P4 I/O I/O
K14 I/O I/O P5 I/O I/O
K15 I/O I/O P6 I/O I/O
L1 I/O I/O P7 I/O I/O
L2 I/O I/O P8 I/O I/O
L3 I/O I/O P9 I/O I/O
L4 GND GND P10 I/O I/O
L12 I/O I/O P11 I/O I/O
L13 I/O I/O P12 I/O I/O
L14 I/O I/O P13 I/O I/O
L15 I/O I/O P14 I/O I/O
M1 I/O I/O P15 I/O I/O
M2 I/O I/O R1 I/O I/O
M3 I/O I/O R2 I/O I/O
M4 GND GND R3 I/O I/O
M5 VCC VCC R4 I/O I/O
M6 GND GND R5 I/O I/O
M7 I/O I/O R6 I/O I/O
M8 GND GND R7 I/O I/O
M9 I/O I/O R8 I/O I/O
M10 GND GND R9 I/O I/O
M11 VCC VCC R10 I/O I/O
M12 GND GND R11 I/O I/O
M13 I/O I/O R12 I/O I/O
M14 I/O I/O R13 I/O I/O
M15 I/O I/O R14 I/O I/O
N1 I/O I/O R15 I/O I/O
176-Pin CPGA (Continued)
Pin Num ber A1280A
Function A1280 XL
Function Pin Number A1280A
Function A1280XL
Function
67
HiRel FPGAs
Package Pin Assignments (continued)
207-Pin CPGA (Top View)
1
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
S
T
234567891011121314151617
1234567891011121314151617
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
S
T
207-Pin
CPGA
68
207-Pin CPGA
Pin Number A1460A
Function Pin Number A1460A
Function Pin Number A1460A
Function
A1 NC C10 I/O G3 I/O
A2 NC C11 I/O G4 I/O
A3 I/O C12 I/O G14 I/O
A4 I/O C13 I/O G15 I/O
A5 I/O C14 I/O G16 I/O
A6 I/O C15 GND G17 I/O
A7 I/O C16 I/O H1 PRA, I/O
A8 I/O C17 I/O H2 I/O
A9 I/O D1 I/O H3 I/O
A10 I/O D2 I/O H4 I/O
A11 I/O D3 I/O H14 I/O
A12 I/O D4 GND H15 I/O
A13 I/O D5 GND H16 I/O
A14 I/O D6 I/O H17 I/O
A15 I/O D7 MODE J1 I/O
A16 NC D8 I/O J2 VCC
A17 NC D9 GND J 3 CLK B, I/O
B1 NC D10 I/O J4 GND
B2 VCC D11 VCC J14 GND
B3 I/O D12 I/O J15 HCLK, I/O
B4 I/O D13 I/O J16 VCC
B5 I/O D14 GND J17 I/O
B6 I/O D15 I/O K1 CLKA, I/O
B7 I/O D16 I/O K2 I/O
B8 I/O D17 I/O K3 I/O
B9 VCC E1 I/O K4 I/O
B10 I/O E2 I/O K14 I/O
B11 I/O E3 I/O . K15 I/O
B12 I/O E4 DCLK, I/O K16 PRB, I/O
B13 I/O E14 I/O K17 I/O
B14 I/O E15 I/O L1 I/O
B15 I/O E16 I/O L2 I/O
B16 VCC E17 I/O L3 I/O
B17 NC F1 I/O L4 I/O
C1 NC F2 I/O L14 I/O
C2 NC F3 I/O L15 I/O
C3 SDI, I/O F4 I/O L16 I/ O
C4 I/O F14 I/O L17 I/O
C5 I/O F15 I/O M1 I/O
C6 I/O F16 I/O M2 I/O
C7 I/O F17 I/O M3 I/O
C8 I/O G1 I/O M4 I/O
C9 I/O G2 I/O M14 I/O
69
HiRel FPGAs
M15 I/O P17 I/O S10 I/O
M16 I/O R1 I/O S11 I/O
M17 I/O R2 I/O S12 I/O
N1 I/O R3 I/O S13 I/O
N2 I/O R4 I/O S14 I/O
N3 I/O R5 I/O S15 I/O
N4 I/O R6 I/O S16 VCC
N14 IOPCL, I/O R7 I/O S17 NC
N15 I/O R8 I/O T1 NC
N16 I/O R9 I/O T2 NC
N17 I/O R10 I/O T3 I/O
P1 I/O R11 I/O T4 I/O
P2 I/O R12 I/O T5 VCC
P3 GND R13 I/O T6 I/O
P4 GND R14 I/O T7 I/O
P5 IOCLK, I/O R15 GND T8 I/O
P6 I/O R16 I/O T9 I/O
P7 GND R17 I/O T10 I/O
P8 I/O S1 NC T11 I/O
P9 GND S2 VCC T12 I/O
P10 I/O S3 NC T13 I/O
P11 I/O S4 I/O T14 I/O
P12 VCC S5 I/O T15 I/O
P13 I/O S6 I/O T16 NC
P14 GND S7 I/O T17 NC
P15 I/O S8 I/O
P16 I/O S9 VCC
207-Pin CPGA (Continued)
Pin Number A1460A
Function Pin Number A1460A
Func tion Pin Number A1460A
Function
70
Package Pin Assignments (continued)
257-Pin CPGA (Top View)
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
V
X
Y
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
V
X
Y
1 2 3 4 5 6 7 8 9 10111213141516171819
1 2 3 4 5 6 7 8 9 10111213141516171819
257-Pin
CPGA
71
HiRel FPGAs
257-Pin CPGA
Pin Numb er A14100A
Function Pin Number A14100A
Functio n Pin Number A14100A
Function
A1 I/O C7 I/O E19 I/O
A2 I/O C8 I/O F1 I/O
A3 I/O C9 I/O F2 I/O
A4 I/O C10 VCC F3 I/O
A5 MODE C11 I/O F4 I/O
A6 I/O C12 I/O F16 I/O
A7 I/O C13 VCC F17 I/O
A8 I/O C14 I/O F18 I/O
A9 I/O C15 I/O F19 I/O
A10 I/O C16 I/O G1 I/O
A11 I/O C17 VCC G2 I/O
A12 I/O C18 I/O G3 I/O
A13 I/O C19 I/O G4 I/O
A14 I/O D1 I/O G5 I/O
A15 I/O D2 I/O G15 I/O
A16 I/O D3 I/O G16 I/O
A17 I/O D4 GND G17 I/O
A18 I/O D5 I/O G18 I/O
A19 I/O D6 I/O G19 I/O
B1 I/O D7 I/O H1 I/O
B2 I/O D8 I/O H2 I/O
B3 I/O D9 I/O H3 I/O
B4 SDI, I/O D10 GND H4 I/O
B5 I/O D11 I/O H16 I/O
B6 I/O D12 I/O H17 I/O
B7 I/O D13 I/O H18 I/O
B8 I/O D14 I/O H19 I/O
B9 I/O D15 I/O J1 PRA, I/O
B10 I/O D16 GND J2 I/O
B11 I/O D17 I/O J3 I/O
B12 I/O D18 I/O J4 I/O
B13 I/O D19 I/O J5 GND
B14 I/O E1 I/O J15 I/O
B15 I/O E2 I/O J16 HCLK, I/O
B16 GND E3 I/O J17 PRB, I/O
B17 I/O E4 DCLK, I/O J1 8 I/O
B18 I/O E5 NC J19 I/O
B19 I/O E7 I/O K1 I/O
C1 I/O E9 I/O K2 I/O
C2 I/O E11 GND K3 VCC
C3 VCC E13 I/O K4 GND
C4 GND E16 I/O K16 GND
C5 I/O E17 I/O K17 VCC
C6 I/O E18 I/O K18 I/O
72
K19 I/O R9 I/O V17 VCC
L1 I/O R11 I/O V18 I/O
L2 I/O R13 I/O V19 I/O
L3 I/O R16 IOPCL, I/O X1 I/O
L4 CLKA, I/O R17 I/O X2 I/O
L5 CLKB, I/O R18 I/O X3 I/O
L15 GND R19 I/O X4 I/O
L16 I/O T1 I/O X5 I/O
L17 I/O T2 I/O X6 I/O
L18 I/O T3 I/O X7 GND
L19 I/O T4 GND X8 I/O
M1 I/O T5 IOCLK, I/O X9 I/O
M2 I/O T6 I/O X10 I/O
M3 I/O T7 I/O X11 I/O
M4 I/O T8 I/O X12 I/O
M16 I/O T9 I/O X13 I/O
M17 I/O T10 GND X14 VCC
M18 I/O T11 I/O X15 I/O
M19 I/O T12 I/O X16 I/O
N1 I/O T13 I/O X17 I/O
N2 I/O T14 I/O X18 I/O
N3 I/O T15 I/O X19 I/O
N4 I/O T16 GND Y1 I/O
N5 I/O T17 GND Y2 I/O
N15 I/O T18 I/O Y3 I/O
N16 I/O T19 I/O Y4 I/O
N17 I/O V1 I/O Y5 I/O
N18 I/O V2 I/O Y6 I/O
N19 I/O V3 VCC Y7 I/O
P1 I/O V4 I/O Y8 I/O
P2 I/O V5 I/O Y9 I/O
P3 I/O V6 I/O Y10 I/O
P4 I/O V7 VCC Y11 I/O
P16 I/O V8 I/O Y12 I/O
P17 I/O V9 I/O Y13 I/O
P18 I/O V10 VCC Y14 I/O
P19 I/O V11 I/O Y15 I/O
R1 I/O V12 I/O Y16 I/O
R2 I/O V13 I/O Y17 I/O
R3 I/O V14 I/O Y18 I/O
R4 GND V15 I/O Y19 I/O
R7 I/O V16 I/O
257-Pin CPGA (Continued)
Pin Number A14100A
Function Pin Number A14100A
Functio n Pin Number A14100A
Function
73
HiRel FPGAs
Package Pin Assignments (continued)
84-Pin CQFP (Top View)
Pin #1
Index
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
63
62
61
60
59
58
57
56
55
54
53
52
51
50
49
48
47
46
45
44
43
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
84 83 82 81 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64
84-Pin
CQFP
74
84-Pin CQFP
Pin Number A1020B
Function A32100DX
Function Pin Number A1020B
Function A32100DX
Function
1 NC GND 43 I/O GND
2 I/O MODE 44 I/O I/O
3 I/O I/O 45 I/O I/O
4 I/O I/O 46 I/O I/O
5 I/O I/O 47 I/O I/O
6 I/O I/O 48 I/O I/O
7GNDV
CC 49 GND I/O
8 GND I/O 50 GND GND
9 I/O I/O 51 I/O TCK, I/O
10 I/O GND 52 I/O GND
11 I/O VCC 53 CLKA, I/O VCC
12 I/O VCC 54 I/O VCC
13 I/O I/O 55 MODE VCC
14 VCC I/O 56 VCC VCC
15 VCC I/O 57 VCC I/O
16 I/O I/O 58 I/O I/O
17 I/O GND 59 I/O GND
18 I/O I/O 60 I/O I/O
19 I/O I/O 61 SDI, I/O I/O
20 I/O I/O 62 DCL K, I/O I/O
21 I/O I/O 63 PRA, I/O GND
22 VCC GND 64 PRB, I/O SDI, I/O
23 I/O I/O 65 I/O I/O (WD)
24 I/O I/O 66 I/O I/O (WD)
25 I/O I/O (WD) 67 I/O I/O (WD)
26 I/O I/O (WD) 68 I/O I/O (WD)
27 I/O I/O 69 I/O QCLKD, I/O
28 I/O QCLKA, I/O 70 I/O I/O (WD)
29 GND GND 71 GND I/O (WD)
30 I/O I/O (WD) 72 I/O PRA, I/O
31 I/O I/O 73 I/O CLKA, I/O
32 I/O GND 74 I/O VCC
33 I/O VCC 75 I/O GND
34 I/O I/O (WD) 76 I/O CLKB, I/O
35 VCC I/O (WD) 77 VCC PRB, I/O
36 I/O QCLKB, I/O 78 I/O I/O (WD)
37 I/O I/O (WD) 79 I/O I/O (WD)
38 I/O GND 80 I/O QCLKC, I/O
39 I/O I/O (WD) 81 I/O GND
40 I/O I/O (WD) 82 I/O I/O (WD)
41 I/O I/O (WD) 83 I/O I/O (WD)
42 I/O SDO, I/O 84 I/O DCLK, I/O
75
HiRel FPGAs
Package Pin Assignments (continued)
132-Pin CQFP (Top View)
132-Pin
CQFP
Pin #1
Index
132 131 130 129 128 127 126 125 124 107 106 105 104 103 102 101 100
34 35 36 37 38 39 40 41 42 59 60 61 62 63 64 65 66
67
68
69
70
71
72
73
74
75
92
93
94
95
96
97
98
99
33
32
31
30
29
28
27
26
25
8
7
6
5
4
3
2
1
76
132-Pin CQFP
Pin Number A1425A
Function Pin Number A1425A
Function Pin Number A1425A
Function
1 NC 45 I/O 89 VCC
2 GND 46 I/O 90 GND
3 SDI, I/O 47 I/O 91 VCC
4 I/O 48 PRB, I/O 92 GND
5 I/O 49 I/O 93 I/O
6 I/O 50 HCLK, I/O 94 I/O
7 I/O 51 I/O 95 I/O
8 I/O 52 I/O 96 I/O
9 MODE 53 I/O 97 I/O
10 GND 54 I/O 98 IOCLK, I/O
11 VCC 55 I/O 99 NC
12 I/O 56 I/O 100 NC
13 I/O 57 I/O 101 GND
14 I/O 58 GND 102 I/O
15 I/O 59 VCC 103 I/O
16 I/O 60 I/O 104 I/O
17 I/O 61 I/O 105 I/O
18 I/O 62 I/O 106 GND
19 I/O 63 I/O 107 VCC
20 I/O 64 IOPCL, I/O 108 I/O
21 I/O 65 GND 109 I/O
22 VCC 66 NC 110 I/O
23 I/O 67 NC 111 I/O
24 I/O 68 I/O 112 I/O
25 I/O 69 I/O 113 I/O
26 GND 70 I/O 114 I/O
27 VCC 71 I/O 115 I/O
28 I/O 72 I/O 116 CLKA, I/O
29 I/O 73 I/O 117 CLKB, I/O
30 I/O 74 GND 118 PRA, I/O
31 I/O 75 VCC 119 I/O
32 I/O 76 I/O 120 I/O
33 I/O 77 I/O 121 I/O
34 NC 78 VCC 122 GND
35 I/O 79 I/O 123 VCC
36 GND 80 I/O 124 I/O
37 I/O 81 I/O 125 I/O
38 I/O 82 I/O 126 I/O
39 I/O 83 I/O 127 I/O
40 I/O 84 I/O 128 I/O
41 I/O 85 I/O 129 I/O
42 GND 86 I/O 130 I/O
43 VCC 87 I/O 131 DCLK, I/O
44 I/O 88 I/O 132 NC
77
HiRel FPGAs
Package Pin Assignments (continued)
172-Pin CQFP (Top View)
172-Pin
CQFP
Pin #1
Index
172 171 170 169 168 167 166 165 164 137 136 135 134 133 132 131 130
44 45 46 47 48 49 50 51 52 79 80 81 82 83 84 85 86
87
88
89
90
91
92
93
94
95
122
123
124
125
126
127
128
129
43
42
41
40
39
38
37
36
35
8
7
6
5
4
3
2
1
78
172-Pin CQFP
Pin Number A1280A
Function A1280XL
Function Pin Number A1280A
Function A1280XL
Function
1 MODE MODE 45 I/O I/O
2 I/O I/O 46 I/O I/O
3 I/O I/O 47 I/O I/O
4 I/O I/O 48 I/O I/O
5 I/O I/O 49 I/O I/O
6 I/O I/O 50 VCC VCC
7 GND GND 51 I/O I/O
8 I/O I/O 52 I/O I/O
9 I/O I/O 53 I/O I/O
10 I/O I/O 54 I/O I/O
11 I/O I/O 55 GND GND
12 VCC VCC 56 I/O I/O
13 I/O I/O 57 I/O I/O
14 I/O I/O 58 I/O I/O
15 I/O I/O 59 I/O I/O
16 I/O I/O 60 I/O I/O
17 GND GND 61 I/O I/O
18 I/O I/O 62 I/O I/O
19 I/O I/O 63 I/O I/O
20 I/O I/O 64 I/O I/O
21 I/O I/O 65 GND GND
22 GND GND 66 VCC VCC
23 VCC VCC 67 I/O I/O
24 VCC VCC 68 I/O I/O
25 I/O I/O 69 I/O I/O
26 I/O I/O 70 I/O I/O
27 VCC VCC 71 I/O I/O
28 I/O I/O 72 I/O I/O
29 I/O I/O 73 I/O I/O
30 I/O I/O 74 I/O I/O
31 I/O I/O 75 GND GND
32 GND GND 76 I/O I/O
33 I/O I/O 77 I/O I/O
34 I/O I/O 78 I/O I/O
35 I/O I/O 79 I/O I/O
36 I/O I/O 80 VCC VCC
37 GND GND 81 I/O I/O
38 I/O I/O 82 I/O I/O
39 I/O I/O 83 I/O I/O
40 I/O I/O 84 I/O I/O
41 I/O I/O 85 I/O I/O
42 I/O I/O 86 I/O I/O
43 I/O I/O 87 I/O I/O
44 I/O I/O 88 I/O I/O
79
HiRel FPGAs
89 I/O I/O 131 SDI, I/O SDI, I/O
90 I/O I/O 132 I/O I/O
91 I/O I/O 133 I/O I/O
92 I/O I/O 134 I/O I/O
93 I/O I/O 135 I/O I/O
94 I/O I/O 136 VCC VCC
95 I/O I/O 137 I/O I/O
96 I/O I/O 138 I/O I/O
97 I/O I/O 139 I/O I/O
98 GND GND 140 I/O I/O
99 I/O I/O 141 GND GND
100 I/O I/O 142 I/O I/O
101 I/O I/O 143 I/O I/O
102 I/O I/O 144 I/O I/O
103 GND GND 145 I/O I/O
104 I/O I/O 146 I/O I/O
105 I/O I/O 147 I/O I/O
106 GND GND 148 PRA, I/O PRA, I/O
107 VCC VCC 149 I/O I/O
108 GND GND 150 CLKA, I/O CLKA, I/O
109 VCC VCC 151 VCC VCC
110 VCC VCC 152 GND GND
111 I/O I/O 153 I/O I/O
112 I/O I/O 154 CLKB, I/O CLKB, I/O
113 VCC VCC 155 I/O I/O
114 I/O I/O 156 PRB, I/O PRB, I/O
115 I/O I/O 157 I/O I/O
116 I/O I/O 158 I/O I/O
117 I/O I/O 159 I/O I/O
118 GND GND 160 I/O I/O
119 I/O I/O 161 GND GND
120 I/O I/O 162 I/O I/O
121 I/O I/O 163 I/O I/O
122 I/O I/O 164 I/O I/O
123 GND GND 165 I/O I/O
124 I/O I/O 166 VCC VCC
125 I/O I/O 167 I/O I/O
126 I/O I/O 168 I/O I/O
127 I/O I/O 169 I/O I/O
128 I/O I/O 170 I/O I/O
129 I/O I/O 171 DCLK, I/O DCLK, I/O
130 I/O I/O 172 I/O I/O
172-Pin CQFP (Continued)
Pin Number A1280A
Function A1280XL
Function Pin Number A1280A
Function A1280XL
Function
80
Package Pin Assignments (continued)
196-Pin CQFP (Top View)
196-Pin
CQFP
Pin #1
Index
196 195 194 193 192 191 190 189 188 155 154 153 152 151 150 149 148
50 51 52 53 54 55 56 57 58 91 92 93 94 95 96 97 98
99
100
101
102
103
104
105
106
107
140
141
142
143
144
145
146
147
49
48
47
46
45
44
43
42
41
8
7
6
5
4
3
2
1
81
HiRel FPGAs
196-Pin CQFP
Pin Numb er A1460A
Function Pin Number A1460A
Functio n Pin Number A1460A
Function
1 GND 44 I/O 87 I/O
2 SDI, I/O 45 I/O 88 I/O
3 I/O 46 I/O 89 I/O
4 I/O 47 I/O 90 I/O
5 I/O 48 I/O 91 I/O
6 I/O 49 I/O 92 I/O
7 I/O 50 I/O 93 I/O
8 I/O 51 GND 94 VCC
9 I/O 52 GND 95 I/O
10 I/O 53 I/O 96 I/O
11 MODE 54 I/O 97 I/O
12 VCC 55 I/O 98 GND
13 GND 56 I/O 99 I/O
14 I/O 57 I/O 100 IOPCL, I/O
15 I/O 58 I/O 101 GND
16 I/O 59 VCC 102 I/O
17 I/O 60 I/O 103 I/O
18 I/O 61 I/O 104 I/O
19 I/O 62 I/O 105 I/O
20 I/O 63 I/O 106 I/O
21 I/O 64 GND 107 I/O
22 I/O 65 I/O 108 I/O
23 I/O 66 I/O 109 I/O
24 I/O 67 I/O 110 VCC
25 I/O 68 I/O 111 VCC
26 I/O 69 I/O 112 GND
27 I/O 70 I/O 113 I/O
28 I/O 71 I/O 114 I/O
29 I/O 72 I/O 115 I/O
30 I/O 73 I/O 116 I/O
31 I/O 74 I/O 117 I/O
32 I/O 75 PRB, I/O 118 I/O
33 I/O 76 I/O 119 I/O
34 I/O 77 HCLK, I/O 120 I/O
35 I/O 78 I/O 121 I/O
36 I/O 79 I/O 122 I/O
37 GND 80 I/O 123 I/O
38 VCC 81 I/O 124 I/O
39 VCC 82 I/O 125 I/O
40 I/O 83 I/O 126 I/O
41 I/O 84 I/O 127 I/O
42 I/O 85 I/O 128 I/O
43 I/O 86 GND 129 I/O
82
130 I/O 153 I/O 176 I/O
131 I/O 154 I/O 177 I/O
132 I/O 155 VCC 178 I/O
133 I/O 156 I/O 179 I/O
134 I/O 157 I/O 180 I/O
135 I/O 158 I/O 181 I/O
136 I/O 159 I/O 182 I/O
137 VCC 160 I/O 183 GND
138 GND 161 I/O 184 I/O
139 GND 162 GND 185 I/O
140 VCC 163 I/O 186 I/O
141 I/O 164 I/O 187 I/O
142 I/O 165 I/O 188 I/O
143 I/O 166 I/O 189 VCC
144 I/O 167 I/O 190 I/O
145 I/O 168 I/O 191 I/O
146 I/O 169 I/O 192 I/O
147 I/O 170 I/O 193 GND
148 I OCLK, I/O 171 I/O 1 94 I/O
149 GND 172 CLKA, I/O 195 I/O
150 I/O 173 CLKB, I/O 196 DCLK, I/O
151 I/O 174 PRA, I/O
152 I/O 175 I/O
196-Pin CQFP (Continued)
Pin Number A1460A
Function Pin Number A1460A
Functio n Pin Number A1460A
Function
83
HiRel FPGAs
Package Pin Assignments (continued)
208-Pin CQFP (Top View)
208-Pin
CQFP
Pin #1
Index
208 207 206 205 204 203 202 201 200 164 163 162 161 160 159 158 157
53 54 55 56 57 58 59 60 61 97 98 99 100 101 102 103 104
105
106
107
108
109
110
111
112
113
149
150
151
152
153
154
155
156
52
51
50
49
48
47
46
45
44
8
7
6
5
4
3
2
1
84
208-Pin CQFP
Pin Number A321 00DX
Func tion Pin Number A32100DX
Function Pin Number A32100DX
Function
1 GND 44 I/O 87 I/O
2V
CC 45 I/O 88 I/O
3 MODE 46 I/O 89 I/O
4 I/O 47 I/O 90 I/O
5 I/O 48 I/O 91 QCLKB, I/O
6 I/O 49 I/O 92 I/O
7 I/O 50 I /O 9 3 I/O (WD)
8 I/O 51 I /O 9 4 I/O (WD)
9 I/O 52 GND 95 I/O
10 I/O 53 GND 96 I/O
11 I/O 54 TMS, I/O 97 I/O
12 I/O 55 TDI, I/O 98 VCC
13 I/O 56 I/O 99 I/O
14 I/O 57 I/O (WD) 100 I/O (WD)
15 I/O 58 I/O (WD) 101 I/O (WD)
16 I/O 59 I/O 102 I/O
17 VCC 60 VCC 103 SDO, I/O
18 I/O 61 I/O 104 I/O
19 I/O 62 I/O 105 GND
20 I/O 63 I/O 106 VCC
21 I/O 64 I/O 107 I/O
22 GND 65 QCLKA, I/O 108 I/O
23 I/O 66 I/O (WD) 109 I/O
24 I/O 67 I/O (WD) 110 I/O
25 I/O 68 I/O 111 I/O
26 I/O 69 I/O 112 I/O
27 GND 70 I/O (WD) 113 I/O
28 VCC 71 I/O (WD) 114 I/O
29 VCC 72 I/O 115 I/O
30 I/O 73 I/O 116 I/O
31 I/O 74 I/O 117 I/O
32 VCC 75 I/O 118 I/O
33 I/O 76 I/O 119 I/O
34 I/O 77 I/O 120 I/O
35 I/O 78 GND 121 I/O
36 I/O 79 VCC 122 I/O
37 I/O 80 VCC 123 I/O
38 I/O 81 I/O 124 I/O
39 I/O 82 I/O 125 I/O
40 I/O 83 I/O 126 GND
41 I/O 84 I/O 127 I/O
42 I/O 85 I/O (WD) 128 TCK, I/O
43 I/O 86 I/O (WD) 129 GND
85
HiRel FPGAs
130 VCC 157 GND 184 GND
131 GND 158 I/O 185 I/O
132 VCC 159 SDI, I/O 186 CLKB, I/O
133 VCC 160 I/O 187 I/O
134 I/O 161 I/O (WD) 188 PRB, I/O
135 I/O 162 I/O (WD) 189 I/O
136 VCC 163 I/O 190 I/O (WD)
137 I/O 164 VCC 19 1 I /O (WD)
138 I/O 165 I/O 192 I/O
139 I/O 166 I/O 193 I/O
140 I/O 167 I /O 19 4 I /O (WD)
141 I/O 168 I/O (WD) 195 I/O (WD)
142 I/O 169 I/O (WD) 196 QCLKC, I/O
143 I/O 170 I/O 197 I/O
144 I/O 171 QCLKD, I/O 198 I/O
145 I/O 172 I/O 199 I/O
146 I/O 173 I/O 200 I/O
147 I/O 174 I/O 201 I/O
148 I/O 175 I/O 202 VCC
149 I/O 176 I/O (WD) 203 I/O (WD)
150 GND 177 I/O (WD) 204 I/O (WD)
151 I/O 178 PRA, I/O 205 I/O
152 I/O 179 I/O 206 I/O
153 I/O 180 CLKA, I/O 207 DCLK, I/O
154 I/O 181 I/O 208 I/O
155 I/O 182 VCC
156 I/O 183 VCC
208-Pin CQFP (Continued)
Pin Number A321 00DX
Func tion Pin Number A32100DX
Function Pin Number A32100DX
Function
86
Package Pin Assignments (continued)
256-Pin CQFP (Top View)
256-Pin
CQFP
Pin #1
Index
256 255 254 253 252 251 250 249 248 200 199 198 197 196 195 194 193
65 66 67 68 69 70 71 72 73 121 122 123 124 125 126 127 128
129
130
131
132
133
134
135
136
137
185
186
187
188
189
190
191
192
64
63
62
61
60
59
58
57
56
8
7
6
5
4
3
2
1
87
HiRel FPGAs
256-Pin CQFP
Pin
Number A14100A
Function A32200 DX
Function Pin
Number A1410 0A
Function A32200DX
Function Pin
Number A14100A
Function A3220 0DX
Function
1 GND NC 45 I/O I/O 89 I/O I/O
2 SDI, I/O GND 46 VCC I/O 90 PRB, I/O I/O
3 I/O I/O 47 I/O I/O 91 GND I/O
4 I/O I/O 48 I/O GND 92 VCC I/O
5 I/O I/O 49 I/O I/O 93 GND I/O
6 I/O I/O 50 I/O I/O 94 VCC I/O
7 I/O I/O 51 I/O I/O 95 I/O VCC
8 I/O I/O 52 I/O I/O 96 HCLK, I/O VCC
9 I/O I/O 53 I/O I/O 97 I/O GND
10 I/O GND 54 I/O I/O 98 I/O GND
11 MODE I/O 55 I/O I/O 99 I/O I/O
12 I/O I/O 56 I/O I/O 100 I/O I/O
13 I/O I/O 57 I/O I/O 101 I/O I/O
14 I/O I/O 58 I/O I/O 102 I/O I/O
15 I/O I/O 59 GND I/O 103 I/O I/O
16 I/O I/O 60 I/O VCC 104 I/O I/O
17 I/O I/O 61 I/O GND 105 I/O I/O (WD)
18 I/O I/O 62 I/O GND 106 I/O I/O (WD)
19 I/O I/O 63 I/O NC 107 I/O I/O
20 I/O I/O 64 I/O NC 108 I/O I/O
21 I/O I/O 65 I/O NC 109 I/O I/O (WD)
22 I/O I/O 66 I/O I/O 110 GND I/O (WD)
23 I/O I/O 67 I/O SDO, I/O 111 I/O I/O
24 I/O I/ O 68 I/O I/O 11 2 I/O QCLK A, I/O
25 I/O I/O 69 I/O I/O (WD) 113 I/O I/O
26 I/O VCC 70 I/O I/O (WD) 114 I/O GND
27 I/O I/O 71 I/O I/O 115 I/O I/O
28 VCC I/O 72 I/O VCC 116 I/O I/O
29 GND VCC 73 I/O I/O 117 I/O I/O
30 VCC VCC 74 I/O I/O 118 I/O I/O
31 GND GND 75 I/O I/O 119 I/O VCC
32 I/O VCC 76 I/O I/O (WD) 120 I/O I/O
33 I/O GND 77 I/O GND 121 I/O I/O (WD)
34 I/O TCK, I/O 78 I/O I/O (WD) 122 I/O I/O (WD)
35 I/O I/O 79 I/O I/O 123 I/O I/O
36 I/O GND 80 I/O QCLK B, I/O 124 I/O I /O
37 I/O I/ O 81 I/O I/O 12 5 I/O TDI, I/O
38 I/O I/O 82 I/O I/O 126 I/O TMS, I/O
39 I/O I/O 83 I/O I/O 127 IOPCL, I/O GND
40 I/O I/O 84 I/O I/O 128 GND NC
41 I/O I/O 85 I/O I/O 129 I/O NC
42 I/O I/O 86 I/O I/O 130 I/O NC
43 I/O I/O 87 I/O I/O (WD) 131 I/O GND
44 I/O I/O 88 I/O I/O (WD) 132 I/O I/O
88
133 I/O I/O 175 GND I/O 217 I/O I/O
134 I/O I/ O 176 GN D I/O 21 8 I/O PR B, I/O
135 I/O I/O 177 I/O I/O 219 CLKA, I/O I/O
136 I/O I/O 178 I/O I/O 220 CLKB, I/O CLKB, I/O
137 I/O I/O 179 I/O I/O 221 VCC I/O
138 I/O I/O 180 I/O GND 222 GND GND
139 I/O GND 181 I/O I/O 223 VCC GND
140 I/O I/O 182 I/O I/O 224 GND VCC
141 VCC I/O 183 I/O I/O 225 PRA, I/O VCC
142 I/O I/O 184 I/O I/O 226 I/O I/O
143 I/O I/O 185 I/O I/O 227 I/O CLKA, I/O
144 I/O I/O 186 I/O I/O 228 I/O I/O
145 I/O I/O 187 I/O I/O 229 I/O PRA, I/O
146 I/O I/O 188 IOCLK, I/O MODE 230 I/O I/O
147 I/O I/O 189 GND VCC 231 I/O I/O
148 I/O I/O 190 I/O GND 232 I/O I/O (WD)
149 I/O I/O 191 I/O NC 233 I/O I/O (WD)
150 I/O I/O 192 I/O NC 234 I/O I/O
151 I/O I/O 193 I/O NC 235 I/O I/O
152 I/O I/O 194 I/O I/O 236 I/O I/O
153 I/O I/O 195 I/O DCLK, I/O 237 I/O I/O
154 I/O I/O 196 I/O I/O 238 I/O I/O
155 I/O VCC 197 I/O I/O 239 I/O I/O
156 I/O I/O 198 I/O I/O 240 GND QCLKD, I/O
157 I/O I/O 199 I/O I/O (WD) 241 I/O I/O
158 GND VCC 200 I/O I/O (WD) 242 I/O I/O (WD)
159 VCC VCC 201 I/O VCC 243 I/O GND
160 GND GND 202 I/O I/O 244 I/O I/O (WD)
161 VCC I/O 203 I/O I/O 245 I/O I/O
162 I/O I/O 204 I/O I/O 246 I/O I/O
163 I/O I/O 205 I/O I/O 247 I/O I/O
164 I/O I/O 206 I/O GND 248 I/O VCC
165 I/O GND 207 I/O I/O 249 I/O I/O
166 I/O I/O 208 I/O I/O 250 I/O I/O (WD)
167 I/O I/O 209 I/O QCLKC, I/O 251 I/O I/O (WD)
168 I/O I/O 210 I/O I/O 252 I/O I/O
169 I/O I/O 211 I/O I/O (WD) 253 I/O SDI, I/O
170 I/O VCC 212 I/O I/O (WD) 254 I/O I/O
171 I/O I/O 213 I/O I/O 255 I/O GND
172 I/O I/O 214 I/O I/O 256 DCLK, I/O NC
173 I/O I/O 215 I/O I/O (WD)
174 VCC I/O 216 I/O I/O (WD)
256-Pin CQFP (Continued)
Pin
Number A14100A
Function A32200 DX
Function Pin
Number A1410 0A
Function A32200DX
Function Pin
Number A14100A
Function A3220 0DX
Function
89
HiRel FPGAs
Package Mechanical Drawings
84-Pin CPGA
Notes:
1. All dimensions are in inches unless otherwise stated.
2. BSC—Basic Spacing between Centers. This is a theoretical true position dimension and so has no tolerance.
Orientation Pin
1.100" ± .020" square .080"
.110"
.120"
.140"
.100" BSC
0.18" ± .002"
.050" ± .010"
1.000 BSC
.045
.055
L
K
J
H
G
F
E
D
C
B
A
1110987654321
Pin #1 ID
90
Package Mechanical Drawings (continued)
132-Pin CPGA
Notes:
1. All dimensions are in inches unless otherwise stated.
2. BSC—Basic Spacing between Centers. This is a theoretical true position dimension and so has no tolerance.
Orientation Pin
1.360" ± .015" square .120"
.140"
.100" BSC
0.18" ± .002"
.050" ± .010"
1.200 BSC
.085"
.110"
Pin #1 ID
.045
.055
11 12 1310987654321
N
M
L
K
J
H
G
F
E
D
C
B
A
91
HiRel FPGAs
Package Mechanical Drawings (continued)
133-Pin CPGA
Notes:
1. All dimensions are in inches unless otherwise stated.
2. BSC—Basic Spacing between Centers. This is a theoretical true position dimension and so has no tolerance.
1.360" ± 0.015" square 0.120"
0.140"
0.100" BSC
0.018" ± 0.002"
0.050" ± 0.010"
Pin #1
1.200" BSC
0.100"
0.130"
0.045"
0.055"
Orientation Pin
11 12 1310987654321
N
M
L
K
J
H
G
F
E
D
C
B
A
T op View
Bottom View
Side View
92
Package Mechanical Drawings (continued)
176-Pin CPGA
Notes:
1. All dimensions are in inches unless otherwise stated.
2. BSC—Basic Spacing between Centers. This is a theoretical true position dimension and so has no tolerance.
INDEX MARK
0.018" ± .002"
0.102"
0.132"
0.050" ± .005"
1.400 BSC
0.100" BSC
1.570" ± .015" square 0.120"
0.140"
11 12 13 14 1510987654321
R
P
N
M
L
K
J
H
G
F
E
D
C
B
A
93
HiRel FPGAs
Package Mechanical Drawings (continued)
207-Pin CPGA
Notes:
1. All dimensions are in inches unless otherwise stated.
2. BSC—Basic Spacing between Centers. This is a theoretical true position dimension and so has no tolerance.
INDEX MARK
0.100" BSC
0.120" ± 0.015"
11 12 13 14 15 16 1710987654321
U
T
R
P
N
M
L
K
J
H
G
F
E
D
C
B
A
1.600" BSC
0.018" ± 0.002"
0.180" ± 0.010"
0.05" ± 0.005"
1.77" ± 0.010" square
0.05" ± 0.005"
T op View
Side View
Bottom View
94
Package Mechanical Drawings (continued)
257-Pin CPGA
Notes:
1. All dimensions are in inches unless otherwise stated.
2. BSC—Basic Spacing between Centers. This is a theoretical true position dimension and so has no tolerance.
0.105" ± 0.012"
0.05" ± 0.005"
0.100" BSC
Y
X
V
T
R
P
N
M
L
K
J
H
G
F
E
D
C
B
A
1 2345678910111213141516171819
0.018" ± 0.002"
0.180" ± 0.010"
0.05" ± 0.01"
1.970" ± 0.015" square
1.800" BSC
T op View
Side View
Bottom View
95
HiRel FPGAs
Package Mechanical Drawings (continued)
84-Pin CQFP
Notes:
1. Seal ring and lid are connected to Ground.
2. Lead material is Kovar with minimum 50 microinches gold plate over nickel.
3. Packages are shipped unformed with the ceramic tie bar in a test carrier.
D2
D1
e
A1
A
c
HE2 E1
b
L1
F
Lid
T op View
Side View
96
Package Mechanical Drawings (continued)
132-Pin, 172-Pin, 196-Pin, 208-Pin, and 256-Pin CQFP (Cavity Up)
Notes:
1. Outside leadframe holes (from dimension H) are circular for the CQ208 and CQ256.
2. Seal ring and lid are connected to Ground.
3. Lead material is Kovar with minimum 50 microinches gold plate over nickel.
4. Packages are shipped unformed with the ceramic tie bar.
5. 32200DX – CQ208 has a heat sink on the back.
A
b
H
D1
D2
E2 E1
F
L1 K
Ceramic
Tie Bar
No. 1
e
A1
C
Lead Kovar
Lid
T op View
Side View
97
HiRel FPGAs
CQFP (Ceramic Quad Flat Pack)
CQFP 84 CQFP 132 CQFP 172 CQFP 196
Symbol Min. Nom. Max. Min. Nom. Max. Min. Nom. Max. Min. Nom. Max.
A 0.070 0.090 0.100 0.094 0.105 0.116 0.094 0.105 0.116 0.094 0.105 0.116
A1 0.060 0.075 0.080 0.080 0.090 0.100 0.080 0.090 0.100 0.080 0.090 0.100
b 0.008 0.010 0.012 0.007 0.008 0.010 0.007 0.008 0.010 0.007 0.008 0.010
c 0.004 0.006 0.008 0.004 0.006 0.008 0.004 0.006 0.008 0.004 0.006 0.008
D1/E1 0.640 0.650 0.660 0.940 0.950 0.960 1.168 1.180 1.192 1.336 1.350 1.364
D2/E2 0.500 BSC 0.800 BSC 1.050 BSC 1.200 BSC
e 0.025 BSC 0.025 BSC 0.025 BSC 0.025 BSC
F 0.130 0.140 0.150 0.325 0.350 0.375 0.175 0.200 0.225 0.175 0.200 0.225
H 1.460 BSC 2.320 BSC 2.320 BSC 2.320 BSC
K 2.140 BSC 2.140 BSC 2.140 BSC
L1 1.595 1.600 1.615 2.485 2.500 2.505 2.485 2.495 2.505 2.485 2.495 2.505
Note:
1. All dimensions are in inches except CQ208 and CQ256, which are in millimeters.
2. BSC equals Basic Spacing between Centers. This is a theoretical true position dimension and so has no tolerance.
CQFP (Ceramic Quad Flat Pack)
CQFP 208 CQFP 256
Symbol Min. Nom. Max. Min. Nom. Max.
A 2.78 3.17 3.56 2.28 2.67 3.06
A1 2.43 2.79 3.15 1.93 2.29 2.65
b 0.18 0.20 0.22 0.18 0.20 0.22
c 0.11 0.15 0.17 0.11 0.15 0.18
D1/E1 28.96 29.21 29.46 35.64 36.00 36.36
D2/E2 25.5 BSC 31.5 BSC
e 0.50 BSC 0.50 BSC
F 7.05 7.75 8.45 7.05 7.75 8.45
H 70.00 BSC 70.00 BSC
K 65.90 BSC 65.90 BSC
L1 74.60 75.00 75.40 74.60 75.00 75.40
Note:
1. All dimensions are in inches except CQ208 and CQ256, which are in millimeters.
2. BSC equals Basic Spacing between Centers. This is a theoretical true position dimension and so has no tolerance.
Actel and the Actel logo are registered trademarks of Acte l Corporation.
All oth er trademarks are the property of their owners.
http://www.actel.com
Actel Eur ope Ltd.
Daneshill House, L utyens Close
Basingstoke, Hampshire RG24 8AG
United Kingdom
Tel: +44-(0)125-630-5600
Fax: +44-(0)125-635-5420
Actel Corporation
955 East Arques Avenue
Sunnyvale , California 94086
USA
Tel: (408) 739-1010
Fax: (408) 739-1540
Actel Asia-Paci fic
EXOS Ebisu Bldg. 4F
1-24-14 Ebisu Shibuya-ku
Tokyo 150 Japan
Tel: +81-(0)3-3445-7671
Fax: +81-(0)3-3445-7668
5192641-2/1.00