This is information on a product in full production.
May 2016 DocID028087 Rev 4 1/193
STM32F412xE STM32F412xG
ARM®-Cortex®-M4 32b MCU+FPU, 125 DMIPS, 1MB Flash,
256KB RAM, USB OTG FS, 17 TIMs, 1 ADC, 17 comm. interfaces
Datasheet - production data
Features
Dynamic Efficiency Line with BAM (Batch
Acquisition Mode)
Core: ARM® 32-bit Cortex®-M4 CPU with
FPU, Adaptive real-time accelerator (ART
Accelerator™) allowing 0-wait state execution
from Flash memory, frequency up to 100 MHz,
memory protection unit,
125 DMIPS/1.25 DMIPS/MHz (Dhrystone 2.1),
and DSP instructions
Memories
Up to 1 Mbyte of Flash memory
256 Kbyte of SRAM
Flexible external static memory controller
with up to 16-bit data bus: SRAM, PSRAM,
NOR Flash memory
Dual mode Quad-SPI interface
LCD parallel interface, 8080/6800 modes
Clock, reset and supply management
1.7 V to 3.6 V application supply and I/Os
POR, PDR, PVD and BOR
4-to-26 MHz crystal oscillator
Internal 16 MHz factory-trimmed RC
32 kHz oscillator for RTC with calibration
Internal 32 kHz RC with calibration
Power consumption
Run: 112 µA/MHz (peripheral off)
Stop (Flash in Stop mode, fast wakeup
time): 50 µA Typ @ 25 °C; 75 µA max
@25 °C
Stop (Flash in Deep power down mode,
slow wakeup time): down to 18 µA @
25 °C; 40 µA max @25 °C
Standby: 2.4 µA @25 °C / 1.7 V without
RTC; 12 µA @85 °C @1.7 V
–V
BAT supply for RTC: 1 µA @25 °C
1×12-bit, 2.4 MSPS ADC: up to 16 channels
2x digital filters for sigma delta modulator,
4x PDM interfaces, stereo microphone support
General-purpose DMA: 16-stream DMA
Up to 17 timers: up to twelve 16-bit timers, two
32-bit timers up to 100 MHz each with up to
four IC/OC/PWM or pulse counter and
quadrature (incremental) encoder input, two
watchdog timers (independent and window),
one SysTick timer
Debug mode
Serial wire debug (SWD) & JTAG
–Cortex
-M4 Embedded Trace Macrocell™
Up to 114 I/O ports with interrupt capability
Up to 109 fast I/Os up to 100 MHz
Up to 114 five V-tolerant I/Os
Up to 17 communication interfaces
–Up to 4x I
2C interfaces (SMBus/PMBus)
Up to 4 USARTs (2 x 12.5 Mbit/s,
2 x 6.25 Mbit/s), ISO 7816 interface, LIN,
IrDA, modem control)
Up to 5 SPI/I2Ss (up to 50 Mbit/s, SPI or
I2S audio protocol), out of which 2 muxed
full-duplex I2S interfaces
SDIO interface (SD/MMC/eMMC)
Advanced connectivity: USB 2.0 full-speed
device/host/OTG controller with PHY
2x CAN (2.0B Active)
True random number generator
CRC calculation unit
96-bit unique ID
RTC: subsecond accuracy, hardware calendar
All packages are ECOPACK®2
Table 1. Device summary
Reference Part number
STM32F412xE STM32F412CE, STM32F412RE, STM32F412VE,
STM32F412ZE
STM32F412xG STM32F412CG, STM32F412RG, STM32F412VG,
STM32F412ZG
WLCSP64
)%*$
UFQFPN48
(7x7 mm)
UFBGA100
(7x7mm)
UFBGA144
(10x10mm)
(3.623x3.651mm) LQFP100 (14x14mm)
LQFP144 (20x20mm)
LQFP64 (10x10mm)
www.st.com
Contents STM32F412xE/G
2/193 DocID028087 Rev 4
Contents
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1 Compatibility with STM32F4 series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3 Functional overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.1 ARM® Cortex®-M4 with FPU core with embedded Flash and SRAM . . . 19
3.2 Adaptive real-time memory accelerator (ART Accelerator™) . . . . . . . . . 19
3.3 Batch Acquisition mode (BAM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.4 Memory protection unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.5 Embedded Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.6 One-time programmable bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.7 CRC (cyclic redundancy check) calculation unit . . . . . . . . . . . . . . . . . . . 20
3.8 Embedded SRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.9 Multi-AHB bus matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.10 DMA controller (DMA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.11 Flexible static memory controller (FSMC) . . . . . . . . . . . . . . . . . . . . . . . . 22
3.12 Quad-SPI memory interface (QUAD-SPI) . . . . . . . . . . . . . . . . . . . . . . . . 22
3.13 Nested vectored interrupt controller (NVIC) . . . . . . . . . . . . . . . . . . . . . . . 23
3.14 External interrupt/event controller (EXTI) . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.15 Clocks and startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.16 Boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.17 Power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.18 Power supply supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.18.1 Internal reset ON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.18.2 Internal reset OFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.19 Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.19.1 Regulator ON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.19.2 Regulator OFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.19.3 Regulator ON/OFF and internal reset ON/OFF availability . . . . . . . . . . 31
3.20 Real-time clock (RTC) and backup registers . . . . . . . . . . . . . . . . . . . . . . 31
3.21 Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
DocID028087 Rev 4 3/193
STM32F412xE/G Contents
5
3.22 VBAT operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.23 Timers and watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.23.1 Advanced-control timers (TIM1, TIM8) . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.23.2 General-purpose timers (TIMx) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.23.3 Basic timer (TIM6, TIM7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.23.4 Independent watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.23.5 Window watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.23.6 SysTick timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.24 Inter-integrated circuit interface (I2C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.25 Universal synchronous/asynchronous receiver transmitters (USART) . . 37
3.26 Serial peripheral interface (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.27 Inter-integrated sound (I2S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.28 Audio PLL (PLLI2S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.29 Digital filter for sigma-delta modulators (DFSDM) . . . . . . . . . . . . . . . . . . 38
3.30 Secure digital input/output interface (SDIO) . . . . . . . . . . . . . . . . . . . . . . . 40
3.31 Controller area network (bxCAN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.32 Universal serial bus on-the-go full-speed (USB_OTG_FS) . . . . . . . . . . . 40
3.33 Random number generator (RNG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.34 General-purpose input/outputs (GPIOs) . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.35 Analog-to-digital converter (ADC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.36 Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.37 Serial wire JTAG debug port (SWJ-DP) . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.38 Embedded Trace Macrocell™ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4 Pinouts and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5 Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
6 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
6.1 Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
6.1.1 Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
6.1.2 Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
6.1.3 Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
6.1.4 Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
6.1.5 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Contents STM32F412xE/G
4/193 DocID028087 Rev 4
6.1.6 Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
6.1.7 Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
6.2 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
6.3 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
6.3.1 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
6.3.2 VCAP_1/VCAP_2 external capacitors . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.3.3 Operating conditions at power-up/power-down (regulator ON) . . . . . . . 79
6.3.4 Operating conditions at power-up / power-down (regulator OFF) . . . . . 80
6.3.5 Embedded reset and power control block characteristics . . . . . . . . . . . 80
6.3.6 Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
6.3.7 Wakeup time from low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
6.3.8 External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 101
6.3.9 Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 106
6.3.10 PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
6.3.11 PLL spread spectrum clock generation (SSCG) characteristics . . . . . 110
6.3.12 Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
6.3.13 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
6.3.14 Absolute maximum ratings (electrical sensitivity) . . . . . . . . . . . . . . . . 115
6.3.15 I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
6.3.16 I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
6.3.17 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
6.3.18 TIM timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
6.3.19 Communications interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
6.3.20 12-bit ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
6.3.21 Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
6.3.22 VBAT monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
6.3.23 Embedded reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
6.3.24 DFSDM characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
6.3.25 FSMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
6.3.26 SD/SDIO MMC/eMMC card host interface (SDIO) characteristics . . . 159
6.3.27 RTC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
7 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
7.1 WLCSP64 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
7.2 UFQFPN48 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
7.3 LQFP64 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
DocID028087 Rev 4 5/193
STM32F412xE/G Contents
5
7.4 LQFP100 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
7.5 LQFP144 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
7.6 UFBGA100 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
7.7 UFBGA144 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
7.8 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
7.8.1 Reference document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
8 Part numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
Appendix A Recommendations when using the internal reset OFF . . . . . . . . 186
Appendix B Application block diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
B.1 USB OTG full speed (FS) interface solutions . . . . . . . . . . . . . . . . . . . . . 187
B.2 Sensor Hub application example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
B.3 Display application example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
List of tables STM32F412xE/G
6/193 DocID028087 Rev 4
List of tables
Table 1. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Table 2. STM32F412xE/G features and peripheral counts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Table 3. Embedded bootloader interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Table 4. Regulator ON/OFF and internal power supply supervisor availability. . . . . . . . . . . . . . . . . 31
Table 5. Timer feature comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Table 6. Comparison of I2C analog and digital filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Table 7. USART feature comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Table 8. Legend/abbreviations used in the pinout table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Table 9. STM32F412xE/G pin definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Table 10. STM32F412xE/G alternate functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Table 11. STM32F412xE/G register boundary addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Table 12. Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Table 13. Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Table 14. Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Table 15. General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Table 16. Features depending on the operating power supply range . . . . . . . . . . . . . . . . . . . . . . . . 78
Table 17. VCAP_1/VCAP_2 operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Table 18. Operating conditions at power-up / power-down (regulator ON) . . . . . . . . . . . . . . . . . . . . 79
Table 19. Operating conditions at power-up / power-down (regulator OFF). . . . . . . . . . . . . . . . . . . . 80
Table 20. Embedded reset and power control block characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 80
Table 21. Typical and maximum current consumption, code with data processing (ART
accelerator disabled) running from SRAM - VDD = 1.7 V . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Table 22. Typical and maximum current consumption, code with data processing (ART
accelerator disabled) running from SRAM - VDD = 3.6 V . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Table 23. Typical and maximum current consumption in run mode, code with data processing
(ART accelerator enabled except prefetch) running from Flash memory- VDD = 1.7 V. . . 84
Table 24. Typical and maximum current consumption in run mode, code with data processing
(ART accelerator enabled except prefetch) running from Flash memory - VDD = 3.6 V . . 85
Table 25. Typical and maximum current consumption in run mode, code with data processing
(ART accelerator disabled) running from Flash memory - VDD = 3.6 V. . . . . . . . . . . . . . . 86
Table 26. Typical and maximum current consumption in run mode, code with data processing
(ART accelerator disabled) running from Flash memory - VDD = 1.7 V. . . . . . . . . . . . . . . 87
Table 27. Typical and maximum current consumption in run mode, code with data processing
(ART accelerator enabled with prefetch) running from Flash memory - VDD = 3.6 V . . . . . 88
Table 28. Typical and maximum current consumption in Sleep mode - VDD = 3.6 V . . . . . . . . . . . . . 89
Table 29. Typical and maximum current consumption in Sleep mode - VDD = 1.7 V . . . . . . . . . . . . . 90
Table 30. Typical and maximum current consumptions in Stop mode - VDD = 1.7 V . . . . . . . . . . . . . 91
Table 31. Typical and maximum current consumption in Stop mode - VDD=3.6 V. . . . . . . . . . . . . . . 92
Table 32. Typical and maximum current consumption in Standby mode - VDD= 1.7 V . . . . . . . . . . . 92
Table 33. Typical and maximum current consumption in Standby mode - VDD= 3.6 V . . . . . . . . . . . 92
Table 34. Typical and maximum current consumptions in VBAT mode. . . . . . . . . . . . . . . . . . . . . . . . 93
Table 35. Switching output I/O current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
Table 36. Peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Table 37. Low-power mode wakeup timings(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Table 38. High-speed external user clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
Table 39. Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
Table 40. HSE 4-26 MHz oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
Table 41. LSE oscillator characteristics (fLSE = 32.768 kHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
DocID028087 Rev 4 7/193
STM32F412xE/G List of tables
8
Table 42. HSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
Table 43. LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
Table 44. Main PLL characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
Table 45. PLLI2S (audio PLL) characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Table 46. SSCG parameter constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
Table 47. Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Table 48. Flash memory programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
Table 49. Flash memory programming with VPP voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
Table 50. Flash memory endurance and data retention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
Table 51. EMS characteristics for LQFP144 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
Table 52. EMI characteristics for LQFP144 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
Table 53. ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
Table 54. Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
Table 55. I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
Table 56. I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
Table 57. Output voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
Table 58. I/O AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
Table 59. NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
Table 60. TIMx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
Table 61. I2C characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
Table 62. SCL frequency (fPCLK1= 50 MHz, VDD = VDD_I2C = 3.3 V) . . . . . . . . . . . . . . . . . . . . . . . . 125
Table 63. FMPI2C characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
Table 64. SPI dynamic characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
Table 65. I2S dynamic characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
Table 66. QSPI dynamic characteristics in SDR mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
Table 67. QSPI dynamic characteristics in DDR mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
Table 68. USB OTG FS startup time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
Table 69. USB OTG FS DC electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
Table 70. USB OTG FS electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
Table 71. ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
Table 72. ADC accuracy at fADC = 18 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
Table 73. ADC accuracy at fADC = 30 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
Table 74. ADC accuracy at fADC = 36 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
Table 75. ADC dynamic accuracy at fADC = 18 MHz - limited test conditions . . . . . . . . . . . . . . . . . 138
Table 76. ADC dynamic accuracy at fADC = 36 MHz - limited test conditions . . . . . . . . . . . . . . . . . 138
Table 77. Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
Table 78. Temperature sensor calibration values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
Table 79. VBAT monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
Table 80. Embedded internal reference voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
Table 81. Internal reference voltage calibration values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
Table 82. DFSDM characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
Table 83. Asynchronous non-multiplexed SRAM/PSRAM/NOR -
read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
Table 84. Asynchronous non-multiplexed SRAM/PSRAM/NOR read -
NWAIT timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
Table 85. Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings . . . . . . . . . . . . . . . . . 148
Table 86. Asynchronous non-multiplexed SRAM/PSRAM/NOR write -
NWAIT timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
Table 87. Asynchronous multiplexed PSRAM/NOR read timings. . . . . . . . . . . . . . . . . . . . . . . . . . . 150
Table 88. Asynchronous multiplexed PSRAM/NOR read-NWAIT timings . . . . . . . . . . . . . . . . . . . . 150
Table 89. Asynchronous multiplexed PSRAM/NOR write timings . . . . . . . . . . . . . . . . . . . . . . . . . . 152
Table 90. Asynchronous multiplexed PSRAM/NOR write-NWAIT timings . . . . . . . . . . . . . . . . . . . . 152
List of tables STM32F412xE/G
8/193 DocID028087 Rev 4
Table 91. Synchronous multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
Table 92. Synchronous multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
Table 93. Synchronous non-multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . 157
Table 94. Synchronous non-multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
Table 95. Dynamic characteristics: SD / MMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
Table 96. Dynamic characteristics: eMMC characteristics VDD = 1.7 V to 1.9 V. . . . . . . . . . . . . . . 161
Table 97. RTC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
Table 98. WLCSP64 - 64-pin, 3.658 x 3.686 mm, 0.4 mm pitch wafer level chip scale
package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
Table 99. WLCSP64 recommended PCB design rules (0.4 mm pitch) . . . . . . . . . . . . . . . . . . . . . . 163
Table 100. UFQFPN48 - 48-lead, 7x7 mm, 0.5 mm pitch, ultra thin fine pitch quad flat
package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
Table 101. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat
package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
Table 102. LQPF100 - 100-pin, 14 x 14 mm low-profile quad flat package
mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
Table 103. LQFP144 - 144-pin, 20 x 20 mm low-profile quad flat package
mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
Table 104. UFBGA100 - 100-pin, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball
grid array package mechanical data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
Table 105. UFBGA100 recommended PCB design rules (0.5 mm pitch BGA) . . . . . . . . . . . . . . . . . 179
Table 106. UFBGA144 - 144-pin, 10 x 10 mm, 0.80 mm pitch, ultra fine pitch ball
grid array package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
Table 107. UFBGA144 recommended PCB design rules (0.80 mm pitch BGA) . . . . . . . . . . . . . . . . 182
Table 108. Package thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
Table 109. Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
Table 110. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
DocID028087 Rev 4 9/193
STM32F412xE/G List of figures
11
List of figures
Figure 1. Compatible board design for LQFP100 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Figure 2. Compatible board design for LQFP64 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Figure 3. Compatible board design for LQFP144 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Figure 4. STM32F412xE/G block diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Figure 5. Multi-AHB matrix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Figure 6. VDDUSB connected to an external independent power supply . . . . . . . . . . . . . . . . . . . . . 25
Figure 7. Power supply supervisor interconnection with internal reset OFF . . . . . . . . . . . . . . . . . . . 27
Figure 8. Regulator OFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Figure 9. Startup in regulator OFF: slow VDD slope
power-down reset risen after VCAP_1/VCAP_2 stabilization . . . . . . . . . . . . . . . . . . . . . . . . . 30
Figure 10. Startup in regulator OFF mode: fast VDD slope
power-down reset risen before VCAP_1/VCAP_2 stabilization. . . . . . . . . . . . . . . . . . . . . . . . 30
Figure 11. STM32F412xE/G WLCSP64 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Figure 12. STM32F412xE/G UFQFPN48 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Figure 13. STM32F412xE/G LQFP64 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Figure 14. STM32F412xE/G LQFP100 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Figure 15. STM32F412xE/G LQFP144 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Figure 16. STM32F412xE/G UFBGA100 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Figure 17. STM32F412xE/G UFBGA144 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Figure 18. Memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Figure 19. Pin loading conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Figure 20. Input voltage measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Figure 21. Power supply scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Figure 22. Current consumption measurement scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Figure 23. External capacitor CEXT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Figure 24. Typical VBAT current consumption (LSE and RTC ON/LSE oscillator
“low power” mode selection) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Figure 25. Typical VBAT current consumption (LSE and RTC ON/LSE oscillator
“high drive” mode selection) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Figure 26. Low-power mode wakeup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Figure 27. High-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
Figure 28. Low-speed external clock source AC timing diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
Figure 29. Typical application with an 8 MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
Figure 30. Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
Figure 31. ACCHSI versus temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
Figure 32. ACCLSI versus temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
Figure 33. PLL output clock waveforms in center spread mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Figure 34. PLL output clock waveforms in down spread mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Figure 35. FT/TC I/O input characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
Figure 36. I/O AC characteristics definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
Figure 37. Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
Figure 38. I2C bus AC waveforms and measurement circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
Figure 39. FMPI2C timing diagram and measurement circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
Figure 40. SPI timing diagram - slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
Figure 41. SPI timing diagram - slave mode and CPHA = 1(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
Figure 42. SPI timing diagram - master mode(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
Figure 43. I2S slave timing diagram (Philips protocol)(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
Figure 44. I2S master timing diagram (Philips protocol)(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
List of figures STM32F412xE/G
10/193 DocID028087 Rev 4
Figure 45. USB OTG FS timings: definition of data signal rise and fall time . . . . . . . . . . . . . . . . . . . 135
Figure 46. ADC accuracy characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
Figure 47. Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
Figure 48. Power supply and reference decoupling (VREF+ not connected to VDDA). . . . . . . . . . . . . 141
Figure 49. Power supply and reference decoupling (VREF+ connected to VDDA). . . . . . . . . . . . . . . . 142
Figure 50. Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms . . . . . . . . . . . . . . 146
Figure 51. Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms . . . . . . . . . . . . . . 148
Figure 52. Asynchronous multiplexed PSRAM/NOR read waveforms. . . . . . . . . . . . . . . . . . . . . . . . 149
Figure 53. Asynchronous multiplexed PSRAM/NOR write waveforms . . . . . . . . . . . . . . . . . . . . . . . 151
Figure 54. Synchronous multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
Figure 55. Synchronous multiplexed PSRAM write timings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
Figure 56. Synchronous non-multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . 157
Figure 57. Synchronous non-multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
Figure 58. SDIO high-speed mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
Figure 59. SD default mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
Figure 60. WLCSP64 - 64-pin, 3.658 x 3.686 mm, 0.4 mm pitch wafer level chip scale
package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
Figure 61. WLCSP64 - 64-pin, 3.658 x 3.686 mm, 0.4 mm pitch wafer level chip scale
recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
Figure 62. WLCSP64 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
Figure 63. UFQFPN48 - 48-lead, 7x7 mm, 0.5 mm pitch, ultra thin fine pitch quad flat
package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
Figure 64. UFQFPN48 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
Figure 65. UFQFPN48 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
Figure 66. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package outline . . . . . . . . . . . . . . . . 168
Figure 67. LQFP64 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
Figure 68. LQFP64 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
Figure 69. LQFP100 - 100-pin, 14 x 14 mm low-profile quad flat package outline . . . . . . . . . . . . . . 171
Figure 70. LQFP100 - 100-pin, 14 x 14 mm low-profile quad flat
recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
Figure 71. LQFP100 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
Figure 72. LQFP144 - 144-pin, 20 x 20 mm low-profile quad flat package outline . . . . . . . . . . . . . . 174
Figure 73. LQFP144 - 144-pin,20 x 20 mm low-profile quad flat package
recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
Figure 74. LQFP144 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
Figure 75. UFBGA100 - 100-pin, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball
grid array package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
Figure 76. UFBGA100 - 100-pin, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball
grid array package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
Figure 77. UFBGA100 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
Figure 78. UFBGA144 - 144-pin, 10 x 10 mm, 0.80 mm pitch, ultra fine pitch ball
grid array package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
Figure 79. UFBGA144 - 144-pin, 10 x 10 mm, 0.80 mm pitch, ultra fine pitch ball
grid array recommended footprint. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
Figure 80. UFBGA144 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
Figure 81. USB controller configured as peripheral-only and used in Full speed mode . . . . . . . . . . 187
Figure 82. USB peripheral-only Full speed mode with direct connection
for VBUS sense . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
Figure 83. USB peripheral-only Full speed mode, VBUS detection using GPIO . . . . . . . . . . . . . . . . 188
Figure 84. USB controller configured as host-only and used in full speed mode. . . . . . . . . . . . . . . . 188
Figure 85. USB controller configured in dual mode and used in full speed mode . . . . . . . . . . . . . . . 189
Figure 86. Sensor Hub application example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
DocID028087 Rev 4 11/193
STM32F412xE/G List of figures
11
Figure 87. Display application example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
Introduction STM32F412xE/G
12/193 DocID028087 Rev 4
1 Introduction
This datasheet provides the description of the STM32F412xE/G microcontrollers.
For information on the Cortex-M4 core, refer to the Cortex-M4 programming manual
(PM0214) available from www.st.com.
DocID028087 Rev 4 13/193
STM32F412xE/G Description
42
2 Description
The STM32F412XE/G devices are based on the high-performance ARM® Cortex® -M4 32-
bit RISC core operating at a frequency of up to 100 MHz. Their Cortex®-M4 core features a
Floating point unit (FPU) single precision which supports all ARM single-precision data-
processing instructions and data types. It also implements a full set of DSP instructions and
a memory protection unit (MPU) which enhances application security.
The STM32F412XE/G belong to the STM32 Dynamic Efficiency product line (with
products combining power efficiency, performance and integration) while adding a new
innovative feature called Batch Acquisition Mode (BAM) allowing to save even more power
consumption during data batching.
The STM32F412XE/G incorporate high-speed embedded memories (up to 1 Mbyte of Flash
memory, 256 Kbyte of SRAM), and an extensive range of enhanced I/Os and peripherals
connected to two APB buses, three AHB buses and a 32-bit multi-AHB bus matrix.
All devices offer one 12-bit ADC, a low-power RTC, twelve general-purpose 16-bit timers,
two PWM timer for motor control and two general-purpose 32-bit timers.
They also feature standard and advanced communication interfaces.
Up to four I2Cs, including one I2C supporting Fast-Mode Plus
Five SPIs
Five I2Ss out of which two are full duplex. To achieve audio class accuracy, the I2S
peripherals can be clocked via a dedicate internal audio PLL or via an external clock to
allow synchronization.
Four USARTs
An SDIO/MMC interface
An USB 2.0 OTG full-speed interface
Two CANs.
In addition, the STM32F412xE/G embed advanced peripherals:
A flexible static memory control interface (FSMC)
A Quad-SPI memory interface
A digital filter for sigma modulator (DFSDM), two filters, up to four inputs, and support
of microphone MEMs.
The STM32F412xE/G are offered in 7 packages ranging from 48 to 144 pins. The set of
available peripherals depends on the selected package. Refer to Table 2: STM32F412xE/G
features and peripheral counts for the peripherals available for each part number.
The STM32F412xE/G operates in the – 40 to + 105 °C temperature range from a 1.7 (PDR
OFF) to 3.6 V power supply. A comprehensive set of power-saving mode allows the design
of low-power applications.
Description STM32F412xE/G
14/193 DocID028087 Rev 4
These features make the STM32F412xE/G microcontrollers suitable for a wide range of
applications:
Motor drive and application control
Medical equipment
Industrial applications: PLC, inverters, circuit breakers
Printers, and scanners
Alarm systems, video intercom, and HVAC
Home audio appliances
Mobile phone sensor hub
Wearable devices
Connected objects
Wifi modules
Figure 4 shows the general block diagram of the devices.
DocID028087 Rev 4 15/193
STM32F412xE/G Description
42
Table 2. STM32F412xE/G features and peripheral counts
Peripherals STM32F412xE STM32F412xG
Flash memory (Kbyte) 512 1024
SRAM
(Kbyte) System 256
FSMC memory controller - 1 - 1
Quad-SPI memory
interface -1-1
Timers
General-
purpose 10
Advanced-
control 2
Basic 2
Random number generator 1
Comm.
interfaces
SPI/ I2S 5/5 (2 full duplex)
I2C3
I2CFMP 1
USART 3 4 3 4
SDIO/MMC 1
USB/OTG FS
Dual power rail
1
No
1
Yes
1
No
1
Yes
CAN 2
Number of digital Filters for
Sigma-delta modulator
Number of channels
2
3
2
4
2
3
2
4
LCD parallel interface
Data bus size - 8 16 - 8 16
GPIOs 36 50 81 114 36 50 81 114
12-bit ADC
Number of channels
1
10 16 10 16
Maximum CPU frequency 100 MHz
Operating voltage 1.7 to 3.6 V
Operating temperatures
Ambient temperatures: –40 to +85 °C/–40 to +105 °C
Junction temperature: –40 to + 125 °C
Package UFQ
FPN48
LQFP64
WLCSP64
UFBGA
100
LQFP100
UFBGA
144
LQFP144
UFQ
FPN48
LQFP64
WLCSP
64
UFBGA
100
LQFP100
UFBGA
144
LQFP144
Description STM32F412xE/G
16/193 DocID028087 Rev 4
2.1 Compatibility with STM32F4 series
The STM32F412xE/G are fully software and feature compatible with the STM32F4 series
(STM32F42x, STM32F401, STM32F43x, STM32F41x, STM32F405 and STM32F407)
The STM32F412xE/G can be used as drop-in replacement of the other STM32F4 products
but some slight changes have to be done on the PCB board.
Figure 1. Compatible board design for LQFP100 package
06Y9








3'
3'
3'
3'
3%
3%
3%
3%
3(
3(
3(
3(
3(
3(
3%
9&$3B
966
9''







670)[[
670)[[
670)[[
670)[[
3% QRW DYDLODEOHDQ\PRUH
5HSODFHG E\ 9&$3B








3'
3'
3'
3'
3%
3%
3%
3%
3(
3(
3(
3(
3(
3(
3%
9&$3B
9''








670)670)OLQH
670)670)OLQH
670)670)OLQH
670)670)OLQH
9''
966
9''
966
3%





DocID028087 Rev 4 17/193
STM32F412xE/G Description
42
Figure 2. Compatible board design for LQFP64 package
Figure 3. Compatible board design for LQFP144 package
06Y9
9
&$3B
LQFUHDVHGWRI
(65RUEHORZ
670)670)OLQH
670)[[
670)[[
670)[[
670)[[
670)[[
966
966
9''
9''

















 
3&
3&
3&
3$
3$
9''
9&$3B
3$
3$
3$
3$
3$
3$
3&
3&
3&
3&
3%
3%
3%
3%
3%
3%
9&$3B
9''
3%
3%QRWDYDLODEOHDQ\PRUH
5HSODFHGE\9
&$3B

















 
3&
3&
3&
3$
3$
9''
966
3$
3$
3$
3$
3$
3$
3&
3&
3&
3&
3%
3%
3%
3%
3%
3%
9&$3B
9''
966
9''
966
966
9''
06Y9
670)670)OLQH
670)670)OLQH
670)670)OLQH
670)670)OLQH
670)[[
670)[[
9''
966
9&$3B
3$
3$
3$
3$
3$
3$
3&
3&
3&
3&
966
3*
3&
3&
3$
3$
3'




3'

3&

















9''
9''
966
9&$3B
3$
3$
3$
3$
3$
3$
3&
3&
3&
3&
966
3*
3&
3&
3$
3$
3'




3'

3&

















9''B86%
6HSDUDWH86%SRZHUUDLO
&RQQHFWHGWR9''LIDGLIIHUHQW
SRZHUVXSSO\IRUWKH86%LVQRW
UHTXLUHG
Description STM32F412xE/G
18/193 DocID028087 Rev 4
Figure 4. STM32F412xE/G block diagram
1. The timers connected to APB2 are clocked from TIMxCLK up to 100 MHz, while the timers connected to APB1 are clocked
from TIMxCLK up to 50 MHz.
06Y9
8SWR0%)ODVK
PHPRU\
*3,23257$
$+%
$3%
(;7,7:.83
$)
3$>@
7,03:0
86$57
5;7;6&.
&76576DV$)
63,,6
DQDORJLQSXWV
9''5()B$'&
$/$50B287
26&B,1
26&B287
9''$966$
1567
VPFDUG
LU'$
E
9%$7 WR9
'0$
6&/6'$60%$DV$)
,&)0360%86
-7$*6:
$50&RUWH[0
&RUWH[0
0+]
19,&
(70
038)38
'0$
6WUHDPV
),)2
$&&(/
&$&+(
$+%0+]
86$5 7 0%SV
7HPSHUDWXUHVHQVRU
$'& ,)
#9''$
3253'5
%25
6XSSO\
VXSHUYLVLRQ
#9''$
39'
,QW
325
UHVHW
;7$/N+]
0$1 $*7
57&
5& +6
5& / 6
3:5
LQWHUIDFH
:'*.
#9
%$7
#9''
$:8
5HVHW
FORFN
FRQWURO
3//3//
$3%&/.
9ROWDJH
UHJXODWRU
WR9
9'' WR9
966
9&$3B9&$3B
9'' 3RZHUPDQDJPW
#9''
67$03
%DFNXSUHJLVWHU
$+%EXVPDWUL[60
$3%0+]
/6
7,0
FKDQQHOVDV$)
7,0
,&60%86
,&60%86
'%86
$3%0+]PD[
-7567-7',
-7&.6:&/.
-7'26:'-7'2
75$&(&/.
75$&('>@ ,%86
6%86
'0$
6WUHDPV
),)2
3%>@
3&>@
*3,23257%
*3,23257&
E
7,0 E
VPFDUG
LU'$ 86$57
FKDQQHODV$)
6&/6'$60%$DV$)
6&/6'$60%$DV$)
026,0,626&.
166:60&.DV$)
5;7;6&.
&76576DV$)
86$57
VPFDUG
LU'$
E FKDQQHOVDV$)
'0$
$+%
$3%
/6
26&B,1
26&B287
+&/.
;7$/26&
0+]
.%65$0
::'*
$3%&/.
$+%3&/.
$+%3&/.
&5&
3*>@ *3,23257*
63,,6
51*
3:03:0
(75%.,1DV$)
#9''$
3&/.
7,0 E FKDQQHOVDV$)
7,0(5 E
),)2
)60&
125)ODVK
65$0365$0
$+%
4XDG63,
&/.1(>@$>@
'>@12(11:(1
1%/>@1:$,7
&/.&6$&6%'>@
$+%0+]
86%
27*)6
),)2
3+<
'
'
6&/6'$,17,'9%86
#9'' #9''86%
7,0 E FKDQQHOVDV$)
7,0 E FKDQQHOVDV$)
7,0 E FKDQQHOVDV$)
7,0 E FKDQQHOVDV$)
7,0 E FKDQQHOVDV$)
5;7;6&.
&76576DV$)
86$57
VPFDUG
LU'$
63,,6
E
026,0,626&.
166:60&.DV$)
,&60%86 6&/6'$60%$DV$)
7,0(5
63,,6
7;5;
7;5;
&$1
&$1
')6'0
&.,1>@'$7,1>@
&.287
63,,6
026,0,62
6&.166:6DV$)
7,0 E
FKDQQHODV$)
7,03:0 E
3:03:0
(75%.,1DV$)
),)2
6',200&
'>@
&0'&.DV$)
3+>@ *3,23257+
3'>@ *3,23257'
3(>@ *3,23257(
5;7;6&.
&76576DV$)
026,0,62
6&.166:6DV$)
026,0,62
6&.166:6DV$)
DocID028087 Rev 4 19/193
STM32F412xE/G Functional overview
42
3 Functional overview
3.1 ARM® Cortex®-M4 with FPU core with embedded Flash and
SRAM
The ARM Cortex-M4 with FPU processor is the latest generation of ARM processors for
embedded systems. It was developed to provide a low-cost platform that meets the needs of
MCU implementation, with a reduced pin count and low-power consumption, while
delivering outstanding computational performance and an advanced response to interrupts.
The ARM Cortex-M4 with FPU 32-bit RISC processor features exceptional code-
efficiency, delivering the high-performance expected from an ARM core in the memory size
usually associated with 8- and 16-bit devices.
The processor supports a set of DSP instructions which allow efficient signal processing and
complex algorithm execution.
Its single precision FPU (floating point unit) speeds up software development by using
metalanguage development tools, while avoiding saturation.
The STM32F412xE/G devices are compatible with all ARM tools and software.
Figure 4 shows the general block diagram of the STM32F412xE/G.
Note: Cortex-M4 with FPU is binary compatible with Cortex-M3.
3.2 Adaptive real-time memory accelerator (ART Accelerator™)
The ART Accelerator™ is a memory accelerator which is optimized for STM32 industry-
standard ARM® Cortex-M4 with FPU processors. It balances the inherent performance
advantage of the ARM Cortex-M4 with FPU over Flash memory technologies, which
normally requires the processor to wait for the Flash memory at higher frequencies.
To release the processor full 125 DMIPS performance at this frequency, the accelerator
implements an instruction prefetch queue and branch cache, which increases program
execution speed from the 128-bit Flash memory. Based on CoreMark benchmark, the
performance achieved thanks to the ART Accelerator is equivalent to 0 wait state program
execution from Flash memory at a CPU frequency up to 100 MHz.
3.3 Batch Acquisition mode (BAM)
The Batch acquisition mode allows enhanced power efficiency during data batching. It
enables data acquisition through any communication peripherals directly to memory using
the DMA in reduced power consumption as well as data processing while the rest of the
system is in low-power mode (including the flash and ART). For example in an audio
system, a smart combination of PDM audio sample acquisition and processing from the
DFSDM directly to RAM (flash and ART stopped) with the DMA using BAM followed by
some very short processing from flash allows to drastically reduce the power consumption
of the application. A dedicated application note (AN4515) describes how to implement the
STM32F412xE/G BAM to allow the best power efficiency.
Functional overview STM32F412xE/G
20/193 DocID028087 Rev 4
3.4 Memory protection unit
The memory protection unit (MPU) is used to manage the CPU accesses to memory to
prevent one task to accidentally corrupt the memory or resources used by any other active
task. This memory area is organized into up to 8 protected areas that can in turn be divided
up into 8 subareas. The protection area sizes are between 32 byte and the whole 4 Gbyte of
addressable memory.
The MPU is especially helpful for applications where some critical or certified code has to be
protected against the misbehavior of other tasks. It is usually managed by an RTOS (real-
time operating system). If a program accesses a memory location that is prohibited by the
MPU, the RTOS can detect it and take action. In an RTOS environment, the kernel can
dynamically update the MPU area setting, based on the process to be executed.
The MPU is optional and can be bypassed for applications that do not need it.
3.5 Embedded Flash memory
The devices embed up to 1 Mbyte of Flash memory available for storing programs and data.
The Flash user area can be protected against reading by an entrusted code (Read
Protection, RDP) with different protection levels.
The flash user sectors can also be individually protected against write operation.
Furthermore the proprietary readout protection (PCROP) can also individually protect the
flash user sectors against D-bus read accesses.
(Additional information can be found in the product reference manual).
To optimize the power consumption the Flash memory can also be switched off in Run or in
Sleep mode (see Section 3.21: Low-power modes).
Two modes are available: Flash in Stop mode or in DeepSleep mode (trade off between
power saving and startup time.
Before disabling the Flash, the code must be executed from the internal RAM.
3.6 One-time programmable bytes
A one-time programmable area is available with16 OTP blocks of 32 bytes. Each block can
be individually locked
(Additional information can be found in the product reference manual)
3.7 CRC (cyclic redundancy check) calculation unit
The CRC (cyclic redundancy check) calculation unit is used to get a CRC code from a 32-bit
data word and a fixed generator polynomial.
Among other applications, CRC-based techniques are used to verify data transmission or
storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of
verifying the Flash memory integrity. The CRC calculation unit helps compute a software
signature during runtime, to be compared with a reference signature generated at link-time
and stored at a given memory location.
DocID028087 Rev 4 21/193
STM32F412xE/G Functional overview
42
3.8 Embedded SRAM
All devices embed 256 Kbyte of system SRAM which can be accessed (read/write) at CPU
clock speed with 0 wait states
3.9 Multi-AHB bus matrix
The 32-bit multi-AHB bus matrix interconnects all the masters (CPU, DMAs) and the slaves
(Flash memory, RAM, AHB and APB peripherals) and ensures a seamless and efficient
operation even when several high-speed peripherals work simultaneously.
Figure 5. Multi-AHB matrix
3.10 DMA controller (DMA)
The devices feature two general-purpose dual-port DMAs (DMA1 and DMA2) with 8
streams each. They are able to manage memory-to-memory, peripheral-to-memory and
memory-to-peripheral transfers. They feature dedicated FIFOs for APB/AHB peripherals,
support burst transfer and are designed to provide the maximum peripheral bandwidth
(AHB/APB).
The two DMA controllers support circular buffer management, so that no specific code is
needed when the controller reaches the end of the buffer. The two DMA controllers also
have a double buffering feature, which automates the use and switching of two memory
buffers without requiring any special code.
Each stream is connected to dedicated hardware DMA requests, with support for software
trigger on each stream. Configuration is made by software and transfer sizes between
source and destination are independent.
06Y9
$50
&RUWH[0
*3
'0$
*3
'0$
)ODVK
8SWR0%
65$0
.%
%XVPDWUL[6
6 6 6 6 6 6
,&2'(
'&2'(
$&&(/
0
0
0
,EXV
'EXV
6EXV
'0$B3,
'0$B0(0
'0$B0(0
'0$B3
$+%
SHULSK
0 $3%
$3%
$+%
SHULSK
0
)60&H[WHUQDO
0HP&WUO
4XDG63,
0
Functional overview STM32F412xE/G
22/193 DocID028087 Rev 4
The DMA can be used with the main peripherals:
SPI and I2S
I2C and I2CFMP
USART
General-purpose, basic and advanced-control timers TIMx
SD/SDIO/MMC/eMMC host interface
Quad-SPI
ADC
Digital Filter for sigma-delta modulator (DFSDM) with a separate stream for each filter.
3.11 Flexible static memory controller (FSMC)
The Flexible static memory controller (FSMC) includes a NOR/PSRAM memory controller. It
features four Chip Select outputs supporting the following modes: SRAM, PSRAM and NOR
Flash memory.
The main functions are:
8-,16-bit data bus width
Write FIFO
Maximum FSMC_CLK frequency for synchronous accesses is 90 MHz.
LCD parallel interface
The FSMC can be configured to interface seamlessly with most graphic LCD controllers. It
supports the Intel 8080 and Motorola 6800 modes, and is flexible enough to adapt to
specific LCD interfaces. This LCD parallel interface capability makes it easy to build cost-
effective graphic applications using LCD modules with embedded controllers or high
performance solutions using external controllers with dedicated acceleration.
3.12 Quad-SPI memory interface (QUAD-SPI)
All devices embed a Quad-SPI memory interface, which is a specialized communication
interface targeting single, dual or quad-SPI Flash memories. It can work in direct mode
through registers, external Flash status register polling mode and memory mapped mode.
Up to 256 Mbyte of external Flash memory are mapped. They can be accessed in 8, 16 or
32-bit mode. Code execution is also supported. The opcode and the frame format are fully
programmable. Communication can be performed either in single data rate or dual data
rate.
DocID028087 Rev 4 23/193
STM32F412xE/G Functional overview
42
3.13 Nested vectored interrupt controller (NVIC)
The devices embed a nested vectored interrupt controller able to manage 16 priority levels,
and handle up to 81 maskable interrupt channels plus the 16 interrupt lines of the
Cortex-M4 with FPU.
Closely coupled NVIC gives low-latency interrupt processing
Interrupt entry vector table address passed directly to the core
Allows early processing of interrupts
Processing of late arriving, higher-priority interrupts
Support tail chaining
Processor state automatically saved
Interrupt entry restored on interrupt exit with no instruction overhead
This hardware block provides flexible interrupt management features with minimum interrupt
latency.
3.14 External interrupt/event controller (EXTI)
The external interrupt/event controller consists of 21 edge-detector lines used to generate
interrupt/event requests. Each line can be independently configured to select the trigger
event (rising edge, falling edge, both) and can be masked independently. A pending register
maintains the status of the interrupt requests. The EXTI can detect an external line with a
pulse width shorter than the Internal APB2 clock period. Up to 114 GPIOs can be connected
to the 16 external interrupt lines.
3.15 Clocks and startup
On reset the 16 MHz internal RC oscillator is selected as the default CPU clock. The
16 MHz internal RC oscillator is factory-trimmed to offer 1% accuracy at 25 °C. The
application can then select as system clock either the RC oscillator or an external 4-26 MHz
clock source. This clock can be monitored for failure. If a failure is detected, the system
automatically switches back to the internal RC oscillator and a software interrupt is
generated (if enabled). This clock source is input to a PLL thus allowing to increase the
frequency up to 100 MHz. Similarly, full interrupt management of the PLL clock entry is
available when necessary (for example if an indirectly used external oscillator fails).
Several prescalers allow the configuration of the three AHB buses, the high-speed APB
(APB2) and the low-speed APB (APB1) domains. The maximum frequency of the three AHB
buses and high-speed APB domains is 100 MHz. The maximum allowed frequency of the
low-speed APB domain is 50 MHz.
The devices embed a dedicated PLL (PLLI2S) which allows to achieve audio class
performance. In this case, the I2S master clock can generate all standard sampling
frequencies from 8 kHz to 192 kHz.
Functional overview STM32F412xE/G
24/193 DocID028087 Rev 4
3.16 Boot modes
At startup, boot pins are used to select one out of three boot options:
Boot from user Flash memory
Boot from system memory
Boot from embedded SRAM
The boot loader is located in system memory. It is used to reprogram the Flash memory by
using one of the interface listed in the Table 3 or the USB OTG FS in device mode through
DFU (device firmware upgrade).
For more detailed information on the bootloader, refer to Application Note: AN2606,
STM32™ microcontroller system memory boot mode.
3.17 Power supply schemes
VDD = 1.7 to 3.6 V: external power supply for I/Os with the internal supervisor
(POR/PDR) disabled, provided externally through VDD pins. Requires the use of an
external power supply supervisor connected to the VDD and NRST pins.
VSSA, VDDA = 1.7 to 3.6 V: external analog power supplies for ADC, Reset blocks, RCs
and PLL. VDDA and VSSA must be connected to VDD and VSS, respectively, with
decoupling technique.
Note: The VDD/VDDA minimum value of 1.7 V is obtained with the use of an external power supply
supervisor (refer to Section 3.18.2: Internal reset OFF). Refer to Table 4: Regulator ON/OFF
and internal power supply supervisor availability to identify the packages supporting this
option.
VBAT = 1.65 to 3.6 V: power supply for RTC, external clock 32 kHz oscillator and
backup registers (through power switch) when VDD is not present.
VDDUSB can be connected either to VDD or an external independent power supply (3.0
to 3.6 V) for USB transceivers.
For example, when device is powered at 1.8 V, an independent power supply 3.3V can
be connected to VDDUSB. When the VDDUSB is connected to a separated power supply,
Table 3. Embedded bootloader interfaces
Package
USART1
PA9/
PA10
USART2
PD6/
PD5
USART3
PB11/
PB10
I2C1
PB6/
PB7
I2C2
PF0/
PF1
I2C3
PA8/
PB4
I2C
FMP1
PB14/
PB15
SPI1
PA4/
PA5/
PA6/
PA7
SPI3
PA15/
PC10/
PC11/
PC12
SPI4
PE11/
PE12/
PE13/
PE14
CAN2
PB5/
PB13
USB
PA11
/P12
UFQFPN48 Y - - Y - Y Y Y - - Y Y
WLCSP64 Y - - Y - Y Y Y Y - Y Y
LQFP64 Y - - Y - Y Y Y Y - Y Y
LQFP100Y Y - Y-YYYYYYY
LQFP144YYYYYYYYYYYY
UFBGA100 Y Y Y Y - Y Y Y Y Y Y Y
UFBGA144 Y Y Y Y Y Y Y Y Y Y Y Y
DocID028087 Rev 4 25/193
STM32F412xE/G Functional overview
42
it is independent from VDD or VDDA but it must be the last supply to be provided and the
first to disappear.
The following conditions VDDUSB must be respected:
During power-on phase (VDD < VDD_MIN), VDDUSB should be always lower than
VDD
During power-down phase (VDD < VDD_MIN), VDDUSB should be always lower than
VDD
–V
DDUSB rising and falling time rate specifications must be respected.
In operating mode phase, VDDUSB could be lower or higher than VDD:
If USB is used, the associated GPIOs powered by VDDUSB are operating
between VDDUSB_MIN and VDDUSB_MAX.
If USB is not used, the associated GPIOs powered by VDDUSB are operating
between VDD_MIN and VDD_MAX.
Figure 6. VDDUSB connected to an external independent power supply
069
9
''86%B0,1
9
''B0,1
WLPH
9
''86%B0$;
86% IXQFWLRQDODUHD
9
''
9
''$
86%QRQ
IXQFWLRQDO
DUHD
9
''86%
3RZHURQ 3RZHUGRZQ
2SHUDWLQJPRGH
86%QRQ
IXQFWLRQDO
DUHD
Functional overview STM32F412xE/G
26/193 DocID028087 Rev 4
3.18 Power supply supervisor
3.18.1 Internal reset ON
This feature is available for VDD operating voltage range 1.8 V to 3.6 V.
On packages embedding the PDR_ON pin, the power supply supervisor is enabled by
holding PDR_ON high. On the other package, the power supply supervisor is always
enabled.
The device has an integrated power-on reset (POR) / power-down reset (PDR) circuitry
coupled with a Brownout reset (BOR) circuitry. At power-on, POR is always active, and
ensures proper operation starting from 1.8 V. After the 1.8 V POR threshold level is
reached, the option byte loading process starts, either to confirm or modify default
thresholds, or to disable BOR permanently. Three BOR thresholds are available through
option bytes.
The device remains in reset mode when VDD is below a specified threshold, VPOR/PDR or
VBOR, without the need for an external reset circuit.
The device also features an embedded programmable voltage detector (PVD) that monitors
the VDD/VDDA power supply and compares it to the VPVD threshold. An interrupt can be
generated when VDD/VDDA drops below the VPVD threshold and/or when VDD/VDDA is
higher than the VPVD threshold. The interrupt service routine can then generate a warning
message and/or put the MCU into a safe state. The PVD is enabled by software.
3.18.2 Internal reset OFF
This feature is available only on packages featuring the PDR_ON pin. The internal power-on
reset (POR) / power-down reset (PDR) circuitry is disabled by setting the PDR_ON pin to
low.
An external power supply supervisor should monitor VDD and should set the device in reset
mode when VDD is below 1.7 V. NRST should be connected to this external power supply
supervisor. Refer to Figure 7: Power supply supervisor interconnection with internal reset
OFF.
DocID028087 Rev 4 27/193
STM32F412xE/G Functional overview
42
A comprehensive set of power-saving mode allows to design low-power applications.
When the internal reset is OFF, the following integrated features are no longer supported:
The integrated power-on reset (POR) / power-down reset (PDR) circuitry is disabled.
The brownout reset (BOR) circuitry must be disabled.
The embedded programmable voltage detector (PVD) is disabled.
VBAT functionality is no more available and VBAT pin should be connected to VDD.
3.19 Voltage regulator
The regulator has three operating modes:
Main regulator mode (MR)
Low power regulator (LPR)
Power-down
3.19.1 Regulator ON
On packages embedding the BYPASS_REG pin, the regulator is enabled by holding
BYPASS_REG low. On all other packages, the regulator is always enabled.
Figure 7. Power supply supervisor interconnection with internal reset OFF(1)
1. The PRD_ON pin is available only on WLCSP64, UFBGA100, UFBGA144 and LQFP144 packages.
06Y9
3'5B21
9''
1567
([WHUQDO9''SRZHUVXSSO\VXSHUYLVRU
([WUHVHWFRQWUROOHUDFWLYHZKHQ
9''9
9''
Functional overview STM32F412xE/G
28/193 DocID028087 Rev 4
There are three power modes configured by software when the regulator is ON:
MR is used in the nominal regulation mode (With different voltage scaling in Run mode)
In Main regulator mode (MR mode), different voltage scaling are provided to reach the
best compromise between maximum frequency and dynamic power consumption.
LPR is used in the Stop mode
The LP regulator mode is configured by software when entering Stop mode.
Power-down is used in Standby mode.
The Power-down mode is activated only when entering in Standby mode. The regulator
output is in high impedance and the kernel circuitry is powered down, inducing zero
consumption. The contents of the registers and SRAM are lost.
Depending on the package, one or two external ceramic capacitors should be connected on
the VCAP_1 and VCAP_2 pins. The VCAP_2 pin is only available for the 100 pins and 144 pins
packages.
All packages have the regulator ON feature.
3.19.2 Regulator OFF
This feature is available only on UFBGA100 and UFBGA144 packages, which feature the
BYPASS_REG pin. The regulator is disabled by holding BYPASS_REG high. The regulator
OFF mode allows to supply externally a V12 voltage source through VCAP_1 and VCAP_2
pins.
Since the internal voltage scaling is not managed internally, the external voltage value must
be aligned with the targeted maximum frequency.
The two 2.2 µF ceramic capacitors should be replaced by two 100 nF decoupling
capacitors.
When the regulator is OFF, there is no more internal monitoring on V12. An external power
supply supervisor should be used to monitor the V12 of the logic power domain. PA0 pin
should be used for this purpose, and act as power-on reset on V12 power domain.
In regulator OFF mode, the following features are no more supported:
PA0 cannot be used as a GPIO pin since it allows to reset a part of the V12 logic power
domain which is not reset by the NRST pin.
As long as PA0 is kept low, the debug mode cannot be used under power-on reset. As
a consequence, PA0 and NRST pins must be managed separately if the debug
connection under reset or pre-reset is required.
DocID028087 Rev 4 29/193
STM32F412xE/G Functional overview
42
Figure 8. Regulator OFF
The following conditions must be respected:
VDD should always be higher than VCAP_1 and VCAP_2 to avoid current injection
between power domains.
If the time for VCAP_1 and VCAP_2 to reach V12 minimum value is faster than the time for
VDD to reach 1.7 V, then PA0 should be kept low to cover both conditions: until VCAP_1
and VCAP_2 reach V12 minimum value and until VDD reaches 1.7 V (see Figure 9).
Otherwise, if the time for VCAP_1 and VCAP_2 to reach V12 minimum value is slower
than the time for VDD to reach 1.7 V, then PA0 could be asserted low externally (see
Figure 10).
If VCAP_1 and VCAP_2 go below V12 minimum value and VDD is higher than 1.7 V, then a
reset must be asserted on PA0 pin.
Note: The minimum value of V12 depends on the maximum frequency targeted in the application.
Functional overview STM32F412xE/G
30/193 DocID028087 Rev 4
Figure 9. Startup in regulator OFF: slow VDD slope
power-down reset risen after VCAP_1/VCAP_2 stabilization
1. This figure is valid whatever the internal reset mode (ON or OFF).
Figure 10. Startup in regulator OFF mode: fast VDD slope
power-down reset risen before VCAP_1/VCAP_2 stabilization
1. This figure is valid whatever the internal reset mode (ON or OFF).
06Y9
9''
WLPH
0LQ9
3'5 9 9&$3B9&$3B
9
1567
WLPH
3$
9''
WLPH
0LQ9
9&$3B9&$3B
9
3$DVVHUWHGH[WHUQDOO\
1567
WLPH 06Y9
3'5 9
DocID028087 Rev 4 31/193
STM32F412xE/G Functional overview
42
3.19.3 Regulator ON/OFF and internal reset ON/OFF availability
3.20 Real-time clock (RTC) and backup registers
The backup domain includes:
The real-time clock (RTC)
20 backup registers
The real-time clock (RTC) is an independent BCD timer/counter. Dedicated registers contain
the second, minute, hour (in 12/24 hour), week day, date, month, year, in BCD (binary-
coded decimal) format. Correction for 28, 29 (leap year), 30, and 31 day of the month are
performed automatically. The RTC features a reference clock detection, a more precise
second source clock (50 or 60 Hz) can be used to enhance the calendar precision. The RTC
provides a programmable alarm and programmable periodic interrupts with wakeup from
Stop and Standby modes. The sub-seconds value is also available in binary format.
It is clocked by a 32.768 kHz external crystal, resonator or oscillator, the internal low-power
RC oscillator or the high-speed external clock divided by 128. The internal low-speed RC
has a typical frequency of 32 kHz. The RTC can be calibrated using an external 512 Hz
output to compensate for any natural quartz deviation.
Two alarm registers are used to generate an alarm at a specific time and calendar fields can
be independently masked for alarm comparison. To generate a periodic interrupt, a 16-bit
programmable binary auto-reload downcounter with programmable resolution is available
and allows automatic wakeup and periodic alarms from every 120 µs to every 36 hours.
A 20-bit prescaler is used for the time base clock. It is by default configured to generate a
time base of 1 second from a clock at 32.768 kHz.
The backup registers are 32-bit registers used to store 80 byte of user application data
when VDD power is not present. Backup registers are not reset by a system, a power reset,
or when the device wakes up from the Standby mode (see Section 3.21: Low-power
modes).
Table 4. Regulator ON/OFF and internal power supply supervisor availability
Package Regulator ON Regulator OFF Power supply
supervisor ON
Power supply
supervisor OFF
UFQFPN48 Yes No Yes No
WLCSP64 Yes No Yes
PDR_ON set to VDD
Yes
PDR_ON set to VSS
LQFP64 Yes No Yes No
LQFP100 Yes No Yes No
LQFP144 Yes No
Yes
PDR_ON set to VDD
Yes
PDR_ON set to VSS
UFBGA100
Yes
BYPASS_REG set to
VSS
Yes
BYPASS_REG set to
VDD
UFBGA144
Yes
BYPASS_REG set to
VSS
Yes
BYPASS_REG set to
VDD
Functional overview STM32F412xE/G
32/193 DocID028087 Rev 4
Additional 32-bit registers contain the programmable alarm subseconds, seconds, minutes,
hours, day, and date.
The RTC and backup registers are supplied through a switch that is powered either from the
VDD supply when present or from the VBAT pin.
3.21 Low-power modes
The devices support three low-power modes to achieve the best compromise between low
power consumption, short startup time and available wakeup sources:
Sleep mode
In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can
wake up the CPU when an interrupt/event occurs.
To further reduce the power consumption, the Flash memory can be switched off
before entering in Sleep mode. Note that this requires a code execution from the RAM.
Stop mode
The Stop mode achieves the lowest power consumption while retaining the contents of
SRAM and registers. All clocks in the 1.2 V domain are stopped, the PLL, the HSI RC
and the HSE crystal oscillators are disabled. The voltage regulator can also be put
either in normal or in low-power mode.
The device can be woken up from the Stop mode by any of the EXTI line (the EXTI line
source can be one of the 16 external lines, the PVD output, the RTC alarm/ wakeup/
tamper/ time stamp events).
Standby mode
The Standby mode is used to achieve the lowest power consumption. The internal
voltage regulator is switched off so that the entire 1.2 V domain is powered off. The
PLL, the HSI RC and the HSE crystal oscillators are also switched off. After entering
Standby mode, the SRAM and register contents are lost except for registers in the
backup domain when selected.
The device exits the Standby mode when an external reset (NRST pin), an IWDG reset,
a rising edge on one of the WKUP pins, or an RTC alarm/ wakeup/ tamper/time stamp
event occurs.
Standby mode is not supported when the embedded voltage regulator is bypassed and
the 1.2 V domain is controlled by an external power.
3.22 VBAT operation
The VBAT pin allows to power the device VBAT domain from an external battery, an external
super-capacitor, or from VDD when no external battery and an external super-capacitor are
present.
VBAT operation is activated when VDD is not present.
The VBAT pin supplies the RTC and the backup registers.
Note: When the microcontroller is supplied from VBAT, external interrupts and RTC alarm/events
do not exit it from VBAT operation. When PDR_ON pin is not connected to VDD (internal
Reset OFF), the VBAT functionality is no more available and VBAT pin should be connected
to VDD.
DocID028087 Rev 4 33/193
STM32F412xE/G Functional overview
42
3.23 Timers and watchdogs
The devices embed two advanced-control timer, ten general-purpose timers, two basic
timers, two watchdog timers and one SysTick timer.
All timer counters can be frozen in debug mode.
Table 5 compares the features of the advanced-control and general-purpose timers.
Functional overview STM32F412xE/G
34/193 DocID028087 Rev 4
Table 5. Timer feature comparison
Timer
type Timer Counter
resolution
Counter
type
Prescaler
factor
DMA
request
generation
Capture/
compare
channels
Complemen-
tary output
Max.
interface
clock
(MHz)
Max.
timer
clock
(MHz)
Advance
d-control
TIM1,
TIM8 16-bit
Up,
Down,
Up/down
Any
integer
between 1
and
65536
Yes 4 Yes 100 100
General
purpose
TIM2,
TIM5 32-bit
Up,
Down,
Up/down
Any
integer
between 1
and
65536
Yes 4 No 50 100
TIM3,
TIM4 16-bit
Up,
Down,
Up/down
Any
integer
between 1
and
65536
Yes 4 No 50 100
TIM9 16-bit Up
Any
integer
between 1
and
65536
No 2 No 100 100
TIM10,
TIM11 16-bit Up
Any
integer
between 1
and
65536
No 1 No 100 100
TIM12 16-bit Up
Any
integer
between 1
and
65536
No 2 No 50 100
TIM13,
TIM14 16-bit Up
Any
integer
between 1
and
65536
No 1 No 50 100
Basic
timers
TIM6,
TIM7 16-bit Up
Any
integer
between 1
and
65536
Yes 0 No 50 100
DocID028087 Rev 4 35/193
STM32F412xE/G Functional overview
42
3.23.1 Advanced-control timers (TIM1, TIM8)
The advanced-control timers (TIM1/8) can be seen as three-phase PWM generator
multiplexed on 4 independent channels. They have complementary PWM outputs with
programmable inserted dead times. They can also be considered as complete general-
purpose timers. Their 4 independent channels can be used for:
Input capture
Output compare
PWM generation (edge- or center-aligned modes)
One-pulse mode output
If configured as standard 16-bit timers, they have the same features as the general-purpose
TIMx timers. If configured as a 16-bit PWM generator, they have full modulation capability
(0-100%).
The advanced-control timers can work together with the TIMx timers via the Timer Link
feature for synchronization or event chaining.
TIM1 and TIM8 support independent DMA request generation.
3.23.2 General-purpose timers (TIMx)
There are ten synchronizable general-purpose timers embedded in the STM32F412xE/G
(see Table 5 for differences).
TIM2, TIM3, TIM4, TIM5
The STM32F412xE/G devices include 4 full-featured general-purpose timers: TIM2.
TIM3, TIM4 and TIM5. TIM2 and TIM5 timers are based on a 32-bit auto-reload
up/downcounter and a 16-bit prescaler while TIM3 and TIM4 timers are based on a 16-
bit auto-reload up/downcounter plus a 16-bit prescaler. They all features four
independent channels for input capture/output compare, PWM or one-pulse mode
output. This gives up to 15 input capture/output compare/PWMs
TIM2. TIM3, TIM4 and TIM5 general-purpose timers can operate together or in
conjunction with the other general-purpose timers and TIM1 advanced-control timer via
the Timer Link feature for synchronization or event chaining.
Any of these general-purpose timers can be used to generate PWM output.
TIM2. TIM3, TIM4 and TIM5 channels have independent DMA request generation.
They are capable of handling quadrature (incremental) encoder signals and the digital
outputs from 1 to 4 hall-effect sensors.
TIM9, TIM10, TIM11, TIM12, TIM13 and TIM14
These timers are based on a 16-bit auto-reload upcounter and a 16-bit prescaler.
TIM10, TIM11, TIM13 and TIM14 feature one independent channel, whereas TIM9 and
TIM12 have two independent channels for input capture/output compare, PWM or one-
pulse mode output. They can be synchronized with TIM2. TIM3, TIM4 and TIM5 full-
featured general-purpose timers or used as simple time bases.
3.23.3 Basic timer (TIM6, TIM7)
TIM6 and TIM7 timers are basic 16-bit timers. They support independent DMA request
generation.
Functional overview STM32F412xE/G
36/193 DocID028087 Rev 4
3.23.4 Independent watchdog
The independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. It is
clocked from an independent 32 kHz internal RC and as it operates independently from the
main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog
to reset the device when a problem occurs, or as a free-running timer for application timeout
management. It is hardware- or software-configurable through the option bytes.
3.23.5 Window watchdog
The window watchdog is based on a 7-bit downcounter that can be set as free-running. It
can be used as a watchdog to reset the device when a problem occurs. It is clocked from
the main clock. It has an early warning interrupt capability and the counter can be frozen in
debug mode.
3.23.6 SysTick timer
This timer is dedicated to real-time operating systems, but could also be used as a standard
downcounter. It features:
A 24-bit downcounter
Autoreload capability
Maskable system interrupt generation when the counter reaches 0
Programmable clock source.
3.24 Inter-integrated circuit interface (I2C)
The devices feature up to four I2C bus interfaces which can operate in multimaster and
slave modes:
One I2C interface supports the Standard mode (up to 100 kHz), Fast-mode (up to
400 kHz) modes and Fast-mode plus (up to 1 MHz).
Three I2C interfaces support the Standard mode (up to 100 KHz) and the Fast mode
(up to 400 KHz). Their frequency can be increased up to 1 MHz. For more details on
the complete solution, refer to the nearest STMicroelectronics sales office.
All I2C interfaces features 7/10-bit addressing mode and 7-bit addressing mode (as slave)
and embed a hardware CRC generation/verification.
They can be served by DMA and they support SMBus 2.0/PMBus.
The devices also include programmable analog and digital noise filters (see Table 6).
Table 6. Comparison of I2C analog and digital filters
Analog filter Digital filter
Pulse width of
suppressed spikes 50 ns Programmable length from 1 to 15 I2C peripheral clocks
DocID028087 Rev 4 37/193
STM32F412xE/G Functional overview
42
3.25 Universal synchronous/asynchronous receiver transmitters
(USART)
The devices embed four universal synchronous/asynchronous receiver transmitters
(USART1, USART2, USART3 and USART6).
These four interfaces provide asynchronous communication, IrDA SIR ENDEC support,
multiprocessor communication mode, single-wire half-duplex communication mode and
have LIN Master/Slave capability. USART1 and USART6 interfaces are able to
communicate at speeds of up to 12.5 Mbit/s. USART2 and USART3 interfaces
communicate at up to 6.25 bit/s.
All USART interfaces provide hardware management of the CTS and RTS signals, Smart
Card mode (ISO 7816 compliant) and SPI-like communication capability. All interfaces can
be served by the DMA controller.
3.26 Serial peripheral interface (SPI)
The devices feature five SPIs in slave and master modes in full-duplex and simplex
communication modes. SPI1, SPI4 and SPI5 can communicate at up to 50 Mbit/s, SPI2 and
SPI3 can communicate at up to 25 Mbit/s. The 3-bit prescaler gives 8 master mode
frequencies and the frame is configurable to 8 bits or 16 bits. The hardware CRC
generation/verification supports basic SD Card/MMC modes. All SPIs can be served by the
DMA controller.
The SPI interfaces can be configured to operate in TI mode for communications in master
mode and slave mode.
Table 7. USART feature comparison
USART
name
Standard
features
Modem
(RTS/CTS) LIN SPI
master irDA Smartcard
(ISO 7816)
Max. baud
rate in Mbit/s
(oversampling
by 16)
Max. baud
rate in Mbit/s
(oversampling
by 8)
APB
mapping
USART1 X X X X X X 6.25 12.5
APB2
(max.
100 MHz)
USART2 X X X X X X 3.12 6.25
APB1
(max.
50 MHz)
USART3 X X X X X X 3.12 6.25
APB1
(max.
50 MHz)
USART6 X X X X X X 6.25 12.5
APB2
(max.
100 MHz)
Functional overview STM32F412xE/G
38/193 DocID028087 Rev 4
3.27 Inter-integrated sound (I2S)
Five standard I2S interfaces (multiplexed with SPI1 to SPI5) are available. They can be
operated in master or slave mode, in simplex communication mode, and full duplex mode
for I2S2 and I2S3. All I2S interfaces can be configured to operate with a 16-/32-bit resolution
as an input or output channel. I2Sx audio sampling frequencies from 8 kHz up to 192 kHz
are supported. When either or both of the I2S interfaces is/are configured in master mode,
the master clock can be output to the external DAC/CODEC at 256 times the sampling
frequency.
All I2Sx interfaces can be served by the DMA controller.
3.28 Audio PLL (PLLI2S)
The devices feature an additional dedicated PLL for audio I2S applications. It allows to
achieve error-free I2S sampling clock accuracy without compromising on the CPU
performance, while using USB peripherals.
Different sources can be selected for the I2S master clock of the APB1 and the I2S master
clock of the APB2. This gives the flexibility to work with two different audio sampling
frequencies. The different possible sources are the main PLL, the PLLI2S, HSE or HSI
clocks or an external clock provided through a pin (external PLL or Codec output)
The PLLI2S configuration can be modified to manage an I2S sample rate change without
disabling the main PLL (PLL) used for CPU, USB and Ethernet interfaces.
The audio PLL can be programmed with very low error to obtain sampling rates ranging
from 8 KHz to 192 KHz.
3.29 Digital filter for sigma-delta modulators (DFSDM)
The device embeds one DFSDM with 2 digital filters modules and 4 external input serial
channels (transceivers) or alternately 2 internal parallel inputs support.
The DFSDM peripheral is dedicated to interface the external Σ∆ modulators to
microcontroller and then to perform digital filtering of the received data streams (which
represent analog value on Σ∆ modulators inputs). DFSDM can also interface PDM (Pulse
Density Modulation) microphones and perform PDM to PCM conversion and filtering in
hardware. DFSDM features optional parallel data stream inputs from microcontrollers
memory (through DMA/CPU transfers into DFSDM).
DFSDM transceivers support several serial interface formats (to support various Σ∆
modulators). DFSDM digital filter modules perform digital processing according user
selected filter parameters with up to 24-bit final ADC resolution.
DocID028087 Rev 4 39/193
STM32F412xE/G Functional overview
42
The DFSDM peripheral supports:
4 multiplexed input digital serial channels:
configurable SPI interface to connect various SD modulator(s)
configurable Manchester coded 1 wire interface support
PDM (Pulse Density Modulation) microphone input support
maximum input clock frequency up to 20 MHz (10 MHz for Manchester coding)
clock output for SD modulator(s): 0...20 MHz
alternative inputs from 4 internal digital parallel channels (up to 16 bit input resolution):
internal sources: device memory data streams (DMA)
2 digital filter modules with adjustable digital signal processing:
–Sinc
x filter: filter order/type (1...5), oversampling ratio (up to 1...1024)
integrator: oversampling ratio (1...256)
up to 24-bit output data resolution, signed output data format
automatic data offset correction (offset stored in register by user)
continuous or single conversion
start-of-conversion triggered by
software trigger
internal timers
external events
start-of-conversion synchronously with first digital filter module (DFSDM1FLT0)
analog watchdog feature:
low value and high value data threshold registers
dedicated configurable Sincx digital filter (order = 1...3, oversampling ratio = 1...32
input from digital output data or from selected input digital serial channels
continuous monitoring independently from standard conversion
short circuit detector to detect saturated analog input values (bottom and top range):
up to 8-bit counter to detect 1...256 consecutive 0’s or 1’s on serial data stream
monitoring continuously each input serial channel
break signal generation on analog watchdog event or on short circuit detector event
extremes detector:
storage of minimum and maximum values of final conversion data
refreshed by software
DMA capability to read the final conversion data
interrupts: end of conversion, overrun, analog watchdog, short circuit input serial
channel clock absence
“regulator” or injected” conversions:
“regular” conversions can be requested at any time or even in continuous mode
without having any impact on the timing of “injected” conversions
“injected” conversions for precise timing and with high conversion priority.
Functional overview STM32F412xE/G
40/193 DocID028087 Rev 4
3.30 Secure digital input/output interface (SDIO)
An SD/SDIO/MMC host interface is available, that supports MultiMediaCard System
Specification Version 4.2 in three different databus modes: 1-bit (default), 4-bit and 8-bit.
The interface allows data transfer at up to 50 MHz, and is compliant with the SD Memory
Card Specification Version 2.0.
The SDIO Card Specification Version 2.0 is also supported with two different databus
modes: 1-bit (default) and 4-bit.
The current version supports only one SD/SDIO/MMC4.2 card at any one time and a stack
of MMC4.1 or previous.
In addition to SD/SDIO/MMC/eMMC, this interface is fully compliant with the CE-ATA digital
protocol Rev1.1.
3.31 Controller area network (bxCAN)
The two CANs are compliant with the 2.0A and B (active) specifications with a bitrate up to 1
Mbit/s. They can receive and transmit standard frames with 11-bit identifiers as well as
extended frames with 29-bit identifiers. Each CAN has three transmit mailboxes, two receive
FIFOS with 3 stages and 28 shared scalable filter banks (all of them can be used even if one
CAN is used). 256 byte of SRAM are allocated for each CAN.
3.32 Universal serial bus on-the-go full-speed (USB_OTG_FS)
The devices embed an USB OTG full-speed device/host/OTG peripheral with integrated
transceivers. The USB OTG FS peripheral is compliant with the USB 2.0 specification and
with the OTG 1.0 specification. It has software-configurable endpoint setting and supports
suspend/resume. The USB OTG full-speed controller requires a dedicated 48 MHz clock
that is generated by a PLL connected to the HSE oscillator. The Battery Charging Detection
(BCD) can detect and identify the type of port, it is connected to (standard USB or charger).
The type of charging is also detected: Dedicated Charging Port (DCP), Charging
Downstream Port (CDP) and Standard Downstream Port (SDP). Some packages provide a
dedicated USB power rail allowing a different supply for the USB and for the rest of the chip.
For instance the chip can be powered with the minimum specified supply and the USB
running at the level defined by the standard. The major features are:
Combined Rx and Tx FIFO size of 320 × 35 bits with dynamic FIFO sizing
Supports the session request protocol (SRP) and host negotiation protocol (HNP)
6 bidirectional endpoints
12 host channels with periodic OUT support
HNP/SNP/IP inside (no need for any external resistor)
For OTG/Host modes, a power switch is needed in case bus-powered devices are
connected
Link Power Management (LPM)
Battery Charging Detection (BCD) supporting DCP, CDP and SDP
DocID028087 Rev 4 41/193
STM32F412xE/G Functional overview
42
3.33 Random number generator (RNG)
All devices embed an RNG that delivers 32-bit random numbers generated by an integrated
analog circuit.
3.34 General-purpose input/outputs (GPIOs)
Each of the GPIO pins can be configured by software as output (push-pull or open-drain,
with or without pull-up or pull-down), as input (floating, with or without pull-up or pull-down)
or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog
alternate functions. All GPIOs are high-current-capable and have speed selection to better
manage internal noise, power consumption and electromagnetic emission.
The I/O configuration can be locked if needed by following a specific sequence in order to
avoid spurious writing to the I/Os registers.
Fast I/O handling allowing maximum I/O toggling up to 100 MHz.
3.35 Analog-to-digital converter (ADC)
One 12-bit analog-to-digital converter is embedded and shares up to 16 external channels,
performing conversions in the single-shot or scan mode. In scan mode, automatic
conversion is performed on a selected group of analog inputs.
The ADC can be served by the DMA controller. An analog watchdog feature allows very
precise monitoring of the converted voltage of one, some or all selected channels. An
interrupt is generated when the converted voltage is outside the programmed thresholds.
To synchronize A/D conversion and timers, the ADCs could be triggered by any of TIM1,
TIM2, TIM3, TIM4 or TIM5 timer.
3.36 Temperature sensor
The temperature sensor has to generate a voltage that varies linearly with temperature. The
conversion range is between 1.7 V and 3.6 V. The temperature sensor is internally
connected to the ADC_IN18 input channel which is used to convert the sensor output
voltage into a digital value. Refer to the reference manual for additional information.
As the offset of the temperature sensor varies from chip to chip due to process variation, the
internal temperature sensor is mainly suitable for applications that detect temperature
changes instead of absolute temperatures. If an accurate temperature reading is needed,
then an external temperature sensor part should be used.
3.37 Serial wire JTAG debug port (SWJ-DP)
The ARM SWJ-DP interface is embedded, and is a combined JTAG and serial wire debug
port that enables either a serial wire debug or a JTAG probe to be connected to the target.
Debug is performed using 2 pins only instead of 5 required by the JTAG (JTAG pins could
be re-use as GPIO with alternate function): the JTAG TMS and TCK pins are shared with
SWDIO and SWCLK, respectively, and a specific sequence on the TMS pin is used to
switch between JTAG-DP and SW-DP.
Functional overview STM32F412xE/G
42/193 DocID028087 Rev 4
3.38 Embedded Trace Macrocell™
The ARM Embedded Trace Macrocell provides a greater visibility of the instruction and data
flow inside the CPU core by streaming compressed data at a very high rate from the
STM32F412xE/G through a small number of ETM pins to an external hardware trace port
analyzer (TPA) device. The TPA is connected to a host computer using any high-speed
channel available. Real-time instruction and data flow activity can be recorded and then
formatted for display on the host computer that runs the debugger software. TPA hardware
is commercially available from common development tool vendors.
The Embedded Trace Macrocell operates with third party debugger software tools.
DocID028087 Rev 4 43/193
STM32F412xE/G Pinouts and pin description
67
4 Pinouts and pin description
Figure 11. STM32F412xE/G WLCSP64 pinout
1. The above figure shows the package bump side.
Figure 12. STM32F412xE/G UFQFPN48 pinout
1. The above figure shows the package top view.
06Y9
9''3$3&3'3%3%9669''
$
%
&
'
(
)
*
+
9663$3&3%3%3%9%$73&
3$3$3&3%3%
3&
26&B,1
3$3$3$
3&3&3$
3&3%
3%3%
9''9669&$3B
3%
3&
3%
3&
3$
3$
3&
3%
3%
3%
3&
%227
9''
3$
9''$
95()
3&
1567
3$
3$
3$
3$
3&
3'5B21
3&
26&B287
3$
966$
95()
3&
3+
26&B287
3+
26&B,1
069
966
%227
3%
3%
3%
3%
3%
3$
3$
        
 9''
 966
 3$
8)4)31
 3$
966$95()
 3$
9''$95()
 3$
3$
 3$
3$
 3$
3$

9''
        
3$
3$
3$
3$
3$
3%
3%
3%
966






  
  
3%
9&$3B
3%
3%
3%
3%
9%$7
3&
3&26&B,1
3+26&B,1
1567
3%
3%
9''
3&26&B287
3+26&B287
Pinouts and pin description STM32F412xE/G
44/193 DocID028087 Rev 4
Figure 13. STM32F412xE/G LQFP64 pinout
1. The above figure shows the package top view.
             
















            











9%$7
3&26&B,1
3+26&B,1
1567
3&
3&
3&
3&
966$95()
9''$95()
3$
3$
3$
9''
3%
3%
%227
3%
3%
3%
3%
3%
3'
3&
3&
3&
3$
3$
9''
966
3$
3$
3$
3$
3$
3$
3&
3&
3&
3&
3%
3%
3%
3%
3$
966
3$
3$
3$
3$
3&
3&
3%
3%
3%
3%
9&$3B
/4)3
3&
069
9''
966
9''
966
3+26&B287
3&26&B287
DocID028087 Rev 4 45/193
STM32F412xE/G Pinouts and pin description
67
Figure 14. STM32F412xE/G LQFP100 pinout
1. The above figure shows the package top view.


































































0%
0%
0%
0%
0%
6"!4
0#/3#?).
0#/3#?/54
633
6$$
0(/3#?).
.234
0#
0#
0#
0#
6$$
633!62%&
6$$!
62%&
0!
0!
0!
6$$
633
6#!0?
0!
0!
0!
0!
0!
0!
0#
0#
0#
0#
0$
0$
0$
0$
0$
0$
0$
0$
0"
0"
0"
0"
0!
633
6$$
0!
0!
0!
0!
0#
0#
0"
0"
0"
0%
0%
0%
0%
0%
0%
0%
0%
0%
0"
6#!0?
633
6$$
6$$
633
0%
0%
0"
0"
"//4
0"
0"
0"
0"
0"
0$
0$
0$
0$
0$
0$
0$
0$
0#
0#
0#
0!
0!

























-36
,1&0
0#
0(/3#?/54
Pinouts and pin description STM32F412xE/G
46/193 DocID028087 Rev 4
Figure 15. STM32F412xE/G LQFP144 pinout
1. The above figure shows the package top view.
06Y9
/4)3
























3)
3+26&B,1
3+26&B287
1567
3&
3&
3&
3&
9''
966$95()
95()
9''$
3$
3$
3$
3)
3)
3)
9''
3)
3)
3)
966
3)










































































966
9''
3$
3&
3)
3$
3$
3%
966
3)
3$
3&
9''
3)
3(
3%
3%
3*
3(
966
3)
3)
3*
3(
9''
3*
3'
3'
9''
966
3'
3'
3'
3'
3'
3'
3%
3%
3%
3%
3*
3*
966
3*
3*
3&
3&
9''86%
3*
3*
9''
3'5B21
3%
3%
3%
3(
3(
3%
9''
3*
3%
%227
966
3*
3*
3%
3%
3*
3'
9''
3*
3*
3*
3'
 966
 3'
 3'
 3'
 3'
 3'
 3'
 3&
 3&
3&
 3$
 3$
 9''





3$
966
9&$3B
3$
3$


3&
3&


3$
3$
 3$




3(
3%
9&$3B
3%




3(
3(
3(
3(


9''
3(

3$



3)
3)
9%$7
3&26&B,1
3)
3(
3(
3&
3&26&B287
3(
3(
3(
DocID028087 Rev 4 47/193
STM32F412xE/G Pinouts and pin description
67
Figure 16. STM32F412xE/G UFBGA100 pinout
1. The above figure shows the package top view.
06Y9
$
%
(
'
&
)
*
+
-
.
/
0
3(
3&
26&
B287
3&
26&
B,1
3&
3(
3&
966$
95()
95()
9''$
3(
3(
3(
3(
9%$7
966
9''
1567
3&
3&
3$
3$
3%
3(
3%
966
%<3$66
B5(*
3'5
B21
3&
3$
3$
3$
%227
3%
9''
3$
3$
3$
3'
3%
3%
3&
3&
3%
3'
3'
3%
3%
3%
3'
3(
3(
3%
3'
3'
3'
3(
3(
3$
3'
3'
3%
3(
3(
3$
3&
3&
3&
3$
3'
3'
3%
3%
3(
3$
3&
9&$3
B
3$
3&
3'
3'
3%
9&$3
B
3(
966
9''
3$
3$
3$
3&
3&
3'
3'
3%
3%
3(
966
9''
  
3+
26&B
,1
3+
26&B
287
Pinouts and pin description STM32F412xE/G
48/193 DocID028087 Rev 4
Figure 17. STM32F412xE/G UFBGA144 pinout
1. The above figure shows the package top view.
06Y9
3& 3( 3( 3( 3( 3% 3% 3' 3' 3$ 3$ 3$

$
%
&
'
(
)
*
+
-
.
/
0
3&
26&B,1 3( 3( 3( 3% 3% 3* 3* 3' 3& 3& 3$
3&
26&B287 9%$7 3) 3) 3% 3* 3' 3& 9''86% 3$
3+
26&B,1 966 9'' 3' 3$ 3$
3+
26&B287 3) 3) 3' 3& 3$
1567 3) 3& 3&
3) 3) 3* 3&
3& 3& 3& 3* 3* 3*
966$ 3$ 3$ 3* 3* 3*
95() 3$ 3$ 3& 3) 3( 3' 3' 3' 3'
95() 3$ 3$ 3% 3) 3) 3( 3( 3' 3' 3% 3%
9''$ 3$ 3$ 3% 3) 3) 3( 3( 3% 3% 3% 3%
3) %227 3% 3*
3% 3*
3* 3'
3* 3'966 9663) 3'5B21
3) 9''9'' 9''9'' 9''9'' 9''
3) 966966 9&$3B9'' 9''966 9''
3( 3'966 9&$3B3& %<3$66B
5(*
3( 3'3* 3(3& 3%
3* 3(
Table 8. Legend/abbreviations used in the pinout table
Name Abbreviation Definition
Pin name Unless otherwise specified in brackets below the pin name, the pin function during and after
reset is the same as the actual pin name
Pin type
S Supply pin
I Input only pin
I/O Input/ output pin
I/O structure
FT 5 V tolerant I/O
TC Standard 3.3 V I/O
B Dedicated BOOT0 pin
NRST Bidirectional reset pin with embedded weak pull-up resistor
Notes Unless otherwise specified by a note, all I/Os are set as floating inputs during and after reset
Alternate
functions Functions selected through GPIOx_AFR registers
Additional
functions Functions directly selected/enabled through peripheral registers
DocID028087 Rev 4 49/193
STM32F412xE/G Pinouts and pin description
67
Table 9. STM32F412xE/G pin definition
Pin Number
Pin name
(function
after
reset)(1)
Pin
type
I/O
structure Notes Alternate functions Additional
functions
UFQFPN48
LQFP64
WLCSP64
LQFP100
UFBGA100
UFBGA144
LQFP144
- - - 1 B2 A3 1 PE2 I/O FT -
TRACECLK,
SPI4_SCK/I2S4_CK,
SPI5_SCK/I2S5_CK,
QUADSPI_BK1_IO2,
FSMC_A23, EVENTOUT
-
- - - 2 A1 A2 2 PE3 I/O FT - TRACED0, FSMC_A19,
EVENTOUT -
- - - 3 B1 B2 3 PE4 I/O FT -
TRACED1,
SPI4_NSS/I2S4_WS,
SPI5_NSS/I2S5_WS,
DFSDM1_DATIN3,
FSMC_A20, EVENTOUT
-
- - - 4 C2 B3 4 PE5 I/O FT -
TRACED2, TIM9_CH1,
SPI4_MISO, SPI5_MISO,
DFSDM1_CKIN3,
FSMC_A21, EVENTOUT
-
- - - 5 D2 B4 5 PE6 I/O FT -
TRACED3, TIM9_CH2,
SPI4_MOSI/I2S4_SD,
SPI5_MOSI/I2S5_SD,
FSMC_A22, EVENTOUT
-
1 1 B7 6 E2 C2 6 VBAT S - - - VBAT
2 2 B8 7 C1 A1 7 PC13 I/O FT (2)(3) EVENTOUT TAMP_1
33C88D1B18 PC14-
OSC32_IN I/O FT
(2)(3)
(4) EVENTOUT OSC32_IN
44C79E1C19
PC15-
OSC32_
OUT
I/O FT (2)(4) EVENTOUT OSC32_
OUT
---- -C310 PF0 I/O FT - I2C2_SDA, FSMC_A0,
EVENTOUT -
---- -C411 PF1 I/O FT - I2C2_SCL, FSMC_A1,
EVENTOUT -
---- -D412 PF2 I/O FT - I2C2_SMBA, FSMC_A2,
EVENTOUT -
---- -E213 PF3 I/O FT - TIM5_CH1, FSMC_A3,
EVENTOUT -
---- -E314 PF4 I/O FT - TIM5_CH2, FSMC_A4,
EVENTOUT -
Pinouts and pin description STM32F412xE/G
50/193 DocID028087 Rev 4
---- -E415 PF5 I/O FT - TIM5_CH3, FSMC_A5,
EVENTOUT -
- - - 10 F2 D2 16 VSS S - - - -
---11G2D317 VDD S - - - -
---- -F318 PF6 I/O FT -
TRACED0, TIM10_CH1,
QUADSPI_BK1_IO3,
EVENTOUT
-
---- -F219 PF7 I/O FT -
TRACED1, TIM11_CH1,
QUADSPI_BK1_IO2,
EVENTOUT
-
---- -G320 PF8 I/O FT -
TIM13_CH1,
QUADSPI_BK1_IO0,
EVENTOUT
-
---- -G221 PF9 I/O FT -
TIM14_CH1,
QUADSPI_BK1_IO1,
EVENTOUT
-
---- -G122 PF10 I/O FT - TIM1_ETR, TIM5_CH4,
EVENTOUT -
5 5 D8 12 F1 D1 23 PH0 -
OSC_IN I/O FT (4) EVENTOUT OSC_IN
6 6 E8 13 G1 E1 24 PH1 -
OSC_OUT I/O FT (4) EVENTOUT OSC_OUT
7 7 D7 14 H2 F1 25 NRST I/O RST - - NRST
- 8 D5 15 H1 H1 26 PC0 I/O FT - EVENTOUT ADC1_10,
WKUP2
- 9 F8 16 J2 H2 27 PC1 I/O FT - EVENTOUT ADC1_11,
WKUP3
- 10E717 J3 H3 28 PC2 I/O FT -
SPI2_MISO, I2S2ext_SD,
DFSDM1_CKOUT,
FSMC_NWE, EVENTOUT
ADC1_12
- 11 D6 18 K2 H4 29 PC3 I/O FT - SPI2_MOSI/I2S2_SD,
FSMC_A0, EVENTOUT ADC1_13
---19- -30 VDD S - - - -
812G820 - - 31 VSSA/
VREF S- - - -
- - - - J1 J1 - VSSA S - - - -
Table 9. STM32F412xE/G pin definition (continued)
Pin Number
Pin name
(function
after
reset)(1)
Pin
type
I/O
structure Notes Alternate functions Additional
functions
UFQFPN48
LQFP64
WLCSP64
LQFP100
UFBGA100
UFBGA144
LQFP144
DocID028087 Rev 4 51/193
STM32F412xE/G Pinouts and pin description
67
----K1K1- VREF- S - - - -
913F7- - - - VDDA/
VREF+ S- - - -
---21L1L132VREF+ S - - - -
- - - 22 M1 M1 33 VDDA S - - - -
10 14 E6 23 L2 J2 34 PA0 I/O FT -
TIM2_CH1/TIM2_ETR,
TIM5_CH1, TIM8_ETR,
USART2_CTS,
EVENTOUT
ADC1_0,
WKUP1
11 15 G7 24 M2 K2 35 PA1 I/O FT -
TIM2_CH2, TIM5_CH2,
SPI4_MOSI/I2S4_SD,
USART2_RTS,
QUADSPI_BK1_IO3,
EVENTOUT
ADC1_1
12 16 H8 25 K3 L2 36 PA2 I/O FT -
TIM2_CH3, TIM5_CH3,
TIM9_CH1, I2S2_CKIN,
USART2_TX, FSMC_D4,
EVENTOUT
ADC1_2
13 17 F6 26 L3 M2 37 PA3 I/O FT -
TIM2_CH4, TIM5_CH4,
TIM9_CH2, I2S2_MCK,
USART2_RX, FSMC_D5,
EVENTOUT
ADC1_3
- 18 - 27 - G4 38 VSS S - - - -
----E3H5-
BYPASS_
REG IFT - - -
- 19H728 - F4 39 VDD S - - - -
14 20 G6 29 M3 J3 40 PA4 I/O FT -
SPI1_NSS/I2S1_WS,
SPI3_NSS/I2S3_WS,
USART2_CK,
DFSDM1_DATIN1,
FSMC_D6, EVENTOUT
ADC1_4
15 21 F5 30 K4 K3 41 PA5 I/O FT -
TIM2_CH1/TIM2_ETR,
TIM8_CH1N,
SPI1_SCK/I2S1_CK,
DFSDM1_CKIN1,
FSMC_D7, EVENTOUT
ADC1_5
Table 9. STM32F412xE/G pin definition (continued)
Pin Number
Pin name
(function
after
reset)(1)
Pin
type
I/O
structure Notes Alternate functions Additional
functions
UFQFPN48
LQFP64
WLCSP64
LQFP100
UFBGA100
UFBGA144
LQFP144
Pinouts and pin description STM32F412xE/G
52/193 DocID028087 Rev 4
16 22 H6 31 L4 L3 42 PA6 I/O FT -
TIM1_BKIN, TIM3_CH1,
TIM8_BKIN, SPI1_MISO,
I2S2_MCK, TIM13_CH1,
QUADSPI_BK2_IO0,
SDIO_CMD, EVENTOUT
ADC1_6
17 23 E5 32 M4 M3 43 PA7 I/O FT -
TIM1_CH1N, TIM3_CH2,
TIM8_CH1N,
SPI1_MOSI/I2S1_SD,
TIM14_CH1,
QUADSPI_BK2_IO1,
EVENTOUT
ADC1_7
- 24E433 K5 J4 44 PC4 I/O FT -
I2S1_MCK,
QUADSPI_BK2_IO2,
FSMC_NE4, EVENTOUT
ADC1_14
- 25 G5 34 L5 K4 45 PC5 I/O FT -
I2CFMP1_SMBA,
USART3_RX,
QUADSPI_BK2_IO3,
FSMC_NOE, EVENTOUT
ADC1_15
18 26 H5 35 M5 L4 46 PB0 I/O FT -
TIM1_CH2N, TIM3_CH3,
TIM8_CH2N,
SPI5_SCK/I2S5_CK,
EVENTOUT
ADC1_8
19 27 F4 36 M6 M4 47 PB1 I/O FT -
TIM1_CH3N, TIM3_CH4,
TIM8_CH3N,
SPI5_NSS/I2S5_WS,
DFSDM1_DATIN0,
QUADSPI_CLK,
EVENTOUT
ADC1_9
20 28 G4 37 L6 J5 48 PB2 I/O FT -
DFSDM1_CKIN0,
QUADSPI_CLK,
EVENTOUT
BOOT1
- - - - - M5 49 PF11 I/O FT - TIM8_ETR, EVENTOUT -
---- -L550 PF12 I/O FT - TIM8_BKIN, FSMC_A6,
EVENTOUT -
---- - -51 VSS S - - - -
---- -G552 VDD S - - - -
---- -K553 PF13 I/O FT - I2CFMP1_SMBA,
FSMC_A7, EVENTOUT -
Table 9. STM32F412xE/G pin definition (continued)
Pin Number
Pin name
(function
after
reset)(1)
Pin
type
I/O
structure Notes Alternate functions Additional
functions
UFQFPN48
LQFP64
WLCSP64
LQFP100
UFBGA100
UFBGA144
LQFP144
DocID028087 Rev 4 53/193
STM32F412xE/G Pinouts and pin description
67
---- -M654 PF14 I/O FT - I2CFMP1_SCL,
FSMC_A8, EVENTOUT -
---- -L655 PF15 I/O FT - I2CFMP1_SDA,
FSMC_A9, EVENTOUT -
- - - - - K6 56 PG0 I/O FT - CAN1_RX, FSMC_A10,
EVENTOUT -
- - - - - J6 57 PG1 I/O FT - CAN1_TX, FSMC_A11,
EVENTOUT -
- - - 38 M7 M7 58 PE7 I/O FT -
TIM1_ETR,
DFSDM1_DATIN2,
QUADSPI_BK2_IO0,
FSMC_D4/FSMC_DA4,
EVENTOUT
-
- - - 39 L7 L7 59 PE8 I/O FT -
TIM1_CH1N,
DFSDM1_CKIN2,
QUADSPI_BK2_IO1,
FSMC_D5/FSMC_DA5,
EVENTOUT
-
- - - 40 M8 K7 60 PE9 I/O FT -
TIM1_CH1,
DFSDM1_CKOUT,
QUADSPI_BK2_IO2,
FSMC_D6/FSMC_DA6,
EVENTOUT
-
---- - -61 VSS S - - - -
---- -G662 VDD S - - - -
- - - 41 L8 J7 63 PE10 I/O FT -
TIM1_CH2N,
QUADSPI_BK2_IO3,
FSMC_D7/FSMC_DA7,
EVENTOUT
-
- - - 42 M9 H8 64 PE11 I/O FT -
TIM1_CH2,
SPI4_NSS/I2S4_WS,
SPI5_NSS/I2S5_WS,
FSMC_D8/FSMC_DA8,
EVENTOUT
-
- - - 43 L9 J8 65 PE12 I/O FT -
TIM1_CH3N,
SPI4_SCK/I2S4_CK,
SPI5_SCK/I2S5_CK,
FSMC_D9/FSMC_DA9,
EVENTOUT
-
Table 9. STM32F412xE/G pin definition (continued)
Pin Number
Pin name
(function
after
reset)(1)
Pin
type
I/O
structure Notes Alternate functions Additional
functions
UFQFPN48
LQFP64
WLCSP64
LQFP100
UFBGA100
UFBGA144
LQFP144
Pinouts and pin description STM32F412xE/G
54/193 DocID028087 Rev 4
---44
M1
0K8 66 PE13 I/O FT -
TIM1_CH3, SPI4_MISO,
SPI5_MISO,
FSMC_D10/FSMC_DA10,
EVENTOUT
-
- - - 45 M11 L8 67 PE14 I/O FT -
TIM1_CH4,
SPI4_MOSI/I2S4_SD,
SPI5_MOSI/I2S5_SD,
FSMC_D11/FSMC_DA11,
EVENTOUT
-
---46
M1
2M8 68 PE15 I/O FT -
TIM1_BKIN,
FSMC_D12/FSMC_DA12,
EVENTOUT
-
21 29 H4 47 L10 M9 69 PB10 I/O FT -
TIM2_CH3, I2C2_SCL,
SPI2_SCK/I2S2_CK,
I2S3_MCK, USART3_TX,
I2CFMP1_SCL, SDIO_D7,
EVENTOUT
-
----K9
M1
070 PB11 I/O FT -
TIM2_CH4, I2C2_SDA,
I2S2_CKIN, USART3_RX,
EVENTOUT
-
22 30 H3 48 L11 H7 71 VCAP_1 S - - - -
23 31 H2 49 F12 H6 - VSS S - - - -
24 32 H1 50 G1
2G7 72 VDD S - - - -
25 33 G3 51 L12 M11 73 PB12 I/O FT -
TIM1_BKIN, I2C2_SMBA,
SPI2_NSS/I2S2_WS,
SPI4_NSS/I2S4_WS,
SPI3_SCK/I2S3_CK,
USART3_CK, CAN2_RX,
DFSDM1_DATIN1,
FSMC_D13/FSMC_DA13,
EVENTOUT
-
26 34 G2 52 K12 M1
274 PB13 I/O FT -
TIM1_CH1N,
I2CFMP1_SMBA,
SPI2_SCK/I2S2_CK,
SPI4_SCK/I2S4_CK,
USART3_CTS, CAN2_TX,
DFSDM1_CKIN1,
EVENTOUT
-
Table 9. STM32F412xE/G pin definition (continued)
Pin Number
Pin name
(function
after
reset)(1)
Pin
type
I/O
structure Notes Alternate functions Additional
functions
UFQFPN48
LQFP64
WLCSP64
LQFP100
UFBGA100
UFBGA144
LQFP144
DocID028087 Rev 4 55/193
STM32F412xE/G Pinouts and pin description
67
27 35 G1 53 K11 L11 75 PB14 I/O FT -
TIM1_CH2N,
TIM8_CH2N,
I2CFMP1_SDA,
SPI2_MISO, I2S2ext_SD,
USART3_RTS,
DFSDM1_DATIN2,
TIM12_CH1, FSMC_D0,
SDIO_D6, EVENTOUT
-
28 36 F2 54 K10 L12 76 PB15 I/O FT -
RTC_50Hz, TIM1_CH3N,
TIM8_CH3N,
I2CFMP1_SCL,
SPI2_MOSI/I2S2_SD,
DFSDM1_CKIN2,
TIM12_CH2, SDIO_CK,
EVENTOUT
-
- - - 55 - L9 77 PD8 I/O FT - USART3_TX, FSMC_D13/
FSMC_DA13, EVENTOUT -
- - - 56 K8 K9 78 PD9 I/O FT -
USART3_RX,
FSMC_D14/FSMC_DA14,
EVENTOUT
-
- - - 57 J12 J9 79 PD10 I/O FT -
USART3_CK,
FSMC_D15/FSMC_DA15,
EVENTOUT
-
- - - 58 J11 H9 80 PD11 I/O FT -
I2CFMP1_SMBA,
USART3_CTS,
QUADSPI_BK1_IO0,
FSMC_A16, EVENTOUT
-
- - - 59 J10 L10 81 PD12 I/O FT -
TIM4_CH1,
I2CFMP1_SCL,
USART3_RTS,
QUADSPI_BK1_IO1,
FSMC_A17, EVENTOUT
-
- - - 60 H12 K10 82 PD13 I/O FT -
TIM4_CH2,
I2CFMP1_SDA,
QUADSPI_BK1_IO3,
FSMC_A18, EVENTOUT
-
---- -G883 VSS S - - - -
---- -F884 VDD S - - - -
Table 9. STM32F412xE/G pin definition (continued)
Pin Number
Pin name
(function
after
reset)(1)
Pin
type
I/O
structure Notes Alternate functions Additional
functions
UFQFPN48
LQFP64
WLCSP64
LQFP100
UFBGA100
UFBGA144
LQFP144
Pinouts and pin description STM32F412xE/G
56/193 DocID028087 Rev 4
- - - 61 H11 K11 85 PD14 I/O FT -
TIM4_CH3,
I2CFMP1_SCL,
FSMC_D0/FSMC_DA0,
EVENTOUT
-
- - - 62 H10 K12 86 PD15 I/O FT -
TIM4_CH4,
I2CFMP1_SDA,
FSMC_D1/FSMC_DA1,
EVENTOUT
-
- - - - - J12 87 PG2 I/O FT - FSMC_A12, EVENTOUT -
- - - - - J11 88 PG3 I/O FT - FSMC_A13, EVENTOUT -
- - - - - J10 89 PG4 I/O FT - FSMC_A14, EVENTOUT -
- - - - - H12 90 PG5 I/O FT - FSMC_A15, EVENTOUT -
---- -H1191 PG6 I/O FT - QUADSPI_BK1_NCS,
EVENTOUT -
- - - - - H10 92 PG7 I/O FT - USART6_CK, EVENTOUT -
---- -G1193 PG8 I/O FT - USART6_RTS,
EVENTOUT -
---- - -94 VSS S - - - -
---- -F10- VDD S -
- - - - - C11 95 VDDUSB S - - - -
- 37 F1 63 E12 G12 96 PC6 I/O FT -
TIM3_CH1, TIM8_CH1,
I2CFMP1_SCL,
I2S2_MCK,
DFSDM1_CKIN3,
USART6_TX, FSMC_D1,
SDIO_D6, EVENTOUT
-
- 38E164E11F1297 PC7 I/O FT -
TIM3_CH2, TIM8_CH2,
I2CFMP1_SDA,
SPI2_SCK/I2S2_CK,
I2S3_MCK, USART6_RX,
DFSDM1_DATIN3,
SDIO_D7, EVENTOUT
-
- 39 F3 65 E10 F11 98 PC8 I/O FT -
TIM3_CH3, TIM8_CH3,
USART6_CK,
QUADSPI_BK1_IO2,
SDIO_D0, EVENTOUT
-
Table 9. STM32F412xE/G pin definition (continued)
Pin Number
Pin name
(function
after
reset)(1)
Pin
type
I/O
structure Notes Alternate functions Additional
functions
UFQFPN48
LQFP64
WLCSP64
LQFP100
UFBGA100
UFBGA144
LQFP144
DocID028087 Rev 4 57/193
STM32F412xE/G Pinouts and pin description
67
- 40E266D12E1199 PC9 I/O FT -
MCO_2, TIM3_CH4,
TIM8_CH4, I2C3_SDA,
I2S2_CKIN,
QUADSPI_BK1_IO0,
SDIO_D1, EVENTOUT
-
29 41 E3 67 D11 E12 100 PA8 I/O FT -
MCO_1, TIM1_CH1,
I2C3_SCL, USART1_CK,
USB_FS_SOF, SDIO_D1,
EVENTOUT
-
30 42 D1 68 D10 D12 101 PA9 I/O FT -
TIM1_CH2, I2C3_SMBA,
USART1_TX,
USB_FS_VBUS,
SDIO_D2, EVENTOUT
-
31 43 D2 69 C12 D11 102 PA10 I/O FT -
TIM1_CH3,
SPI5_MOSI/I2S5_SD,
USART1_RX,
USB_FS_ID, EVENTOUT
-
32 44 D3 70 B12 C12 103 PA11 I/O FT -
TIM1_CH4, SPI4_MISO,
USART1_CTS,
USART6_TX, CAN1_RX,
USB_FS_DM,
EVENTOUT
-
33 45 C1 71 A12 B12 104 PA12 I/O FT -
TIM1_ETR, SPI5_MISO,
USART1_RTS,
USART6_RX, CAN1_TX,
USB_FS_DP, EVENTOUT
-
34 46 C2 72 A11 A12 105 PA13 I/O FT - JTMS-SWDIO,
EVENTOUT -
- - - 73 C11 G9 106 VCAP_2 S - - - -
35 47 B1 74 F11 G10 107 VSS S - - - -
36 48 - 75 G11 - - VDD S - - - -
- - A1 - - F9 108 VDD S - - - -
37 49 B2 76 A10 A11 109 PA14 I/O FT - JTCK-SWCLK,
EVENTOUT -
38 50 A2 77 A9 A10 110 PA15 I/O FT -
JTDI,
TIM2_CH1/TIM2_ETR,
SPI1_NSS/I2S1_WS,
SPI3_NSS/I2S3_WS,
USART1_TX, EVENTOUT
-
Table 9. STM32F412xE/G pin definition (continued)
Pin Number
Pin name
(function
after
reset)(1)
Pin
type
I/O
structure Notes Alternate functions Additional
functions
UFQFPN48
LQFP64
WLCSP64
LQFP100
UFBGA100
UFBGA144
LQFP144
Pinouts and pin description STM32F412xE/G
58/193 DocID028087 Rev 4
- 51 C3 78 B11 B11 111 PC10 I/O FT -
SPI3_SCK/I2S3_CK,
USART3_TX,
QUADSPI_BK1_IO1,
SDIO_D2, EVENTOUT
-
- 52B379C10B10112 PC11 I/O FT -
I2S3ext_SD, SPI3_MISO,
USART3_RX,
QUADSPI_BK2_NCS,
FSMC_D2, SDIO_D3,
EVENTOUT
-
- 53A380B10C10113 PC12 I/O FT -
SPI3_MOSI/I2S3_SD,
USART3_CK, FSMC_D3,
SDIO_CK, EVENTOUT
-
- - - 81 C9 E10 114 PD0 I/O FT -
CAN1_RX,
FSMC_D2/FSMC_DA2,
EVENTOUT
-
- - - 82 B9 D10 115 PD1 I/O FT -
CAN1_TX,
FSMC_D3/FSMC_DA3,
EVENTOUT
-
- 54A483 C8 E9116 PD2 I/O FT - TIM3_ETR, FSMC_NWE,
SDIO_CMD, EVENTOUT -
- - - 84 B8 D9 117 PD3 I/O FT -
TRACED1,
SPI2_SCK/I2S2_CK,
DFSDM1_DATIN0,
USART2_CTS,
QUADSPI_CLK,
FSMC_CLK, EVENTOUT
-
- - - 85 B7 C9 118 PD4 I/O FT -
DFSDM1_CKIN0,
USART2_RTS,
FSMC_NOE, EVENTOUT
-
- - - 86 A6 B9 119 PD5 I/O FT - USART2_TX,
FSMC_NWE, EVENTOUT -
---- -E7120 VSS S - - - -
---- -F7121 VDD S - - - -
- - - 87 B6 A8 122 PD6 I/O FT -
SPI3_MOSI/I2S3_SD,
DFSDM1_DATIN1,
USART2_RX,
FSMC_NWAIT,
EVENTOUT
-
Table 9. STM32F412xE/G pin definition (continued)
Pin Number
Pin name
(function
after
reset)(1)
Pin
type
I/O
structure Notes Alternate functions Additional
functions
UFQFPN48
LQFP64
WLCSP64
LQFP100
UFBGA100
UFBGA144
LQFP144
DocID028087 Rev 4 59/193
STM32F412xE/G Pinouts and pin description
67
- - - 88 A5 A9 123 PD7 I/O FT -
DFSDM1_CKIN1,
USART2_CK,
FSMC_NE1, EVENTOUT
-
---- -E8124 PG9 I/O FT -
USART6_RX,
QUADSPI_BK2_IO2,
FSMC_NE2, EVENTOUT
-
- - - - - D8 125 PG10 I/O FT - FSMC_NE3, EVENTOUT -
- - - - - C8 126 PG11 I/O FT - CAN2_RX, EVENTOUT -
- - - - - B8 127 PG12 I/O FT - USART6_RTS, CAN2_TX,
FSMC_NE4, EVENTOUT -
- - - - - D7 128 PG13 I/O FT -
TRACED2,
USART6_CTS,
FSMC_A24, EVENTOUT
-
- - - - - C7 129 PG14 I/O FT -
TRACED3, USART6_TX,
QUADSPI_BK2_IO3,
FSMC_A25, EVENTOUT
-
---- - -130 VSS S - - - -
---- -F6131 VDD S - - - -
- - - - - B7 132 PG15 I/O FT - USART6_CTS,
EVENTOUT -
39 55 A5 89 A8 A7 133 PB3 I/O FT -
JTDO-SWO, TIM2_CH2,
I2CFMP1_SDA,
SPI1_SCK/I2S1_CK,
SPI3_SCK/I2S3_CK,
USART1_RX, I2C2_SDA,
EVENTOUT
-
40 56 B4 90 A7 A6 134 PB4 I/O FT -
JTRST, TIM3_CH1,
SPI1_MISO, SPI3_MISO,
I2S3ext_SD, I2C3_SDA,
SDIO_D0, EVENTOUT
-
41 57 C4 91 C5 B6 135 PB5 I/O FT -
TIM3_CH2, I2C1_SMBA,
SPI1_MOSI/I2S1_SD,
SPI3_MOSI/I2S3_SD,
CAN2_RX, SDIO_D3,
EVENTOUT
-
Table 9. STM32F412xE/G pin definition (continued)
Pin Number
Pin name
(function
after
reset)(1)
Pin
type
I/O
structure Notes Alternate functions Additional
functions
UFQFPN48
LQFP64
WLCSP64
LQFP100
UFBGA100
UFBGA144
LQFP144
Pinouts and pin description STM32F412xE/G
60/193 DocID028087 Rev 4
42 58 B5 92 B5 C6 136 PB6 I/O FT -
TIM4_CH1, I2C1_SCL,
USART1_TX, CAN2_TX,
QUADSPI_BK1_NCS,
SDIO_D0, EVENTOUT
-
43 59 A6 93 B4 D6 137 PB7 I/O FT -
TIM4_CH2, I2C1_SDA,
USART1_RX, FSMC_NL,
EVENTOUT
-
44 60 D4 94 A4 D5 138 BOOT0 I B - - VPP
45 61 C5 95 A3 C5 139 PB8 I/O FT -
TIM4_CH3, TIM10_CH1,
I2C1_SCL,
SPI5_MOSI/I2S5_SD,
CAN1_RX, I2C3_SDA,
SDIO_D4, EVENTOUT
-
46 62 B6 96 B3 B5 140 PB9 I/O FT -
TIM4_CH4, TIM11_CH1,
I2C1_SDA,
SPI2_NSS/I2S2_WS,
CAN1_TX, I2C2_SDA,
SDIO_D5, EVENTOUT
-
- - - 97 C3 A5 141 PE0 I/O FT - TIM4_ETR, FSMC_NBL0,
EVENTOUT -
- - - 98 A2 A4 142 PE1 I/O FT - FSMC_NBL1, EVENTOUT -
47 63 A7 99 - E6 - VSS S - - - -
- - C6 - H3 E5 143 PDR_ON I FT - - -
48 64 A8 10
0- F5 144 VDD S - - - -
1. Function availability depends on the chosen device.
2. PC13, PC14 and PC15 are supplied through the power switch. Since the switch only sinks a limited amount of current
(3 mA), the use of GPIOs PC13 to PC15 in output mode is limited:
- The speed should not exceed 2 MHz with a maximum load of 30 pF.
- These I/Os must not be used as a current source (e.g. to drive an LED).
3. Main function after the first backup domain power-up. Later on, it depends on the contents of the RTC registers even after
reset (because these registers are not reset by the main reset). For details on how to manage these I/Os, refer to the RTC
register description sections in the STM32F412xE/Greference manual.
4. FT = 5 V tolerant except when in analog mode or oscillator mode (for PC14, PC15, PH0 and PH1).
Table 9. STM32F412xE/G pin definition (continued)
Pin Number
Pin name
(function
after
reset)(1)
Pin
type
I/O
structure Notes Alternate functions Additional
functions
UFQFPN48
LQFP64
WLCSP64
LQFP100
UFBGA100
UFBGA144
LQFP144
STM32F412xE/G Pinouts and pin description
DocID028087 Rev 4 61/193
Table 10. STM32F412xE/G alternate functions
Port
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF12 AF15
SYS_AF TIM1/
TIM2
TIM3/
TIM4/
TIM5
TIM8/
TIM9/
TIM10/
TIM11
I2C1/
I2C2/
I2C3/
I2CFMP1
SPI1/I2S1/
SPI2/I2S2/
SPI3/I2S3/
SPI4/I2S4
SPI2/I2S2/SPI3
/I2S3/SPI4/
I2S4/SPI5/I2S5
/DFSDM1
SPI3/I2S3/
USART1/
USART2/
USART3
DFSDM1/
USART3/
USART6/
CAN1
I2C2/I2C3/
I2CFMP1/
CAN1/CAN2
/TIM12/
TIM13/TIM14
/QUADSPI
DFSDM1/
QUADSPI/
FSMC
/OTG1_FS
FSMC /SDIO SYS_AF
Port A
PA0 - TIM2_CH1/
TIM2_ETR TIM5_CH1 TIM8_ETR - - - USART2_CTS - - - - EVENTOUT
PA1 - TIM2_CH2 TIM5_CH2 - - SPI4_MOSI/I
2S4_SD - USART2_RTS - QUADSPI_
BK1_IO3 - - EVENTOUT
PA2 - TIM2_CH3 TIM5_CH3 TIM9_CH1 - I2S2_CKIN - USART2_TX - - - FSMC_D4 EVENTOUT
PA3 - TIM2_CH4 TIM5_CH4 TIM9_CH2 - I2S2_MCK - USART2_RX - - - FSMC_D5 EVENTOUT
PA4 - - - - - SPI1_NSS/I2
S1_WS
SPI3_NSS/
I2S3_WS USART2_CK DFSDM1_
DATIN1 - - FSMC_D6 EVENTOUT
PA5 - TIM2_CH1/
TIM2_ETR - TIM8_CH1N - SPI1_SCK/
I2S1_CK --
DFSDM1_
CKIN1 - - FSMC_D7 EVENTOUT
PA6 - TIM1_BKIN TIM3_CH1 TIM8_BKIN - SPI1_MISO I2S2_MCK - - TIM13_
CH1
QUADSPI_
BK2_IO0 SDIO_CMD EVENTOUT
PA7 - TIM1_CH1N TIM3_CH2 TIM8_CH1N - SPI1_MOSI/I
2S1_SD ---
TIM14_
CH1
QUADSPI_
BK2_IO1 -EVENTOUT
PA8 MCO_1 TIM1_CH1 - - I2C3_SCL - - USART1_CK - - USB_FS_
SOF SDIO_D1 EVENTOUT
PA9 - TIM1_CH2 - - I2C3_
SMBA - - USART1_TX - - USB_FS_
VBUS SDIO_D2 EVENTOUT
PA10 - TIM1_CH3 - - - - SPI5_MOSI/
I2S5_SD USART1_RX - - USB_FS_ID - EVENTOUT
PA11 - TIM1_CH4 - - - - SPI4_MISO USART1_CTS USART6_
TX CAN1_RX USB_FS_DM - EVENTOUT
PA12 - TIM1_ETR - - - - SPI5_MISO USART1_RTS USART6_
RX CAN1_TX USB_FS_DP - EVENTOUT
PA13 JTMS-
SWDIO --- - - - - -- - -EVENTOUT
PA14 JTCK-
SWCLK --- - - - - -- - -EVENTOUT
PA15 JTDI TIM2_CH1/
TIM2_ETR -- -
SPI1_NSS/
I2S1_WS
SPI3_NSS/
I2S3_WS USART1_TX - - - - EVENTOUT
Pinouts and pin description STM32F412xE/G
62/193 DocID028087 Rev 4
Port B
PB0 - TIM1_CH2N TIM3_CH3 TIM8_CH2N - - SPI5_SCK/
I2S5_CK --- - -EVENTOUT
PB1 - TIM1_CH3N TIM3_CH4 TIM8_CH3N - - SPI5_NSS/
I2S5_WS -DFSDM1_
DATIN0
QUADSPI_
CLK - - EVENTOUT
PB2 - - - - - - DFSDM1_
CKIN0 --
QUADSPI_
CLK - - EVENTOUT
PB3 JTDO-
SWO TIM2_CH2 I2CFMP1_
SDA
SPI1_SCK/I2
S1_CK
SPI3_SCK/
I2S3_CK USART1_RX - I2C2_SDA - - EVENTOUT
PB4 JTRST - TIM3_CH1 - - SPI1_MISO SPI3_MISO I2S3ext_
SD - I2C3_SDA - SDIO_D0 EVENTOUT
PB5 - - TIM3_CH2 - I2C1_SMBA SPI1_MOSI/I
2S1_SD
SPI3_MOSI/
I2S3_SD - - CAN2_RX - SDIO_D3 EVENTOUT
PB6 - - TIM4_CH1 - I2C1_SCL - - USART1_TX - CAN2_TX QUADSPI_
BK1_NCS SDIO_D0 EVENTOUT
PB7 - - TIM4_CH2 - I2C1_SDA - - USART1_RX - - - FSMC_NL EVENTOUT
PB8 - - TIM4_CH3 TIM10_CH1 I2C1_SCL - SPI5_MOSI/I2S
5_SD - CAN1_RX I2C3_SDA - SDIO_D4 EVENTOUT
PB9 - - TIM4_CH4 TIM11_CH1 I2C1_SDA SPI2_NSS/
I2S2_WS - - CAN1_TX I2C2_SDA - SDIO_D5 EVENTOUT
PB10 - TIM2_CH3 - - I2C2_SCL SPI2_SCK/
I2S2_CK I2S3_MCK USART3_TX - I2CFMP1_
SCL - SDIO_D7 EVENTOUT
PB11 - TIM2_CH4 - - I2C2_SDA I2S2_CKIN - USART3_RX - - - - EVENTOUT
PB12 - TIM1_BKIN - - I2C2_SMBA SPI2_NSS/
I2S2_WS
SPI4_NSS/
I2S4_WS
SPI3_SCK/
I2S3_CK
USART3_
CK CAN2_RX DFSDM1_
DATIN1
FSMC_D13/F
SMC_DA13 EVENTOUT
PB13 - TIM1_CH1N - - I2CFMP1_
SMBA
SPI2_SCK/
I2S2_CK
SPI4_SCK/
I2S4_CK -USART3_
CTS CAN2_TX DFSDM1_
CKIN1 -EVENTOUT
PB14 - TIM1_CH2N - TIM8_CH2N I2CFMP1_
SDA SPI2_MISO I2S2ext_SD USART3_
RTS
DFSDM1_
DATIN2 TIM12_CH1 FSMC_D0 SDIO_D6 EVENTOUT
PB15 RTC_
50Hz TIM1_CH3N - TIM8_CH3N I2CFMP1_
SCL
SPI2_MOSI/I
2S2_SD --
DFSDM1_
CKIN2 TIM12_CH2 - SDIO_CK EVENTOUT
Table 10. STM32F412xE/G alternate functions (continued)
Port
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF12 AF15
SYS_AF TIM1/
TIM2
TIM3/
TIM4/
TIM5
TIM8/
TIM9/
TIM10/
TIM11
I2C1/
I2C2/
I2C3/
I2CFMP1
SPI1/I2S1/
SPI2/I2S2/
SPI3/I2S3/
SPI4/I2S4
SPI2/I2S2/SPI3
/I2S3/SPI4/
I2S4/SPI5/I2S5
/DFSDM1
SPI3/I2S3/
USART1/
USART2/
USART3
DFSDM1/
USART3/
USART6/
CAN1
I2C2/I2C3/
I2CFMP1/
CAN1/CAN2
/TIM12/
TIM13/TIM14
/QUADSPI
DFSDM1/
QUADSPI/
FSMC
/OTG1_FS
FSMC /SDIO SYS_AF
STM32F412xE/G Pinouts and pin description
DocID028087 Rev 4 63/193
Port C
PC0 - - - - - - - - - - - - EVENTOUT
PC1 - - - - - - - - - - - - EVENTOUT
PC2 - - - - - SPI2_MISO I2S2ext_SD - DFSDM1_
CKOUT - - FSMC_NWE EVENTOUT
PC3 - - - - - SPI2_MOSI/I
2S2_SD - - - - - FSMC_A0 EVENTOUT
PC4 - - - - - I2S1_MCK - - - - QUADSPI_
BK2_IO2 FSMC_NE4 EVENTOUT
PC5 - - - - I2CFMP1_
SMBA - - USART3_RX - - QUADSPI_
BK2_IO3 FSMC_NOE EVENTOUT
PC6 - - TIM3_CH1 TIM8_CH1 I2CFMP1_
SCL I2S2_MCK DFSDM1_
CKIN3 -USART6_
TX - FSMC_D1 SDIO_D6 EVENTOUT
PC7 - - TIM3_CH2 TIM8_CH2 I2CFMP1_
SDA
SPI2_SCK/
I2S2_CK I2S3_MCK - USART6_
RX -DFSDM1_
DATIN3 SDIO_D7 EVENTOUT
PC8 - - TIM3_CH3 TIM8_CH3 - - - - USART6_
CK
QUADSPI_
BK1_IO2 - SDIO_D0 EVENTOUT
PC9 MCO_2 - TIM3_CH4 TIM8_CH4 I2C3_SDA I2S2_CKIN - - - QUADSPI_
BK1_IO0 - SDIO_D1 EVENTOUT
PC10 - - - - - - SPI3_SCK/
I2S3_CK USART3_TX - QUADSPI_
BK1_IO1 - SDIO_D2 EVENTOUT
PC11 - - - - - I2S3ext_SD SPI3_MISO USART3_RX - QUADSPI_
BK2_NCS FSMC_D2 SDIO_D3 EVENTOUT
PC12 - - - - - - SPI3_MOSI/
I2S3_SD USART3_CK - - FSMC_D3 SDIO_CK EVENTOUT
PC13 - - - - - - - - - - - - EVENTOUT
PC14 - - - - - - - - - - - - EVENTOUT
PC15 - - - - - - - - - - - - EVENTOUT
Table 10. STM32F412xE/G alternate functions (continued)
Port
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF12 AF15
SYS_AF TIM1/
TIM2
TIM3/
TIM4/
TIM5
TIM8/
TIM9/
TIM10/
TIM11
I2C1/
I2C2/
I2C3/
I2CFMP1
SPI1/I2S1/
SPI2/I2S2/
SPI3/I2S3/
SPI4/I2S4
SPI2/I2S2/SPI3
/I2S3/SPI4/
I2S4/SPI5/I2S5
/DFSDM1
SPI3/I2S3/
USART1/
USART2/
USART3
DFSDM1/
USART3/
USART6/
CAN1
I2C2/I2C3/
I2CFMP1/
CAN1/CAN2
/TIM12/
TIM13/TIM14
/QUADSPI
DFSDM1/
QUADSPI/
FSMC
/OTG1_FS
FSMC /SDIO SYS_AF
Pinouts and pin description STM32F412xE/G
64/193 DocID028087 Rev 4
Port D
PD0 - - - - - - - - - CAN1_RX - FSMC_D2/FS
MC_DA2 EVENTOUT
PD1 - - - - - - - - - CAN1_TX - FSMC_D3/FS
MC_DA3 EVENTOUT
PD2 - - TIM3_ETR - - - - - - - FSMC_NWE SDIO_CMD EVENTOUT
PD3 TRACED1 - - - - SPI2_SCK/
I2S2_CK
DFSDM1_
DATIN0
USART2_
CTS -QUADSPI_
CLK - FSMC_CLK EVENTOUT
PD4 - - - - - - DFSDM1_
CKIN0
USART2_
RTS - - - FSMC_NOE EVENTOUT
PD5 - - - - - - - USART2_TX - - - FSMC_NWE EVENTOUT
PD6 - - - - - SPI3_MOSI/I
2S3_SD
DFSDM1_
DATIN1 USART2_RX - - - FSMC_
NWAIT EVENTOUT
PD7 - - - - - - DFSDM1_
CKIN1 USART2_CK - - - FSMC_NE1 EVENTOUT
PD8 - - - - - - - USART3_TX - - - FSMC_D13/
FSMC_DA13 EVENTOUT
PD9 - - - - - - - USART3_RX - - - FSMC_D14/
FSMC_DA14 EVENTOUT
PD10 - - - - - - - USART3_CK - - - FSMC_D15/
FSMC_DA15 EVENTOUT
PD11 - - - - I2CFMP1_
SMBA --
USART3_
CTS -QUADSPI_
BK1_IO0 - FSMC_A16 EVENTOUT
PD12 - - TIM4_CH1 - I2CFMP1_
SCL
USART3_
RTS -QUADSPI_
BK1_IO1 - FSMC_A17 EVENTOUT
PD13 - - TIM4_CH2 - I2CFMP1_
SDA -- --
QUADSPI_
BK1_IO3 - FSMC_A18 EVENTOUT
PD14 - - TIM4_CH3 - I2CFMP1_
SCL -- ----
FSMC_D0/
FSMC_DA0 EVENTOUT
PD15 - - TIM4_CH4 - I2CFMP1_
SDA -- ----
FSMC_D1/
FSMC_DA1 EVENTOUT
Table 10. STM32F412xE/G alternate functions (continued)
Port
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF12 AF15
SYS_AF TIM1/
TIM2
TIM3/
TIM4/
TIM5
TIM8/
TIM9/
TIM10/
TIM11
I2C1/
I2C2/
I2C3/
I2CFMP1
SPI1/I2S1/
SPI2/I2S2/
SPI3/I2S3/
SPI4/I2S4
SPI2/I2S2/SPI3
/I2S3/SPI4/
I2S4/SPI5/I2S5
/DFSDM1
SPI3/I2S3/
USART1/
USART2/
USART3
DFSDM1/
USART3/
USART6/
CAN1
I2C2/I2C3/
I2CFMP1/
CAN1/CAN2
/TIM12/
TIM13/TIM14
/QUADSPI
DFSDM1/
QUADSPI/
FSMC
/OTG1_FS
FSMC /SDIO SYS_AF
STM32F412xE/G Pinouts and pin description
DocID028087 Rev 4 65/193
Port E
PE0 - - TIM4_ETR - - - - - - - - FSMC_NBL0 EVENTOUT
PE1 - - - - - - - - - - - FSMC_NBL1 EVENTOUT
PE2 TRACECL
K--- -
SPI4_SCK/
I2S4_CK
SPI5_SCK/
I2S5_CK --
QUADSPI_
BK1_IO2 - FSMC_A23 EVENTOUT
PE3 TRACED0 - - - - - - - - - - FSMC_A19 EVENTOUT
PE4 TRACED1 - - - - SPI4_NSS/
I2S4_WS
SPI5_NSS/
I2S5_WS -DFSDM1_
DATIN3 - - FSMC_A20 EVENTOUT
PE5 TRACED2 - - TIM9_CH1 - SPI4_MISO SPI5_MISO - DFSDM1_
CKIN3 - - FSMC_A21 EVENTOUT
PE6 TRACED3 - - TIM9_CH2 - SPI4_MOSI/I
2S4_SD
SPI5_MOSI/
I2S5_SD - - - - FSMC_A22 EVENTOUT
PE7 - TIM1_ETR - - - - DFSDM1_
DATIN2 ---
QUADSPI_
BK2_IO0
FSMC_D4/
FSMC_DA4 EVENTOUT
PE8 - TIM1_CH1N - - - - DFSDM1_
CKIN2 ---
QUADSPI_
BK2_IO1
FSMC_D5/
FSMC_DA5 EVENTOUT
PE9 - TIM1_CH1 - - - - DFSDM1_
CKOUT ---
QUADSPI_
BK2_IO2
FSMC_D6/
FSMC_DA6 EVENTOUT
PE10 - TIM1_CH2N - - - - - - - - QUADSPI_
BK2_IO3
FSMC_D7/
FSMC_DA7 EVENTOUT
PE11 - TIM1_CH2 - - - SPI4_NSS/
I2S4_WS
SPI5_NSS/
I2S5_WS --- FSMC_D8/
FSMC_DA8 EVENTOUT
PE12 - TIM1_CH3N - - - SPI4_SCK/
I2S4_CK
SPI5_SCK/
I2S5_CK --- -
FSMC_D9/
FSMC_DA9 EVENTOUT
PE13 - TIM1_CH3 - - - SPI4_MISO SPI5_MISO - - - - FSMC_D10/
FSMC_DA10 EVENTOUT
PE14 - TIM1_CH4 - - - SPI4_MOSI/I
2S4_SD
SPI5_MOSI/
I2S5_SD --- -
FSMC_D11/
FSMC_DA11 EVENTOUT
PE15 - TIM1_BKIN - - - - - - - - - FSMC_D12/
FSMC_DA12 EVENTOUT
Table 10. STM32F412xE/G alternate functions (continued)
Port
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF12 AF15
SYS_AF TIM1/
TIM2
TIM3/
TIM4/
TIM5
TIM8/
TIM9/
TIM10/
TIM11
I2C1/
I2C2/
I2C3/
I2CFMP1
SPI1/I2S1/
SPI2/I2S2/
SPI3/I2S3/
SPI4/I2S4
SPI2/I2S2/SPI3
/I2S3/SPI4/
I2S4/SPI5/I2S5
/DFSDM1
SPI3/I2S3/
USART1/
USART2/
USART3
DFSDM1/
USART3/
USART6/
CAN1
I2C2/I2C3/
I2CFMP1/
CAN1/CAN2
/TIM12/
TIM13/TIM14
/QUADSPI
DFSDM1/
QUADSPI/
FSMC
/OTG1_FS
FSMC /SDIO SYS_AF
Pinouts and pin description STM32F412xE/G
66/193 DocID028087 Rev 4
Port F
PF0 - - - - I2C2_SDA - - - - - - FSMC_A0 EVENTOUT
PF1 - - - - I2C2_SCL - - - - - - FSMC_A1 EVENTOUT
PF2 - - - - I2C2_SMBA - - - - - - FSMC_A2 EVENTOUT
PF3 - - TIM5_CH1 - - - - - - - - FSMC_A3 EVENTOUT
PF4 - - TIM5_CH2 - - - - - - - - FSMC_A4 EVENTOUT
PF5 - - TIM5_CH3 - - - - - - - - FSMC_A5 EVENTOUT
PF6 TRACED0 - - TIM10_CH1 - - - - - QUADSPI_
BK1_IO3 - - EVENTOUT
PF7 TRACED1 - - TIM11_CH1 - - - - - QUADSPI_
BK1_IO2 - - EVENTOUT
PF8 - - - - - - - - - TIM13_CH1 QUADSPI_
BK1_IO0 -EVENTOUT
PF9 - - - - - - - - - TIM14_CH1 QUADSPI_
BK1_IO1 -EVENTOUT
PF10 - TIM1_ETR TIM5_CH4 - - - - - - - - - EVENTOUT
PF11 - - - TIM8_ETR - - - - - - - - EVENTOUT
PF12 - - - TIM8_BKIN - - - - - - - FSMC_A6 EVENTOUT
PF13 - - - - I2CFMP1_
SMBA - - - - - - FSMC_A7 EVENTOUT
PF14 - - - - I2CFMP1_
SCL - - - - - - FSMC_A8 EVENTOUT
PF15 - - - - I2CFMP1_
SDA - - - - - - FSMC_A9 EVENTOUT
Table 10. STM32F412xE/G alternate functions (continued)
Port
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF12 AF15
SYS_AF TIM1/
TIM2
TIM3/
TIM4/
TIM5
TIM8/
TIM9/
TIM10/
TIM11
I2C1/
I2C2/
I2C3/
I2CFMP1
SPI1/I2S1/
SPI2/I2S2/
SPI3/I2S3/
SPI4/I2S4
SPI2/I2S2/SPI3
/I2S3/SPI4/
I2S4/SPI5/I2S5
/DFSDM1
SPI3/I2S3/
USART1/
USART2/
USART3
DFSDM1/
USART3/
USART6/
CAN1
I2C2/I2C3/
I2CFMP1/
CAN1/CAN2
/TIM12/
TIM13/TIM14
/QUADSPI
DFSDM1/
QUADSPI/
FSMC
/OTG1_FS
FSMC /SDIO SYS_AF
STM32F412xE/G Pinouts and pin description
DocID028087 Rev 4 67/193
Port G
PG0 - - - - - - - - - CAN1_RX - FSMC_A10 EVENTOUT
PG1 - - - - - - - - - CAN1_TX - FSMC_A11 EVENTOUT
PG2 - - - - - - - - - - - FSMC_A12 EVENTOUT
PG3 - - - - - - - - - - - FSMC_A13 EVENTOUT
PG4 - - - - - - - - - - - FSMC_A14 EVENTOUT
PG5 - - - - - - - - - - - FSMC_A15 EVENTOUT
PG6 - - - - - - - - - - QUADSPI_
BK1_NCS -EVENTOUT
PG7 - - - - - - - - USART6_
CK ---EVENTOUT
PG8 - - - - - - - - USART6_
RTS ---EVENTOUT
PG9 - - - - - - - - USART6_
RX
QUADSPI_
BK2_IO2 - FSMC_NE2 EVENTOUT
PG10 - - - - - - - - - - - FSMC_NE3 EVENTOUT
PG11 - - - - - - - - - CAN2_RX - - EVENTOUT
PG12 - - - - - - - - USART6_
RTS CAN2_TX - FSMC_NE4 EVENTOUT
PG13 TRACED2 - - - - - - - USART6_
CTS - - FSMC_A24 EVENTOUT
PG14 TRACED3 - - - - - - - USART6_
TX
QUADSPI_
BK2_IO3 - FSMC_A25 EVENTOUT
PG15 - - - - - - - - USART6_
CTS ---EVENTOUT
Port H
PH0 - - - - - - - - - - - - EVENTOUT
PH1 - - - - - - - - - - - - EVENTOUT
Table 10. STM32F412xE/G alternate functions (continued)
Port
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF12 AF15
SYS_AF TIM1/
TIM2
TIM3/
TIM4/
TIM5
TIM8/
TIM9/
TIM10/
TIM11
I2C1/
I2C2/
I2C3/
I2CFMP1
SPI1/I2S1/
SPI2/I2S2/
SPI3/I2S3/
SPI4/I2S4
SPI2/I2S2/SPI3
/I2S3/SPI4/
I2S4/SPI5/I2S5
/DFSDM1
SPI3/I2S3/
USART1/
USART2/
USART3
DFSDM1/
USART3/
USART6/
CAN1
I2C2/I2C3/
I2CFMP1/
CAN1/CAN2
/TIM12/
TIM13/TIM14
/QUADSPI
DFSDM1/
QUADSPI/
FSMC
/OTG1_FS
FSMC /SDIO SYS_AF
Memory mapping STM32F412xE/G
68/193 DocID028087 Rev 4
5 Memory mapping
The memory map is shown in Figure 18.
Figure 18. Memory map
06Y9
0E\WH
EORFN
3HULSKHUDOV
[
[)))))))
[
[)))))))
[
[)))))))
[
[&
[')))))))
[(
[))))))))
[[)))))))
[
5HVHUYHG
[))
[[))))
[
[
[$±'))))))
$+%
5HVHUYHG
[)))))))
[
65$0.%DOLDVHG
E\ELWEDQGLQJ
[[))))
$3%
$3%
[))
[[))))
5HVHUYHG
[[)))))))
[))
$+%
5HVHUYHG
)ODVKPHPRU\
[[))())))
[)))&[)))&
[[)))))
[[))))))
[[)))))
5HVHUYHG
5HVHUYHG
$OLDVHGWR)ODVKV\VWHP
PHPRU\RU65$0GHSHQGLQJ
RQWKH%227SLQV
273DUHDORFN
[)))&[)))))))
[)))$[)))%)))
[)))[)))$)
2SWLRQE\WHV
[
&RUWH[½0LQWHUQDO
SHULSKHUDOV [([()))))
5HVHUYHG [([))))))))
5HVHUYHG
[%)))))))
5HVHUYHG
5HVHUYHG
5HVHUYHG
$+%
[$)))
6\VWHPPHPRU\
[)))[)))))
)60&
DQG
4XDG63,
0E\WH
EORFN
3HULSKHUDOV
0E\WH
EORFN
3HULSKHUDOV
0E\WH
EORFN
LQWHUQDO
3HULSKHUDOV
0E\WH
EORFN
1RWXVHG
[$
[$)))
DocID028087 Rev 4 69/193
STM32F412xE/G Memory mapping
71
Table 11. STM32F412xE/G register boundary addresses
Bus Boundary address Peripheral
0xE010 0000 - 0xFFFF FFFF Reserved
Cortex-M4 0xE000 0000 - 0xE00F FFFF Cortex-M4 internal peripherals
AHB3
0xA000 2000 - 0xDFFF FFFF Reserved
0xA000 1000 - 0xA000 1FFF QuadSPI control register
0xA000 0000 - 0xA000 0FFF FSMC control register
0x9000 0000 - 0x9FFF FFFF QUADSPI
0x7000 0000 - 0x08FFF FFFF Reserved
0x6000 0000 - 0x6FFF FFFF FSMC
AHB2
0x5006 0C00 - 0x5FFF FFFF Reserved
0x5006 0800 0x5006 0BFF RNG
0x5004 000- 0x5006 07FF Reserved
0x5000 0000 - 0x5003 FFFF USB OTG FS
AHB1
0x4002 6800 - 0x4FFF FFFF Reserved
0x4002 6400 - 0x4002 67FF DMA2
0x4002 6000 - 0x4002 63FF DMA1
0x4002 5000 - 0x4002 4FFF Reserved
0x4002 3C00 - 0x4002 3FFF Flash interface register
0x4002 3800 - 0x4002 3BFF RCC
0x4002 3400 - 0x4002 37FF Reserved
0x4002 3000 - 0x4002 33FF CRC
0x4002 2000 - 0x4002 2FFF Reserved
0x4002 1C00 - 0x4002 1FFF GPIOH
0x4002 1800 - 0x4002 1BFF GPIOG
0x4002 1400 - 0x4002 17FF GPIOF
0x4002 1000 - 0x4002 13FF GPIOE
0x4002 0C00 - 0x4002 0FFF GPIOD
0x4002 0800 - 0x4002 0BFF GPIOC
0x4002 0400 - 0x4002 07FF GPIOB
0x4002 0000 - 0x4002 03FF GPIOA
Memory mapping STM32F412xE/G
70/193 DocID028087 Rev 4
APB2
0x4001 6400- 0x4001 FFFF Reserved
0x4001 6000 - 0x4001 63FF DFSDM1
0x4001 5400 - 0x4001 5FFF Reserved
0x4001 5000 - 0x4001 53FF SPI5/I2S5
0x4001 4800 - 0x4001 4BFF TIM11
0x4001 4400 - 0x4001 47FF TIM10
0x4001 4000 - 0x4001 43FF TIM9
0x4001 3C00 - 0x4001 3FFF EXTI
0x4001 3800 - 0x4001 3BFF SYSCFG
0x4001 3400 - 0x4001 37FF SPI4/I2S4
0x4001 3000 - 0x4001 33FF SPI1/I2S1
0x4001 2C00 - 0x4001 2FFF SDIO
0x4001 2400 - 0x4001 2BFF Reserved
0x4001 2000 - 0x4001 23FF ADC1
0x4001 1800 - 0x4001 1FFF Reserved
0x4001 1400 - 0x4001 17FF USART6
0x4001 1000 - 0x4001 13FF USART1
0x4001 0800 - 0x4001 0FFF Reserved
0x4001 0400 - 0x4001 07FF TIM8
0x4001 0000 - 0x4001 03FF TIM1
0x4000 7400 - 0x4000 FFFF Reserved
Table 11. STM32F412xE/G register boundary addresses (continued)
Bus Boundary address Peripheral
DocID028087 Rev 4 71/193
STM32F412xE/G Memory mapping
71
APB1
0x4000 7000 - 0x4000 73FF PWR
0x4000 6C00 - 0x4000 6FFF Reserved
0x4000 6800- 0x4000 6BFF CAN2
0x4000 6400- 0x4000 67FF CAN1
0x4000 6000- 0x4000 63FF I2CFMP1
0x4000 5C00 - 0x4000 5FFF I2C3
0x4000 5800 - 0x4000 5BFF I2C2
0x4000 5400 - 0x4000 57FF I2C1
0x4000 4C00 - 0x4000 53FF Reserved
0x4000 4800 - 0x4000 4BFF USART3
0x4000 4400 - 0x4000 47FF USART2
0x4000 4000 - 0x4000 43FF I2S3ext
0x4000 3C00 - 0x4000 3FFF SPI3 / I2S3
0x4000 3800 - 0x4000 3BFF SPI2 / I2S2
0x4000 3400 - 0x4000 37FF I2S2ext
0x4000 3000 - 0x4000 33FF IWDG
0x4000 2C00 - 0x4000 2FFF WWDG
0x4000 2800 - 0x4000 2BFF RTC & BKP Registers
0x4000 2400 - 0x4000 27FF Reserved
0x4000 2000 - 0x4000 23FF TIM14
0x4000 1C00 - 0x4000 1FFF TIM13
0x4000 1800 - 0x4000 1BFF TIM12
0x4000 1400 - 0x4000 17FF TIM7
0x4000 1000 - 0x4000 13FF TIM6
0x4000 0C00 - 0x4000 0FFF TIM5
0x4000 0800 - 0x4000 0BFF TIM4
0x4000 0400 - 0x4000 07FF TIM3
0x4000 0000 - 0x4000 03FF TIM2
Table 11. STM32F412xE/G register boundary addresses (continued)
Bus Boundary address Peripheral
Electrical characteristics STM32F412xE/G
72/193 DocID028087 Rev 4
6 Electrical characteristics
6.1 Parameter conditions
Unless otherwise specified, all voltages are referenced to VSS.
6.1.1 Minimum and maximum values
Unless otherwise specified the minimum and maximum values are guaranteed in the worst
conditions of ambient temperature, supply voltage and frequencies by tests in production on
100% of the devices with an ambient temperature at TA = 25 °C and TA = TAmax (given by
the selected temperature range).
Data based on characterization results, design simulation and/or technology characteristics
are indicated in the table footnotes and are not tested in production. Based on
characterization, the minimum and maximum values refer to sample tests and represent the
mean value plus or minus three times the standard deviation (mean ±3 σ).
6.1.2 Typical values
Unless otherwise specified, typical data are based on TA = 25 °C, VDD = 3.3 V (for the
1.7 V VDD 3.6 V voltage range). They are given only as design guidelines and are not
tested.
Typical ADC accuracy values are determined by characterization of a batch of samples from
a standard diffusion lot over the full temperature range, where 95% of the devices have an
error less than or equal to the value indicated (mean ±2 σ).
6.1.3 Typical curves
Unless otherwise specified, all typical curves are given only as design guidelines and are
not tested.
6.1.4 Loading capacitor
The loading conditions used for pin parameter measurement are shown in Figure 19.
6.1.5 Pin input voltage
The input voltage measurement on a pin of the device is described in Figure 20.
Figure 19. Pin loading conditions Figure 20. Input voltage measurement
-36
#P&
-#5PIN
-36
-#5PIN
6).
DocID028087 Rev 4 73/193
STM32F412xE/G Electrical characteristics
161
6.1.6 Power supply scheme
Figure 21. Power supply scheme
1. To connect PDR_ON pin, refer to Section: Power supply supervisor.
2. The 4.7 µF ceramic capacitor must be connected to one of the VDD pin.
3. VCAP_2 pad is only available on 100-pin and 144-pin packages.
4. VDDA=VDD and VSSA=VSS.
5. VDDUSB is a dedicated independent USB power supply for the on-chip full-speed OTG PHY module and
associated DP/DM GPIOs. VDDUSB value does not depend on the VDD and VDDA values, but it must be the
last supply to be provided and the first to disappear.
Caution: Each power supply pair (for example VDD/VSS, VDDA/VSSA) must be decoupled with filtering
ceramic capacitors as shown above. These capacitors must be placed as close as possible
to, or below, the appropriate pins on the underside of the PCB to ensure good operation of
the device. It is not recommended to remove filtering capacitors to reduce PCB size or cost.
This might cause incorrect operation of the device.
06Y9
%DFNXSFLUFXLWU\
26&.57&
:DNHXSORJLF
%DFNXSUHJLVWHUV
.HUQHOORJLF
&38GLJLWDO
5$0
$QDORJ
5&V
3//
3RZHU
VZLWFK
9%$7
*3,2V
287
,1
îQ)
î)
9%$7
WR9
9ROWDJH
UHJXODWRU
9''$
$'&
/HYHOVKLIWHU
,2
/RJLF
9''
Q)
)
)ODVKPHPRU\
9&$3B
9&$3B
î)
%<3$66B5(*
3'5B21 5HVHW
FRQWUROOHU
9''

966

9''
95()
95()
966$
95()
Q)
)
27*
)6
3+<
9''B86%
Q)
)
9''86%
Electrical characteristics STM32F412xE/G
74/193 DocID028087 Rev 4
6.1.7 Current consumption measurement
Figure 22. Current consumption measurement scheme
6.2 Absolute maximum ratings
Stresses above the absolute maximum ratings listed in Table 12: Voltage characteristics,
Table 13: Current characteristics, and Table 14: Thermal characteristics may cause
permanent damage to the device. These are stress ratings only and functional operation of
the device at these conditions is not implied. Exposure to maximum rating conditions for
extended periods may affect device reliability.
DL
9%$7
9''
9''$
,''B9%$7
,''
Table 12. Voltage characteristics
Symbol Ratings Min Max Unit
VDD–VSS
External main supply voltage (including VDDA, VDD,
VDDUSB and VBAT)(1)
1. All main power (VDD, VDDA, VDDUSB) and ground (VSS, VSSA) pins must always be connected to the
external power supply, in the permitted range.
–0.3 4.0
V
VIN
Input voltage on FT and TC pins(2)
2. VIN maximum value must always be respected. Refer to Table 13 for the values of the maximum allowed
injected current.
VSS–0.3 VDD+4.0
Input voltage on any other pin VSS–0.3 4.0
Input voltage for BOOT0 VSS 9.0
|VDDx| Variations between different VDD power pins - 50
mV
|VSSX VSS| Variations between all the different ground pins - 50
VESD(HBM) Electrostatic discharge voltage (human body model)
see Section 6.3.14:
Absolute maximum
ratings (electrical
sensitivity)
DocID028087 Rev 4 75/193
STM32F412xE/G Electrical characteristics
161
Table 13. Current characteristics
Symbol Ratings Max. Unit
ΣIVDD Total current into sum of all VDD_x power lines (source)(1) 160
mA
Σ IVSS Total current out of sum of all VSS_x ground lines (sink)(1) -160
Σ IVDDUSB Total current into VDDUSB power lines (source) 25
IVDD Maximum current into each VDD_x power line (source)(1) 100
IVSS Maximum current out of each VSS_x ground line (sink)(1) -100
IIO
Output current sunk by any I/O and control pin 25
Output current sourced by any I/O and control pin -25
ΣIIO
Total output current sunk by sum of all I/O and control pins (2) 120
Total output current sunk by sum of all USB I/Os 25
Total output current sourced by sum of all I/Os and control pins(2) -120
IINJ(PIN) (3) Injected current on FT and TC pins (4)
–5/+0
Injected current on NRST and B pins (4)
ΣIINJ(PIN) Total injected current (sum of all I/O and control pins)(5) ±25
1. All main power (VDD, VDDA, VDDUSB) and ground (VSS, VSSA) pins must always be connected to the external power supply,
in the permitted range.
2. This current consumption must be correctly distributed over all I/Os and control pins.
3. Negative injection disturbs the analog performance of the device. See note in Section 6.3.20: 12-bit ADC characteristics.
4. Positive injection is not possible on these I/Os and does not occur for input voltages lower than the specified maximum
value.
5. When several inputs are submitted to a current injection, the maximum ΣIINJ(PIN) is the absolute sum of the positive and
negative injected currents (instantaneous values).
Table 14. Thermal characteristics
Symbol Ratings Value Unit
TSTG Storage temperature range –65 to +150
°C
TJMaximum junction temperature 125
TLEAD
Maximum lead temperature during soldering
(WLCSP64, LQFP64/100/144, UFQFPN48,
UFBGA100/144)
see note (1)
1. Compliant with JEDEC Std J-STD-020D (for small body, Sn-Pb or Pb assembly), the ST ECOPACK®
7191395 specification, and the European directive on Restrictions on Hazardous Substances (ROHS
directive 2011/65/EU, July 2011).
Electrical characteristics STM32F412xE/G
76/193 DocID028087 Rev 4
6.3 Operating conditions
6.3.1 General operating conditions
Table 15. General operating conditions
Symbol Parameter Conditions Min Typ Max Unit
fHCLK Internal AHB clock frequency
Power Scale3: Regulator ON,
VOS[1:0] bits in PWR_CR register = 0x01 0-64
MHz
Power Scale2: Regulator ON,
VOS[1:0] bits in PWR_CR register = 0x10 0 - 84
Power Scale1: Regulator ON,
VOS[1:0] bits in PWR_CR register = 0x11 0-100
fPCLK1
Internal APB1 clock
frequency -0 -50MHz
fPCLK2
Internal APB2 clock
frequency -0 -100MHz
VDD Standard operating voltage - 1.7(1) -3.6V
VDDA(2)(3)
Analog operating voltage
(ADC limited to 1.2 M
samples)
Must be the same potential as VDD(4)
1.7(1) -2.4
V
Analog operating voltage
(ADC limited to 2.4 M
samples)
2.4 - 3.6
VDDUSB
USB supply voltage
(supply voltage for PA11 and
PA12 pins)
USB not used 1.7 3.3 3.6
V
USB used(5) 3.0 - 3.6
VBAT Backup operating voltage - 1.65 - 3.6 V
V12
Regulator ON: 1.2 V
internal voltage on
VCAP_1/VCAP_2 pins
VOS[1:0] bits in PWR_CR register = 0x01
Max frequency 64 MHz 1.08(6) 1.14 1.20(6)
V
VOS[1:0] bits in PWR_CR register = 0x10
Max frequency 84 MHz 1.20(6) 1.26 1.32(6)
VOS[1:0] bits in PWR_CR register = 0x11
Max frequency 100 MHz 1.26 1.32 1.38
V12
Regulator OFF: 1.2 V
external voltage must be
supplied on
VCAP_1/VCAP_2 pins
Max frequency 64 MHz 1.10 1.14 1.20
VMax frequency 84 MHz 1.20 1.26 1.32
Max frequency 100 MHz 1.26 1.32 1.38
VIN
Input voltage on RST, FT and
TC pins(7)
2 V VDD 3.6 V –0.3 - 5.5
VVDD 2 V –0.3 - 5.2
Input voltage on BOOT0 pin - 0 - 9
DocID028087 Rev 4 77/193
STM32F412xE/G Electrical characteristics
161
PD
Power dissipation at
TA = 85°C for range 6 or
TA = 105°C for range 7(8)
UFQFPN48 - - 625
mW
WLCSP64 - - 392
LQFP64 - - 425
LQFP100 - - 465
LQFP144 571
UFBGA100 - - 351
UFBGA144 - - 416
TA
Ambient temperature for
range 6
Maximum power dissipation –40 - 85
°C
Low power dissipation(9) –40 - 105
Ambient temperature for
range 7
Maximum power dissipation –40 - 105
Low power dissipation(9) –40 - 125
TJ Junction temperature range
Range 6 –40 - 105
Range 7 –40 - 125
1. VDD/VDDA minimum value of 1.7 V with the use of an external power supply supervisor (refer to Section 3.18.2: Internal
reset OFF).
2. When the ADC is used, refer to Table 71: ADC characteristics.
3. If VREF+ pin is present, it must respect the following condition: VDDA-VREF+ < 1.2 V.
4. It is recommended to power VDD and VDDA from the same source. A maximum difference of 300 mV between VDD and
VDDA can be tolerated during power-up and power-down operation.
5. Only the DM (PA11) and DP (PA12) pads are supplied through VDDUSB. For application where the VBUS (PA9) is directly
connected to the chip, a minimum VDD supply of 2.7V is required.
(some application examples are shown in appendix B)
6. Guaranteed by test in production
7. To sustain a voltage higher than VDD+0.3, the internal Pull-up and Pull-Down resistors must be disabled
8. If TA is lower, higher PD values are allowed as long as TJ does not exceed TJmax.
9. In low power dissipation state, TA can be extended to this range as long as TJ does not exceed TJmax.
Table 15. General operating conditions (continued)
Symbol Parameter Conditions Min Typ Max Unit
Electrical characteristics STM32F412xE/G
78/193 DocID028087 Rev 4
Table 16. Features depending on the operating power supply range
Operating
power
supply
range
ADC
operation
Maximum
Flash
memory
access
frequency
with no wait
states
(fFlashmax)
Maximum Flash
memory access
frequency with
wait states (1)(2)
I/O operation
Clock output
frequency on
I/O pins(3)
Possible
Flash
memory
operations
VDD =1.7 to
2.1 V(4)
Conversion
time up to
1.2 Msps
16 MHz(5) 100 MHz with 6
wait states
No I/O
compensation up to 30 MHz
8-bit erase
and program
operations
only
VDD = 2.1 to
2.4 V
Conversion
time up to
1.2 Msps
18 MHz 100 MHz with 5
wait states
No I/O
compensation up to 30 MHz
16-bit erase
and program
operations
VDD = 2.4 to
2.7 V
Conversion
time up to
2.4 Msps
24 MHz 100 MHz with 4
wait states
I/O
compensation
works
up to 50 MHz
16-bit erase
and program
operations
VDD = 2.7 to
3.6 V(6)
Conversion
time up to
2.4 Msps
30 MHz 100 MHz with 3
wait states
I/O
compensation
works
–up to
100 MHz
when VDD =
3.0 to 3.6 V
–up to
50 MHz
when VDD =
2.7 to 3.0 V
32-bit erase
and program
operations
1. Applicable only when the code is executed from Flash memory. When the code is executed from RAM, no wait state is
required.
2. Thanks to the ART accelerator and the 128-bit Flash memory, the number of wait states given here does not impact the
execution speed from Flash memory since the ART accelerator allows to achieve a performance equivalent to 0 wait state
program execution.
3. Refer to Table 58: I/O AC characteristics for frequencies vs. external load.
4. VDD/VDDA minimum value of 1.7 V, with the use of an external power supply supervisor (refer to Section 3.18.2: Internal
reset OFF).
5. Prefetch available over the complete VDD supply range.
6. The voltage range for the USB full speed embedded PHY can drop down to 2.7 V. However the electrical characteristics of
D- and D+ pins will be degraded between 2.7 and 3 V.
DocID028087 Rev 4 79/193
STM32F412xE/G Electrical characteristics
161
6.3.2 VCAP_1/VCAP_2 external capacitors
Stabilization for the main regulator is achieved by connecting the external capacitor CEXT to
the VCAP_1 and VCAP_2 pins. For packages supporting only 1 VCAP pin, the 2 CEXT
capacitors are replaced by a single capacitor.
CEXT is specified in Table 17.
Figure 23. External capacitor CEXT
1. Legend: ESR is the equivalent series resistance.
6.3.3 Operating conditions at power-up/power-down (regulator ON)
Subject to general operating conditions for TA.
Table 18. Operating conditions at power-up / power-down (regulator ON)
Table 17. VCAP_1/VCAP_2 operating conditions(1)
1. When bypassing the voltage regulator, the two 2.2 µF VCAP capacitors are not required and should be
replaced by two 100 nF decoupling capacitors.
Symbol Parameter Conditions
CEXT Capacitance of external capacitor with the pins
VCAP_1 and VCAP_2 available 2.2 µF
ESR ESR of external capacitor with the pins VCAP_1 and
VCAP_2 available < 2
CEXT Capacitance of external capacitor with a single VCAP
pin available 4.7 µF
ESR ESR of external capacitor with a single VCAP pin
available < 1
069
(65
5/HDN
&
Symbol Parameter Min Max Unit
tVDD
VDD rise time rate 20
µs/V
VDD fall time rate 20
Electrical characteristics STM32F412xE/G
80/193 DocID028087 Rev 4
6.3.4 Operating conditions at power-up / power-down (regulator OFF)
Subject to general operating conditions for TA.
Note: This feature is only available for UFBGA100 and UFBGA144 packages.
6.3.5 Embedded reset and power control block characteristics
The parameters given in Table 20 are derived from tests performed under ambient
temperature and VDD supply voltage @ 3.3V.
Table 19. Operating conditions at power-up / power-down (regulator OFF)(1)
1. To reset the internal logic at power-down, a reset must be applied on pin PA0 when VDD reach below
1.08 V.
Symbol Parameter Conditions Min Max Unit
tVDD
VDD rise time rate Power-up 20
µs/V
VDD fall time rate Power-down 20
tVCAP
VCAP_1 and VCAP_2 rise time rate Power-up 20
VCAP_1 and VCAP_2 fall time rate Power-down 20
Table 20. Embedded reset and power control block characteristics
Symbol Parameter Conditions Min Typ Max Unit
VPVD
Programmable voltage
detector level selection
PLS[2:0]=000 (rising edge) 2.09 2.14 2.19
V
PLS[2:0]=000 (falling edge) 1.98 2.04 2.08
PLS[2:0]=001 (rising edge) 2.23 2.30 2.37
PLS[2:0]=001 (falling edge) 2.13 2.19 2.25
PLS[2:0]=010 (rising edge) 2.39 2.45 2.51
PLS[2:0]=010 (falling edge) 2.29 2.35 2.39
PLS[2:0]=011 (rising edge) 2.54 2.60 2.65
PLS[2:0]=011 (falling edge) 2.44 2.51 2.56
PLS[2:0]=100 (rising edge) 2.70 2.76 2.82
PLS[2:0]=100 (falling edge) 2.59 2.66 2.71
PLS[2:0]=101 (rising edge) 2.86 2.93 2.99
PLS[2:0]=101 (falling edge) 2.65 2.84 3.02
PLS[2:0]=110 (rising edge) 2.96 3.03 3.10
PLS[2:0]=110 (falling edge) 2.85 2.93 2.99
PLS[2:0]=111 (rising edge) 3.07 3.14 3.21
PLS[2:0]=111 (falling edge) 2.95 3.03 3.09
VPVDhyst(2) PVD hysteresis - - 100 - mV
VPOR/PDR
Power-on/power-down
reset threshold
Falling edge 1.60(1) 1.68 1.76
V
Rising edge 1.64 1.72 1.80
DocID028087 Rev 4 81/193
STM32F412xE/G Electrical characteristics
161
6.3.6 Supply current characteristics
The current consumption is a function of several parameters and factors such as the
operating voltage, ambient temperature, I/O pin loading, device software configuration,
operating frequencies, I/O pin switching rate, program location in memory and executed
binary code.
The current consumption is measured as described in Figure 22: Current consumption
measurement scheme.
All the run-mode current consumption measurements given in this section are performed
with a reduced code that gives a consumption equivalent to CoreMark code.
VPDRhyst(2) PDR hysteresis - - 40 - mV
VBOR1
Brownout level 1
threshold
Falling edge 2.13 2.19 2.24
V
Rising edge 2.23 2.29 2.33
VBOR2
Brownout level 2
threshold
Falling edge 2.44 2.50 2.56
Rising edge 2.53 2.59 2.63
VBOR3
Brownout level 3
threshold
Falling edge 2.75 2.83 2.88
Rising edge 2.85 2.92 2.97
VBORhyst(2) BOR hysteresis - - 100 - mV
TRSTTEMPO
(2)(3) POR reset timing - 0.5 1.5 3.0 ms
IRUSH(2)
In-Rush current on
voltage regulator power-
on (POR or wakeup from
Standby)
- - 160 200 mA
ERUSH(2)
In-Rush energy on
voltage regulator power-
on (POR or wakeup from
Standby)
VDD = 1.7 V, TA = 105 °C,
IRUSH = 171 mA for 31 µs --5.4µC
1. The product behavior is guaranteed by design down to the minimum VPOR/PDR value.
2. Guaranteed by design, not tested in production.
3. The reset timing is measured from the power-on (POR reset or wakeup from VBAT) to the instant when first
instruction is fetched by the user application code.
Table 20. Embedded reset and power control block characteristics (continued)
Symbol Parameter Conditions Min Typ Max Unit
Electrical characteristics STM32F412xE/G
82/193 DocID028087 Rev 4
Typical and maximum current consumption
The MCU is placed under the following conditions:
All I/O pins are in input mode with a static value at VDD or VSS (no load).
All peripherals are disabled except if it is explicitly mentioned.
The Flash memory access time is adjusted to both fHCLK frequency and VDD ranges
(refer to Table 16: Features depending on the operating power supply range).
The voltage scaling is adjusted to fHCLK frequency as follows:
Scale 3 for fHCLK 64 MHz
Scale 2 for 64 MHz < fHCLK 84 MHz
Scale 1 for 84 MHz < fHCLK 100 MHz
The system clock is HCLK, fPCLK1 = fHCLK/2, and fPCLK2 = fHCLK.
External clock is 4 MHz and PLL is ON except if it is explicitly mentioned.
The maximum values are obtained for VDD = 3.6 V and a maximum ambient
temperature (TA), and the typical values for TA= 25 °C and VDD = 3.3 V unless
otherwise specified.
Table 21. Typical and maximum current consumption, code with data processing (ART
accelerator disabled) running from SRAM - VDD = 1.7 V
Symbol Parameter Conditions fHCLK
(MHz)
Typ Max(1)
Unit
TA= 25 °C TA= 25 °C TA=85 °C TA=105 °C
IDD
Supply current
in Run mode
External clock,
PLL ON,
all peripherals
enabled(2)(3)
100 28.1 30.24 31.27 32.21
mA
84 22.7 24.05 24.54 25.11
64 15.7 16.99 17.47 18.03
50 12.3 13.36 13.82 14.36
25 6.5 7.44 7.82 8.30
20 5.6 6.16 6.66 7.20
HSI, PLL off, all
peripherals
enabled(2)(3)
16 3.9 4.70 5.31 6.08
1 0.6 0.78 1.33 1.98
External clock,
PLL ON, all
peripherals
disabled(3)
100 14.0 15.48 16.08 16.83
84 11.3 12.23 12.75 13.41
64 7.9 8.84 9.31 10.01
50 6.2 7.06 7.53 8.19
25 3.4 4.18 4.61 5.13
20 2.9 3.44 3.98 4.65
HSI, PLL off, all
peripherals
disabled(3)
16 2.0 2.51 3.13 3.89
1 0.5 0.64 1.21 1.90
1. Based on characterization, not tested in production unless otherwise specified
2. When analog peripheral blocks such as ADC, HSE, LSE, HSI, or LSI are ON, an additional power consumption has to be
considered.
3. When the ADC is ON (ADON bit set in the ADC_CR2 register), add an additional power consumption of 1.6 mA for the
analog part.
DocID028087 Rev 4 83/193
STM32F412xE/G Electrical characteristics
161
Table 22. Typical and maximum current consumption, code with data processing (ART
accelerator disabled) running from SRAM - VDD = 3.6 V
Symbol Parameter Conditions fHCLK
(MHz)
Typ Max(1)
Unit
TA=
25 °C
TA=
25 °C
TA=
85 °C
TA=
105 °C
IDD
Supply current
in Run mode
External clock,
PLL ON,
all peripherals enabled(2)
100 28.4 28.80(3) 30.84 32.39(3)
mA
84 23.0 24.09(3) 25.20 26.57(3)
64 16.0 16.83(3) 17.77 19.12(3)
50 12.6 13.46 13.98 14.68
25 6.8 7.63 8.14 8.61
20 5.8 6.31 6.74 7.43
HSI, PLL OFF(4),
all peripherals enabled(2)
16 3.9 4.65 5.33 6.11
1 0.6 0.78 1.34 2.00
External clock,
PLL ON,
all peripherals disabled(2)
100 14.3 15.09(3) 16.22 17.90(3)
84 11.6 12.28(3) 13.36 14.99(3)
64 8.2 8.75(3) 9.68 11.21(3)
50 6.5 7.21 7.69 8.47
25 3.6 4.22 4.68 5.29
20 3.2 3.65 4.18 4.94
HSI, PLL OFF,
all peripherals disabled(2)
16 2.0 2.48 3.12 3.94
1 0.5 0.65 1.26 1.94
1. Based on characterization, not tested in production unless otherwise specified
2. When the ADC is ON (ADON bit set in the ADC_CR2 register), add an additional power consumption of 1.6 mA for the
analog part.
3. Tested in production
4. When analog peripheral blocks such as ADC, HSE, LSE, HSI, or LSI are ON, an additional power consumption has to be
considered
Electrical characteristics STM32F412xE/G
84/193 DocID028087 Rev 4
Table 23. Typical and maximum current consumption in run mode, code with data processing
(ART accelerator enabled except prefetch) running from Flash memory- VDD = 1.7 V
Symbol Parameter Conditions fHCLK
(MHz)
Typ Max(1)
Unit
TA =
25 °C
TA =
25 °C
TA =
85 °C
TA =
105 °C
IDD
Supply current
in Run mode
External clock,
PLL ON,
all peripherals enabled(2)(3)
100 26.9 28.78 29.86 31.30
mA
84 21.6 23.14 23.93 24.89
64 15.0 16.08 16.70 17.46
50 11.8 12.74 13.33 14.07
25 6.3 7.13 7.69 8.30
20 5.5 6.09 6.64 7.30
HSI, PLL OFF,
all peripherals enabled(2)
16 3.9 4.20 4.78 4.49
1 0.9 0.98 1.50 2.20
External clock,
PLL ON(4)
all peripherals disabled(2)
100 12.7 13.82 14.71 15.76
84 10.3 11.20 11.97 12.96
64 7.2 7.87 8.57 9.41
50 5.7 6.33 7.02 7.87
25 3.2 3.77 4.38 5.13
20 2.9 3.31 3.93 4.69
HSI, PLL OFF, all
peripherals disabled(2)
16 2.1 2.25 2.83 3.56
1 0.7 0.83 1.42 2.12
1. Based on characterization, not tested in production unless otherwise specified.
2. Add an additional power consumption of 1.6 mA per ADC for the analog part. In applications, this consumption occurs only
while the ADC is ON (ADON bit is set in the ADC_CR2 register).
3. When the ADC is ON (ADON bit set in the ADC_CR2), add an additional power consumption of 1.6mA per ADC for the
analog part.
4. Refer to Table 44 and RM0383 for the possible PLL VCO setting
DocID028087 Rev 4 85/193
STM32F412xE/G Electrical characteristics
161
Table 24. Typical and maximum current consumption in run mode, code with data processing
(ART accelerator enabled except prefetch) running from Flash memory - VDD = 3.6 V
Symbol Parameter Conditions fHCLK
(MHz)
Typ Max(1)
Unit
TA =
25 °C
TA =
25 °C
TA =
85 °C
TA =
105 °C
IDD
Supply current
in Run mode
External clock,
PLL ON(2),
all peripherals enabled(3)
100 27.2 28.70(4) 30.14 31.98
mA
84 21.9 23.60 24.31 25.37
64 15.2 16.45 17.03 17.87
50 12.1 13.12 13.67 14.46
25 6.6 7.59 8.12 8.77
20 5.7 6.51 7.07 7.77
HSI, PLL OFF, all
peripherals enabled(3)
16 4.0 4.32 4.88 5.69
1 0.8 1.14 1.67 2.38
External clock, PLL ON(2)
all peripherals disabled(3)
100 13.0 14.06(4) 15.34 17.27
84 10.5 11.21 12.16 13.47
64 7.5 8.29 9.01 9.88
50 6.0 6.73 7.32 8.27
25 3.5 4.18 4.73 5.57
20 3.1 3.72 4.25 5.10
HSI, PLL OFF, all
peripherals disabled(3)
16 2.1 2.41 2.94 3.75
1 0.7 0.99 1.51 2.30
1. Based on characterization, not tested in production unless otherwise specified.
2. Refer to Table 44 and RM0383 for the possible PLL VCO setting
3. Add an additional power consumption of 1.6 mA per ADC for the analog part. In applications, this consumption occurs only
while the ADC is ON (ADON bit is set in the ADC_CR2 register).
4. Tested in production.
Electrical characteristics STM32F412xE/G
86/193 DocID028087 Rev 4
Table 25. Typical and maximum current consumption in run mode, code with data processing
(ART accelerator disabled) running from Flash memory - VDD = 3.6 V
Symbol Parameter Conditions fHCLK
(MHz)
Typ Max(1)
Unit
TA =
25 °C
TA =
25 °C
TA =
85 °C
TA =
105 °C
IDD
Supply current
in Run mode
External clock,
PLL ON(2),
all peripherals enabled(3)
100 36.3 38.95 41.19 42.95
mA
84 31.1 33.22 34.81 36.10
64 22.3 23.97 25.10 26.23
50 18.3 19.77 20.65 21.73
25 10.1 11.39 12.16 13.11
20 8.6 9.60 10.25 11.06
HSI, PLL OFF, all
peripherals enabled(3)
16 6.3 6.85 7.51 8.38
1 1.1 1.39 1.82 2.61
External clock, PLL ON(2)
all peripherals disabled(3)
100 22.1 23.95 25.80 27.50
84 19.7 20.79 22.52 24.12
64 14.5 15.88 17.21 18.54
50 12.2 13.38 14.59 15.79
25 7.0 8.05 8.89 10.16
20 6.0 6.84 7.51 8.52
HSI, PLL OFF, all
peripherals disabled(3)
16 4.4 4.91 5.56 6.54
1 0.9 1.25 1.79 2.59
1. Based on characterization, not tested in production unless otherwise specified.
2. Refer to Table 44 and RM0383 for the possible PLL VCO setting
3. Add an additional power consumption of 1.6 mA per ADC for the analog part. In applications, this consumption occurs only
while the ADC is ON (ADON bit is set in the ADC_CR2 register).
DocID028087 Rev 4 87/193
STM32F412xE/G Electrical characteristics
161
Table 26. Typical and maximum current consumption in run mode, code with data processing
(ART accelerator disabled) running from Flash memory - VDD = 1.7 V
Symbol Parameter Conditions fHCLK
(MHz)
Typ Max(1)
Unit
TA =
25 °C
TA =
25 °C
TA =
85 °C
TA =
105 °C
IDD
Supply current
in Run mode
External clock,
PLL ON,
all peripherals enabled(2)(3)
100 35.9 38.55 40.77 42.52
mA
84 29.4 31.59 33.12 34.42
64 22.4 24.02 25.15 26.28
50 18.6 20.07 21.08 22.05
25 10.3 11.62 12.39 13.34
20 8.9 9.85 10.59 11.32
HSI, PLL OFF, all
peripherals enabled(2)(3)
16 6.7 7.26 8.04 8.80
1 1.1 1.44 1.99 2.66
External clock, PLL ON(3)
all peripherals disabled
100 21.7 23.55 25.48 27.07
84 18.0 19.16 20.93 22.39
64 14.6 15.93 17.32 18.59
50 12.5 13.63 14.90 16.07
25 7.2 8.25 9.26 10.26
20 6.3 7.15 7.99 8.84
HSI, PLL OFF, all
peripherals disabled(3)
16 4.9 5.37 6.20 7.03
1 1.0 1.30 1.91 2.65
1. Based on characterization, not tested in production unless otherwise specified.
2. Add an additional power consumption of 1.6 mA per ADC for the analog part. In applications, this consumption occurs only
while the ADC is ON (ADON bit is set in the ADC_CR2 register).
3. When the ADC is ON (ADON bit set in the ADC_CR2), add an additional power consumption of 1.6mA per ADC for the
analog part.
Electrical characteristics STM32F412xE/G
88/193 DocID028087 Rev 4
Table 27. Typical and maximum current consumption in run mode, code with data processing
(ART accelerator enabled with prefetch) running from Flash memory - VDD = 3.6 V
Symbol Parameter Conditions fHCLK
(MHz)
Typ Max(1)
Unit
TA =
25 °C
TA =
25 °C
TA =
85 °C
TA =
105 °C
IDD
Supply current
in Run mode
External clock,
PLL ON,
all peripherals enabled(2)
100 38.9 41.10 42.85 44.28
mA
84 32.8 34.61 35.77 36.72
64 23.6 24.96 25.84 26.64
50 18.7 19.90 20.67 21.45
25 10.1 11.11 11.70 12.40
20 8.6 9.46 10.07 10.81
HSI, PLL OFF,
all peripherals enabled
16 6.3 6.77 7.42 8.21
1 1.1 1.35 1.84 2.59
External clock,
PLL ON(2)
all peripherals disabled
100 24.7 26.11 27.59 28.84
84 21.4 22.22 23.53 24.66
64 15.8 16.80 17.90 18.99
50 12.6 13.51 14.52 15.54
25 7.0 7.85 8.57 9.39
20 6.0 6.67 7.37 8.26
HSI, PLL OFF,
all peripherals disabled
16 4.5 4.80 5.47 6.33
1 0.9 1.25 1.81 2.58
1. Based on characterization, not tested in production unless otherwise specified.
2. Add an additional power consumption of 1.6 mA per ADC for the analog part. In applications, this consumption occurs only
while the ADC is ON (ADON bit is set in the ADC_CR2 register).
DocID028087 Rev 4 89/193
STM32F412xE/G Electrical characteristics
161
Table 28. Typical and maximum current consumption in Sleep mode - VDD = 3.6 V
Symbol Parameter Conditions fHCLK
(MHz)
Typ Max(1)
Unit
TA =
25 °C
TA =
25 °C
TA =
85 °C
TA =
105 °C
IDD
Supply current
in Sleep mode
All peripherals enabled(2),
External clock,
PLL ON,
Flash deep power down
100 17.7 18.48(3) 19.83 21.70
mA
84 14.3 15.39 16.31 17.48
64 10.0 10.71 11.35 12.13
50 7.9 8.53 9.13 9.89
25 4.4 4.99 5.46 6.11
20 4.0 4.42 4.95 5.64
All peripherals enabled(2),
HSI, PLL OFF,
Flash deep power down
16 2.7 2.83 3.47 4.21
1 0.5 0.68 1.25 1.92
All peripherals enabled(2),
External clock,
PLL ON Flash ON
100 18.1 19.39 20.70 22.24
84 14.7 15.80 16.71 17.92
64 10.3 11.02 11.66 12.45
50 8.2 8.88 9.53 10.26
25 4.7 5.30 5.82 6.53
20 4.2 4.67 5.18 5.90
All peripherals enabled(2),
HSI, PLL ON, Flash ON
16 2.7 3.10 3.72 4.50
1 0.8 0.93 1.50 2.18
All peripherals disabled,
External clock,
PLL ON(2),
Flash deep power down
100 3.2 3.42 4.98 6.88
84 2.6 3.09 3.63 4.44
64 2.0 2.33 2.81 3.46
50 1.7 2.02 2.54 3.12
25 1.2 1.63 2.21 2.89
20 1.3 1.62 2.09 2.78
All peripherals disabled,
HSI, PLL OFF(2),
Flash deep power down
16 0.5 0.63 1.24 1.92
1 0.4 0.53 1.14 1.82
All peripherals disabled,
External clock,
PLL ON(2), Flash ON
100 3.6 4.17 4.84 5.63
84 3.0 3.49 4.13 4.88
64 2.3 2.69 3.23 3.85
50 2.0 2.33 2.83 3.45
25 1.4 1.88 2.39 3.06
20 1.5 1.88 2.43 3.06
All peripherals disabled,
HSI, PLL OFF(2),
Flash ON
16 0.8 0.91 1.50 2.22
1 0.7 0.78 1.37 2.09
1. Based on characterization, not tested in production unless otherwise specified.
Electrical characteristics STM32F412xE/G
90/193 DocID028087 Rev 4
2. Add an additional power consumption of 1.6 mA per ADC for the analog part. In applications, this consumption occurs only
while the ADC is ON (ADON bit is set in the ADC_CR2 register).
3. Tested in production.
Table 29. Typical and maximum current consumption in Sleep mode - VDD = 1.7 V
Symbol Parameter Conditions fHCLK
(MHz)
Typ Max(1)
Unit
TA =
25 °C
TA =
25 °C
TA =
85 °C
TA =
105 °C
IDD
Supply current
in Sleep mode
External clock,
PLL ON,
Flash deep power down,
all peripherals enabled(2)
100 17.3 18.62 19.90 21.40
mA
84 14.0 15.08 16.04 17.16
64 9.7 10.41 11.02 11.80
50 7.6 8.27 8.89 9.62
25 4.2 4.79 5.35 6.00
20 3.7 4.11 4.67 5.31
HSI, PLL OFF(2),
Flash deep power down,
all peripherals enabled
16 2.4 2.81 3.45 4.20
1 0.5 0.67 1.27 1.91
External clock, PLL ON(2)
all peripherals enabled,
Flash ON
100 17.8 19.08 20.35 21.90
84 14.4 15.49 16.42 17.59
64 10.0 10.76 11.43 12.18
50 7.9 8.58 9.19 9.94
25 4.4 4.99 5.54 6.21
20 4.0 4.42 4.95 5.64
HSI, PLL OFF(2), all
peripherals enabled,
Flash ON
16 2.7 3.09 3.75 4.49
1 0.8 0.93 1.52 2.18
DocID028087 Rev 4 91/193
STM32F412xE/G Electrical characteristics
161
IDD
Supply current
in Sleep mode
All peripherals disabled,
External clock,
PLL ON(2),
Flash deep power down
100 2.9 3.51 4.14 4.90
mA
84 2.4 2.83 3.46 4.16
64 1.7 2.08 2.59 3.18
50 1.4 1.77 2.23 2.84
25 1.0 1.37 1.88 2.50
20 1.3 1.37 1.88 2.50
All peripherals disabled,
HSI, PLL OFF(2),
Flash deep power down
16 0.5 0.63 1.23 1.91
1 0.4 0.52 1.13 1.81
All peripherals disabled,
External clock, PLL ON(2),
Flash ON
100 3.3 3.22 3.98 4.90
84 2.8 2.62 3.30 4.16
64 2.1 1.89 2.50 3.18
50 1.7 1.58 2.16 2.84
25 1.2 1.28 1.82 2.50
20 1.3 1.28 1.82 2.50
All peripherals disabled,
HSI, PLL OFF(2), Flash ON
16 0.8 0.88 1.36 1.91
1 0.7 0.77 1.26 1.81
1. Based on characterization, not tested in production unless otherwise specified.
2. Add an additional power consumption of 1.6 mA per ADC for the analog part. In applications, this consumption occurs only
while the ADC is ON (ADON bit is set in the ADC_CR2 register).
Table 29. Typical and maximum current consumption in Sleep mode - VDD = 1.7 V (continued)
Symbol Parameter Conditions fHCLK
(MHz)
Typ Max(1)
Unit
TA =
25 °C
TA =
25 °C
TA =
85 °C
TA =
105 °C
Table 30. Typical and maximum current consumptions in Stop mode - VDD = 1.7 V
Symbol Conditions Parameter
Typ(1) Max(1)
Unit
TA =
25 °C
TA =
25 °C
TA =
85 °C
TA =
105 °C
IDD_STOP
Flash in Stop mode, all
oscillators OFF, no
independent watchdog
Main regulator usage 121.1 168.0 648.7 1213.0
µA
Low power regulator usage 50.8 104.7 667.4 1328.0
Flash in Deep power
down mode, all oscillators
OFF, no independent
watchdog
Main regulator usage 79.1 122.0 609.1 1181.0
Low power regulator usage 22.4 74.7 631.9 1286.0
Low power low voltage regulator
usage 18.5 58.5 558.3 1145.0
1. Based on characterization, not tested in production.
Electrical characteristics STM32F412xE/G
92/193 DocID028087 Rev 4
Table 31. Typical and maximum current consumption in Stop mode - VDD=3.6 V
Symbol Conditions Parameter
Typ Max(1)
Unit
TA =
25 °C
TA =
25 °C
TA =
85 °C
TA =
105 °C
IDD_STOP
Flash in Stop mode, all
oscillators OFF, no
independent watchdog
Main regulator usage 124.0 179.0(2) 907.2 1762.0(2)
µA
Low power regulator usage 52.8 104.9(2) 773.8 1559.0
Flash in Deep power
down mode, all oscillators
OFF, no independent
watchdog
Main regulator usage 87.6 123.0 698.5 1374.0
Low power regulator usage 26.2 74.7 737.2 1515.0
Low power low voltage regulator usage 20.1 58.5(2) 629.1 1299.0(2)
1. Based on characterization, not tested in production.
2. Tested in production.
Table 32. Typical and maximum current consumption in Standby mode - VDD= 1.7 V
Symbol Parameter Conditions
Typ(1) Max(2)
Unit
TA =
25 °C
TA =
25 °C
TA =
85 °C
TA =
105 °C
IDD_STBY Supply current in
Standby mode
Low-speed oscillator (LSE in low drive
mode) and RTC ON 1.8 3.7 12.9 23.7
µALow-speed oscillator (LSE in high drive
mode) and RTC ON 2.6 4.5 13.7 24.5
RTC and LSE OFF 1.1 3.0 13.1 25.0
1. When the PDR is OFF (internal reset is OFF), the typical current consumption is reduced by 1.2 µA.
2. Based on characterization, not tested in production unless otherwise specified.
Table 33. Typical and maximum current consumption in Standby mode - VDD= 3.6 V
Symbol Parameter Conditions
Typ(1) Max(2)
Unit
TA =
25 °C
TA =
25 °C
TA =
85 °C
TA =
105 °C
IDD_STBY Supply current in
Standby mode
Low-speed oscillator (LSE in low drive
mode) and RTC ON 3.7 5.4 16.0 28.4
µALow-speed oscillator (LSE in high drive
mode) and RTC ON 4.5 6.2 16.8 29.2
RTC and LSE OFF 2.6 4.0 16.0 30.0(3)
1. When the PDR is OFF (internal reset is OFF), the typical current consumption is reduced by 1.2 µA.
2. Guaranteed by characterization, not tested in production unless otherwise specified.
3. Tested in production.
DocID028087 Rev 4 93/193
STM32F412xE/G Electrical characteristics
161
Figure 24. Typical VBAT current consumption (LSE and RTC ON/LSE oscillator
“low power” mode selection)
Table 34. Typical and maximum current consumptions in VBAT mode
Symbol Parameter Conditions(1)
Typ Max(2)
Unit
TA = 25 °C TA =
85 °C
TA =
105 °C
VBAT =
1.7 V
VBAT=
2.4 V
VBAT =
3.3 V
VBAT =
3.6 V VBAT = 3.6 V
IDD_VBAT
Backup
domain supply
current
Low-speed oscillator (LSE in low-
drive mode) and RTC ON 0.74 0.87 1.04 1.11 3.0 5.0
µALow-speed oscillator (LSE in high-
drive mode) and RTC ON 1.52 1.70 1.97 2.09 3.8 5.8
RTC and LSE OFF 0.04 0.04 0.05 0.05 2.0 4.0
1. Crystal used: Abracon ABS07-120-32.768 kHz-T with a CL of 6 pF for typical values.
2. Guaranteed by characterization, not tested in production.









9
9
9
9
9
9
9
069
7HPSHUDWXUH&
,''B9%$7$
Electrical characteristics STM32F412xE/G
94/193 DocID028087 Rev 4
Figure 25. Typical VBAT current consumption (LSE and RTC ON/LSE oscillator
“high drive” mode selection)
I/O system current consumption
The current consumption of the I/O system has two components: static and dynamic.
I/O static current consumption
All the I/Os used as inputs with pull-up generate current consumption when the pin is
externally held low. The value of this current consumption can be simply computed by using
the pull-up/pull-down resistors values given in Table 56: I/O static characteristics.
For the output pins, any external pull-down or external load must also be considered to
estimate the current consumption.
Additional I/O current consumption is due to I/Os configured as inputs if an intermediate
voltage level is externally applied. This current consumption is caused by the input Schmitt
trigger circuits used to discriminate the input value. Unless this specific configuration is
required by the application, this supply current consumption can be avoided by configuring
these I/Os in analog mode. This is notably the case of ADC input pins which should be
configured as analog inputs.
Caution: Any floating input pin can also settle to an intermediate voltage level or switch inadvertently,
as a result of external electromagnetic noise. To avoid current consumption related to
floating pins, they must either be configured in analog mode, or forced internally to a definite
digital value. This can be done either by using pull-up/down resistors or by configuring the
pins in output mode.
I/O dynamic current consumption
In addition to the internal peripheral current consumption (see Table 36: Peripheral current
consumption), the I/Os used by an application also contribute to the current consumption.
When an I/O pin switches, it uses the current from the MCU supply voltage to supply the I/O






9
9
9
9
9
9
9
9
9
069
7HPSHUDWXUH&
,''B9%$7$
DocID028087 Rev 4 95/193
STM32F412xE/G Electrical characteristics
161
pin circuitry and to charge/discharge the capacitive load (internal or external) connected to
the pin:
where
ISW is the current sunk by a switching I/O to charge/discharge the capacitive load
VDD is the MCU supply voltage
fSW is the I/O switching frequency
C is the total capacitance seen by the I/O pin: C = CINT+ CEXT
The test pin is configured in push-pull output mode and is toggled by software at a fixed
frequency.
ISW VDD fSW C××=
Electrical characteristics STM32F412xE/G
96/193 DocID028087 Rev 4
Table 35. Switching output I/O current consumption
Symbol Parameter Conditions(1)
1. CS is the PCB board capacitance including the pad pin. CS = 7 pF (estimated value).
I/O toggling
frequency (fSW)Typ Unit
IDDIO I/O switching
current
VDD = 3.3 V
C = CINT
2 MHz 0.05
mA
8 MHz 0.15
25 MHz 0.45
50 MHz 0.85
60 MHz 1.00
84 MHz 1.40
90 MHz 1.67
VDD = 3.3 V
CEXT = 0 pF
C = CINT + CEXT + CS
2 MHz 0.10
8 MHz 0.35
25 MHz 1.05
50 MHz 2.20
60 MHz 2.40
84 MHz 3.55
90 MHz 4.23
VDD = 3.3 V
CEXT =10 pF
C = CINT + CEXT + CS
2 MHz 0.20
8 MHz 0.65
25 MHz 1.85
50 MHz 2.45
60 MHz 4.70
84 MHz 8.80
90 MHz 10.47
VDD = 3.3 V
CEXT = 22 pF
C = CINT + CEXT + CS
2 MHz 0.25
8 MHz 1.00
25 MHz 3.45
50 MHz 7.15
60 MHz 11.55
VDD = 3.3 V
CEXT = 33 pF
C = CINT + CEXT + CS
2 MHz 0.32
8 MHz 1.27
25 MHz 3.88
50 MHz 12.34
DocID028087 Rev 4 97/193
STM32F412xE/G Electrical characteristics
161
On-chip peripheral current consumption
The MCU is placed under the following conditions:
At startup, all I/O pins are in analog input configuration.
All peripherals are disabled unless otherwise mentioned.
The ART accelerator is ON.
Voltage Scale 2 mode selected, internal digital voltage V12 = 1.26 V.
HCLK is the system clock at 100 MHz. fPCLK1 = fHCLK/2, and fPCLK2 = fHCLK.
The given value is calculated by measuring the difference of current consumption
with all peripherals clocked off,
with only one peripheral clocked on,
scale 1 with fHCLK = 100 MHz,
scale 2 with fHCLK = 84 MHz,
scale 3 with fHCLK = 64 MHz.
Ambient operating temperature is 25 °C and VDD=3.3 V.
Table 36. Peripheral current consumption
Peripheral
IDD (Typ)
Unit
Scale 1 Scale 2 Scale 3
AHB1
GPIOA 1.84 1.75 1.55
µA/MHz
GPIOB 1.90 1.80 1.61
GPIOC 1.77 1.67 1.50
GPIOD 1.67 1.58 1.42
GPIOE 1.75 1.67 1.48
GPIOF 1.65 1.56 1.39
GPIOG 1.65 1.56 1.39
GPIOH 0.62 0.57 0.53
CRC 0.26 0.25 0.22
DMA1(1) 1,71N+2,98 1,62N+2,87 1,45N+2,58
DMA2(1) 1,78N+2,62 1,70N+2.53 1,52N+2.26
AHB2
RNG 0.77 0.74 0.66
USB_OTG_FS 19.68 18.73 16.78
AHB3
FSMC 5.36 5.11 4.56
QSPI 9.99 9.51 8.53
Electrical characteristics STM32F412xE/G
98/193 DocID028087 Rev 4
APB1
AHB-APB1 bridge 1.10 1.00 0.94
µA/MHz
TIM2 13.62 12.95 11.59
TIM3 10.56 10.05 8.97
TIM4 10.72 10.21 9.12
TIM5 13.46 12.83 11.47
TIM6 2.92 2.79 2.47
TIM7 2.72 2.60 2.31
TIM12 6.22 5.93 5.28
TIM13 4.70 4.48 3.97
TIM14 4.60 4.38 3.91
WWDG 1.76 1.67 1.47
SPI2/I2S2 4.04 3.83 3.41
SPI3/I2S3 4.26 4.05 3.62
USART2 4.42 4.19 3.75
USART3 4.44 4.21 3.75
I2C1 4.32 4.10 3.66
I2C2 4.36 4.17 3.69
I2C3 4.36 4.14 3.69
I2CFMP1 5.96 5.69 5.06
CAN1 6.18 5.90 5.25
CAN2 5.86 5.52 4.97
PWR 1.82 1.69 1.56
Table 36. Peripheral current consumption (continued)
Peripheral
IDD (Typ)
Unit
Scale 1 Scale 2 Scale 3
DocID028087 Rev 4 99/193
STM32F412xE/G Electrical characteristics
161
6.3.7 Wakeup time from low-power modes
The wakeup times given in Table 37 are measured starting from the wakeup event trigger up
to the first instruction executed by the CPU:
For Stop or Sleep modes: the wakeup event is WFE.
WKUP (PA0/PC0/PC1) pins are used to wakeup from Standby, Stop and Sleep modes.
APB2
AHB-APB2 bridge 0.09 0.07 0.08
µA/MHz
TIM1 6.83 6.46 5.81
TIM8 6.63 6.29 5.63
USART1 3.31 3.11 2.80
USART6 3.21 3.02 2.73
ADC1 3.51 3.31 2.98
SDIO 3.74 3.51 3.17
SPI1 1.47 1.36 1.23
SPI4 1.56 1.45 1.31
SYSCFG 0.54 0.49 0.45
TIM9 3.09 2.92 2.63
TIM10 1.91 1.79 1.61
TIM11 1.93 1.81 1.64
SPI5 1.54 1.44 1.30
DFSDM1 4.25 4.02 3.61
Bus Matrix 3.23 3.06 2.73
1. N is the number of stream enable (1...8).
Table 36. Peripheral current consumption (continued)
Peripheral
IDD (Typ)
Unit
Scale 1 Scale 2 Scale 3
Electrical characteristics STM32F412xE/G
100/193 DocID028087 Rev 4
Figure 26. Low-power mode wakeup
All timings are derived from tests performed under ambient temperature and VDD=3.3 V.
5HJXODWRU
UDPSXS
+6,UHVWDUW )ODVKVWRSH[LW
&38UHVWDUW
:DNHXSIURP6WRSPRGH
PDLQUHJXODWRU
5HJXODWRU
UDPSXS
+6,UHVWDUW )ODVK'HHS3GUHFRYHU\
&38UHVWDUW
:DNHXSIURP6WRSPRGH
PDLQUHJXODWRU
IODVKLQ'HHSSRZHUGRZQPRGH
5HJXODWRU
UDPSXS
+6,UHVWDUW )ODVKVWRSH[LW
&38UHVWDUW
:DNHXSIURP6WRS
UHJXODWRULQORZSRZHUPRGH
5HJXODWRU
UDPSXS
+6,UHVWDUW
&38UHVWDUW
:DNHXSIURP6WRS
UHJXODWRULQORZSRZHUPRGH
IODVKLQ'HHSSRZHUGRZQPRGH
5HJXODWRU
UHVWDUW
+6,UHVWDUW
&38UHVWDUW
:DNHXSIURP6WDQGE\PRGH
&38UHVWDUW
:DNHXSIURP6OHHSDQG
)ODVKLQ'HHSSRZHUGRZQ
069
)ODVK'HHS3GUHFRYHU\
2SWLRQE\WHVDUHQRWUHORDGHG
2SWLRQE\WHVDUHQRWUHORDGHG
)ODVK'HHS3GUHFRYHU\ 2SWLRQE\WHVORDGLQJ
)ODVK'HHS3GUHFRYHU\
2SWLRQE\WHVDUHQRWUHORDGHG
2SWLRQE\WHVDUHQRWUHORDGHG
5HJXODWRU
2))
2SWLRQE\WHVDUHQRWUHORDGHG
5HJXODWRU
21
Table 37. Low-power mode wakeup timings(1)
Symbol Parameter Conditions Min(1) Typ(1) Max(1) Unit
tWUSLEEP
Wakeup from Sleep mode
--46
clk
cycles
tWUSLEEPFDSM
Flash memory in Deep
power down mode - - 50.0 µs
DocID028087 Rev 4 101/193
STM32F412xE/G Electrical characteristics
161
6.3.8 External clock source characteristics
High-speed external user clock generated from an external source
In bypass mode the HSE oscillator is switched off and the input pin is a standard I/O. The
external clock signal has to respect the Table 56. However, the recommended clock input
waveform is shown in Figure 27.
The characteristics given in Table 38 result from tests performed using an high-speed
external clock source, and under ambient temperature and supply voltage conditions
summarized in Table 15.
tWUSTOP
Wakeup from STOP mode
Code execution on Flash
Main regulator - 12.9 15.0
µs
Main regulator, Flash
memory in Deep power
down mode
- 104.9 120.0
Wakeup from Stop mode,
regulator in low power
mode(2)
- 20.8 28.0
Regulator in low power
mode, Flash memory in
Deep power down mode(2)
- 112.9 130.0
tWUSTOP
Wakeup from STOP mode
code execution on RAM(3)
Main regulator with Flash in
Stop mode or Deep power
down
-4.97.0
Wakeup from Stop mode,
regulator in low power mode
and Flash in Stop mode or
Deep power down(2)
- 12.8 20.0
tWUSTDBY
Wakeup from Standby
mode - - 316.8 400.0
tWUFLASH Wakeup of Flash
From Flash_Stop mode - 11.0
From Flash Deep power
down mode - 50.0
1. Guaranteed by characterization, not tested in production.
2. The specification is valid for wakeup from regulator in low power mode or low power low voltage mode, since the timing
difference is negligible.
3. For the faster wakeup time for code execution on RAM, the Flash must be in STOP or DeepPower Down mode (see
reference manual RM0402).
Table 37. Low-power mode wakeup timings(1) (continued)
Symbol Parameter Conditions Min(1) Typ(1) Max(1) Unit
Electrical characteristics STM32F412xE/G
102/193 DocID028087 Rev 4
Low-speed external user clock generated from an external source
In bypass mode the LSE oscillator is switched off and the input pin is a standard I/O. The
external clock signal has to respect the Table 56. However, the recommended clock input
waveform is shown in Figure 28.
The characteristics given in Table 39 result from tests performed using an low-speed
external clock source, and under ambient temperature and supply voltage conditions
summarized in Table 15.
Table 38. High-speed external user clock characteristics
Symbol Parameter Conditions Min Typ Max Unit
fHSE_ext
External user clock source
frequency(1) 1-50MHz
VHSEH OSC_IN input pin high level voltage 0.7VDD -V
DD V
VHSEL OSC_IN input pin low level voltage VSS -0.3V
DD
tw(HSE)
tw(HSE)
OSC_IN high or low time(1)
1. Guaranteed by design, not tested in production.
5--
ns
tr(HSE)
tf(HSE)
OSC_IN rise or fall time(1) --10
Cin(HSE) OSC_IN input capacitance(1) -5-pF
DuCy(HSE) Duty cycle 45 - 55 %
ILOSC_IN Input leakage current VSS VIN VDD --±1µA
Table 39. Low-speed external user clock characteristics
Symbol Parameter Conditions Min Typ Max Unit
fLSE_ext
User External clock source
frequency(1) - 32.768 1000 kHz
VLSEH
OSC32_IN input pin high level
voltage 0.7VDD -V
DD V
VLSEL OSC32_IN input pin low level voltage VSS -0.3V
DD
tw(LSE)
tf(LSE)
OSC32_IN high or low time(1) 450 - -
ns
tr(LSE)
tf(LSE)
OSC32_IN rise or fall time(1) --50
Cin(LSE) OSC32_IN input capacitance(1) -5-pF
DuCy(LSE) Duty cycle 30 - 70 %
ILOSC32_IN Input leakage current VSS VIN VDD --±1µA
1. Guaranteed by design, not tested in production.
DocID028087 Rev 4 103/193
STM32F412xE/G Electrical characteristics
161
Figure 27. High-speed external clock source AC timing diagram
Figure 28. Low-speed external clock source AC timing diagram
High-speed external clock generated from a crystal/ceramic resonator
The high-speed external (HSE) clock can be supplied with a 4 to 26 MHz crystal/ceramic
resonator oscillator. All the information given in this paragraph are based on
characterization results obtained with typical external components specified in Table 40. In
the application, the resonator and the load capacitors have to be placed as close as
possible to the oscillator pins in order to minimize output distortion and startup stabilization
time. Refer to the crystal resonator manufacturer for more details on the resonator
characteristics (frequency, package, accuracy).
AI
/3# ?) .
%XTERNAL
34-&
CLOCKSOURCE
6(3%(
TF(3% T7(3%
),


4(3%
T
TR(3% T7(3%
F(3%?EXT
6(3%,
DL
26&B,1
([WHUQDO
670)
FORFNVRXUFH
9/6(+
WI/6( W:/6(
,/


7/6(
W
WU/6( W:/6(
I/6(BH[W
9/6(/
Electrical characteristics STM32F412xE/G
104/193 DocID028087 Rev 4
For CL1 and CL2, it is recommended to use high-quality external ceramic capacitors in the
5 pF to 25 pF range (Typ.), designed for high-frequency applications, and selected to match
the requirements of the crystal or resonator (see Figure 29). CL1 and CL2 are usually the
same size. The crystal manufacturer typically specifies a load capacitance which is the
series combination of CL1 and CL2. PCB and MCU pin capacitance must be included (10 pF
can be used as a rough estimate of the combined pin and board capacitance) when sizing
CL1 and CL2.
Note: For information on selecting the crystal, refer to the application note AN2867 “Oscillator
design guide for ST microcontrollers” available from the ST website www.st.com.
Figure 29. Typical application with an 8 MHz crystal
1. REXT value depends on the crystal characteristics.
Low-speed external clock generated from a crystal/ceramic resonator
The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal/ceramic
resonator oscillator. All the information given in this paragraph are based on
characterization results obtained with typical external components specified in Table 41. In
the application, the resonator and the load capacitors have to be placed as close as
Table 40. HSE 4-26 MHz oscillator characteristics(1)
1. Guaranteed by design, not tested in production.
Symbol Parameter Conditions Min Typ Max Unit
fOSC_IN Oscillator frequency 4 - 26 MHz
RFFeedback resistor - 200 - k
IDD HSE current consumption
VDD=3.3 V,
ESR= 30 ,
CL=5 pF @25 MHz
-450-
µA
VDD=3.3 V,
ESR= 30 ,
CL=10 pF @25 MHz
-530-
ACCHSE(2)
2. This parameter depends on the crystal used in the application. The minimum and maximum values must
be respected to comply with USB standard specifications.
HSE accuracy - -500 - 500 ppm
Gm_crit_max Maximum critical crystal gmStartup - - 1 mA/V
tSU(HSE)(3)
3. tSU(HSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz
oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly
with the crystal manufacturer
Startup time VDD is stabilized - 2 - ms
DL
26&B28 7
26&B,1 I+6(
&/
5)
670)
0+]
UHVRQDWRU
5HVRQDWRUZLWK
LQWHJUDWHGFDSDFLWRUV
%LDV
FRQWUROOHG
JDLQ
5(;7
&/
DocID028087 Rev 4 105/193
STM32F412xE/G Electrical characteristics
161
possible to the oscillator pins in order to minimize output distortion and startup stabilization
time. Refer to the crystal resonator manufacturer for more details on the resonator
characteristics (frequency, package, accuracy).
The LSE high-power mode allows to cover a wider range of possible crystals but with a cost
of higher power consumption.
Note: For information on selecting the crystal, refer to the application note AN2867 “Oscillator
design guide for ST microcontrollers” available from the ST website www.st.com.
For information about the LSE high-power mode, refer to the reference manual RM0383.
Figure 30. Typical application with a 32.768 kHz crystal
Table 41. LSE oscillator characteristics (fLSE = 32.768 kHz) (1)
1. Guaranteed by design, not tested in production.
Symbol Parameter Conditions Min Typ Max Unit
RFFeedback resistor - - 18.4 - M
IDD LSE current consumption
Low-power mode
(default) --1
µA
High-drive mode - - 3
ACCLSE(2)
2. This parameter depends on the crystal used in the application. Refer to the application note AN2867.
LSE accuracy - -500 - 500 ppm
Gm_crit_max Maximum critical crystal gm
Startup, low-power
mode --0.56
µA/V
Startup, high-drive
mode --1.50
tSU(LSE)(3)
3. tSU(LSE) is the startup time measured from the moment it is enabled (by software) to a stabilized
32.768 kHz oscillation is reached. This value is guaranteed by characterization and not tested in
production. It is measured for a standard crystal resonator and it can vary significantly with the crystal
manufacturer.
startup time VDD is stabilized - 2 - s
DLD
26&B 28 7
26&B ,1 I/6(
&/
5)
670)
N+]
UHVRQDWRU
5HVRQDWRUZLWK
LQWHJUDWHGFDSDFLWRUV
%LDV
FRQWUROOHG
JDLQ
&/
Electrical characteristics STM32F412xE/G
106/193 DocID028087 Rev 4
6.3.9 Internal clock source characteristics
The parameters given in Table 42 and Table 43 are derived from tests performed under
ambient temperature and VDD supply voltage conditions summarized in Table 15.
High-speed internal (HSI) RC oscillator
L
Figure 31. ACCHSI versus temperature
1. Guaranteed by characterization, not tested in production.
Table 42. HSI oscillator characteristics (1)
1. VDD = 3.3 V, TA = –40 to 105 °C unless otherwise specified.
Symbol Parameter Conditions Min Typ Max Unit
fHSI Frequency - - 16 - MHz
ACCHSI
HSI user trimming step(2)
2. Guaranteed by design, not tested in production
---1%
Accuracy of the HSI oscillator
TA = –40 to 105 °C(3)
3. Based on characterization, not tested in production
–8 - 4.5 %
TA = –10 to 85 °C(3) –4 - 4 %
TA = 25 °C(4)
4. Factory calibrated, parts not soldered.
–1 - 1 %
tsu(HSI)(2) HSI oscillator startup time - - 2.2 4 µs
IDD(HSI)(2) HSI oscillator power
consumption - - 60 80 µA
-36








-IN
-AX
4YPICAL
4!#
!##(3)
DocID028087 Rev 4 107/193
STM32F412xE/G Electrical characteristics
161
Low-speed internal (LSI) RC oscillator
Figure 32. ACCLSI versus temperature
Table 43. LSI oscillator characteristics (1)
1. VDD = 3 V, TA = –40 to 105 °C unless otherwise specified.
Symbol Parameter Min Typ Max Unit
fLSI(2)
2. Guaranteed by characterization, not tested in production.
Frequency 17 32 47 kHz
tsu(LSI)(3)
3. Guaranteed by design, not tested in production.
LSI oscillator startup time - 15 40 µs
IDD(LSI)(3) LSI oscillator power consumption - 0.4 0.6 µA
-36










.ORMALIZEDDEVIATI ON

4EMPER AT URE#
MAX
AVG
MIN
Electrical characteristics STM32F412xE/G
108/193 DocID028087 Rev 4
6.3.10 PLL characteristics
The parameters given in Table 44 and Table 45 are derived from tests performed under
temperature and VDD supply voltage conditions summarized in Table 15.
Table 44. Main PLL characteristics
Symbol Parameter Conditions Min Typ Max Unit
fPLL_IN PLL input clock(1) -0.95
(2) 12.10MHz
fPLL_OUT PLL multiplier output clock - 24 - 100 MHz
fPLL48_OUT
48 MHz PLL multiplier output
clock --4875MHz
fVCO_OUT PLL VCO output - 100 - 432 MHz
tLOCK
PLL lock time VCO freq = 100 MHz 75 - 200
µs
VCO freq = 432 MHz 100 - 300
Jitter(3)
Cycle-to-cycle jitter
System clock
100 MHz
RMS - 25 -
ps
peak
to
peak
-±150 -
Period Jitter RMS - 15 -
peak
to
peak
-±200 -
Bit Time CAN jitter Cycle to cycle at 1 MHz
on 1000 samples. - 330 -
IDD(PLL)(4) PLL power consumption on VDD VCO freq = 100 MHz
VCO freq = 432 MHz
0.15
0.45 -0.40
0.75
mA
IDDA(PLL)(4) PLL power consumption on
VDDA
VCO freq = 100 MHz
VCO freq = 432 MHz
0.30
0.55 -0.40
0.85
1. Take care of using the appropriate division factor M to obtain the specified PLL input clock values. The M factor is shared
between PLL and PLLI2S.
2. Guaranteed by design, not tested in production.
3. The use of two PLLs in parallel could degraded the Jitter up to +30%.
4. Guaranteed by characterization, not tested in production.
DocID028087 Rev 4 109/193
STM32F412xE/G Electrical characteristics
161
Table 45. PLLI2S (audio PLL) characteristics
Symbol Parameter Conditions Min Typ Max Unit
fPLLI2S_IN PLLI2S input clock(1) -0.95
(2) 12.10
MHzfPLLI2S_OUT PLLI2S multiplier output clock - - - 216
fVCO_OUT PLLI2S VCO output - 100 - 432
tLOCK PLLI2S lock time
VCO freq = 100 MHz 75 - 200
µs
VCO freq = 432 MHz 100 - 300
Jitter(3)
Master I2S clock jitter
Cycle to cycle at
12.288 MHz on
48 kHz period,
N=432, R=5
RMS - 90 -
peak
to
peak
- ±280 -
ps
Average frequency of
12.288 MHz
N = 432, R = 5
on 1000 samples
-90 -
WS I2S clock jitter Cycle to cycle at 48 KHz
on 1000 samples - 400 -
IDD(PLLI2S)(4) PLLI2S power consumption on
VDD
VCO freq = 100 MHz
VCO freq = 432 MHz
0.15
0.45 -0.40
0.75
mA
IDDA(PLLI2S)(4) PLLI2S power consumption on
VDDA
VCO freq = 100 MHz
VCO freq = 432 MHz
0.30
0.55 -0.40
0.85
1. Take care of using the appropriate division factor M to have the specified PLL input clock values.
2. Guaranteed by design, not tested in production.
3. Value given with main PLL running.
4. Guaranteed by characterization, not tested in production.
Electrical characteristics STM32F412xE/G
110/193 DocID028087 Rev 4
6.3.11 PLL spread spectrum clock generation (SSCG) characteristics
The spread spectrum clock generation (SSCG) feature allows to reduce electromagnetic
interferences (see Table 52: EMI characteristics for LQFP144). It is available only on the
main PLL.
Equation 1
The frequency modulation period (MODEPER) is given by the equation below:
fPLL_IN and fMod must be expressed in Hz.
As an example:
If fPLL_IN = 1 MHz, and fMOD = 1 kHz, the modulation depth (MODEPER) is given by
equation 1:
Equation 2
Equation 2 allows to calculate the increment step (INCSTEP):
fVCO_OUT must be expressed in MHz.
With a modulation depth (md) = ±2 % (4 % peak to peak), and PLLN = 240 (in MHz):
An amplitude quantization error may be generated because the linear modulation profile is
obtained by taking the quantized values (rounded to the nearest integer) of MODPER and
INCSTEP. As a result, the achieved modulation depth is quantized. The percentage
quantized modulation depth is given by the following formula:
As a result:
Table 46. SSCG parameter constraints
Symbol Parameter Min Typ Max(1) Unit
fMod Modulation frequency - - 10 kHz
md Peak modulation depth 0.25 - 2 %
MODEPER * INCSTEP (Modulation period) * (Increment Step) - - 215-1 -
1. Guaranteed by design, not tested in production.
MODEPER round fPLL_IN 4f
Mod
×()[]=
MODEPER round 106410
3
×()[]250==
INCSTEP round 215 1()md PLLN××()100 5×MODEPER×()[]=
INCSTEP round 215 1()2240××()100 5×250×()[]126md(quantitazed)%==
mdquantized% MODEPER INCSTEP×100×5×()215 1()PLLN×()=
mdquantized% 250 126×100×5×()215 1()240×()2.002%(peak)==
DocID028087 Rev 4 111/193
STM32F412xE/G Electrical characteristics
161
Figure 33 and Figure 34 show the main PLL output clock waveforms in center spread and
down spread modes, where:
F0 is fPLL_OUT nominal.
Tmode is the modulation period.
md is the modulation depth.
Figure 33. PLL output clock waveforms in center spread mode
Figure 34. PLL output clock waveforms in down spread mode
6.3.12 Memory characteristics
Flash memory
The characteristics are given at TA = 40 to 105 °C unless otherwise specified.
The devices are shipped to customers with the Flash memory erased.
&REQUENCY0,,?/54
4IME
&
TMODE XTMODE
MD
AI
MD
)UHTXHQF\3//B287
7LPH
)
WPRGH [WPRGH
[PG
DLE
Table 47. Flash memory characteristics
Symbol Parameter Conditions Min Typ Max Unit
IDD Supply current
Write / Erase 8-bit mode, VDD = 1.7 V - 5 -
mAWrite / Erase 16-bit mode, VDD = 2.1 V - 8 -
Write / Erase 32-bit mode, VDD = 3.3 V - 12 -
Electrical characteristics STM32F412xE/G
112/193 DocID028087 Rev 4
Table 48. Flash memory programming
Symbol Parameter Conditions Min(1) Typ Max(1)
1. Guaranteed by characterization, not tested in production.
Unit
tprog Word programming time Program/erase parallelism
(PSIZE) = x 8/16/32 -16100
(2)
2. The maximum programming time is measured after 100K erase operations.
µs
tERASE16KB Sector (16 KB) erase time
Program/erase parallelism
(PSIZE) = x 8 - 400 800
ms
Program/erase parallelism
(PSIZE) = x 16 - 300 600
Program/erase parallelism
(PSIZE) = x 32 - 250 500
tERASE64KB Sector (64 KB) erase time
Program/erase parallelism
(PSIZE) = x 8 - 1200 2400
ms
Program/erase parallelism
(PSIZE) = x 16 - 700 1400
Program/erase parallelism
(PSIZE) = x 32 - 550 1100
tERASE128KB Sector (128 KB) erase time
Program/erase parallelism
(PSIZE) = x 8 -24
s
Program/erase parallelism
(PSIZE) = x 16 -1.32.6
Program/erase parallelism
(PSIZE) = x 32 -12
tME Mass erase time
Program/erase parallelism
(PSIZE) = x 8 -1632
s
Program/erase parallelism
(PSIZE) = x 16 -1122
Program/erase parallelism
(PSIZE) = x 32 -816
Vprog Programming voltage
32-bit program operation 2.7 - 3.6 V
16-bit program operation 2.1 - 3.6 V
8-bit program operation 1.7 - 3.6 V
DocID028087 Rev 4 113/193
STM32F412xE/G Electrical characteristics
161
Table 50. Flash memory endurance and data retention
6.3.13 EMC characteristics
Susceptibility tests are performed on a sample basis during device characterization.
Functional EMS (electromagnetic susceptibility)
While a simple application is executed on the device (toggling 2 LEDs through I/O ports).
the device is stressed by two electromagnetic events until a failure occurs. The failure is
indicated by the LEDs:
Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until
a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard.
FTB: A burst of fast transient voltage (positive and negative) is applied to VDD and VSS
through a 100 pF capacitor, until a functional disturbance occurs. This test is compliant
with the IEC 61000-4-4 standard.
A device reset allows normal operations to be resumed.
Table 49. Flash memory programming with VPP voltage
Symbol Parameter Conditions Min(1) Typ Max(1)
1. Guaranteed by design, not tested in production.
Unit
tprog Double word programming
TA = 0 to +40 °C
VDD = 3.3 V
VPP = 8.5 V
- 16 100(2)
2. The maximum programming time is measured after 100K erase operations.
µs
tERASE16KB Sector (16 KB) erase time - 230 -
mstERASE64KB Sector (64 KB) erase time - 490 -
tERASE128KB Sector (128 KB) erase time - 875 -
tME Mass erase time - 6.9 - s
Vprog Programming voltage - 2.7 - 3.6 V
VPP VPP voltage range - 7 - 9 V
IPP
Minimum current sunk on
the VPP pin -10--mA
tVPP(3)
3. VPP should only be connected during programming/erasing.
Cumulative time during
which VPP is applied - - - 1 hour
Symbol Parameter Conditions
Value
Unit
Min(1)
1. Guaranteed by characterization, not tested in production.
NEND Endurance TA = –40 to +85 °C (6 suffix versions)
TA = –40 to +105 °C (7 suffix versions) 10 kcycles
tRET Data retention
1 kcycle(2) at TA = 85 °C
2. Cycling performed over the whole temperature range.
30
Year s1 kcycle(2) at TA = 105 °C 10
10 kcycle(2) at TA = 55 °C 20
Electrical characteristics STM32F412xE/G
114/193 DocID028087 Rev 4
The test results are given in Table 52. They are based on the EMS levels and classes
defined in application note AN1709.
When the application is exposed to a noisy environment, it is recommended to avoid pin
exposition to disturbances. The pins showing a middle range robustness are: PA0, PA1,
PA2, on LQFP144 packages and PDR_ON on WLCSP49.
As a consequence, it is recommended to add a serial resistor (1 k maximum) located as
close as possible to the MCU to the pins exposed to noise (connected to tracks longer than
50 mm on PCB).
Designing hardened software to avoid noise problems
EMC characterization and optimization are performed at component level with a typical
application environment and simplified MCU software. It should be noted that good EMC
performance is highly dependent on the user application and the software in particular.
Therefore it is recommended that the user applies EMC software optimization and
prequalification tests in relation with the EMC level requested for his application.
Software recommendations
The software flowchart must include the management of runaway conditions such as:
Corrupted program counter
Unexpected reset
Critical Data corruption (control registers...)
Prequalification trials
Most of the common failures (unexpected reset and program counter corruption) can be
reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1
second.
To complete these trials, ESD stress can be applied directly on the device, over the range of
specification values. When unexpected behavior is detected, the software can be hardened
to prevent unrecoverable errors occurring (see application note AN1015).
Table 51. EMS characteristics for LQFP144 package
Symbol Parameter Conditions Level/
Class
VFESD
Voltage limits to be applied on any I/O pin
to induce a functional disturbance
VDD = 3.3 V, LQFP144
TA = +25 °C, fHCLK = 100 MHz,
conforms to IEC 61000-4-2
2B
VEFTB
Fast transient voltage burst limits to be
applied through 100 pF on VDD and VSS
pins to induce a functional disturbance
VDD = 3.3 V, LQFP144
TA = +25 °C, fHCLK = 100 MHz,
conforms to IEC 61000-4-4
4B
DocID028087 Rev 4 115/193
STM32F412xE/G Electrical characteristics
161
Electromagnetic Interference (EMI)
The electromagnetic field emitted by the device are monitored while a simple application,
executing EEMBC code, is running. This emission test is compliant with IEC61967-2
standard which specifies the test board and the pin loading.
6.3.14 Absolute maximum ratings (electrical sensitivity)
Based on three different tests (ESD, LU) using specific measurement methods, the device is
stressed in order to determine its performance in terms of electrical sensitivity.
Electrostatic discharge (ESD)
Electrostatic discharges (a positive then a negative pulse separated by 1 second) are
applied to the pins of each sample according to each pin combination. The sample size
depends on the number of supply pins in the device (3 parts × (n+1) supply pins). This test
conforms to the JESD22-A114/C101 standard.
Table 52. EMI characteristics for LQFP144
Symbol Parameter Conditions Monitored
frequency band
Max vs.
[fHSE/fCPU]Unit
8/100 MHz
SEMI Peak level
VDD = 3.6 V, TA = 25 °C, LQFP144
package, conforming to IEC 61967-2,
EEMBC, ART ON, all peripheral clocks
enabled, clock dithering disabled.
0.1 to 30 MHz 20
dBµV30 to 130 MHz 28
130 MHz to 1 GHz 21
EMI Level 3.5 -
Table 53. ESD absolute maximum ratings
Symbol Ratings Conditions Class Maximum
value(1) Unit
VESD(HBM)
Electrostatic
discharge voltage
(human body model)
TA = +25 °C conforming to JESD22-A114 2 2000
V
VESD(CDM)
Electrostatic
discharge voltage
(charge device model)
TA = +25 °C conforming to ANSI/ESD STM5.3.1,
UFBGA144, UFBGA100, LQFP100, LQFP64,
UFQFPN48
4500
TA = +25 °C conforming to ANSI/ESD STM5.3.1,
WLCSP64 3400
TA = +25 °C conforming to ANSI/ESD STM5.3.1,
LQFP144 3250
1. Guaranteed by characterization, not tested in production.
Electrical characteristics STM32F412xE/G
116/193 DocID028087 Rev 4
Static latchup
Two complementary static tests are required on six parts to assess the latchup
performance:
A supply overvoltage is applied to each power supply pin
A current injection is applied to each input, output and configurable I/O pin
These tests are compliant with EIA/JESD 78A IC latchup standard.
6.3.15 I/O current injection characteristics
As a general rule, current injection to the I/O pins, due to external voltage below VSS or
above VDD (for standard, 3 V-capable I/O pins) should be avoided during normal product
operation. However, in order to give an indication of the robustness of the microcontroller in
cases when abnormal injection accidentally happens, susceptibility tests are performed on a
sample basis during device characterization.
Functional susceptibility to I/O current injection
While a simple application is executed on the device, the device is stressed by injecting
current into the I/O pins programmed in floating input mode. While current is injected into
the I/O pin, one at a time, the device is checked for functional failures.
The failure is indicated by an out of range parameter: ADC error above a certain limit (>5
LSB TUE), out of conventional limits of induced leakage current on adjacent pins
(out of –5 µA/+0 µA range), or other functional failure (for example reset, oscillator
frequency deviation).
Negative induced leakage current is caused by negative injection and positive induced
leakage current by positive injection.
The test results are given in Table 55.
Table 54. Electrical sensitivities
Symbol Parameter Conditions Class
LU Static latch-up class TA = +105 °C conforming to JESD78A II level A
DocID028087 Rev 4 117/193
STM32F412xE/G Electrical characteristics
161
Note: It is recommended to add a Schottky diode (pin to ground) to analog pins which may
potentially inject negative currents.
6.3.16 I/O port characteristics
General input/output characteristics
Unless otherwise specified, the parameters given in Table 5 6 are derived from tests
performed under the conditions summarized in Table 15. All I/Os are CMOS and TTL
compliant.
Table 55. I/O current injection susceptibility(1)
1. NA = not applicable.
Symbol Description
Functional susceptibility
Unit
Negative
injection
Positive
injection
IINJ
Injected current on BOOT0 pin –0 NA
mA
Injected current on NRST pin –0 NA
Injected current on PB3, PB4, PB5, PB6,
PB7, PB8, PB9, PC13, PC14, PC15, PH1,
PDR_ON, PC0, PC1,PC2, PC3, PD1,
PD5, PD6, PD7, PE0, PE2, PE3, PE4,
PE5, PE6
–0 NA
Injected current on any other FT pin –5 NA
Injected current on any other pins –5 +5
Table 56. I/O static characteristics
Symbol Parameter Conditions Min Typ Max Unit
VIL
FT, TC and NRST I/O input low
level voltage 1.7 V VDD 3.6 V - - 0.3VDD(1)
V
BOOT0 I/O input low level
voltage
1.75 V VDD 3.6 V,
-40 °C TA 105 °C --
0.1VDD+0.1(2)
1.7 V VDD 3.6 V,
0 °C TA 105 °C --
VIH
FT, TC and NRST I/O input high
level voltage(5) 1.7 V VDD 3.6 V 0.7VDD(1) --
V
BOOT0 I/O input high level
voltage
1.75 V VDD 3.6 V,
-40 °C TA 105 °C 0.17VDD+0.7(2) --
1.7 V VDD 3.6 V,
0 °C TA 105 °C
Electrical characteristics STM32F412xE/G
118/193 DocID028087 Rev 4
All I/Os are CMOS and TTL compliant (no software configuration required). Their
characteristics cover more than the strict CMOS-technology or TTL parameters. The
coverage of these requirements for FT and TC I/Os is shown in Figure 35.
VHYS
FT, TC and NRST I/O input
hysteresis 1.7 V VDD 3.6 V 10% VDD(2)(3) --
V
BOOT0 I/O input hysteresis
1.75 V VDD 3.6 V,
-40 °C TA 105 °C 0.1 - -
1.7 V VDD 3.6 V,
0 °C TA 105 °C
Ilkg
I/O input leakage current (4) VSS VIN VDD --±1
µA
I/O FT/TC input leakage current
(5) VIN = 5 V - - 3
RPU
Weak pull-up
equivalent
resistor(6)
All pins
except for
PA10
(OTG_FS_ID)
VIN = VSS 30 40 50
k
PA10
(OTG_FS_ID) -71014
RPD
Weak pull-down
equivalent
resistor(7)
All pins
except for
PA10
(OTG_FS_ID)
VIN = VDD 30 40 50
PA10
(OTG_FS_ID) -71014
CIO(8) I/O pin capacitance - - 5 - pF
1. Guaranteed by test in production.
2. Guaranteed by design, not tested in production.
3. With a minimum of 200 mV.
4. Leakage could be higher than the maximum value, if negative current is injected on adjacent pins, Refer to Table 55: I/O
current injection susceptibility
5. To sustain a voltage higher than VDD +0.3 V, the internal pull-up/pull-down resistors must be disabled. Leakage could be
higher than the maximum value, if negative current is injected on adjacent pins.Refer to Table 55: I/O current injection
susceptibility
6. Pull-up resistors are designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series
resistance is minimum (~10% order).
7. Pull-down resistors are designed with a true resistance in series with a switchable NMOS. This NMOS contribution to the
series resistance is minimum (~10% order).
8. Hysteresis voltage between Schmitt trigger switching levels. Guaranteed by characterization, not tested in production.
Table 56. I/O static characteristics (continued)
Symbol Parameter Conditions Min Typ Max Unit
DocID028087 Rev 4 119/193
STM32F412xE/G Electrical characteristics
161
Figure 35. FT/TC I/O input characteristics
Output driving current
The GPIOs (general purpose input/outputs) can sink or source up to ±8 mA, and sink or
source up to ±20 mA (with a relaxed VOL/VOH) except PC13, PC14 and PC15 which can
sink or source up to ±3mA. When using the PC13 to PC15 GPIOs in output mode, the speed
should not exceed 2 MHz with a maximum load of 30 pF.
In the user application, the number of I/O pins which can drive current must be limited to
respect the absolute maximum rating specified in Section 6.2. In particular:
The sum of the currents sourced by all the I/Os on VDD, plus the maximum Run
consumption of the MCU sourced on VDD, cannot exceed the absolute maximum rating
ΣIVDD (see Table 13).
The sum of the currents sunk by all the I/Os on VSS plus the maximum Run
consumption of the MCU sunk on VSS cannot exceed the absolute maximum rating
ΣIVSS (see Table 13).
Output voltage levels
Unless otherwise specified, the parameters given in Table 5 7 are derived from tests
performed under ambient temperature and VDD supply voltage conditions summarized in
Table 15. All I/Os are CMOS and TTL compliant.
069



     



9''9
9,/9,+9
7HVWHGLQSURGXFWLRQ&026UHTXLUHPHQW9,+PLQ 9''
7HVWHGLQSURGXFWLRQ&026UHTXLUHPHQW9,/PD[ 9''
%DVHGRQ'HVLJQVLPXODWLRQV9,/PD[ 9''
77/UHTXLUHPHQW
9,+PLQ 9
77/UHTXLUHPHQW9,/PD[
9


$UHDQRW
GHWHUPLQHG


%DVHGRQ'HVLJQVLPXODWLRQV9,+PLQ 9''
Electrical characteristics STM32F412xE/G
120/193 DocID028087 Rev 4
Input/output AC characteristics
The definition and values of input/output AC characteristics are given in Figure 36 and
Table 58, respectively.
Unless otherwise specified, the parameters given in Table 5 8 are derived from tests
performed under the ambient temperature and VDD supply voltage conditions summarized
in Table 15.
Table 57. Output voltage characteristics
Symbol Parameter Conditions Min Max Unit
VOL(1)
1. The IIO current sunk by the device must always respect the absolute maximum rating specified in Table 13.
and the sum of IIO (I/O ports and control pins) must not exceed IVSS.
Output low level voltage for an I/O pin CMOS port(2)
IIO = +8 mA
2.7 V VDD 3.6 V
2. TTL and CMOS outputs are compatible with JEDEC standards JESD36 and JESD52.
-0.4
V
VOH(3)
3. The IIO current sourced by the device must always respect the absolute maximum rating specified in
Table 13 and the sum of IIO (I/O ports and control pins) must not exceed IVDD.
Output high level voltage for an I/O pin VDD–0.4 -
VOL (1) Output low level voltage for an I/O pin TTL port(2)
IIO =+8 mA
2.7 V VDD 3.6 V
-0.4
V
VOH (3) Output high level voltage for an I/O pin 2.4 -
VOL(1) Output low level voltage for an I/O pin IIO = +20 mA
2.7 V VDD 3.6 V
-1.3
(4)
4. Guaranteed by characterization results, not tested in production.
V
VOH(3) Output high level voltage for an I/O pin VDD–1.3(4) -
VOL(1) Output low level voltage for an I/O pin IIO = +6 mA
1.8 V VDD 3.6 V
-0.4
(4)
V
VOH(3) Output high level voltage for an I/O pin VDD–0.4(4) -
VOL(1) Output low level voltage for an I/O pin IIO = +4 mA
1.7 V VDD 3.6 V
-0.4
(5)
5. Guaranteed by design, not tested in production.
V
VOH(3) Output high level voltage for an I/O pin VDD–0.4(5) -
Table 58. I/O AC characteristics(1)(2)
OSPEEDRy
[1:0] bit
value(1)
Symbol Parameter Conditions Min Typ Max Unit
00
fmax(IO)out Maximum frequency(3)
CL = 50 pF, VDD 2.70 V - - 4
MHz
CL = 50 pF, VDD 1.7 V - - 2
CL = 10 pF, VDD 2.70 V - - 8
CL = 10 pF, VDD 1.7 V - - 4
tf(IO)out/
tr(IO)out
Output high to low level fall
time and output low to high
level rise time
CL = 50 pF, VDD = 1.7 V to
3.6 V --100ns
DocID028087 Rev 4 121/193
STM32F412xE/G Electrical characteristics
161
01
fmax(IO)out Maximum frequency(3)
CL = 50 pF, VDD 2.70 V - - 25
MHz
CL = 50 pF, VDD 1.7 V - - 12.5
CL = 10 pF, VDD 2.70 V - - 50
CL = 10 pF, VDD 1.7 V - - 20
tf(IO)out/
tr(IO)out
Output high to low level fall
time and output low to high
level rise time
CL = 50 pF, VDD 2.7 V - - 10
ns
CL = 50 pF, VDD 1.7 V - - 20
CL = 10 pF, VDD 2.70 V - - 6
CL = 10 pF, VDD 1.7 V - - 10
10
fmax(IO)out Maximum frequency(3)
CL = 40 pF, VDD 2.70 V - - 50(4)
MHz
CL = 40 pF, VDD 1.7 V - - 25
CL = 10 pF, VDD 2.70 V - - 100(4)
CL = 10 pF, VDD 1.7 V - - 50(4)
tf(IO)out/
tr(IO)out
Output high to low level fall
time and output low to high
level rise time
CL = 40 pF, VDD 2.70 V - - 6
ns
CL = 40 pF, VDD 1.7 V - - 10
CL = 10 pF, VDD 2.70 V - - 4
CL = 10 pF, VDD 1.7 V - - 6
11
Fmax(IO)out Maximum frequency(3) CL = 30 pF, VDD 2.70 V - - 100(4)
MHz
CL = 30 pF, VDD 1.7 V - - 50(4)
tf(IO)out/
tr(IO)out
Output high to low level fall
time and output low to high
level rise time
CL = 30 pF, VDD 2.70 V - - 4
ns
CL = 30 pF, VDD 1.7 V - - 6
CL = 10 pF, VDD 2.70 V - - 2.5
CL = 10 pF, VDD 1.7 V - - 4
-t
EXTIpw
Pulse width of external signals
detected by the EXTI
controller
-10--ns
1. Guaranteed by characterization, not tested in production.
2. The I/O speed is configured using the OSPEEDRy[1:0] bits. Refer to the STM32F4xx reference manual for a description of
the GPIOx_SPEEDR GPIO port output speed register.
3. The maximum frequency is defined in Figure 36.
4. For maximum frequencies above 50 MHz and VDD > 2.4 V, the compensation cell should be used.
Table 58. I/O AC characteristics(1)(2) (continued)
OSPEEDRy
[1:0] bit
value(1)
Symbol Parameter Conditions Min Typ Max Unit
Electrical characteristics STM32F412xE/G
122/193 DocID028087 Rev 4
Figure 36. I/O AC characteristics definition
6.3.17 NRST pin characteristics
The NRST pin input driver uses CMOS technology. It is connected to a permanent pull-up
resistor, RPU (see Table 56).
Unless otherwise specified, the parameters given in Table 5 9 are derived from tests
performed under the ambient temperature and VDD supply voltage conditions summarized
in Table 15. Refer to Table 56: I/O static characteristics for the values of VIH and VIL for
NRST pin.
DLG



WU,2RXW
287387
(;7(51$/
21&/
0D[LPXPIUHTXHQF\LVDFKLHYHGLIWUWI7DQGLIWKHGXW\F\FOHLV
ZKHQORDGHGE\&/VSHFLILHGLQWKHWDEOH³,2$&FKDUDFWHULVWLFV´



7
WI,2RXW
Table 59. NRST pin characteristics
Symbol Parameter Conditions Min Typ Max Unit
RPU
Weak pull-up equivalent
resistor(1) VIN = VSS 30 40 50 k
VF(NRST)(2) NRST Input filtered pulse - - - 100 ns
VNF(NRST)(2) NRST Input not filtered pulse VDD > 2.7 V 300 - - ns
TNRST_OUT Generated reset pulse duration Internal Reset
source 20 - - µs
1. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series
resistance must be minimum (~10% order).
2. Guaranteed by design, not tested in production.
DocID028087 Rev 4 123/193
STM32F412xE/G Electrical characteristics
161
Figure 37. Recommended NRST pin protection
1. The reset network protects the device against parasitic resets.
2. The user must ensure that the level on the NRST pin can go below the VIL(NRST) max level specified in
Table 59. Otherwise the reset is not taken into account by the device.
6.3.18 TIM timer characteristics
The parameters given in Table 60 are guaranteed by design.
Refer to Section 6.3.16: I/O port characteristics for details on the input/output alternate
function characteristics (output compare, input capture, external clock, PWM output).
DLF
670)
538
1567

9''
)LOWHU
,QWHUQDO5HVHW
)
([WHUQDO
UHVHWFLUFXLW 
Table 60. TIMx characteristics(1)(2)
1. TIMx is used as a general term to refer to the TIM1 to TIM11 timers.
2. Guaranteed by design, not tested in production.
Symbol Parameter Conditions(3)
3. The maximum timer frequency on APB1 is 50 MHz and on APB2 is up to 100 MHz, by setting the TIMPRE
bit in the RCC_DCKCFGR register, if APBx prescaler is 1 or 2 or 4, then TIMxCLK = HCKL, otherwise
TIMxCLK >= 4x PCLKx.
Min Max Unit
tres(TIM) Timer resolution time
AHB/APBx prescaler=1
or 2 or 4, fTIMxCLK =
100 MHz
1-
tTIMxCLK
11.9 - ns
AHB/APBx prescaler>4,
fTIMxCLK = 100 MHz
1-
tTIMxCLK
11.9 - ns
fEXT Timer external clock
frequency on CH1 to CH4 fTIMxCLK = 100 MHz
0fTIMxCLK/2 MHz
050MHz
ResTIM Timer resolution - 16/32 bit
tCOUNTER
16-bit counter clock
period when internal clock
is selected
fTIMxCLK = 100 MHz 0.0119 780 µs
tMAX_COUNT Maximum possible count
with 32-bit counter
--
65536 ×
65536 tTIMxCLK
fTIMxCLK = 100 MHz -51.1S
Electrical characteristics STM32F412xE/G
124/193 DocID028087 Rev 4
6.3.19 Communications interfaces
I2C interface characteristics
The I2C interface meets the requirements of the standard I2C communication protocol with
the following restrictions: the I/O pins SDA and SCL are mapped to are not “true” open-
drain. When configured as open-drain, the PMOS connected between the I/O pin and VDD is
disabled, but is still present.
The I2C characteristics are described in Table 61. Refer also to Section 6.3.16: I/O port
characteristics for more details on the input/output alternate function characteristics (SDA
and SCL).
The I2C bus interface supports standard mode (up to 100 kHz) and fast mode (up to 400
kHz). The I2C bus frequency can be increased up to 1 MHz. For more details about the
complete solution, contact your local ST sales representative.
Table 61. I2C characteristics
Symbol Parameter
Standard mode
I2C(1)(2)
1. Guaranteed by design, not tested in production.
Fast mode I2C(1)(2)
2. fPCLK1 must be at least 2 MHz to achieve standard mode I2C frequencies. It must be at least 4 MHz to
achieve fast mode I2C frequencies, and a multiple of 10 MHz to reach the 400 kHz maximum I2C fast mode
clock.
Unit
Min Max Min Max
tw(SCLL) SCL clock low time 4.7 - 1.3 -
µs
tw(SCLH) SCL clock high time 4.0 - 0.6 -
tsu(SDA) SDA setup time 250 - 100 -
ns
th(SDA) SDA data hold time 0 3450(3)
3. The device must internally provide a hold time of at least 300 ns for the SDA signal in order to bridge the
undefined region of the falling edge of SCL.
0900
(4)
tr(SDA)
tr(SCL)
SDA and SCL rise time - 1000 - 300
tf(SDA)
tf(SCL)
SDA and SCL fall time - 300 - 300
th(STA) Start condition hold time 4.0 - 0.6 -
µs
tsu(STA)
Repeated Start condition
setup time 4.7 - 0.6 -
tsu(STO) Stop condition setup time 4.0 - 0.6 - µs
tw(STO:STA)
Stop to Start condition time
(bus free) 4.7 - 1.3 - µs
tSP
Pulse width of the spikes
that are suppressed by the
analog filter for standard fast
mode
- - 50 120(5) ns
Cb
Capacitive load for each bus
line - 400 - 400 pF
DocID028087 Rev 4 125/193
STM32F412xE/G Electrical characteristics
161
Figure 38. I2C bus AC waveforms and measurement circuit
1. RS = series protection resistor.
2. RP = external pull-up resistor.
3. VDD_I2C is the I2C bus power supply.
4. The maximum data hold time has only to be met if the interface does not stretch the low period of SCL
signal.
5. The minimum width of the spikes filtered by the analog filter is above tSP (max)
Table 62. SCL frequency (fPCLK1= 50 MHz, VDD = VDD_I2C = 3.3 V)(1)(2)
1. RP = External pull-up resistance, fSCL = I2C speed
2. For speeds around 200 kHz, the tolerance on the achieved speed is of ±5%. For other speed ranges, the
tolerance on the achieved speed is ±2%. These variations depend on the accuracy of the external
components used to design the application.
fSCL (kHz)
I2C_CCR value
RP = 4.7 k
400 0x8019
300 0x8021
200 0x8032
100 0x0096
50 0x012C
20 0x02EE
06Y9
53
,ð&EXV
670)[[
6'$
6&/
WI6'$ WU6'$
WK67$
WZ6&//
WZ6&/+
WVX6'$
WU6&/ WI6&/
WK6'$
67$575(3($7('
WVX67$
WVX672
6723 WZ67267$
5356
56
67$57
67$57
6'$
6&/
9''B,& 9''B,&
Electrical characteristics STM32F412xE/G
126/193 DocID028087 Rev 4
FMPI2C characteristics
The following table presents FMPI2C characteristics.
Refer also to Section 6.3.16: I/O port characteristics for more details on the input/output
function characteristics (SDA and SCL).
Table 63. FMPI2C characteristics(1)
Parameter
Standard mode Fast mode Fast+ mode
Unit
Min Max Min Max Min Max
fFMPI2CC FMPI2CCLK frequency 2 - 8 - 18 -
µs
tw(SCLL) SCL clock low time 4.7 - 1.3 - 0.5 -
tw(SCLH) SCL clock high time 4.0 - 0.6 - 0.26 -
tsu(SDA) SDA setup time 0.25 - 0.10 - 0.05 -
tH(SDA) SDA data hold time 0 - 0 - 0 -
tv(SDA,ACK) Data, ACK valid time - 3.45 - 0.9 - 0.45
tr(SDA)
tr(SCL) SDA and SCL rise time - 1.0 - 0.30 - 0.12
tf(SDA)
tf(SCL) SDA and SCL fall time - 0.30 - 0.30 - 0.12
th(STA) Start condition hold time 4 - 0.6 - 0.26 -
tsu(STA) Repeated Start condition
setup time 4.7 - 0.6 - 0.26 -
tsu(STO) Stop condition setup time 4 - 0.6 - 0.26 -
tw(STO:STA) Stop to Start condition time
(bus free) 4.7 - 1.3 - 0.5 -
tSP
Pulse width of the spikes that
are suppressed by the
analog filter for standard and
fast mode
- - 0.05 0.1 0.05 0.1
CbCapacitive load for each bus
Line - 400 - 400 - 550(2) pF
1. Based on characterization results, not tested in production.
2. Can be limited. Maximum supported value can be retrieved by referring to the following formulas:
tr(SDA/SCL) = 0.8473 x Rp x Cload
Rp(min) = (VDD -VOL(max)) / IOL(max)
DocID028087 Rev 4 127/193
STM32F412xE/G Electrical characteristics
161
Figure 39. FMPI2C timing diagram and measurement circuit
06Y9
,ð&EXV
670)[[
6'$
6&/
WI6'$ WU6'$
WK67$
WZ6&//
WZ6&/+
WVX6'$
WU6&/ WI6&/
WK6'$
67$575(3($7('
WVX67$
WVX672
6723 WZ67267$
5356
56
67$57
67$57
6'$
6&/
53
9''B,&
9''B,&
Electrical characteristics STM32F412xE/G
128/193 DocID028087 Rev 4
SPI interface characteristics
Unless otherwise specified, the parameters given in Table 6 4 for the SPI interface are
derived from tests performed under the ambient temperature, fPCLKx frequency and VDD
supply voltage conditions summarized in Table 15, with the following configuration:
Output speed is set to OSPEEDRy[1:0] = 10
Capacitive load C = 30 pF
Measurement points are done at CMOS levels: 0.5VDD
Refer to Section 6.3.16: I/O port characteristics for more details on the input/output alternate
function characteristics (NSS, SCK, MOSI, MISO for SPI).
Table 64. SPI dynamic characteristics(1)
Symbol Parameter Conditions Min Typ Max Unit
fSCK
1/tc(SCK)
SPI clock frequency
Master full duplex/receiver mode,
2.7 V < VDD < 3.6 V
SPI1/4/5
--50
MHz
Master transmitter mode
1.7 V < VDD < 3.6 V
SPI1/4/5
--
50
Master mode
1.7 V < VDD < 3.6 V
SPI1/2/3/4/5
--
25
Slave transmitter/full duplex mode
2.7 V < VDD < 3.6 V
SPI1//4/5
--
50
Slave transmitter/full duplex mode
1.7 V < VDD < 3.6 V
SPI1/4/5
--
35(2)
Slave receiver mode,
1.7 V < VDD < 3.6 V
SPI1/4/5
--50
Slave mode,
1.7 V < VDD < 3.6 V
SPI2/3
--
25
Duty(SCK) Duty cycle of SPI clock
frequency Slave mode 30 50 70 %
tw(SCKH)
tw(SCKL)
SCK high and low time Master mode, SPI presc = 2 TPCLK1.5 TPCLK
TPCLK
+1.5 ns
tsu(NSS) NSS setup time Slave mode, SPI presc = 2 3TPCLK --ns
th(NSS) NSS hold time Slave mode, SPI presc = 2 2TPCLK --ns
tsu(MI) Data input setup time
Master mode 4.5 - - ns
tsu(SI) Slave mode 1.5 - - ns
th(MI) Data input hold time
Master mode 5 - - ns
th(SI) Slave mode 0.5 - - ns
DocID028087 Rev 4 129/193
STM32F412xE/G Electrical characteristics
161
Figure 40. SPI timing diagram - slave mode and CPHA = 0
ta(SO) Data output access time Slave mode 7 - 21 ns
tdis(SO) Data output disable time Slave mode 5 - 12 ns
tv(SO) Data output valid time
Slave mode (after enable edge),
2.7 V < VDD < 3.6 V -7.59ns
Slave mode (after enable edge),
1.7 V < VDD < 3.6 V -7.514ns
th(SO) Data output hold time Slave mode (after enable edge),
1.7 V < VDD < 3.6 V 5.5 - - ns
tv(MO) Data output valid time Master mode (after enable edge) - 3 8 ns
th(MO) Data output hold time Master mode (after enable edge) 2 - - ns
1. Guaranteed by characterization, not tested in production.
2. Maximum frequency in Slave transmitter mode is determined by the sum of tv(SO) and tsu(MI) which has to fit
into SCK low or high phase preceding the SCK sampling edge. This value can be achieved when the SPI
communicates with a master having tsu(MI) = 0 while Duty(SCK) = 50%
Table 64. SPI dynamic characteristics(1) (continued)
Symbol Parameter Conditions Min Typ Max Unit
DLF
6&.,QSXW
166LQSXW
W
68166
W
F6&.
W
K166
&3+$ 
&32/ 
&3+$ 
&32/ 
W
Z6&.+
W
Z6&./
W
962
W
K62
W
U6&.
W
I6&.
W
GLV62
W
D62
0,62
287387
026,
,1387
06%287 %,7287 /6%287
W
VX6,
W
K6,
06%,1 %,7,1 /6%,1
Electrical characteristics STM32F412xE/G
130/193 DocID028087 Rev 4
Figure 41. SPI timing diagram - slave mode and CPHA = 1(1)
Figure 42. SPI timing diagram - master mode(1)
DLE
166LQSXW
W68166 WF6&. WK166
6&.LQSXW
&3+$ 
&32/ 
&3+$ 
&32/ 
WZ6&.+
WZ6&./
WD62 WY62 WK62 WU6&.
WI6&. WGLV62
0,62
287387
026,
,1387
WVX6, WK6,
06%287
06%,1
%,7287 /6%287
/6%,1
%,7,1
DLF
6&.2XWSXW
&3+$
026,
287387
0,62
,13 87
&3+$
/6%287
/6%,1
&32/ 
&32/ 
% , 7287
166LQSXW
WF6&.
WZ6&.+
WZ6&./
WU6&.
WI6&.
WK0,
+LJK
6&.2XWSXW
&3+$
&3+$
&32/ 
&32/ 
WVX0,
WY02 WK02
06%,1 %,7,1
06%287
DocID028087 Rev 4 131/193
STM32F412xE/G Electrical characteristics
161
I2S interface characteristics
Unless otherwise specified, the parameters given in Table 6 5 for the I2S interface are
derived from tests performed under the ambient temperature, fPCLKx frequency and VDD
supply voltage conditions summarized in Table 15, with the following configuration:
Output speed is set to OSPEEDRy[1:0] = 10
Capacitive load C = 30 pF
Measurement points are done at CMOS levels: 0.5VDD
Refer to Section 6.3.16: I/O port characteristics for more details on the input/output alternate
function characteristics (CK, SD, WS).
Note: Refer to the I2S section of RM0383 reference manual for more details on the sampling
frequency (FS).
fMCK, fCK, and DCK values reflect only the digital peripheral behavior. The values of these
parameters might be slightly impacted by the source clock precision. DCK depends mainly
on the value of ODD bit. The digital contribution leads to a minimum value of
(I2SDIV/(2*I2SDIV+ODD) and a maximum value of (I2SDIV+ODD)/(2*I2SDIV+ODD). FS
maximum value is supported for each mode/condition.
Table 65. I2S dynamic characteristics(1)
Symbol Parameter Conditions Min Max Unit
fMCK I2S Main clock output - 256x8K 256xFs(2) MHz
fCK I2S clock frequency
Master data: 32 bits - 64xFs
MHz
Slave data: 32 bits - 64xFs
DCK I2S clock frequency duty cycle Slave receiver 30 70 %
tv(WS) WS valid time Master mode - 5
ns
th(WS) WS hold time Master mode 0 -
tsu(WS) WS setup time Slave mode 2 -
th(WS) WS hold time Slave mode 0.5 -
tsu(SD_MR) Data input setup time
Master receiver 0 -
tsu(SD_SR) Slave receiver 2 -
th(SD_MR) Data input hold time
Master receiver 0 -
th(SD_SR) Slave receiver 2.5 -
tv(SD_ST) Data output valid time
Slave transmitter (after enable edge) - 15
tv(SD_MT) Master transmitter (after enable edge) - 2.5
th(SD_ST) Data output hold time
Slave transmitter (after enable edge) 6 -
th(SD_MT) Master transmitter (after enable edge) 0 -
1. Guaranteed by characterization, not tested in production.
2. The maximum value of 256xFs is 50 MHz (APB1 maximum frequency).
Electrical characteristics STM32F412xE/G
132/193 DocID028087 Rev 4
Figure 43. I2S slave timing diagram (Philips protocol)(1)
1. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first
byte.
Figure 44. I2S master timing diagram (Philips protocol)(1)
1. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first
byte.
CK Input
CPOL = 0
CPOL = 1
tc(CK)
WS input
SDtransmit
SDreceive
tw(CKH) tw(CKL)
tsu(WS) tv(SD_ST) th(SD_ST)
th(WS)
tsu(SD_SR) th(SD_SR)
MSB receive Bitn receive LSB receive
MSB transmit Bitn transmit LSB transmit
ai14881b
LSB receive(2)
LSB transmit(2)
CK output
CPOL = 0
CPOL = 1
tc(CK)
WS output
SDreceive
SDtransmit
tw(CKH)
tw(CKL)
tsu(SD_MR)
tv(SD_MT) th(SD_MT)
th(WS)
th(SD_MR)
MSB receive Bitn receive LSB receive
MSB transmit Bitn transmit LSB transmit
ai14884b
tf(CK) tr(CK)
tv(WS)
LSB receive
(2)
LSB transmit
(2)
DocID028087 Rev 4 133/193
STM32F412xE/G Electrical characteristics
161
QSPI interface characteristics
Unless otherwise specified, the parameters given in the following tables for QSPI are
derived from tests performed under the ambient temperature, fAHB frequency and VDD
supply voltage conditions summarized in Table 15, with the following configuration:
Output speed is set to OSPEEDRy[1:0] = 11
Capacitive load C=20pF
Measurement points are done at CMOS levels: 0.5VDD
Refer to Section 6.3.16: I/O port characteristics for more details on the input/output alternate
function characteristics.
Table 66. QSPI dynamic characteristics in SDR mode(1)
1. Guaranteed by characterization results, not tested in production.
Symbol Parameter Conditions Min Typ Max Unit
fSCK
1/tc(SCK)
QSPI clock
frequency
Write mode
1.71 VVDD3.6 V
Cload = 15 pF
--80
MHz
Read mode
2.7 V<VDD<3.6 V
Cload = 15 pF
- - 100
1.71 VVDD3.6 V - - 50
tw(CKH) QSPI clock high
and low -
(T(CK) / 2)-1 - T(CK) / 2
ns
tw(CKL) T(CK) / 2) - (T(CK) / 2)+1
ts(IN)
Data input setup
time -0.5--
th(IN)
Data input hold
time - 3.5--
tv(OUT)
Data output valid
time --11.5
th(OUT)
Data output hold
time -0.5--
Table 67. QSPI dynamic characteristics in DDR mode(1)
Symbol Parameter Conditions Min Typ Max Unit
fSCK
1/tc(SCK)
QSPI clock
frequency
Write mode
1.71 VVDD3.6 V
Cload = 15 pF
--80
MHz
Read mode
2.7 V<VDD<3.6 V
Cload = 15 pF
- - 80
1.71 VVDD3.6 V - - 50
Electrical characteristics STM32F412xE/G
134/193 DocID028087 Rev 4
USB OTG full speed (FS) characteristics
This interface is present in USB OTG FS controller.
tw(CKH) QSPI clock high
and low -
(T(CK) / 2)-1 - T(CK) / 2
ns
tw(CKL) T(CK) / 2) - (T(CK) / 2)+1
ts(IN)
Data input setup
time -0--
th(IN)
Data input hold
time -4--
tv(OUT)
Data output valid
time
2.7 V<VDD<3.6 V - 8 10.5
1.71 V<VDD<3.6 V - 8 13
th(OUT)
Data output hold
time -7.5--
1. Guaranteed by characterization results, not tested in production.
Table 68. USB OTG FS startup time
Symbol Parameter Max Unit
tSTARTUP(1)
1. Guaranteed by design, not tested in production.
USB OTG FS transceiver startup time 1 µs
Table 69. USB OTG FS DC electrical characteristics
Symbol Parameter Conditions Min.(1)
1. All the voltages are measured from the local ground potential.
Typ. Max.(1) Unit
Input
levels
VDD
USB OTG FS operating
voltage 3.0(2) -3.6V
VDI(3) Differential input sensitivity I(USB_FS_DP/DM) 0.2 - -
V
VCM(3) Differential common mode
range Includes VDI range 0.8 - 2.5
VSE(3) Single ended receiver
threshold 1.3 - 2.0
Output
levels
VOL Static output level low RL of 1.5 k to 3.6 V(4) --0.3
V
VOH Static output level high RL of 15 k to VSS(4) 2.8 - 3.6
RPD
PA11, PA12
(USB_FS_DM/DP) VIN = VDD
17 21 24
k
PA9 (OTG_FS_VBUS) 0.65 1.1 2.0
RPU
PA11, PA12
(USB_FS_DM/DP) VIN = VSS 1.5 1.8 2.1
PA9 (OTG_FS_VBUS) VIN = VSS 0.25 0.37 0.55
Table 67. QSPI dynamic characteristics in DDR mode(1) (continued)
Symbol Parameter Conditions Min Typ Max Unit
DocID028087 Rev 4 135/193
STM32F412xE/G Electrical characteristics
161
Note: When VBUS sensing feature is enabled, PA9 should be left at their default state (floating
input), not as alternate function. A typical 200 µA current consumption of the embedded
sensing block (current to voltage conversion to determine the different sessions) can be
observed on PA9 when the feature is enabled.
Figure 45. USB OTG FS timings: definition of data signal rise and fall time
CAN (controller area network) interface
Refer to Section 6.3.16: I/O port characteristics for more details on the input/output alternate
function characteristics (CANx_TX and CANx_RX).
2. The USB OTG FS functionality is ensured down to 2.7 V but not the full USB full speed electrical
characteristics which are degraded in the 2.7-to-3.0 V VDD voltage range.
3. Guaranteed by design, not tested in production.
4. RL is the load connected on the USB OTG FS drivers.
Table 70. USB OTG FS electrical characteristics(1)
1. Guaranteed by design, not tested in production.
Driver characteristics
Symbol Parameter Conditions Min Max Unit
trRise time(2)
2. Measured from 10% to 90% of the data signal. For more detailed informations, refer to USB Specification -
Chapter 7 (version 2.0).
CL = 50 pF 420ns
tfFall time(2) CL = 50 pF 4 20 ns
trfm Rise/ fall time matching tr/tf90 110 %
VCRS Output signal crossover voltage 1.3 2.0 V
ai14137
tf
Differen tial
Data Lines
VSS
V
CR S
tr
Crossover
points
Electrical characteristics STM32F412xE/G
136/193 DocID028087 Rev 4
6.3.20 12-bit ADC characteristics
Unless otherwise specified, the parameters given in Table 7 1 are derived from tests
performed under the ambient temperature, fPCLK2 frequency and VDDA supply voltage
conditions summarized in Table 15.
Table 71. ADC characteristics
Symbol Parameter Conditions Min Typ Max Unit
VDDA Power supply VDDA VREF+ < 1.2 V 1.7(1) -3.6V
VREF+ Positive reference voltage 1.7(1) -V
DDA V
fADC ADC clock frequency VDDA = 1.7(1) to 2.4 V 0.6 15 18 MHz
VDDA = 2.4 to 3.6 V 0.6 30 36 MHz
fTRIG(2) External trigger frequency
fADC = 30 MHz,
12-bit resolution - - 1764 kHz
---171/f
ADC
VAIN Conversion voltage range(3) -0 (VSSA or VREF-
tied to ground) -V
REF+ V
RAIN(2) External input impedance See Equation 1 for
details --50k
RADC(2)(4) Sampling switch resistance - - - 6 k
CADC(2) Internal sample and hold
capacitor --47pF
tlat(2) Injection trigger conversion
latency
fADC = 30 MHz - - 0.100 µs
---3
(5) 1/fADC
tlatr(2) Regular trigger conversion
latency
fADC = 30 MHz - - 0.067 µs
---2
(5) 1/fADC
tS(2) Sampling time fADC = 30 MHz 0.100 - 16 µs
- 3 - 480 1/fADC
tSTAB(2) Power-up time - - 2 3 µs
tCONV(2) Total conversion time (including
sampling time)
fADC = 30 MHz
12-bit resolution 0.50 - 16.40 µs
fADC = 30 MHz
10-bit resolution 0.43 - 16.34 µs
fADC = 30 MHz
8-bit resolution 0.37 - 16.27 µs
fADC = 30 MHz
6-bit resolution 0.30 - 16.20 µs
9 to 492 (tS for sampling +n-bit resolution for successive
approximation) 1/fADC
DocID028087 Rev 4 137/193
STM32F412xE/G Electrical characteristics
161
Equation 1: RAIN max formula
The formula above (Equation 1) is used to determine the maximum external impedance
allowed for an error below 1/4 of LSB. N = 12 (from 12-bit resolution) and k is the number of
sampling periods defined in the ADC_SMPR1 register.
fS(2)
Sampling rate
(fADC = 30 MHz, and
tS = 3 ADC cycles)
12-bit resolution
Single ADC - - 2 Msps
12-bit resolution
Interleave Dual ADC
mode
- - 3.75 Msps
12-bit resolution
Interleave Triple ADC
mode
- - 6 Msps
IVREF+(2)
ADC VREF DC current
consumption in conversion
mode
- - 300 500 µA
IVDDA(2)
ADC VDDA DC current
consumption in conversion
mode
--1.61.8mA
1. VDDA minimum value of 1.7 V is possible with the use of an external power supply supervisor (refer to Section 3.18.2:
Internal reset OFF).
2. Guaranteed by characterization, not tested in production.
3. VREF+ is internally connected to VDDA and VREF- is internally connected to VSSA.
4. RADC maximum value is given for VDD=1.7 V, and minimum value for VDD=3.3 V.
5. For external triggers, a delay of 1/fPCLK2 must be added to the latency specified in Table 71.
Table 71. ADC characteristics (continued)
Symbol Parameter Conditions Min Typ Max Unit
Table 72. ADC accuracy at fADC = 18 MHz(1)
1. Better performance could be achieved in restricted VDD, frequency and temperature ranges.
Symbol Parameter Test conditions Typ Max(2)
2. Guaranteed by characterization, not tested in production.
Unit
ET Total unadjusted error
fADC =18 MHz
VDDA = 1.7 to 3.6 V
VREF = 1.7 to 3.6 V
VDDA VREF < 1.2 V
±3 ±4
LSB
EO Offset error ±2 ±3
EG Gain error ±1 ±3
ED Differential linearity error ±1 ±2
EL Integral linearity error ±2 ±3
RAIN
k0.5()
fADC CADC 2N2+
()ln××
---------------------------------------------------------------- RADC
=
Electrical characteristics STM32F412xE/G
138/193 DocID028087 Rev 4
Table 73. ADC accuracy at fADC = 30 MHz(1)
1. Better performance could be achieved in restricted VDD, frequency and temperature ranges.
Symbol Parameter Test conditions Typ Max(2)
2. Guaranteed by characterization, not tested in production.
Unit
ET Total unadjusted error
fADC = 30 MHz,
RAIN < 10 k,
VDDA = 2.4 to 3.6 V,
VREF = 1.7 to 3.6 V,
VDDA VREF < 1.2 V
±2 ±5
LSB
EO Offset error ±1.5 ±2.5
EG Gain error ±1.5 ±4
ED Differential linearity error ±1 ±2
EL Integral linearity error ±1.5 ±3
Table 74. ADC accuracy at fADC = 36 MHz(1)
1. Better performance could be achieved in restricted VDD, frequency and temperature ranges.
Symbol Parameter Test conditions Typ Max(2)
2. Guaranteed by characterization, not tested in production.
Unit
ET Total unadjusted error
fADC =36 MHz,
VDDA = 2.4 to 3.6 V,
VREF = 1.7 to 3.6 V
VDDA VREF < 1.2 V
±4 ±7
LSB
EO Offset error ±2 ±3
EG Gain error ±3 ±6
ED Differential linearity error ±2 ±3
EL Integral linearity error ±3 ±6
Table 75. ADC dynamic accuracy at fADC = 18 MHz - limited test conditions(1)
Symbol Parameter Test conditions Min Typ Max Unit
ENOB Effective number of bits fADC =18 MHz
VDDA = VREF+= 1.7 V
Input Frequency = 20 kHz
Temperature = 25 °C
10.3 10.4 - bits
SINAD Signal-to-noise and distortion ratio 64 64.2 -
dBSNR Signal-to-noise ratio 64 65 -
THD Total harmonic distortion - -72 -67
1. Guaranteed by characterization, not tested in production.
Table 76. ADC dynamic accuracy at fADC = 36 MHz - limited test conditions(1)
Symbol Parameter Test conditions Min Typ Max Unit
ENOB Effective number of bits fADC = 36 MHz
VDDA = VREF+ = 3.3 V
Input Frequency = 20 kHz
Temperature = 25 °C
10.6 10.8 - bits
SINAD Signal-to noise and distortion ratio 66 67 -
dBSNR Signal-to noise ratio 64 68 -
THD Total harmonic distortion - -72 -70
1. Guaranteed by characterization, not tested in production.
DocID028087 Rev 4 139/193
STM32F412xE/G Electrical characteristics
161
Note: ADC accuracy vs. negative injection current: injecting a negative current on any analog
input pins should be avoided as this significantly reduces the accuracy of the conversion
being performed on another analog input. It is recommended to add a Schottky diode (pin to
ground) to analog pins which may potentially inject negative currents.
Any positive injection current within the limits specified for IINJ(PIN) and ΣIINJ(PIN) in
Section 6.3.16 does not affect the ADC accuracy.
Figure 46. ADC accuracy characteristics
1. See also Table 73.
2. Example of an actual transfer curve.
3. Ideal transfer curve.
4. End point correlation line.
5. ET = Total Unadjusted Error: maximum deviation between the actual and the ideal transfer curves.
EO = Offset Error: deviation between the first actual transition and the first ideal one.
EG = Gain Error: deviation between the last ideal transition and the last actual one.
ED = Differential Linearity Error: maximum deviation between actual steps and the ideal one.
EL = Integral Linearity Error: maximum deviation between any actual transition and the end point
correlation line.
AIC
%/
%'
, 3")$%!,



    


%4
%$
%,

6$$!
633!
62%&
 ORDEPENDINGONPACKAGE=
6$$!

;,3" )$%!,

Electrical characteristics STM32F412xE/G
140/193 DocID028087 Rev 4
Figure 47. Typical connection diagram using the ADC
1. Refer to Table 71 for the values of RAIN, RADC and CADC.
2. Cparasitic represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the
pad capacitance (roughly 5 pF). A high Cparasitic value downgrades conversion accuracy. To remedy this,
fADC should be reduced.
ELW
FRQYHUWHU
6DPSOHDQGKROG$'&
FRQYHUWHU
5$,1 $,1[
9$,1 &SDUDVLWLF
9''
97
9
97
9
,/$
5$'&
&$'&
069
DocID028087 Rev 4 141/193
STM32F412xE/G Electrical characteristics
161
General PCB design guidelines
Power supply decoupling should be performed as shown in Figure 48 or Figure 49,
depending on whether VREF+ is connected to VDDA or not. The 10 nF capacitors should be
ceramic (good quality). They should be placed them as close as possible to the chip.
Figure 48. Power supply and reference decoupling (VREF+ not connected to VDDA)
1. VREF+ and VREF- inputs are both available on UFBGA100. VREF+ is also available on LQFP100. When
VREF+ and VREF- are not available, they are internally connected to VDDA and VSSA.
670)
)Q)
)Q)
95()
9''$
966$95()

DLE
Electrical characteristics STM32F412xE/G
142/193 DocID028087 Rev 4
Figure 49. Power supply and reference decoupling (VREF+ connected to VDDA)
1. VREF+ and VREF- inputs are both available on UFBGA100. VREF+ is also available on LQFP100. When
VREF+ and VREF- are not available, they are internally connected to VDDA and VSSA.
6.3.21 Temperature sensor characteristics
670)
)Q)
DLF
95()9''$
95()966$ 

Table 77. Temperature sensor characteristics
Symbol Parameter Min Typ Max Unit
TL(1) VSENSE linearity with temperature - ±1±C
Avg_Slope(1) Average slope - 2.5 - mV/°C
V25(1) Voltage at 25 °C - 0.76 - V
tSTART(2) Startup time - 6 10 µs
TS_temp(2) ADC sampling time when reading the temperature (1 °C accuracy) 10 - - µs
1. Guaranteed by characterization, not tested in production.
2. Guaranteed by design, not tested in production.
Table 78. Temperature sensor calibration values
Symbol Parameter Memory address
TS_CAL1 TS ADC raw data acquired at temperature of 30 °C, VDDA= 3.3 V 0x1FFF 7A2C - 0x1FFF 7A2D
TS_CAL2 TS ADC raw data acquired at temperature of 110 °C, VDDA= 3.3 V 0x1FFF 7A2E - 0x1FFF 7A2F
DocID028087 Rev 4 143/193
STM32F412xE/G Electrical characteristics
161
6.3.22 VBAT monitoring characteristics
6.3.23 Embedded reference voltage
The parameters given in Table 80 are derived from tests performed under ambient
temperature and VDD supply voltage conditions summarized in Table 15.
Table 79. VBAT monitoring characteristics
Symbol Parameter Min Typ Max Unit
R Resistor bridge for VBAT -50-K
QRatio on VBAT measurement - 4 -
Er(1) Error on Q 1 - +1 %
TS_vbat(2)(2) ADC sampling time when reading the VBAT
1 mV accuracy 5--µs
1. Guaranteed by design, not tested in production.
2. Shortest sampling time can be determined in the application by multiple iterations.
Table 80. Embedded internal reference voltage
Symbol Parameter Conditions Min Typ Max Unit
VREFINT Internal reference voltage –40 °C < TA < +105 °C 1.18 1.21 1.24 V
TS_vrefint(1) ADC sampling time when reading the
internal reference voltage -10--µs
VRERINT_s(2) Internal reference voltage spread over the
temperature range VDD = 3V ± 10mV - 3 5 mV
TCoeff(2) Temperature coefficient - - 30 50 ppm/°C
tSTART(2) Startup time - - 6 10 µs
1. Shortest sampling time can be determined in the application by multiple iterations.
2. Guaranteed by design, not tested in production
Table 81. Internal reference voltage calibration values
Symbol Parameter Memory address
VREFIN_CAL
Raw data acquired at temperature of
30 °C VDDA = 3.3 V 0x1FFF 7A2A - 0x1FFF 7A2B
Electrical characteristics STM32F412xE/G
144/193 DocID028087 Rev 4
6.3.24 DFSDM characteristics
Unless otherwise specified, the parameters given in Table 8 2 for DFSDM are derived from
tests performed under the ambient temperature, fAPB2 frequency and VDD supply voltage
conditions summarized in Table 15: General operating conditions.
Output speed is set to OSPEEDRy[1:0] = 10
Capacitive load C = 30 pF
Measurement points are done at CMOS levels: 0.5 VDD
Refer to Section 6.3.16: I/O port characteristics for more details on the input/output alternate
function characteristics (DFSDM_CKINy, DFSDM_DATINy, DFSDM_CKOUT for DFSDM).
Table 82. DFSDM characteristics(1)
Symbol Parameter Conditions Min Typ Max Unit
fDFSDMCLK DFSDM clock - - - fSYSCLK
MHz
fCKIN
(1/TCKIN)
Input clock
frequency SPI mode (SITP[1:0] = 01) - - 20
(fDFSDMCLK/4)
fCKOUT
Output clock
frequency ---20MHz
DuCyCKOUT
Output clock
frequency
duty cycle
-305075%
twh(CKIN)
twl(CKIN)
Input clock
high and low
time
SPI mode (SITP[1:0] = 01),
External clock mode
(SPICKSEL[1:0] = 0)
TCKIN/2-0.5 TCKIN/2 -
ns
tsu
Data input
setup time
SPI mode (SITP[1:0]=01),
External clock mode
(SPICKSEL[1:0] = 0)
1- -
th
Data input
hold time
SPI mode (SITP[1:0]=01),
External clock mode
(SPICKSEL[1:0] = 0)
1- -
TManchester
Manchester
data period
(recovered
clock period)
Manchester mode (SITP[1:0]
= 10 or 11),
Internal clock mode
(SPICKSEL[1:0] 0)
(CKOUT
DIV+1)
TDFSDMCLK
-(2 CKOUTDIV)
TDFSDMCLK
1. Data based on characterization results, not tested in production.
DocID028087 Rev 4 145/193
STM32F412xE/G Electrical characteristics
161
Figure 16: DFSDM timing diagram
6.3.25 FSMC characteristics
Unless otherwise specified, the parameters given in Table 8 3 to Table 90 for the FSMC
interface are derived from tests performed under the ambient temperature, fHCLK frequency
and VDD supply voltage conditions summarized in Table 14, with the following configuration:
Output speed is set to OSPEEDRy[1:0] = 10
Capacitance load C = 30 pF
Measurement points are done at CMOS levels: 0.5.VDD
06Y9
63,&.6(/ 
63,&.6(/ 
63,&.6(/ 
')6'0B&.287
WVX
WZO WZK WUWI
WK
WVX WK
6,73 
6,73 
')6'0B'$7,1\ ')6'0B
&.,1\
63,&.6(/ 
WVX WK
WVX WK
6,73 
6,73 
')6'0B'$7,1\

6,73 
6,73 
5HFRYHUHGFORFN
5HFRYHUHGGDWD
')6'0B'$7,1\
0DQFKHVWHUWLPLQJ 63,WLPLQJ63,&.6(/  63,WLPLQJ63,&.6(/ 
WZO WZK WUWI
Electrical characteristics STM32F412xE/G
146/193 DocID028087 Rev 4
Refer to Section 6.3.16: I/O port characteristics for more details on the input/output
characteristics.
Asynchronous waveforms and timings
Figure 50 through Figure 53 represent asynchronous waveforms and Table 83 through
Table 90 provide the corresponding timings. The results shown in these tables are obtained
with the following FSMC configuration:
AddressSetupTime = 0x1
AddressHoldTime = 0x1
DataSetupTime = 0x1 (except for asynchronous NWAIT mode, DataSetupTime = 0x5)
BusTurnAroundDuration = 0x0
In all timing tables, the THCLK is the HCLK clock period.
Figure 50. Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms
1. Mode 2/B, C and D only. In Mode 1, FSMC_NADV is not used.
06Y9
'DWD
)60&B1(
)60&B1%/>@
)60&B'>@
W
Y%/B1(
WK'DWDB1(
)60&B12(
$GGUHVV
)60&B$>@
W
Y$B1(
)60&B1:(
WVX'DWDB1(
WZ1(
WY12(B1( WK1(B12(
WK'DWDB12(
WK$B12(
WK%/B12(
WVX'DWDB12(
)60&B1$'9
WY1$'9B1(
WZ1$'9
)60&B1:$,7
WVX1:$,7B1(
WK1(B1:$,7
WZ12(
DocID028087 Rev 4 147/193
STM32F412xE/G Electrical characteristics
161
Table 83. Asynchronous non-multiplexed SRAM/PSRAM/NOR -
read timings(1)(2)
1. CL = 30 pF.
2. Based on characterization, not tested in production.
Symbol Parameter Min Max Unit
tw(NE) FSMC_NE low time 2THCLK – 1 2 THCLK + 0.5
ns
tv(NOE_NE) FSMC_NEx low to FSMC_NOE low 0 1
tw(NOE) FSMC_NOE low time 2THCLK - 1.5 2THCLK
th(NE_NOE)
FSMC_NOE high to FSMC_NE high hold
time 0-
tv(A_NE) FSMC_NEx low to FSMC_A valid - 1.5
th(A_NOE) Address hold time after FSMC_NOE high 0 -
tv(BL_NE) FSMC_NEx low to FSMC_BL valid - 0.5
th(BL_NOE) FSMC_BL hold time after FSMC_NOE high 0 -
tsu(Data_NE) Data to FSMC_NEx high setup time THCLK - 1 -
tsu(Data_NOE) Data to FSMC_NOEx high setup time THCLK - 1 -
th(Data_NOE) Data hold time after FSMC_NOE high 0 -
th(Data_NE) Data hold time after FSMC_NEx high 0 -
tv(NADV_NE) FSMC_NEx low to FSMC_NADV low - 0
tw(NADV) FSMC_NADV low time - THCLK + 0.5
Table 84. Asynchronous non-multiplexed SRAM/PSRAM/NOR read -
NWAIT timings(1)(2)
1. CL = 30 pF.
2. Based on characterization, not tested in production.
Symbol Parameter Min Max Unit
tw(NE) FSMC_NE low time 7THCLK - 1 7THCLK + 0.5
ns
tw(NOE) FSMC_NWE low time 5THCLK – 1.5 5THCLK
tw(NWAIT) FSMC_NWAIT low time THCLK – 0.5 -
tsu(NWAIT_NE)
FSMC_NWAIT valid before FSMC_NEx
high 5THCLK -1 -
th(NE_NWAIT)
FSMC_NEx hold time after FSMC_NWAIT
invalid 4THCLK + 1 -
Electrical characteristics STM32F412xE/G
148/193 DocID028087 Rev 4
Figure 51. Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms
1. Mode 2/B, C and D only. In Mode 1, FSMC_NADV is not used.
Table 85. Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings(1)(2)
Symbol Parameter Min Max Unit
tw(NE) FSMC_NE low time 3 THCLK - 1 3 THCLK +0.5
ns
tv(NWE_NE) FSMC_NEx low to FSMC_NWE low THCLK + 0.5 THCLK + 0.5
tw(NWE) FSMC_NWE low time THCLK – 1.5 THCLK+ 1
th(NE_NWE) FSMC_NWE high to FSMC_NE high hold time THCLK - 1 -
tv(A_NE) FSMC_NEx low to FSMC_A valid - 0.5
th(A_NWE) Address hold time after FSMC_NWE high THCLK - 0.5 -
tv(BL_NE) FSMC_NEx low to FSMC_BL valid - 1
th(BL_NWE) FSMC_BL hold time after FSMC_NWE high THCLK - 1 -
tv(Data_NE) Data to FSMC_NEx low to Data valid - THCLK + 2
th(Data_NWE) Data hold time after FSMC_NWE high THCLK + 0.5 -
tv(NADV_NE) FSMC_NEx low to FSMC_NADV low - 1
tw(NADV) FSMC_NADV low time - THCLK+ 0.5
06Y9
1%/
'DWD
)60&B1([
)60&B1%/>@
)60&B'>@
W
Y%/B1(
WK'DWDB1:(
)60&B12(
$GGUHVV
)60&B$>@
W
Y$B1(
WZ1:(
)60&B1:(
WY1:(B1( WK1(B1:(
WK$B1:(
WK%/B1:(
WY'DWDB1(
WZ1(
)60&B1$'9
WY1$'9B1(
WZ1$'9
)60&B1:$,7
WVX1:$,7B1(
WK1(B1:$,7
DocID028087 Rev 4 149/193
STM32F412xE/G Electrical characteristics
161
Figure 52. Asynchronous multiplexed PSRAM/NOR read waveforms
1. CL = 30 pF.
2. Based on characterization, not tested in production.
Table 86. Asynchronous non-multiplexed SRAM/PSRAM/NOR write -
NWAIT timings(1)(2)
1. CL = 30 pF.
2. Based on characterization, not tested in production.
Symbol Parameter Min Max Unit
tw(NE) FSMC_NE low time 8THCLK - 1 8THCLK + 0.5
ns
tw(NWE) FSMC_NWE low time 6THCLK + 0.5 6THCLK + 1
tsu(NWAIT_NE) FSMC_NWAIT valid before FSMC_NEx high 6THCLK + 0.5 -
th(NE_NWAIT)
FSMC_NEx hold time after FSMC_NWAIT
invalid 4THCLK + 1 -
06Y9
1%/
'DWD
)60&B1%/>@
)60&B$'>@
W
Y%/B1(
WK'DWDB1(
$GGUHVV
)60&B$>@
W
Y$B1(
)60&B1:(
WY$B1(
$GGUHVV
)60&B1$'9
WY1$'9B1(
WZ1$'9
WVX'DWDB1(
W
K$'B1$'9
)60&B1(
)60&B12(
WZ1(
WZ12(
WY12(B1( WK1(B12(
WK$B12(
WK%/B12(
WVX'DWDB12( WK'DWDB12(
)60&B1:$,7
WVX1:$,7B1(
WK1(B1:$,7
Electrical characteristics STM32F412xE/G
150/193 DocID028087 Rev 4
Table 87. Asynchronous multiplexed PSRAM/NOR read timings(1)(2)
1. CL = 30 pF.
2. Based on characterization, not tested in production.
Symbol Parameter Min Max Unit
tw(NE) FSMC_NE low time 3THCLK – 1 3THCLK + 0.5
ns
tv(NOE_NE) FSMC_NEx low to FSMC_NOE low 2THCLK 2THCLK + 1
ttw(NOE) FSMC_NOE low time THCLK – 1.5 THCLK
th(NE_NOE)
FSMC_NOE high to FSMC_NE high hold
time 0 -
tv(A_NE) FSMC_NEx low to FSMC_A valid - 0.5
tv(NADV_NE) FSMC_NEx low to FSMC_NADV low 0 1
tw(NADV) FSMC_NADV low time THCLK – 0.5 THCLK + 0.5
th(AD_NADV)
FSMC_AD(address) valid hold time after
FSMC_NADV high) 0 -
th(A_NOE) Address hold time after FSMC_NOE high THCLK – 0.5 -
th(BL_NOE) FSMC_BL time after FSMC_NOE high 0 -
tv(BL_NE) FSMC_NEx low to FSMC_BL valid - 0.5
tsu(Data_NE) Data to FSMC_NEx high setup time THCLK - 2 -
tsu(Data_NOE) Data to FSMC_NOE high setup time THCLK - 2 -
th(Data_NE) Data hold time after FSMC_NEx high 0 -
th(Data_NOE) Data hold time after FSMC_NOE high 0 -
Table 88. Asynchronous multiplexed PSRAM/NOR read-NWAIT timings(1)(2)
1. CL = 30 pF.
2. Based on characterization, not tested in production.
Symbol Parameter Min Max Unit
tw(NE) FSMC_NE low time 8THCLK - 1 8THCLK + 0.5
ns
tw(NOE) FSMC_NWE low time 5THCLK 5THCLK + 0.5
tsu(NWAIT_NE)
FSMC_NWAIT valid before FSMC_NEx
high 5THCLK - 1 -
th(NE_NWAIT)
FSMC_NEx hold time after
FSMC_NWAIT invalid 4THCLK + 1 -
DocID028087 Rev 4 151/193
STM32F412xE/G Electrical characteristics
161
Figure 53. Asynchronous multiplexed PSRAM/NOR write waveforms
06Y9
1%/
'DWD
)60&B1([
)60&B1%/>@
)60&B$'>@
W
Y%/B1(
WK'DWDB1:(
)60&B12(
$GGUHVV
)60&B$>@
W
Y$B1(
WZ1:(
)60&B1:(
WY1:(B1( WK1(B1:(
WK$B1:(
WK%/B1:(
WY$B1(
WZ1(
$GGUHVV
)60&B1$'9
WY1$'9B1(
WZ1$'9
WY'DWDB1$'9
W
K$'B1$'9
)60&B1:$,7
WVX1:$,7B1(
WK1(B1:$,7
Electrical characteristics STM32F412xE/G
152/193 DocID028087 Rev 4
Synchronous waveforms and timings
Figure 54 through Figure 57 represent synchronous waveforms and Table 91 through
Table 94 provide the corresponding timings. The results shown in these tables are obtained
with the following FSMC configuration:
BurstAccessMode = FSMC_BurstAccessMode_Enable;
MemoryType = FSMC_MemoryType_CRAM;
WriteBurst = FSMC_WriteBurst_Enable;
CLKDivision = 1; (0 is not supported, see the STM32F446 reference manual: RM0390)
DataLatency = 1 for NOR Flash; DataLatency = 0 for PSRAM
Table 89. Asynchronous multiplexed PSRAM/NOR write timings(1)(2)
1. CL = 30 pF.
2. Based on characterization, not tested in production.
Symbol Parameter Min Max Unit
tw(NE) FSMC_NE low time 4THCLK - 1 4THCLK+0.5
ns
tv(NWE_NE) FSMC_NEx low to FSMC_NWE low THCLK THCLK + 1
tw(NWE) FSMC_NWE low time 2THCLK - 1 2THCLK + 0.5
th(NE_NWE) FSMC_NWE high to FSMC_NE high hold time THCLK - 1.5 -
tv(A_NE) FSMC_NEx low to FSMC_A valid - 2
tv(NADV_NE) FSMC_NEx low to FSMC_NADV low 0 1
tw(NADV) FSMC_NADV low time THCLK – 0.5 THCLK+ 0.5
th(AD_NADV)
FSMC_AD(adress) valid hold time after
FSMC_NADV high) THCLK -
th(A_NWE) Address hold time after FSMC_NWE high THCLK- 1.5 -
th(BL_NWE) FSMC_BL hold time after FSMC_NWE high THCLK -
tv(BL_NE) FSMC_NEx low to FSMC_BL valid - 1.5
tv(Data_NADV) FSMC_NADV high to Data valid - THCLK + 2
th(Data_NWE) Data hold time after FSMC_NWE high THCLK + 0.5 -
Table 90. Asynchronous multiplexed PSRAM/NOR write-NWAIT timings(1)(2)
1. CL = 30 pF.
2. Based on characterization, not tested in production.
Symbol Parameter Min Max Unit
tw(NE) FSMC_NE low time 9THCLK - 1 9THCLK + 0.5
ns
tw(NWE) FSMC_NWE low time 7THCLK - 1 7THCLK + 0.5
tsu(NWAIT_NE) FSMC_NWAIT valid before FSMC_NEx high 6THCLK -1 -
th(NE_NWAIT)
FSMC_NEx hold time after FSMC_NWAIT
invalid 4THCLK + 1 -
DocID028087 Rev 4 153/193
STM32F412xE/G Electrical characteristics
161
In all timing tables, the THCLK is the HCLK clock period (with maximum
FSMC_CLK = 90 MHz).
Figure 54. Synchronous multiplexed NOR/PSRAM read timings
06Y9
)60&B&/.
)60&B1([
)60&B1$'9
)60&B$>@
)60&B12(
)60&B$'>@ $'>@ ' '
)60&B1:$,7
:$,7&)* E:$,732/E
)60&B1:$,7
:$,7&)* E:$,732/E
WZ&/. WZ&/.
'DWDODWHQF\ 
%867851 
WG&/./1([/ WG&/.+1([+
WG&/./1$'9/
WG&/./$9
WG&/./1$'9+
WG&/.+$,9
WG&/./12(/ WG&/.+12(+
WG&/./$'9
WG&/./$',9
WVX$'9&/.+
WK&/.+$'9
WVX$'9&/.+ WK&/.+$'9
WVX1:$,79&/.+ WK&/.+1:$,79
WVX1:$,79&/.+ WK&/.+1:$,79
WVX1:$,79&/.+ WK&/.+1:$,79
Electrical characteristics STM32F412xE/G
154/193 DocID028087 Rev 4
Table 91. Synchronous multiplexed NOR/PSRAM read timings(1)(2)
1. CL = 30 pF.
2. Based on characterization, not tested in production.
Symbol Parameter Min Max Unit
tw(CLK) FSMC_CLK period 2THCLK - 0.5 -
ns
td(CLKL-NExL) FSMC_CLK low to FSMC_NEx low (x=0..2) - 1
td(CLKH_NExH) FSMC_CLK high to FSMC_NEx high (x= 0…2) THCLK + 0.5 -
td(CLKL-NADVL) FSMC_CLK low to FSMC_NADV low - 1
td(CLKL-NADVH) FSMC_CLK low to FSMC_NADV high 0 -
td(CLKL-AV) FSMC_CLK low to FSMC_Ax valid (x=16…25) - 2
td(CLKH-AIV)
FSMC_CLK high to FSMC_Ax invalid
(x=16…25) THCLK -
td(CLKL-NOEL) FSMC_CLK low to FSMC_NOE low - 1.5
td(CLKH-NOEH) FSMC_CLK high to FSMC_NOE high THCLK -
td(CLKL-ADV) FSMC_CLK low to FSMC_AD[15:0] valid - 2.5
td(CLKL-ADIV) FSMC_CLK low to FSMC_AD[15:0] invalid 0 -
tsu(ADV-CLKH)
FSMC_A/D[15:0] valid data before FSMC_CLK
high 1 -
th(CLKH-ADV)
FSMC_A/D[15:0] valid data after FSMC_CLK
high 2 -
tsu(NWAIT-CLKH) FSMC_NWAIT valid before FSMC_CLK high 2 -
th(CLKH-NWAIT) FSMC_NWAIT valid after FSMC_CLK high 2 -
DocID028087 Rev 4 155/193
STM32F412xE/G Electrical characteristics
161
Figure 55. Synchronous multiplexed PSRAM write timings
06Y9
)60&B&/.
)60&B1([
)60&B1$'9
)60&B$>@
)60&B1:(
)60&B$'>@ $'>@ ' '
)60&B1:$,7
:$,7&)* E:$,732/E
WZ&/. WZ&/.
'DWDODWHQF\ 
%867851 
WG&/./1([/ WG&/.+1([+
WG&/./1$'9/
WG&/./$9
WG&/./1$'9+
WG&/.+$,9
WG&/.+1:(+
WG&/./1:(/
WG&/.+1%/+
WG&/./$'9
WG&/./$',9 WG&/./'DWD
WVX1:$,79&/.+ WK&/.+1:$,79
WG&/./'DWD
)60&B1%/
Electrical characteristics STM32F412xE/G
156/193 DocID028087 Rev 4
Table 92. Synchronous multiplexed PSRAM write timings(1)(2)
1. CL = 30 pF.
2. Based on characterization, not tested in production.
Symbol Parameter Min Max Unit
tw(CLK) FSMC_CLK period, VDD range= 2.7 to 3.6 V 2THCLK - 0.5 -
ns
td(CLKL-NExL) FSMC_CLK low to FSMC_NEx low (x= 0...2) - 1
td(CLKH-NExH) FSMC_CLK high to FSMC_NEx high (x= 0…2) THCLK + 0.5 -
td(CLKL-NADVL) FSMC_CLK low to FSMC_NADV low - 1
td(CLKL-NADVH) FSMC_CLK low to FSMC_NADV high 0 -
td(CLKL-AV) FSMC_CLK low to FSMC_Ax valid (x=16…25) - 2
td(CLKH-AIV) FSMC_CLK high to FSMC_Ax invalid (x=16…25) THCLK -
td(CLKL-NWEL) FSMC_CLK low to FSMC_NWE low - 1.5
t(CLKH-NWEH) FSMC_CLK high to FSMC_NWE high THCLK + 0.5 -
td(CLKL-ADV) FSMC_CLK low to FSMC_AD[15:0] valid - 2.5
td(CLKL-ADIV) FSMC_CLK low to FSMC_AD[15:0] invalid 0 -
td(CLKL-DATA) FSMC_A/D[15:0] valid data after FSMC_CLK low - 4
td(CLKL-NBLL) FSMC_CLK low to FSMC_NBL low - 3
td(CLKH-NBLH) FSMC_CLK high to FSMC_NBL high THCLK -
tsu(NWAIT-CLKH) FSMC_NWAIT valid before FSMC_CLK high 2 -
th(CLKH-NWAIT) FSMC_NWAIT valid after FSMC_CLK high 2 -
DocID028087 Rev 4 157/193
STM32F412xE/G Electrical characteristics
161
Figure 56. Synchronous non-multiplexed NOR/PSRAM read timings
Table 93. Synchronous non-multiplexed NOR/PSRAM read timings(1)(2)
Symbol Parameter Min Max Unit
tw(CLK) FSMC_CLK period 2THCLK – 0.5 -
ns
t(CLKL-NExL) FSMC_CLK low to FSMC_NEx low (x=0..2) - 1
td(CLKH-NExH) FSMC_CLK high to FSMC_NEx high (x= 0…2) THCLK +0.5 -
td(CLKL-NADVL) FSMC_CLK low to FSMC_NADV low - 1
td(CLKL-NADVH) FSMC_CLK low to FSMC_NADV high 0 -
td(CLKL-AV) FSMC_CLK low to FSMC_Ax valid (x=16…25) - 2
td(CLKH-AIV) FSMC_CLK high to FSMC_Ax invalid (x=16…25) THCLK -
td(CLKL-NOEL) FSMC_CLK low to FSMC_NOE low - 1.5
td(CLKH-NOEH) FSMC_CLK high to FSMC_NOE high THCLK -
tsu(DV-CLKH)
FSMC_D[15:0] valid data before FSMC_CLK
high 1 -
th(CLKH-DV) FSMC_D[15:0] valid data after FSMC_CLK high 2 -
tsu(NWAIT-CLKH) FSMC_NWAIT valid before FSMC_CLK high 2 -
th(CLKH-NWAIT) FSMC_NWAIT valid after FSMC_CLK high 2 -
06Y9
)60&B&/.
)60&B1([
)60&B$>@
)60&B12(
)60&B'>@ ' '
)60&B1:$,7
:$,7&)* E
:$,732/E
)60&B1:$,7
:$,7&)* E
:$,732/E
WZ&/. WZ&/.
'DWDODWHQF\ 
WG&/./1([/ WG&/.+1([+
WG&/./$9 WG&/.+$,9
WG&/./12(/ WG&/.+12(+
WVX'9&/.+ WK&/.+'9
WVX'9&/.+ WK&/.+'9
WVX1:$,79&/.+ WK&/.+1:$,79
WVX1:$,79&/.+ WK&/.+1:$,79
WVX1:$,79&/.+ WK&/.+1:$,79
)60&B1$'9
WG&/./1$'9/ WG&/./1$'9+
Electrical characteristics STM32F412xE/G
158/193 DocID028087 Rev 4
Figure 57. Synchronous non-multiplexed PSRAM write timings
1. CL = 30 pF.
2. Based on characterization, not tested in production.
06Y9
)60&B&/.
)60&B1([
)60&B$>@
)60&B1:(
)60&B'>@ ' '
)60&B1:$,7
:$,7&)* E
:$,732/E
WZ&/. WZ&/.
'DWDODWHQF\ 
WG&/./1([/ WG&/.+1([+
WG&/./$9 WG&/.+$,9
WG&/.+1:(+
WG&/./1:(/
WG&/./'DWD
WVX1:$,79&/.+
WK&/.+1:$,79
)60&B1$'9
WG&/./1$'9/ WG&/./1$'9+
WG&/./'DWD
)60&B1%/
WG&/.+1%/+
DocID028087 Rev 4 159/193
STM32F412xE/G Electrical characteristics
161
6.3.26 SD/SDIO MMC/eMMC card host interface (SDIO) characteristics
Unless otherwise specified, the parameters given in Table 95 for the SDIO are derived from
tests performed under the ambient temperature, fPCLK2 frequency and VDD supply voltage
conditions summarized in Table 15, with the following configuration:
Output speed is set to OSPEEDRy[1:0] = 10
Capacitive load C = 30 pF
Measurement points are done at CMOS levels: 0.5VDD
Refer to Section 6.3.16: I/O port characteristics for more details on the input/output
characteristics.
Table 94. Synchronous non-multiplexed PSRAM write timings(1)(2)
1. CL = 30 pF.
2. Based on characterization, not tested in production.
Symbol Parameter Min Max Unit
tw(CLK) FSMC_CLK period 2THCLK – 0.5 -
ns
td(CLKL-NExL) FSMC_CLK low to FSMC_NEx low (x=0..2) - 1
td(CLKH-NExH) FSMC_CLK high to FSMC_NEx high (x= 0…2) THCLK + 0.5 -
td(CLKL-NADVL) FSMC_CLK low to FSMC_NADV low - 1
td(CLKL-NADVH) FSMC_CLK low to FSMC_NADV high 0 -
td(CLKL-AV) FSMC_CLK low to FSMC_Ax valid (x=16…25) - 2
td(CLKH-AIV) FSMC_CLK high to FSMC_Ax invalid (x=16…25) THCLK -
td(CLKL-NWEL) FSMC_CLK low to FSMC_NWE low - 1.5
td(CLKH-NWEH) FSMC_CLK high to FSMC_NWE high THCLK + 0.5 -
td(CLKL-Data) FSMC_D[15:0] valid data after FSMC_CLK low - 4
td(CLKL-NBLL) FSMC_CLK low to FSMC_NBL low - 3
td(CLKH-NBLH) FSMC_CLK high to FSMC_NBL high THCLK -
tsu(NWAIT-
CLKH)
FSMC_NWAIT valid before FSMC_CLK high 2 -
th(CLKH-NWAIT) FSMC_NWAIT valid after FSMC_CLK high 2 -
Electrical characteristics STM32F412xE/G
160/193 DocID028087 Rev 4
Figure 58. SDIO high-speed mode
Figure 59. SD default mode
T7#+(
#+
$#-$
OUTPUT
$#-$
INPUT
T#
T7#+,
T/6 T/(
T)35 T)(
TFTR
AI
AI
#+
$#-$
OUTPUT
T/6$ T/($
Table 95. Dynamic characteristics: SD / MMC characteristics(1)(2)
Symbol Parameter Conditions Min Typ Max Unit
fPP Clock frequency in data transfer mode - 0 - 50 MHz
- SDIO_CK/fPCLK2 frequency ratio - - - 8/3 -
tW(CKL) Clock low time fpp =50MHz 9.5 10.5 -
ns
tW(CKH) Clock high time fpp =50MHz 8.5 9.5 -
CMD, D inputs (referenced to CK) in MMC and SD HS mode
tISU Input setup time HS fpp =50MHz 4 - -
ns
tIH Input hold time HS fpp =50MHz 2.5 - -
CMD, D outputs (referenced to CK) in MMC and SD HS mode
tOV Output valid time HS fpp =50MHz - 13 13.5
ns
tOH Output hold time HS fpp =50MHz 11 - -
DocID028087 Rev 4 161/193
STM32F412xE/G Electrical characteristics
161
6.3.27 RTC characteristics
CMD, D inputs (referenced to CK) in SD default mode
tISUD Input setup time SD fpp =25MHz 2.5 - -
ns
tIHD Input hold time SD fpp =25MHz 2.5 - -
CMD, D outputs (referenced to CK) in SD default mode
tOVD Output valid default time SD fpp =25 MHz -1.52
ns
tOHD Output hold default time SD fpp =25 MHz 0.5 - -
1. Guaranteed by characterization results, not tested in production.
2. VDD = 2.7 to 3.6 V.
Table 95. Dynamic characteristics: SD / MMC characteristics(1)(2) (continued)
Symbol Parameter Conditions Min Typ Max Unit
Table 96. Dynamic characteristics: eMMC characteristics VDD = 1.7 V to 1.9 V(1)(2)
Symbol Parameter Conditions Min Typ Max Unit
fPP Clock frequency in data transfer mode - 0 - 50 MHz
- SDIO_CK/fPCLK2 frequency ratio - - - 8/3 -
tW(CKL) Clock low time fpp =50MHz 9.5 10.5 -
ns
tW(CKH) Clock high time fpp =50MHz 8.5 9.5 -
CMD, D inputs (referenced to CK) in eMMC mode
tISU Input setup time HS fpp =50MHz 3.5 - -
ns
tIH Input hold time HS fpp =50MHz 4 - -
CMD, D outputs (referenced to CK) in eMMC mode
tOV Output valid time HS fpp =50MHz - 13.5 15
ns
tOH Output hold time HS fpp =50MHz 12 - -
1. Guaranteed by characterization results, not tested in production.
2. CLOAD = 20 pF.
Table 97. RTC characteristics
Symbol Parameter Conditions Min Max
-f
PCLK1/RTCCLK frequency ratio Any read/write operation
from/to an RTC register 4-
Package information STM32F412xE/G
162/193 DocID028087 Rev 4
7 Package information
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK® is an ST trademark.
7.1 WLCSP64 package information
Figure 60. WLCSP64 - 64-pin, 3.658 x 3.686 mm, 0.4 mm pitch wafer level chip scale
package outline
1. Drawing is not to scale.
$
%XPS
HHH
'HWDLO$
URWDWHG
6HDWLQJSODQH
E
%XPSVLGH
H
H
H
H
*
)
$)B0(B9
6LGHYLHZ
'HWDLO$
$
$
:DIHUEDFNVLGH
'
(
*
)
$
+
=
EEE =
[
2ULHQWDWLRQ
UHIHUHQFH
$
$
FFF
GGG
DDD
=
=
=<;
DocID028087 Rev 4 163/193
STM32F412xE/G Package information
190
Figure 61. WLCSP64 - 64-pin, 3.658 x 3.686 mm, 0.4 mm pitch wafer level chip scale
recommended footprint
Table 98. WLCSP64 - 64-pin, 3.658 x 3.686 mm, 0.4 mm pitch wafer level chip scale
package mechanical data
Symbol
millimeters inches(1)
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Min Typ Max Min Typ Max
A 0.525 0.555 0.585 0.0207 0.0219 0.0230
A1 - 0.170 - - 0.0067 -
A2 - 0.380 - - 0.0150 -
A3(2)
2. Back side coating.
- 0.025 - - 0.0010 -
b(3)
3. Dimension is measured at the maximum bump diameter parallel to primary datum Z.
0.220 0.250 0.280 0.0087 0.0098 0.0110
D 3.588 3.623 3.658 0.1413 0.1426 0.1440
E 3.616 3.651 3.686 0.1424 0.1437 0.1451
e - 0.400 - - 0.0157 -
e1 - 2.800 - - 0.1102 -
e2 - 2.800 - - 0.1102 -
F - 0.4115 - - 0.0162 -
G - 0.4255 - - 0.0168 -
aaa - - 0.100 - - 0.0039
bbb - - 0.100 - - 0.0039
ccc - - 0.100 - - 0.0039
ddd - - 0.050 - - 0.0020
eee - - 0.050 - - 0.0020
Table 99. WLCSP64 recommended PCB design rules (0.4 mm pitch)
Dimension Recommended values
Pitch 0.4 mm
Dpad 0.225 mm
$)B)3B9
'SDG
'VP
Package information STM32F412xE/G
164/193 DocID028087 Rev 4
Device marking for WLCSP64
The following figure gives an example of topside marking and pin 1 position identifier
location.
Figure 62. WLCSP64 marking example (package top view)
1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet
qualified and therefore not yet ready to be used in production and any consequences deriving from such
usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering
Samples to run qualification activity.
Dsm 0.290 mm typ. (depends on the soldermask
registration tolerance)
Stencil opening 0.250 mm
Stencil thickness 0.100 mm
Table 99. WLCSP64 recommended PCB design rules (0.4 mm pitch) (continued)
Dimension Recommended values
06Y9
)5*<
WƌŽĚƵĐƚŝĚĞŶƚŝĨŝĐĂƚŝŽŶ;ϭͿ
::<
'DWHFRGH \HDUZHHN
WŝŶϭŝĚĞŶƚŝĨŝĞƌ
ĚĚŝƚŝŽŶĂůŝŶĨŽƌŵĂƚŝŽŶ
=
DocID028087 Rev 4 165/193
STM32F412xE/G Package information
190
7.2 UFQFPN48 package information
Figure 63. UFQFPN48 - 48-lead, 7x7 mm, 0.5 mm pitch, ultra thin fine pitch quad flat
package outline
1. Drawing is not to scale.
2. All leads/pads should also be soldered to the PCB to improve the lead/pad solder joint life.
3. There is an exposed die pad on the underside of the UFQFPN package. It is recommended to connect and
solder this back-side pad to PCB ground.
$%B0(B9
'
3LQLGHQWLILHU
ODVHUPDUNLQJDUHD
((
'<
'
(
([SRVHGSDG
DUHD
=

'HWDLO=
5W\S

/
&[
SLQFRUQHU
$
6HDWLQJ
SODQH
$
E
H
GGG
'HWDLO<
7
Table 100. UFQFPN48 - 48-lead, 7x7 mm, 0.5 mm pitch, ultra thin fine pitch quad flat
package mechanical data
Symbol
millimeters inches(1)
Min. Typ. Max. Min. Typ. Max.
A 0.500 0.550 0.600 0.0197 0.0217 0.0236
A1 0.000 0.020 0.050 0.0000 0.0008 0.0020
D 6.900 7.000 7.100 0.2717 0.2756 0.2795
E 6.900 7.000 7.100 0.2717 0.2756 0.2795
D2 5.500 5.600 5.700 0.2165 0.2205 0.2244
Package information STM32F412xE/G
166/193 DocID028087 Rev 4
Figure 64. UFQFPN48 recommended footprint
1. Dimensions are in millimeters.
E2 5.500 5.600 5.700 0.2165 0.2205 0.2244
L 0.300 0.400 0.500 0.0118 0.0157 0.0197
T - 0.152 - - 0.0060 -
b 0.200 0.250 0.300 0.0079 0.0098 0.0118
e - 0.500 - - 0.0197 -
ddd - - 0.080 - - 0.0031
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Table 100. UFQFPN48 - 48-lead, 7x7 mm, 0.5 mm pitch, ultra thin fine pitch quad flat
package mechanical data (continued)
Symbol
millimeters inches(1)
Min. Typ. Max. Min. Typ. Max.




 







!"?&0?6


 



DocID028087 Rev 4 167/193
STM32F412xE/G Package information
190
Device marking for UFQFPN48
The following figure gives an example of topside marking and pin 1 position identifier
location.
Figure 65. UFQFPN48 marking example (package top view)
1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet
qualified and therefore not yet ready to be used in production and any consequences deriving from such
usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering
Samples to run qualification activity.
06Y9
670)
&*8
< ::
5
3LQ
LQGHQWLILHU
3URGXFWLGHQWLILFDWLRQ
'DWHFRGH
5HYLVLRQFRGH
Package information STM32F412xE/G
168/193 DocID028087 Rev 4
7.3 LQFP64 package information
Figure 66. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package outline
1. Drawing is not to scale.
:B0(B9
$
$
$
6($7,1*3/$1(
FFF &
E
&
F
$
/
/
.
,'(17,),&$7,21
3,1
'
'
'
H







(
(
(
*$8*(3/$1(
PP
DocID028087 Rev 4 169/193
STM32F412xE/G Package information
190
Table 101. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat
package mechanical data
Symbol
millimeters inches(1)
Min. Typ. Max. Min. Typ. Max.
A - - 1.600 - - 0.0630
A1 0.050 - 0.150 0.0020 - 0.0059
A2 1.350 1.400 1.450 0.0531 0.0551 0.0571
b 0.170 0.220 0.270 0.0067 0.0087 0.0106
c 0.090 - 0.200 0.0035 - 0.0079
D - 12.000 - - 0.4724 -
D1 - 10.000 - - 0.3937 -
D3 - 7.500 - - 0.2953 -
E - 12.000 - - 0.4724 -
E1 - 10.000 - - 0.3937 -
E3 - 7.500 - - 0.2953 -
e - 0.500 - - 0.0197 -
Κ 3.5° 3.5°
L 0.450 0.600 0.750 0.0177 0.0236 0.0295
L1 - 1.000 - - 0.0394 -
ccc - - 0.080 - - 0.0031
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Package information STM32F412xE/G
170/193 DocID028087 Rev 4
Figure 67. LQFP64 recommended footprint
1. Dimensions are in millimeters.
Device marking for LQFP64
The following figure gives an example of topside marking and pin 1 position identifier
location.
Figure 68. LQFP64 marking example (package top view)
1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet
qualified and therefore not yet ready to be used in production and any consequences deriving from such
usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering
Samples to run qualification activity.



 










AIC
06Y9
5HYLVLRQFRGH
670)
5*7
3URGXFWLGHQWLILFDWLRQ
'DWHFRGH
<::
3LQ
LQGHQWLILHU
5
DocID028087 Rev 4 171/193
STM32F412xE/G Package information
190
7.4 LQFP100 package information
Figure 69. LQFP100 - 100-pin, 14 x 14 mm low-profile quad flat package outline
1. Drawing is not to scale. Dimensions are in millimeters.
Table 102. LQPF100 - 100-pin, 14 x 14 mm low-profile quad flat package
mechanical data
Symbol
millimeters inches(1)
Min Typ Max Min Typ Max
A - - 1.600 - - 0.0630
A1 0.050 - 0.150 0.0020 - 0.0059
A2 1.350 1.400 1.450 0.0531 0.0551 0.0571
b 0.170 0.220 0.270 0.0067 0.0087 0.0106
c 0.090 - 0.200 0.0035 - 0.0079
D 15.800 16.000 16.200 0.6220 0.6299 0.6378
D1 13.800 14.000 14.200 0.5433 0.5512 0.5591
E
)$%.4)&)#!4)/.
0).
'!5'%0,!.%
MM
3%!4).'0,!.%
$
$
$
%
%
%
+
CCC #
#




 

,?-%?6
!
!
!
,
,
C
B
!
Package information STM32F412xE/G
172/193 DocID028087 Rev 4
Figure 70. LQFP100 - 100-pin, 14 x 14 mm low-profile quad flat
recommended footprint
1. Dimensions are in millimeters.
D3 - 12.000 - - 0.4724 -
E 15.800 16.000 16.200 0.6220 0.6299 0.6378
E1 13.800 14.000 14.200 0.5433 0.5512 0.5591
E3 - 12.000 - - 0.4724 -
e - 0.500 - - 0.0197 -
L 0.450 0.600 0.750 0.0177 0.0236 0.0295
L1 - 1.000 - - 0.0394 -
k 0.0° 3.5° 7.0° 0.0° 3.5° 7.0°
ccc - - 0.080 - - 0.0031
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Table 102. LQPF100 - 100-pin, 14 x 14 mm low-profile quad flat package
mechanical data (continued)
Symbol
millimeters inches(1)
Min Typ Max Min Typ Max
 
 

 
 




AIC
DocID028087 Rev 4 173/193
STM32F412xE/G Package information
190
Device marking for LQFP100
The following figure gives an example of topside marking and pin 1 position identifier
location.
Figure 71. LQFP100 marking example (package top view)
1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet
qualified and therefore not yet ready to be used in production and any consequences deriving from such
usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering
Samples to run qualification activity.
06Y9
(6)
9*75
5HYLVLRQFRGH
3URGXFWLGHQWLILFDWLRQ
'DWHFRGH
3LQ
LQGHQWLILHU
<::
Package information STM32F412xE/G
174/193 DocID028087 Rev 4
7.5 LQFP144 package information
Figure 72. LQFP144 - 144-pin, 20 x 20 mm low-profile quad flat package outline
1. Drawing is not to scale.
E
)$%.4)&)#!4)/.
0).
'!5'%0,!.%
MM
3%!4).'
0,!.%
$
$
$
%
%
%
+
CCC #
#




 

!?-%?6
!
!
!
,
,
C
B
!
DocID028087 Rev 4 175/193
STM32F412xE/G Package information
190
Table 103. LQFP144 - 144-pin, 20 x 20 mm low-profile quad flat package
mechanical data
Symbol
millimeters inches(1)
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Min Typ Max Min Typ Max
A - - 1.600 - - 0.0630
A1 0.050 - 0.150 0.0020 - 0.0059
A2 1.350 1.400 1.450 0.0531 0.0551 0.0571
b 0.170 0.220 0.270 0.0067 0.0087 0.0106
c 0.090 - 0.200 0.0035 - 0.0079
D 21.800 22.000 22.200 0.8583 0.8661 0.8740
D1 19.800 20.000 20.200 0.7795 0.7874 0.7953
D3 - 17.500 - - 0.6890 -
E 21.800 22.000 22.200 0.8583 0.8661 0.8740
E1 19.800 20.000 20.200 0.7795 0.7874 0.7953
E3 - 17.500 - - 0.6890 -
e - 0.500 - - 0.0197 -
L 0.450 0.600 0.750 0.0177 0.0236 0.0295
L1 - 1.000 - - 0.0394 -
k 0°3.5°7° 0°3.5°7°
ccc - - 0.080 - - 0.0031
Package information STM32F412xE/G
176/193 DocID028087 Rev 4
Figure 73. LQFP144 - 144-pin,20 x 20 mm low-profile quad flat package
recommended footprint
1. Dimensions are expressed in millimeters.


 




DLH






DocID028087 Rev 4 177/193
STM32F412xE/G Package information
190
Device marking for LQFP144
The following figure gives an example of topside marking and pin 1 position identifier
location.
Figure 74. LQFP144 marking example (package top view)
1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet
qualified and therefore not yet ready to be used in production and any consequences deriving from such
usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering
Samples to run qualification activity.
06Y9
'DWHFRGH
3LQ
LGHQWLILHU
(6)=*7
5
3URGXFWLGHQWLILFDWLRQ
5HYLVLRQFRGH
<::
Package information STM32F412xE/G
178/193 DocID028087 Rev 4
7.6 UFBGA100 package information
Figure 75. UFBGA100 - 100-pin, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball
grid array package outline
1. Drawing is not to scale.
Table 104. UFBGA100 - 100-pin, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball
grid array package mechanical data
Symbol
millimeters inches(1)
Min. Typ. Max. Min. Typ. Max.
A 0.460 0.530 0.600 0.0181 0.0209 0.0236
A1 0.050 0.080 0.110 0.0020 0.0031 0.0043
A2 0.400 0.450 0.500 0.0157 0.0177 0.0197
A3 - 0.130 - - 0.0051 -
A4 0.270 0.320 0.370 0.0106 0.0126 0.0146
b 0.200 0.250 0.300 0.0079 0.0098 0.0118
D 6.950 7.000 7.050 0.2736 0.2756 0.2776
D1 5.450 5.500 5.550 0.2146 0.2165 0.2185
E 6.950 7.000 7.050 0.2736 0.2756 0.2776
E1 5.450 5.500 5.550 0.2146 0.2165 0.2185
e - 0.500 - - 0.0197 -
F 0.700 0.750 0.800 0.0276 0.0295 0.0315
$&B0(B9
6HDWLQJSODQH
$
H)
)
'
0
EEDOOV
$
(
7239,(:%277209,(:

$EDOO
LGHQWLILHU
H
$
$
<
;
=
GGG =
'
(
HHH = < ;
III
0
0=
$
$
$EDOO
LQGH[DUHD
DocID028087 Rev 4 179/193
STM32F412xE/G Package information
190
Figure 76. UFBGA100 - 100-pin, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball
grid array package recommended footprint
ddd - - 0.100 - - 0.0039
eee - - 0.150 - - 0.0059
fff - - 0.050 - - 0.0020
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Table 105. UFBGA100 recommended PCB design rules (0.5 mm pitch BGA)
Dimension Recommended values
Pitch 0.5
Dpad 0.280 mm
Dsm 0.370 mm typ. (depends on the soldermask
registration tolerance)
Stencil opening 0.280 mm
Stencil thickness Between 0.100 mm and 0.125 mm
Table 104. UFBGA100 - 100-pin, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball
grid array package mechanical data (continued)
Symbol
millimeters inches(1)
Min. Typ. Max. Min. Typ. Max.
$&B)3B9
'SDG
'VP
Package information STM32F412xE/G
180/193 DocID028087 Rev 4
Device marking for UFBGA100
The following figure gives an example of topside marking and ball 1 position identifier
location.
Figure 77. UFBGA100 marking example (package top view)
1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet
qualified and therefore not yet ready to be used in production and any consequences deriving from such
usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering
Samples to run qualification activity.
670)
=
<::
ĂůůϭŝĚĞŶƚŝĨŝĐĂƚŝŽŶ
ĚĚŝƚŝŽŶĂůŝŶĨŽƌŵĂƚŝŽŶ
ĂƚĞĐŽĚĞсLJĞĂƌнǁĞĞŬ
06Y9
WƌŽĚƵĐƚŝĚĞŶƚŝĨŝĐĂƚŝŽŶ;ϭͿ
9*+
DocID028087 Rev 4 181/193
STM32F412xE/G Package information
190
7.7 UFBGA144 package information
Figure 78. UFBGA144 - 144-pin, 10 x 10 mm, 0.80 mm pitch, ultra fine pitch ball
grid array package outline
1. Drawing is not to scale.
Table 106. UFBGA144 - 144-pin, 10 x 10 mm, 0.80 mm pitch, ultra fine pitch ball
grid array package mechanical data
Symbol
millimeters inches(1)
Min. Typ. Max. Min. Typ. Max.
A 0.460 0.530 0.600 0.0181 0.0209 0.0236
A1 0.050 0.080 0.110 0.0020 0.0031 0.0043
A2 0.400 0.450 0.500 0.0157 0.0177 0.0197
A3 0.050 0.080 0.110 - 0.0051 -
A4 0.270 0.320 0.370 0.0106 0.0126 0.0146
b 0.360 0.400 0.440 0.0091 0.0110 0.0130
D 9.950 10.000 10.050 0.2736 0.2756 0.2776
D1 8.750 8.800 8.850 0.2343 0.2362 0.2382
E 9.950 10.000 10.050 0.2736 0.2756 0.2776
E1 8.750 8.800 8.850 0.2343 0.2362 0.2382
e 0.750 0.800 0.850 - 0.0197 -
$<B0(B9
6HDWLQJSODQH
$
H)
)
'
0
EEDOOV
$
(
7239,(:%277209,(:

H
$
$
%
$
&
GGG =
'
(
HHH & $ %
III
0
0&
$
$
$EDOO
LGHQWLILHU
$EDOO
LQGH[DUHD
Package information STM32F412xE/G
182/193 DocID028087 Rev 4
Figure 79. UFBGA144 - 144-pin, 10 x 10 mm, 0.80 mm pitch, ultra fine pitch ball
grid array recommended footprint
Note: Non solder mask defined (NSMD) pads are recommended.
4 to 6 mils solder paste screen printing process.
Stencil opening is 0.400 mm.
Stencil thickness is between 0.100 mm and 0.125 mm.
Pad trace width is 0.120 mm.
F 0.550 0.600 0.650 0.0177 0.0197 0.0217
ddd - - 0.080 - - 0.0039
eee - - 0.150 - - 0.0059
fff - - 0.080 - - 0.0020
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Table 107. UFBGA144 recommended PCB design rules (0.80 mm pitch BGA)
Dimension Recommended values
Pitch 0.80 mm
Dpad 0.400 mm
Dsm 0.550 mm typ. (depends on the soldermask
registration tolerance)
Table 106. UFBGA144 - 144-pin, 10 x 10 mm, 0.80 mm pitch, ultra fine pitch ball
grid array package mechanical data (continued)
Symbol
millimeters inches(1)
Min. Typ. Max. Min. Typ. Max.
ϬϮzͺ&Wͺsϭ
'SDG
'VP
DocID028087 Rev 4 183/193
STM32F412xE/G Package information
190
Device marking for UFBGA144
The following figure gives an example of topside marking and ball A1 position identifier
location.
Figure 80. UFBGA144 marking example (package top view)
1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet
qualified and therefore not yet ready to be used in production and any consequences deriving from such
usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering
Samples to run qualification activity.
06Y9
< ::
3URGXFW
LGHQWLILFDWLRQ
$GGLWLRQDO
LQIRUPDWLRQ
'DWHFRGH
%DOO$
LQGHQWLILHU
=*-
=
670)
Package information STM32F412xE/G
184/193 DocID028087 Rev 4
7.8 Thermal characteristics
The maximum chip junction temperature (TJmax) must never exceed the values given in
Table 15: General operating conditions on page 76.
The maximum chip-junction temperature, TJ max., in degrees Celsius, may be calculated
using the following equation:
TJ max = TA max + (PD max x Θ
JA)
Where:
TA max is the maximum ambient temperature in °C,
•Θ
JA is the package junction-to-ambient thermal resistance, in °C/W,
PD max is the sum of PINT max and PI/O max (PD max = PINT max + PI/Omax),
PINT max is the product of IDD and VDD, expressed in Watts. This is the maximum chip
internal power.
PI/O max represents the maximum power dissipation on output pins where:
PI/O max = Σ (VOL × IOL) + Σ((VDD – VOH) × IOH),
taking into account the actual VOL / IOL and VOH / IOH of the I/Os at low and high level in the
application.
7.8.1 Reference document
JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural
Convection (Still Air). Available from www.jedec.org.
Table 108. Package thermal characteristics
Symbol Parameter Value Unit
Θ
JA
Thermal resistance junction-ambient
LQFP144 - 20 x 20 mm 35
°C/W
Thermal resistance junction-ambient
LQFP100 - 14 x 14 mm 43
Thermal resistance junction-ambient
LQFP64 - 10 x 10 mm 47
Thermal resistance junction-ambient
UFBGA144 - 10 x 10 mm / 0.8 mm pitch 48
Thermal resistance junction-ambient
UFBGA100 - 7 x 7 mm 57
Thermal resistance junction-ambient
WLCSP64 - 3.623 x 3.651 mm 51
Thermal resistance junction-ambient
UFQFPN48 - 7 x 7 mm 32
DocID028087 Rev 4 185/193
STM32F412xE/G Part numbering
190
8 Part numbering
Table 109. Ordering information scheme
Example: STM32 F 412 C E T 6 TR
Device family
STM32 = ARM®-based 32-bit microcontroller
Product type
F = General-purpose
Device subfamily
412 = 412 line
Pin count
C = 48 pins
R = 64 pins
V = 100 pins
Z = 144 pins
Flash memory size
E = 512 Kbytes of Flash memory
G = 1024 Kbytes of Flash memory
Package
H = UFBGA 7 x 7 mm
J = UFBGA 10 x 10 mm
T = LQFP
U = UFQFPN
Y = WLCSP
Temperature range
6 = Industrial temperature range, –40 to 85 °C
Packing
TR = tape and reel
No character = tray or tube
Recommendations when using the internal reset OFF STM32F412xE/G
186/193 DocID028087 Rev 4
Appendix A Recommendations when using the internal
reset OFF
When the internal reset is OFF, the following integrated features are no longer supported:
The integrated power-on-reset (POR)/power-down reset (PDR) circuitry is disabled.
The brownout reset (BOR) circuitry must be disabled. By default BOR is OFF.
The embedded programmable voltage detector (PVD) is disabled.
VBAT functionality is no more available and VBAT pin should be connected to VDD.
DocID028087 Rev 4 187/193
STM32F412xE/G Application block diagrams
190
Appendix B Application block diagrams
B.1 USB OTG full speed (FS) interface solutions
Figure 81. USB controller configured as peripheral-only and used in Full speed mode
1. External voltage regulator only needed when building a VBUS powered device.
Figure 82. USB peripheral-only Full speed mode with direct connection
for VBUS sense
1. External voltage regulator only needed when building a VBUS powered device.
966
9WR9''86%
9ROWDJHUHJXODWRU
9''86%
26&B,1
26&B287
06Y9
9''
'3
3$
3$ '0
86%6WG%FRQQHFWRU
9%86
670)[[
SLQVSDFNDJHV
966
9''86%
26&B,1
26&B287
06Y9
9''!9
'3
3$
3$
'0
86%6WG%FRQQHFWRU
9%86
670)[[
SLQVSDFNDJHV
3$
Application block diagrams STM32F412xE/G
188/193 DocID028087 Rev 4
Figure 83. USB peripheral-only Full speed mode, VBUS detection using GPIO
1. External voltage regulator only needed when building a VBUS powered device.
Figure 84. USB controller configured as host-only and used in full speed mode
1. The current limiter is required only if the application has to support a VBUS powered device. A basic power
switch can be used if 5 V are available on the application board.
966
9''86%
26&B,1
26&B287
06Y9
99''9
'3
3$
3$
'0
86%6WG%FRQQHFWRU
9%86
670)[[
SLQVSDFNDJHV
*3,2
06Y9
670)[[
9''
9%86
'3
966
86%6WG$FRQQHFWRU
'0
*3,2 ,54
*3,2 (1
2YHUFXUUHQW
9
26&B,1
26&B287
&XUUHQWOLPLWHU
SRZHUVZLWFK 
3$
3$
DocID028087 Rev 4 189/193
STM32F412xE/G Application block diagrams
190
Figure 85. USB controller configured in dual mode and used in full speed mode
1. External voltage regulator only needed when building a VBUS powered device.
2. The current limiter is required only if the application has to support a VBUS powered device. A basic power
switch can be used if 5 V are available on the application board.
3. The ID pin is required in dual role only.
B.2 Sensor Hub application example
Figure 86. Sensor Hub application example
06Y9
9''
3$
3$
3$
*3,2,54
*3,2 9
9''
3$
9WR9''
9ROWDJH
UHJXODWRU
&XUUHQWOLPLWHU
SRZHUVZLWFK
26&B,1
26&B287
670)[[
86%PLFUR$%FRQQHFWRU
966
,'
'3
'0
9%86
(1
2YHUFXUUHQW
*\URVF RSH
3UHVV XUH
3UR[LP LW\
63,
7HPSHUDWXUH +X PLGLW\
,6
6&/
6'$
3%  3% 3$
3%  3% 3%
6/.
'$7$
3% 
3% 
166
3$
6&.
0,62
026,
3$
3$
3$
3$ 3$
7;
5;
3$
3$
,&
$'&
3&
3&
26& N
1567
3%
3$
3$
-7$*
*3,2
[ *3,2
8S WR  $ '& LQSX WV
%227
06Y9
670)
SLQSDFNDJH
6:2
6:&/.
6:',2
0DJQHWRPHWHU
$FFHOHURPHWHU
+267
$PELHQWOLJKW
.
0LFUR
8$57
Application block diagrams STM32F412xE/G
190/193 DocID028087 Rev 4
B.3 Display application example
Figure 87. Display application example
Note: 16 bit displays interfaces can be addressed with 100 and 144 pins packages.
06Y9
670)
SLQSDFNDJH
6:2
6:&/.
6:',2
1:(
$
1(
12(
'
'
'
'
'
'
'
'
3&
*3,2
3&
3&
3&
3&
3%
3&
3&
3&
3$
3$
3$
3$
*3,2
3%
3%
6&/
6'$ ,&
,QWHUUXSW
>''@
N
%227
:5
'&
&6
5'
%DFNOLJKW
FRQWURO
7(7HDULQJ
7RXFK6FUHHQ
&RQWUROOHU
7,0BFK
)60&
'LVSOD\0RGXOH
-7$*
3$
3$
3%
DocID028087 Rev 4 191/193
STM32F412xE/G Revision history
192
Revision history
Table 110. Document revision history
Date Revision Changes
10-Nov-2015 1 Initial release.
01-Feb-2016 2
Added
Table 3: Embedded bootloader interfaces
Figure 3: Compatible board design for LQFP144 package
Figure 62: WLCSP64 marking example (package top view)
Figure 77: UFBGA100 marking example (package top view)
Updated
Section 3.17: Power supply schemes
Section 3.23: Timers and watchdogs
Section 3.32: Universal serial bus on-the-go full-speed (USB_OTG_FS)
Figure 1: Compatible board design for LQFP100 package
Figure 2: Compatible board design for LQFP64 package
Figure 14: STM32F412xE/G LQFP100 pinout
Figure 16: STM32F412xE/G UFBGA100 pinout
Figure 17: STM32F412xE/G UFBGA144 pinout
Figure 20: Input voltage measurement
Figure 80: UFBGA144 marking example (package top view)
Table 2: STM32F412xE/G features and peripheral counts
Table 9: STM32F412xE/G pin definition
Table 12: Voltage characteristics
Table 13: Current characteristics
Table 15: General operating conditions
Table 36: Peripheral current consumption
Table 51: EMS characteristics for LQFP144 package
Table 63: FMPI2C characteristics
Revision history STM32F412xE/G
192/193 DocID028087 Rev 4
25-Mar-2016 3
Added:
Figure 82: USB peripheral-only Full speed mode with direct connection for VBUS
sense
Figure 83: USB peripheral-only Full speed mode, VBUS detection using GPIO
Updated:
Figure 15: STM32F412xE/G LQFP144 pinout
Section 6.3.6: Supply current characteristics
Table 9: STM32F412xE/G pin definition
Table 10: STM32F412xE/G alternate functions
Table 11: STM32F412xE/G register boundary addresses
Table 15: General operating conditions
Table 36: Peripheral current consumption
Table 96: Dynamic characteristics: eMMC characteristics VDD = 1.7 V to 1.9 V
27-May-2016 4
Updated:
Section 3.23.2: General-purpose timers (TIMx)
Table 21: Typical and maximum current consumption, code with data processing
(ART accelerator disabled) running from SRAM - VDD = 1.7 V
Table 22: Typical and maximum current consumption, code with data processing
(ART accelerator disabled) running from SRAM - VDD = 3.6 V
Table 23: Typical and maximum current consumption in run mode, code with data
processing (ART accelerator enabled except prefetch) running from Flash
memory- VDD = 1.7 V
Table 24: Typical and maximum current consumption in run mode, code with data
processing (ART accelerator enabled except prefetch) running from Flash
memory - VDD = 3.6 V
Table 25: Typical and maximum current consumption in run mode, code with data
processing (ART accelerator disabled) running from Flash memory - VDD = 3.6 V
Table 26: Typical and maximum current consumption in run mode, code with data
processing (ART accelerator disabled) running from Flash memory - VDD = 1.7 V
Table 27: Typical and maximum current consumption in run mode, code with data
processing (ART accelerator enabled with prefetch) running from Flash memory -
VDD = 3.6 V
Table 28: Typical and maximum current consumption in Sleep mode - VDD = 3.6 V
Table 29: Typical and maximum current consumption in Sleep mode - VDD = 1.7 V
Table 37: Low-power mode wakeup timings(1)
Figure 38: I2C bus AC waveforms and measurement circuit
Figure 39: FMPI2C timing diagram and measurement circuit
Table 110. Document revision history
Date Revision Changes
DocID028087 Rev 4 193/193
STM32F412xE/G
193
IMPORTANT NOTICE – PLEASE READ CAREFULLY
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.
No license, express or implied, to any intellectual property right is granted by ST herein.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.
ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.
© 2016 STMicroelectronics – All rights reserved