21260-DSH-001-H Mindspeed Technologies®December 2010
Not Recommended for New Designs / Mindspeed Proprietary and Confidential
Not Recommended for New Designs
M21260
4x4 Crosspoint Switch with Integrated CDR/Reclockers
Not Recommended for New Designs
This part has been replaced by the M21355
Features
4x4 Crosspoint Switch with four independent Reclockers (RCLKs)
SMPTE, DVB-ASI compliant
Integrated loop filter and terminations
Serial control or hardwired control, JTAG boundary scan
Low power consumption of 405 mW (1 channel active)
Built-in pattern generator and receiver for module and system
testing (PRBS, 8b/10b, Fibre Channel, User Programmable
patterns)
Broadcast and Multicast crosspoint modes
User Selectable Input Equalization and Pre-Emphasis for backplane
ISI reduction
The M21260 is a high-performance 4x4 crosspoint switch with an integrated independent multi-rate quad channel CDR/reclocker
array, optimized for telecom, datacom, and digital video applications. Each channel has an independent multi-rate reclocker
capable of operating at data-rates between 42 Mbps and 3.2 Gbps. Signal conditioning features include input equalization and
output pre-emphasis, allowing robust reception and transmission of signals to other devices up to 60" away. The built-in
frequency synthesizer allows multi-rate operation, while operating from a single reference clock.
The device can be controlled either through hardwired pins or a 2-wire or 4-wire serial programming interface. The hardwired
mode eliminates the need for an external micro-controller, while allowing control of the key features of the device. The serial
programming interface is available as a two wire or four wire and allows complete control of the device features.
The M21260 supports JTAG external boundary scan, which includes all of the high-speed I/O as well as the traditional digital I/O.
Functional Block Diagram
Input Equalization
Input Buffer
BIST Transmitter Mux
BIST
4x4 Crosspoint
BIST Receiver Mux
Selectable CML,
LVDS Output Buffer +
Pre-Emphasis
Din0 [P/N]
Din3 [P/N]
Din1 [P/N]
Din2 [P/N]
BIST
Reclocker Array
VddT0/1
VddT2/3
Multifunction Pin Array
Serial Interface/Hardwired Mode
xJTAG_En
Voltage
Regulator
xRegu_En
JTAG
Dout3 [P/N]
Dout0 [P/N]
Dout1 [P/N]
Dout2 [P/N]
CTRL_Mode [1:0]
Out_Mode [1:0]
xRST
MF [11:0]
XPoint_Mode [3:0]
xEn_Port [3:0]
Transmitter Receiver
RefClkP/N
xLOL[3:0]
xLOA[3:0]
Applications
3G/HD/SD-SDI Routing Switchers, Distribution amplifiers, and
transport systems1
SONET systems and modules
10 GBASE-CX4 systems
Gigabit Ethernet systems
PCI-Express
SAS/S-ATA/S-ATA2 systems
Standards Compliance
SMPTE 292M
SMPTE 259M
SMPTE 344M
SMPTE 424M
21260-DSH-001-H Mindspeed Technologies®2
Not Recommended for New Designs / Mindspeed Proprietary and Confidential
Not Recommended for New Designs
* The letter “G” designator after the part number indicates that the device is RoHS compliant. Refer to
www.mindspeed.com for additional information. The RoHS compliant devices are backwards compatible with
225°C reflow profiles.
Ordering Information
Part Number Number of Channels Package Operating Temperature
M21260-12 4 72-terminal, 10 mm, QFN -40°C to +85°C
M21260G-12* 4 72-terminal, 10 mm, QFN, RoHS compliant package -40°C to +85°C
21260-DSH-001-H Mindspeed Technologies®3
Not Recommended for New Designs / Mindspeed Proprietary and Confidential
Not Recommended for New Designs
Revision History
Revision Date Description
H December 2010 Removed video support in hardware mode (Table 3-5 and Table 3-6).
Update table reference in Section 3.2.18.
Updated LOS Section 3.2.20 and added Figure 3-12.
•J
TRF replaced with JTRAN
•t
PLL replaced with tLOCK
•t
PD, CLOCK replaced with tSKEW, CLK-DATA
DCD replaced with DCDDATA
DR and DR replaced with DR
idd_core replaced with DIDDCORE
idd_io replaced with DIDDIO
•V
ID replaced with VIN
•CV
OD replaced with VOD
•N
NARROW replaced with NNARROW
•N
WIDE replaced with NWIDE
Added register M8h, CDR#N LOA Window Control (trim) (Section 2.2.8).
G March 2009 Added 3G support.
Revised xCS timing in Figure 3-6 and Figure 3-7.
Added SD HD, and 3G parameters to Table 3-13 and Pin 24 default in Table 3-21.
Added Note 4 in Table 1-2.
Revised Bit 5 description in Table 2-35.
Added 820Ω resistor in Figure 3-4.
F May 2008 Added SMPTE 424M in standards compliance list.
Revised Section 1.8.
Added 3G-SDI data in Table 1-6, and Table 1-14.
Updated Section 2.0.
E January 2007 Added support for Telecom and Datacom applications.
Updated specification tables.
Reformatted register tables.
D October 2005 Changed temperature range as follows: from “–40°C to 85°C” to “0°C to 70°C.”
Removed reference to LVPECL output mode. Inputs can be AC-coupled to LVPECL signals.
Changed ESD rating for high speed pins to 350V with HBM testing.
Removed references to FDA operation. FDA is not supported with this device.
C February 2005 Modified ARD description, added misc. figures, tables, updated device description as necessary.
B May 2004 Changed ordering information from M21260-11P to M21260-12P.
A March 2004 Initial release.
21260-DSH-001-H Mindspeed Technologies®4
Mindspeed Proprietary and Confidential
Table of Contents
Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Revision History. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Table of Contents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.0 Product Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.1 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
1.2 Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
1.3 Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
1.4 Input/Output Specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12
1.5 High-Speed Performance Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17
1.6 Package Drawings and Surface Mount Assembly Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22
1.7 PCB High-Speed Design and Layout Guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28
1.8 Auto Rate Detect (ARD). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30
2.0 Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.1 Global Control Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32
2.1.1 Global Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32
2.1.2 Crosspoint Switch-State Setting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33
2.1.3 04h: External Reference Frequency Divider Control (RFD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33
2.1.4 Master IC Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34
2.1.5 IC Electronic Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34
2.1.6 IC Revision Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34
2.1.7 Built In Self-Test (BIST) Receiver Channel Select. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34
2.1.8 Built In Self-Test (BIST) Receiver Main Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35
2.1.9 Built In Self-Test (BIST) Receiver Bit Error Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35
2.1.10 Built In Self-Test (BIST) Transmitter Channel Select . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36
2.1.11 Built In Self-Test (BIST) Transmitter Main Control Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37
2.1.12 Built In Self-Test (BIST) Transmitter PLL Loss of Lock Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38
2.1.13 Built In Self-Test (BIST) Transmitter PLL Control Register A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39
2.1.14 Built In Self-Test (BIST) Transmitter PLL Control Register B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40
2.1.15 Built In Self-Test (BIST) Transmitter PLL Control Register C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40
2.1.16 Built In Self-Test (BIST) Transmitter 20 bit User Programmable Pattern . . . . . . . . . . . . . . . . . . . . . . . . .41
2.1.17 Built In Self-Test (BIST) Transmitter 16/20 bit User Programmable Pattern . . . . . . . . . . . . . . . . . . . . . .41
2.1.18 Built In Self-Test (BIST) Transmitter 16/20 bit User Programmable Pattern . . . . . . . . . . . . . . . . . . . . . .41
2.1.19 Built In Self-Test (BIST) Transmitter Alarm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42
Table of Contents
21260-DSH-001-H Mindspeed Technologies®5
Mindspeed Proprietary and Confidential
2.1.20 Internal Junction Temperature Monitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42
2.1.21 Internal Junction Temperature Value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43
2.1.22 CDR/RCLK Loss of Lock Register Alarm Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43
2.1.23 CDR/RCLK Loss of Activity Register Alarm Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44
2.1.24 32h:VCO Trim Alarm Window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44
2.2 Individual Channel/CDR/RCLK Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45
2.2.1 M0h:CDR N Control Register A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45
2.2.2 M1h:CDR/RCLK N Control Register B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46
2.2.3 CDR/RCLK N Control Register C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46
2.2.4 Output Buffer Control for CDR/RCLK N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47
2.2.5 Output Buffer Pre-Emphasis Control for Output N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .48
2.2.6 Input Equalization Control for Output N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .48
2.2.7 CDR/RCLK N Loop Bandwidth and Data Sampling Point Adjust. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .49
2.2.8 CDR#N LOA Window Control (trim) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .50
2.2.9 CDR/RCLK N LOL Window Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51
2.2.10 MAh: Jitter Reduction Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53
3.0 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.1 Applications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .54
3.2 Detailed Feature Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57
3.2.1 Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57
3.2.2 Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57
3.2.3 Internal Voltage Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57
3.2.4 High-Speed Input/Output Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57
3.2.5 Switch-State Settings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58
3.2.6 CDR/Reclocker Reference Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59
3.2.7 Multifunction Pins Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59
3.2.8 Multifunction Pins Defined for Hardwired Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60
3.2.9 Multi-function Pins: Four-Wire Serial Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61
3.2.10 Two-Wire Serial Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64
3.2.11 JTAG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64
3.2.12 Input Deterministic Jitter Attenuators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64
3.2.13 Output Pre-Emphasis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66
3.2.14 CDR/RCLK Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .67
3.2.15 General CDR/RCLK Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .68
3.2.16 Multi-Rate CDR Data-Rate Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .68
3.2.17 Frequency Acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .69
3.2.18 CDR/Reclocker Data Rate Programming (3G/HD/SD-SDI data rates only) . . . . . . . . . . . . . . . . . . . . . . . .72
3.2.19 Ambient Temperature Range Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .73
3.2.20 Loss of Activity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .73
3.2.21 Built-In Self Test (BIST) Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .74
3.2.22 BIST Test Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .74
3.2.23 BIST Receiver (BIST Rx) Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .75
3.2.24 BIST Transmitter (BIST Tx) Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .75
3.2.25 Junction Temperature Monitor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .76
3.2.26 IC Identification / Revision Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .76
3.3 Pin Definitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .77
Table of Contents
21260-DSH-001-H Mindspeed Technologies®6
Mindspeed Proprietary and Confidential
Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
A.1 Glossary of Terms/Acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .80
A.2 Reference Documents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .80
A.2.1 External . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .80
A.2.2 Mindspeed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .81
21260-DSH-001-H Mindspeed Technologies®6
Mindspeed Proprietary and Confidential
List of Figures
Figure 1-1. Data Input Internal Circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13
Figure 1-2. Definitions of Eye Parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15
Figure 1-3. Reference Clock Input Internal Circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17
Figure 1-4. SMPTE Jitter Tolerance Specification Mask . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20
Figure 1-5. SONET Jitter Tolerance Specification Mask . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20
Figure 1-6. SONET/SMPTE Jitter Transfer Specification Mask . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21
Figure 1-7. Cross-Section of QFN Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22
Figure 1-8. Package Drawing (1of 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23
Figure 1-9. Package Drawing (2 of 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24
Figure 1-10. 72-Pin Package Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25
Figure 1-11. PCB Footprint for 72-Pin 10 mm QFN Package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26
Figure 1-12. PCB Pad Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27
Figure 1-13. Recommended Via Array for Thermal Pad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27
Figure 1-14. Trace-Length Matching Using Serpentine Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29
Figure 1-15. Loop Length Matching for Differential Traces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29
Figure 3-1. M21260 Application - Small Routing Switcher . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .54
Figure 3-2. Module Application. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55
Figure 3-3. Backplane Application. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55
Figure 3-4. Recommended Data and Reference Clock Input Coupling Circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56
Figure 3-5. Serial Word Format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62
Figure 3-6. Serial WRITE Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62
Figure 3-7. Serial READ Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63
Figure 3-8. STS-48 waveform after transmission through 76” of PCB traces (input to M21260) . . . . . . . . . . . . . . . . . . . . . . .65
Figure 3-9. STS-48 waveform at M21260 output with input shown in Figure 3-7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66
Figure 3-10. Definition of Pre-Emphasis Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .67
Figure 3-11. Block Diagram of Frequency Acquisition Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .70
Figure 3-12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .74
Figure 3-13. M21260 Pinout Diagram (Top View) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .79
21260-DSH-001-H Mindspeed Technologies®7
Mindspeed Proprietary and Confidential
List of Tables
Table 1-1. Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
Table 1-2. Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
Table 1-3. DC Power Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
Table 1-4. Serial Interface (2-wire and 4-wire) CMOS I/O Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12
Table 1-5. Input Electrical Specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13
Table 1-6. PCML (Positive Current Mode Logic) Output Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14
Table 1-7. LVDS (Low Voltage Differential Signal) Output Electrical Specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14
Table 1-8. Input Equalization Performance Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15
Table 1-9. Output Pre-Emphasis Performance Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16
Table 1-10. Reference Clock Input. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16
Table 1-11. Crosspoint Switching Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17
Table 1-12. CDR/RCLK High-Speed Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18
Table 1-13. RCLK Alarm Performance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19
Table 1-14. SMPTE Jitter Tolerance Mask. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20
Table 1-15. Loop Bandwidths for Typical Video Data Rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21
Table 2-1. Register Table Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31
Table 2-2. Global Control (Globctrl: Address 00h). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32
Table 2-3. Crosspoint Switch-State Setting (XPoint_ctrl: Address 01h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33
Table 2-4. External Reference Frequency Divider Control (RFD) (Refclk_ctrl: Address 04h) . . . . . . . . . . . . . . . . . . . . . . . . . .33
Table 2-5. Master IC Reset (Mastreset: Address 05h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34
Table 2-6. IC Electronic ID (Chipcode: Address 06h). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34
Table 2-7. IC Revision Code (Revcode: Address 07h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34
Table 2-8. Built In Self-Test (BIST) Receiver Channel Select (BISTrx_chsel: Address 10h). . . . . . . . . . . . . . . . . . . . . . . . . . .34
Table 2-9. Built In Self-Test (BIST) Receiver Main Control Register (BISTrx_ctrl: Address 11h). . . . . . . . . . . . . . . . . . . . . . .35
Table 2-10. Built In Self-Test (BIST) Receiver Bit Error Counter (BISTrx_error: Address 12h) . . . . . . . . . . . . . . . . . . . . . . . . .35
Table 2-11. Built In Self-Test (BIST) Transmitter Channel Select (BISTtx_chsel: Address 14h) . . . . . . . . . . . . . . . . . . . . . . . .36
Table 2-12. Built In Self-Test (BIST) Transmitter Main Control Register (BISTtx_ctrl: Address 15h) . . . . . . . . . . . . . . . . . . . .37
Table 2-13. Built In Self-Test (BIST) Transmitter PLL Loss of Lock Register (BISTtx_LOLctrl: Address 17h). . . . . . . . . . . . . .38
Table 2-14. Built In Self-Test (BIST) Transmitter PLL Control Register A (BISTtx_PLL_ctrlA: Address 18h) . . . . . . . . . . . . . .39
Table 2-15. Built In Self-Test (BIST) Transmitter PLL Control Register B (BISTtx_PLL_ctrlB: Address 19h) . . . . . . . . . . . . . .40
Table 2-16. Built In Self-Test (BIST) Transmitter PLL Control Register C (BISTtx_PLL_ctrlC: Address 1Ah) . . . . . . . . . . . . . .40
Table 2-17. Built In Self-Test (BIST) Transmitter 20 bit User Programmable Pattern
(BIST_pattern0: Address 1Bh)41
List of Tables
21260-DSH-001-H Mindspeed Technologies®8
Mindspeed Proprietary and Confidential
Table 2-18. Built In Self-Test (BIST) Transmitter 16/20 bit User Programmable Pattern
(BIST_pattern1: Address 1Ch)41
Table 2-19. Built In Self-Test (BIST) Transmitter 16/20 bit User Programmable Pattern
(BIST_pattern2: Address 1Dh)41
Table 2-20. Built In Self-Test (BIST) Transmitter Alarm (BISTtx_alarm: Address 1Fh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42
Table 2-21. Internal Junction Temperature Monitor (Temp_mon: Address 20h). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42
Table 2-22. Internal Junction Temperature Value (Temp_value: Address 21h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43
Table 2-23. CDR/RCLK Loss of Lock Register Alarm Status (Alarm_LOL: Address 30h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43
Table 2-24. CDR/RCLK Loss of Activity Register Alarm Status (Alarm_LOA: Address 31h) . . . . . . . . . . . . . . . . . . . . . . . . . . .44
Table 2-25. VCO Trim Alarm Window Trim (Alarm_trim: Address 32h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44
Table 2-26. CDR N Control Register A (RCLK_ctrlA_N: Address M0h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45
Table 2-27. CDR N Control Register B (RCLK_ctrlB_N: Address M1h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46
Table 2-28. CDR/RCLK N Control Register C (RCLK_ctrlC_N: Address M2h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46
Table 2-29. Output Buffer Control for CDR/RCLK N (Out_ctrl_N: Address M3h). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47
Table 2-30. Output Buffer Pre-Emphasis Control for Output N (Preemp_ctrl_N: Address M4h) . . . . . . . . . . . . . . . . . . . . . . . .48
Table 2-31. Input Equalization Control for Output N (Ineq_ctrl_N: Address M5h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .48
Table 2-32. CDR/RCLK N Loop Bandwidth and Data Sampling Point Adjust (Phadj_ctrl_N: Address M6h) . . . . . . . . . . . . . . .49
Table 2-33. CDR#N LOA Window Control (trim) (LOA_ctrl_N: Address M8h). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .50
Table 2-34. CDR/RCLK N LOL Window Control (LOL_ctrl_N: Address M9h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51
Table 2-35. Jitter Reduction Control (Jitter_reduc_N: Address MAh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53
Table 3-1. Output Interface and Level Mapping (For both hardwired and software modes) . . . . . . . . . . . . . . . . . . . . . . . . . .58
Table 3-2. Output Interface and Recommended AVDDIO Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58
Table 3-3. Crosspoint Switch-State in Hardwired Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59
Table 3-4. Mode Select Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60
Table 3-5. Multifunction Pins for Hardwired Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60
Table 3-6. Hardwired Data-Rates and Associated Reference Clock Frequencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61
Table 3-7. Multi-function Pins for Four-Wire Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61
Table 3-8. Serial Interface Timing – Specified at Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63
Table 3-9. Multifunction Pins for Two-Wire Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64
Table 3-10. Multifunction Pins for JTAG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64
Table 3-11. Valid Input Data Ranges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .69
Table 3-12. Reference Clock Frequency Ranges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .70
Table 3-13. DRD/RFD/VCD Settings for Different Data-Rates and Reference Frequencies. . . . . . . . . . . . . . . . . . . . . . . . . . . . .71
Table 3-14. LOL Window Size and Decision Time Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .72
Table 3-15. Supported Ambient Temperature Range by Data-Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .73
Table 3-16. BIST PRBS Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .75
Table 3-17. BIST 8b/10b Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .75
Table 3-18. Junction Temperature Monitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .76
Table 3-19. Power Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .77
Table 3-20. High-Speed Signal Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .77
List of Tables
21260-DSH-001-H Mindspeed Technologies®9
Mindspeed Proprietary and Confidential
Table 3-21. Control, Interface, and Alarm Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .78
Table A-1. Acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .80
21260-DSH-001-H Mindspeed Technologies®10
Mindspeed Proprietary and Confidential
1.0 Product Specifications
1.1 Absolute Maximum Ratings
These are the absolute maximum ratings at or beyond which the device can be expected to fail or be damaged.
Reliable operation at these extremes for any length of time is not implied.
Table 1-1. Absolute Maximum Ratings
Symbol Parameter Notes Minimum Typical Maximum Units
DVDDIO Digital I/O power 0 1.8/2.5/3.3 3.6 V
AVDDIO Analog I/O power 0 1.8/2.5/3.3 3.6 V
AVDDCORE Analog core power 2 0 1.2 1.5 V
DVDDCORE Digital core power 2 0 1.2 1.5 V
High-speed signal pins 1, 4 VSS - 0.5 AVDD - I/O + 0.5
Control, interface, and alarm pins 1, 5 VSS - 0.5 AVDD - I/O + 0.5
TSTORE Storage temperature –65 +150 °C
VESD, HBM Human body model (low-speed) 2000 V
VESD, HBM Human body model (high-speed) 350 V
VESD, CDM Charged device model 100 V
Maximum DC input current 1, 3 25 mA
NOTES:
1. No damage under these conditions.
2. Apply voltage to core pin if internal regulator is disabled. If enabled, pins should be floating with by-pass to VSS.
3. Computed as the current through 50Ω from the voltage difference between the input voltage common mode and VDDT
4. High-speed signal pins are shown in Table 3-16.
5. Control, interface, and alarm pins are shown in Table 3-17.
Product Specifications
21260-DSH-001-H Mindspeed Technologies®11
Mindspeed Proprietary and Confidential
1.2 Recommended Operating Conditions
1.3 Power Dissipation
Table 1-2. Recommended Operating Conditions
Symbol Parameter Notes Minimum Typical Maximum Units
DVDDIO Digital I/O power 2 1.8/2.5/3.3 V
AVDDIO Analog I/O power 2 1.8/2.5/3.3 V
AVDDCORE Analog core power 1, 2 1.2 V
DVDDCORE Digital core power 1, 2 1.2 V
TAMB Ambient temperature 4 -40 85 °C
θJA Junction to ambient thermal resistance 3 24 °C/W
NOTES:
1. Needed only if AVDDCORE or DVDDCORE are provided from external source (internal regulator disabled xRegu_En = H).
2. Typical value +/- 5% is acceptable.
3. With forced convection of 1 m/s and 2.5 m/s,
θ
JA
is decreased to 18°C/W and 16°C/W respectively.
4. See Section 3.2.19, “Ambient Temperature Range Limitations,” on page 73.
Table 1-3. DC Power Electrical Specifications (1 of 2)
Symbol Parameter Notes Minimum Typical Maximum Units
IDD Case 1: current consumption for output swing = 550 mV
CML, internal regulator = on
1 310 365 mA
PTOTAL Power dissipation at 1.8V 560 660 mW
PTOTAL Power dissipation at 3.3V 2 1.02 1.2 W
IDD Case 2: current consumption for output swing = 900 mV
CML, internal regulator = on
1 340 400 mA
PTOTAL Power dissipation at 1.8V 610 720 mW
PTOTAL Power dissipation at 3.3V 2 1.12 1.32 W
Case 3: output swing = 550 mV CML, internal regulator = off 1
DIDDCORE Core current consumption 260 300 mA
DIDDIO Input/Output buffers current consumption 50 70 mA
PTOTAL Power dissipation at 1.2V core, 1.8V I/O 400 490 mW
PTOTAL Power dissipation at 1.2V core, 3.3V I/O 480 590 mW
IDD Case 4: current consumption for output swing = 450 mV
LVDS, internal regulator = on
1 320 380 mA
PTOTAL Power dissipation at 1.8V 580 680 mW
PTOTAL Power dissipation at 3.3V 2 1.06 1.25 W
Product Specifications
21260-DSH-001-H Mindspeed Technologies®12
Mindspeed Proprietary and Confidential
1.4 Input/Output Specifications
IDD Case 5: current consumption for output swing = 1.5V
PCML+, internal regulator = on
1 410 470 mA
PTOTAL Power dissipation at 1.8V 740 850 mW
PTOTAL Power dissipation at 3.3V 2 1.35 1.55 W
NOTES:
1. Specified at recommended operating conditions – see Table 1-2.
2. Thermal design such as thermal pad vias on PCB must be considered for this case.
Table 1-4. Serial Interface (2-wire and 4-wire) CMOS I/O Electrical Specifications
Symbol Parameter Notes Minimum Typical Maximum Units
VOH Output logic high IOH = –3 mA 2 0.8 x DVDDIO DVDDIO —V
VOL Output logic low IOL = 24 mA 2 0.0 0.2 x DVDDIO V
IOH Output current (logic high) –10 0 mA
IOL Output current (logic low) 0 10 mA
VIH Input logic high 0.75 x DVDDIO DVDDIO + 0.3 V
VIL Input logic low 0 0.25 x DVDDIO V
IIH Input current (logic high) –100 100 µA
IIL Input current (logic low) –100 100 µA
tROutput rise time (20-80%) 250 ns
tFOutput fall time (20-80%) 250 ns
C2wire Input capacitance of MF10 and MF11 in 2-wire
serial interface mode.
3— 10pF
NOTES:
1. Entire table specified at recommended operating conditions – see Table 1-2.
2. DVDDIO can be chosen independently from AVDDIO.
3. 2-wire serial output mode can drive 500 pF.
Table 1-3. DC Power Electrical Specifications (2 of 2)
Symbol Parameter Notes Minimum Typical Maximum Units
Product Specifications
21260-DSH-001-H Mindspeed Technologies®13
Mindspeed Proprietary and Confidential
Table 1-5. Input Electrical Specifications
Symbol Parameter Notes Minimum Typical Maximum Units
DR Input signal data-rate 42 3200 Mbps
VIN Input differential voltage (P-P) 2, 3 100 2000 mV
VICM Input common-mode voltage 700 1200 mV
VIH Maximum input high voltage AVDDCORE + 400 mV
VIL Minimum input low voltage 400 mV
RIN Input termination to VddT 4455065Ω
S11 Input return loss (40 MHz to 2.5 GHz) –15.0 dB
NOTES:
1. Entire table specified at recommended operating conditions – see Table 1-2.
2. Example 1200 mVPP differential = 600 mVPP for each single-ended terminal.
3. Minimum input level defined as error free operation at 10-12 BER.
4. See Figure 1-1 for input termination circuit.
Figure 1-1. Data Input Internal Circuitry
DinP
DinN
Data
Input
Buffer
AVdd_Core
R >> 50ΩR >> 50 Ω
50Ω
50Ω
VddT
Product Specifications
21260-DSH-001-H Mindspeed Technologies®14
Mindspeed Proprietary and Confidential
Table 1-6. PCML (Positive Current Mode Logic) Output Electrical Specifications
Symbol Parameter Notes Minimum Typical Maximum Units
DR Output signal data-rate (Reclockers enabled) 42 3200 Mbps
tR/tFRise/Fall time (20-80%) for all levels 75 130 ps
VOH Low swing: output logic high (single-ended) AVDDIO – 25 AVDDIO mV
VOL Low swing: output logic low (single-ended) AVDDIO – 370 AVDDIO – 250 mV
VOD Low swing: differential swing 2 400 550 750 mV
VOH Medium swing: output logic high (single-ended) AVDDIO – 80 AVDDIO mV
VOL Medium swing: output logic low (single-ended) AVDDIO – 600 AVDDIO – 420 mV
VOD Medium swing: differential swing 2 700 900 1150 mV
VOH High swing: output logic high (single-ended) AVDDIO – 95 AVDDIO mV
VOL High swing: output logic low (single-ended) AVDDIO – 770 AVDDIO – 535 mV
VOD High swing: differential swing 2 900 1200 1500 mV
VOH PCML+ swing: output logic high (single-ended) AVDDIO – 115 AVDDIO mV
VOL PCML+ swing: output logic low (single-ended) AVDDIO – 1000 AVDDIO – 680 mV
VOD PCML+ swing: differential swing 2 1150 1500 1900 mV
ROUT Output termination to AVDDCORE —45 50 65Ω
S22 Output return loss (40 MHz to 2.5 GHz) –15.0 dB
NOTES:
1. Specified at recommended operating conditions – see Table 1-2.
2. Example 1200 mV P-P differential = 600 mV P-P for each single-ended terminal.
3. All output swings defined with pre-emphasis off.
Table 1-7. LVDS (Low Voltage Differential Signal) Output Electrical Specifications
Symbol Parameter Notes Minimum Typical Maximum Units
DR Output Signal Data Rate (reclockers enabled) 42 3200 Mbps
VOCM Output average common mode range 2 1200 mV
tR/tFGPL: rise/fall time (20-80%) 75 130 ps
VOD GPL: differential output (P-P) 3 500 650 800 mV
VOD RRL: differential output (P-P) 300 450 550 mV
ROUT Output termination (differential) 90 100 130 Ω
S22 Output return loss (40 MHz to 2.5 GHz) –15.0 dB
NOTES:
1. Specified at recommended operating conditions - see Table 1-2.
2. Computed as average (average positive output and average negative output).
3. Conforms to IEEE Std 1596.3-1996 for GPL. All values specified for 50Ω single-ended back-match, 100Ω differential load.
4. All output swings defined with pre-emphasis off.
5. See Figure 1-2 for definitions of eye parameters.
Product Specifications
21260-DSH-001-H Mindspeed Technologies®15
Mindspeed Proprietary and Confidential
Figure 1-2. Definitions of Eye Parameters
Table 1-8. Input Equalization Performance Specifications
Symbol Parameter Notes Minimum Typical Maximum Units
DR Input signal data-rate 42 3200 Mbps
Maximum error-free distance at 3.2 Gbps 2, 3, 6, 7 60 in
Maximum error-free distance at 1.6 Gbps 2, 3, 6, 7 72 in
NOTES:
1. Specified at recommended operating conditions – see Table 1-2.
2. Performance measured on standard FR4 backplane such as standards provided by TYCO for 10GE XAUI.
3. Measured with PCML driver without output pre-emphasis at a minimum launch voltage of 900 mVPP output swing at beginning of line.
4. Combined input equalization + output pre-emphasis performance will be better than individual performance, but less than the sum of the two
lengths.
5. Input equalization has greatest effect for data-rates higher than 1 Gbps.
6. Default setting optimized for driving 10 - 46 in of PCB trace length. Equalizer can be configured for longer reach using serial interface.
7. Test setup: Pattern generator -> test backplane -> DUT -> error detector
J
PP
t
f
t
r
V
OD
V
OH
V
OL
V
OH
: Average voltage high level
V
OL
: Average voltage low level
V
OD
:(V
OH
) – (V
OL
)
J
PP
: Peak -Peak Output Jitter
t
r
: 20-80% Rise Time
t
f
: 80-20% Fall Time
Product Specifications
21260-DSH-001-H Mindspeed Technologies®16
Mindspeed Proprietary and Confidential
Table 1-9. Output Pre-Emphasis Performance Specifications
Symbol Parameter Notes Minimum Typical Maximum Units
DR Output signal data-rate 42 1600 Mbps
Maximum error-free distance at 3.2 Gbps 2, 3, 6 40 in
Maximum error-free distance at 1.6 Gbps 2, 3, 6 60 in
NOTES:
1. Specified at recommended operating conditions – see Table 1-2.
2. Performance measured on standard FR4 backplane such as standards provided by TYCO for 10GE XAUI.
3. Measured with PCML receiver without input equalization, using PCML output driver at 1200 mVPP output swing at beginning of line.
4. Combined adaptive equalization + output pre-emphasis performance will be better than individual performance, but less than the sum of the two
lengths.
5. Output pre-emphasis has greatest effect for data-rates higher than 1 Gbps.
6. Test setup: Pattern generator -> DUT -> test backplane -> error detector
Table 1-10. Reference Clock Input
Symbol Parameter Notes Minimum Typical Maximum Units
FREF Input frequency (Refclk_ctrl [3:1] = 000b) 2,3 10 19.44 25 MHz
FREF Input frequency (Refclk_ctrl [3:1] = 001b) 2,3 20 38.88 50 MHz
FREF Input frequency (Refclk_ctrl [3:1] = 010b) 2,3 40 77.76 100 MHz
FREF Input frequency (Refclk_ctrl [3:1] = 011b) 2,3 80 155.52 200 MHz
FREF Input frequency (Refclk_ctrl [3:1] = 100b) 2 120 250 300 MHz
FREF Input frequency (Refclk_ctrl [3:1] = 101b) 2,3 160 311.04 400 MHz
FREF Input frequency (Refclk_ctrl [3:1] = 110b) 2,3 320 622.08 800 MHz
VIN Input differential voltage (P-P) 4,5 100 1600 mV
VICM Input common-mode voltage 2,5 250 AVDDIO mV
Input duty cycle 40 50 60 %
Frequency stability 2 100 ppm
RIN Differential termination 5 100 Ω
Internal pull-down to VSS 100 kΩ
Maximum DC input current 15 mA
NOTES:
1. Specified at recommended operation conditions – see Table 1-2.
2. Used for frequency acquisition.
3. Typical values are exact integer ratios for SONET applications.
4. Example 1200 mVPP differential = 600 mVPP for each single-ended terminal.
5. Input can accept a CMOS single-ended clock on differential P terminal when differential N terminal is decoupled to ground with a large enough
capacitor. CMOS input will then see an effective 100Ω load.
6. See Figure 1-3 for input termination circuit.
Product Specifications
21260-DSH-001-H Mindspeed Technologies®17
Mindspeed Proprietary and Confidential
1.5 High-Speed Performance Specifications
Figure 1-3. Reference Clock Input Internal Circuitry
Table 1-11. Crosspoint Switching Performance
Symbol Parameter Notes Minimum Typical Maximum Units
Switch command to start of high-speed signal switching
(hardwired mode)
2,4 1 1.5 ns
tSW Switching time 3, 4 1 2 ns
tPD Input/Output latency (CDR/reclocker disabled or bypassed) 500 ps
tPD Input/Output latency (utilizing CDR/reclocker) 2 ns
tSKEW, CH Channel to channel output data skew (CDR/reclocker disabled
or bypassed)
—— 55ps
tSKEW, CH Channel to channel output data skew (utilizing CDR/
reclocker)
5—65ps
NOTES:
1. Specified at recommended operating conditions – see Table 1-2.
2. Defined as 50% point in switch state pins, to when high-speed data amplitude changes by 10%.
3. Defined as when the terminated high-speed signal drops 10% in amplitude, and the new high-speed signal is 90% settled.
4. Specified with CDR/reclocker disabled or bypassed.
5. Does not include variation in static phase offset between CDR/reclockers.
0.5 pF
0.5 pF
RefClkP
RefClkN
Clock
Input
Buffer
AVdd_Core
150 KΩ
150 KΩ
100Ω
100 KΩ
100 KΩ
Vss
Vss
Product Specifications
21260-DSH-001-H Mindspeed Technologies®18
Mindspeed Proprietary and Confidential
Table 1-12. CDR/RCLK High-Speed Performance (1 of 2)
Symbol Parameter Notes Minimum Typical Maximum Units
DR Input signal data-rate (NRZ data) divider ratio = 1 2 3.2 Gbps
DR Input signal data-rate (NRZ data) divider ratio = 2 1 1.6 Gbps
DR Input signal data-rate (NRZ data) divider ratio = 4 500 800 Mbps
DR Input signal data-rate (NRZ data) divider ratio = 8 250 400 Mbps
DR Input signal data-rate (NRZ data) divider ratio = 12 167 267 Mbps
DR Input signal data-rate (NRZ data) divider ratio = 16 125 200 Mbps
DR Input signal data-rate (NRZ data) divider ratio = 24 83 133 Mbps
DR Input signal data-rate (NRZ data) divider ratio = 32 62.5 100 Mbps
DR Input signal data-rate (NRZ data) divider ratio = 48 42 67 Mbps
JTOL Jitter tolerance (Figure 1-5)20.625UI
JTRAN Jitter transfer (Figure 1-6)2, 16
JGEN Jitter generation (rms) at STS-N (N = 1, 3, 12, 48) 2, 12 4.5 6.5 mUI
JGEN Jitter generation (pp) at STS-N (N = 1, 3, 12, 48) 2, 12 30 55 mUI
FLBW Default loop bandwidth: divider ratio = 1 3,4,5 2 MHz
FLBW Default loop bandwidth: divider ratio = 2 3,4,5 1 MHz
FLBW Default loop bandwidth: divider ratio = 4 3,4,5 500 kHz
FLBW Default loop bandwidth: divider ratio = 8 3,4,5 250 kHz
FLBW Default loop bandwidth: divider ratio = 12 3,4,5 167 kHz
FLBW Default loop bandwidth: divider ratio = 16 3,4,5 125 kHz
FLBW Default loop bandwidth: divider ratio = 24 3,4,5 83 kHz
FLBW Default loop bandwidth: divider ratio = 32 3,4,5 62.5 kHz
FLBW Default loop bandwidth: divider ratio = 48 3,4,5 41.6 kHz
tRJ Output data random jitter (pp) 13 100 mUI
tDJ Output data deterministic jitter (pp) 13 110 mUI
TJUNC Output data total jitter (pp) 13 210 mUI
tPD Latency from input to output (utilizing CDR) 1.75 2 ns
tSKEW, CH Channel to channel output data skew (utilizing CDR) 10 65 ps
Initialization time 6,7,10 2 ms
tFRA Frequency acquisition time 6,8 0.4 ms
Product Specifications
21260-DSH-001-H Mindspeed Technologies®19
Mindspeed Proprietary and Confidential
tLOCK Phase lock time with 100 ppm delta F 9,11 100 ns
tLOCK Phase lock time with 0 ppm delta F 9,11 50 ns
NOTES:
1. Specified at recommended operating conditions – see Table 1-2.
2. Jitter tolerance, jitter transfer, and jitter generation specified with input equalization and output pre-emphasis disabled, utilizing PRBS 223-1, per
GR-253 test methodologies.
3. Nominal loop bandwidth for 2.48832 GHz/ DRD.
4. Bandwidth is proportional to frequency.
5. For SONET data-rates, default meets SONET specifications.
6. Assume that reference is within +/-100 ppm of desired data-rate.
7. Time after power up, reset, or data-rate change.
8. Time from application of valid data to lock within +/-20% of lock phase.
9. Defined as when phase settles to within 20% of lock phase.
10. After reset (master or soft), initialization takes place, then frequency acquisition.
11. Based on nominal SONET bandwidth (bandwidth can be increased for lower phase lock time).
12. Jitter generation specified per GR-253, utilizing bandpass filter with passband 12 kHz to 20 MHz for STS-48.
13. tRJ, tDJ, TJUNC represent jitter measured to BER of 10-12 per FC-PI-2 specifications.
14. Broadband jitter defined as jitter measured on sampling oscilloscope without the use of filters.
15. Maximum value specified incorporates asynchronous aggressors.
16. Jitter transfer of CDR meets the SONET STS-48 mask if loop bandwidth is set to 80% of nominal by writing Phadj_ctrl_N[5:4] = 00b. Jitter trans-
fer at STS-12 (STS-3) exceeds mask by 0.1 dB in frequency range 10 - 25.1 kHz (1.5 - 10 kHz).
Table 1-13. RCLK Alarm Performance
Symbol Parameter Notes Minimum Typical Maximum Units
DTLOA xLOA decision time 5 26 µs
xLOA assertion transition density threshold (xLOA
= H to L)
5, 6 12.5 %
xLOA de-assertion transition density threshold
(xLOA = L to H)
5, 6 12.5 %
DTLOL xLOL decision time (measurement time) 2 10 420 3275 µs
NWIDE xLOL assertion frequency threshold (xLOL = H to
L)
2,3 ±185 ±2930 ±250000 ppm
NNARROW xLOL de-assertion frequency threshold (xLOL = L
to H)
2,3 ±120 ±1955 ±250000 ppm
NOTES:
1. Specified at recommended operating conditions – see Table 1-2.
2. Actual time is set with LOL window. Typical is the default value. Minimum and maximum indicate dynamic range.
3. Assume that reference is +/-50 ppm of operating frequency.
4. Computed for 1.4835 Gbps data-rate. Will scale with data-rate.
5. Fixed values.
6. Specification shown represents deviation from 50% transition density.
Table 1-12. CDR/RCLK High-Speed Performance (2 of 2)
Symbol Parameter Notes Minimum Typical Maximum Units
Product Specifications
21260-DSH-001-H Mindspeed Technologies®20
Mindspeed Proprietary and Confidential
Figure 1-4. SMPTE Jitter Tolerance Specification Mask
Table 1-14. SMPTE Jitter Tolerance Mask
Jitter Parameter SMPTE 259M SMPTE 292M
f1 10 Hz 10 Hz
f2 200 Hz 20 kHz
f3 1 kHz 100 kHz
f4 27 MHz 148.5 MHz
A1 1.0 UI 1.0 UI
A2 0.2 UI 0.2 UI
Figure 1-5. SONET Jitter Tolerance Specification Mask
A1
A2
f1 f2 f3 f4
Sinusoidal Input
Jitter Amplitude
Jitter Frequency
-20 dB/decade
slope
Input
Jitter
Amplitude
(UIpp)
Slope = -20 dB/decade
6K
15
10 / N 600 / N 100K 214K
1.5
J
Jitter Frequency (Hz)
0.15
Mindspeed
Specification
1M / N
GR-253 SONET
Specification
/ N / N / N
TOL
Product Specifications
21260-DSH-001-H Mindspeed Technologies®21
Mindspeed Proprietary and Confidential
* See Ta b l e 1 - 1 1 for jitter transfer at SONET data rates.
Figure 1-6. SONET/SMPTE Jitter Transfer Specification Mask
Table 1-15. Loop Bandwidths for Typical Video Data Rates
Application Bit Rate
(Mbps)
Value of N Approximate Loop BW (f)
3G-SDI 2967/2970 0.84 2.38 MHz
HD-SDI 1485/1483.5 1.68 1.19 MHz
2xSD-SDI 540 4.6 435 MHz
Progressive Scan 360 6.9 290 kHz
SD-SDI 270 9.2 217 kHz
Legacy Comp Video 177 14.1 142 kHz
Legacy Comp Video 143 17.4 115 kHz
Slope = -20 dB/decade
f
0.1
Jitter
Gain
(dB)
Jitter Fre
q
uenc
y
(
Hz
)
Product Specifications
21260-DSH-001-H Mindspeed Technologies®22
Mindspeed Proprietary and Confidential
1.6 Package Drawings and Surface Mount Assembly Details
The M21260 is assembled in 72-pin 10 mm x 10 mm QFN packages. This is a plastic encapsulated package with a
copper leadframe. The QFN is a leadless package with lands on the bottom surface of the package.
The exposed die paddle serves as the IC ground (VSS), and the primary means of thermal dissipation. This die
paddle should be soldered to the PCB. A cross-section of the QFN package can be found in Figure 1-7.
Figure 1-7. Cross-Section of QFN Package
Mold Compound
Gold Wire
Die Attach Material
Exposed Die
Paddle
Ground Bond
Down Bond
Cu Leadframe
Solder
Plating
Ag Plating
Die
Product Specifications
21260-DSH-001-H Mindspeed Technologies®23
Mindspeed Proprietary and Confidential
Figure 1-8 and Figure 1-9 shows the package outline drawing for the 10 mm x 10 mm QFN package.
Figure 1-8. Package Drawing (1of 2)
0.80 DIA.
D1/2
D1
D/2
D
E1/2
E/2
E1
E
2X
A
2X
0.10
B
C
A
N
SEATING
PLANE
5
6
2
3
1
0.08
C
C
0.10
2X
A
0.10
0.10
2X
B
0
A1
10
C
C
C
A3
A2
A
B
TOP VIEW
SIDE VIEW
Product Specifications
21260-DSH-001-H Mindspeed Technologies®24
Mindspeed Proprietary and Confidential
Figure 1-9. Package Drawing (2 of 2)
0.
1
0
0.10
B
B
A
A
M
M
C
C
S
EATING
SEATING
PLANE
PLANE
N
N
b
b
e
e
1
1
L
L
REF.
REF.
(
N
d
-1)Xe
(Nd-1)Xe
(
Ne-1
)
Xe
(Ne-1)Xe
R
EF
.
REF.
4
4
2
2
2
3
3
4X P
4X P
4
X P
4X P
D
2
D2
D
2
/
2
D2/2
E
2
E2
E
2
/
2
E2/2
P
IN1 I
D
PIN1 ID
0.
2
0
R.
0.20 R.
0.4
5
0.45
0.
2
5
MIN
0.25 MIN
0.
2
5
MIN.
0.25 MIN.
S
EE DETAIL
"
A
"
SEE DETAIL "A"
FO
R PIN #1 ID AND
FOR PIN #1 ID AND
T
IE BAR MARK
O
PTI
O
N
TIE BAR MARK OPTION
BO
TT
O
M VIEW
TERMINAL TIP
TERMINAL TIP
C
L
CC
L
L
e
e
FOR ODD TERMINAL/SIDE
TERMINAL TIP
e
e
L
C
LL
C
C
C
C
C
C
FOR EVEN TERMINAL/SID
E
b
4
SC
ALE
:
N
O
N
E
A1
11
11
S
E
C
TI
O
N "
C
-
C
"
Product Specifications
21260-DSH-001-H Mindspeed Technologies®25
Mindspeed Proprietary and Confidential
The relevant dimensions for the 72-pin version of the package can be found in Figure 1-10.
Figure 1-10. 72-Pin Package Dimensions
M
Nd
e
N
b
L
D2
Q
E2
Ne
Y
SPITCH VARIATION D
NOM.
18
72
0.23
0.40
0.20
18
0.50 BSC
SEE EXPOSED PAD VARIATION:C
SEE EXPOSED PAD VARIATION:C
0.18
0.30
0.00
MIN.
OL
B
3
0.30
0.50
0.45 4
MAX. O
N
T
3
3
E
12
12
DIMENSIONS
D
P0.24
R0.13
D1
E1
0
E
OL
B
A
A1
A2
A3
-
MIN.
-
0.00
YM
S
10.00 BSC
0.60
0.23
0.42
0.17
9.75 BSC
9.75 BSC
10.00 BSC
12˚
MAX.
0.20 REF.
NOM.
0.85
0.01
0.65
0.90
0.05
0.70
COMMON
E
OT
11
N
VARIATIONS
EXPOSED PAD
SYMBOLS MIN
MIN MAXNOM
D2 NOM MAX
E2 NOTE
5.85 5.85
C6.156.00 6.00 6.15
DIMENSION b APPLIES TO PLATED TERMINAL AND IS MEASURED
1. DIE THICKNESS ALLOWABLE IS 0.305mm MAXIMUM(.012 INCHES MAXIMUM)
NOTES: 2. DIMENSIONING & TOLERANCES CONFORM TO ASME Y14.5M. - 1994.
4.
7. ALL DIMENSIONS ARE IN MILLIMETERS.
PACKAGE BY USING INDENTATION MARK OR OTHER FEATURE OF PACKAGE BODY.
THE PIN #1 IDENTIFIER MUST BE EXISTED ON THE TOP SURFACE OF THE
5.
EXACT SHAPE AND SIZE OF THIS FEATURE IS OPTIONAL.
6.
N IS THE NUMBER OF TERMINALS.
Nd IS THE NUMBER OF TERMINALS IN X-DIRECTION &
Ne IS THE NUMBER OF TERMINALS IN Y-DIRECTION.
3.
BETWEEN 0.20 AND 0.25mm FROM TERMINAL TIP.
PACKAGE WARPAGE MAX 0.08mm.
9.
APPLIED ONLY FOR TERMINALS.
10. APPLIED FOR EXPOSED PAD AND TERMINALS.
11.
EXCLUDE EMBEDDING PART OF EXPOSED
PAD FROM MEASURING.
Q AND R APPLIES ONLY FOR STRAGHT TIEBAR SHAPES.
12.
8. THE SHAPE SHOWN ON FOUR CORNERS ARE NOT ACTUAL I/O.
DETAIL "A" - PIN #1 ID AND TIE BAR MARK OPTION
STANDARD
Product Specifications
21260-DSH-001-H Mindspeed Technologies®26
Mindspeed Proprietary and Confidential
The M21260 evaluation module (EVM) uses the PCB footprint shown in Figure 1-11.
Figure 1-11. PCB Footprint for 72-Pin 10 mm QFN Package
Note: Pads placed on a .374 mils square (9.5 mm).
Add as many vias to ground in .290 square pad as possible.
Add .025 round clearances on soldermask in an even pattern
to help solder ground pad.
Product Specifications
21260-DSH-001-H Mindspeed Technologies®27
Mindspeed Proprietary and Confidential
The pad length dimensions should account for component tolerances, PCB tolerances, and placement tolerances.
At a minimum, the pad should extend at least 0.1 mm on the outside and 0.05 mm on the inside, as shown in
Figure 1-12.
To efficiently dissipate heat from the M21260, a thermal pad with thermal vias should be used on the PCB. An
example of a thermal pad with a 4x4 via array is shown in Figure 1-13. The thermal vias provide a heat conduction
path to inner and/or bottom layers of the PCB. The larger the via array, the lower the thermal resistance JA). It is
recommended to use thermal vias with 1.0 to 1.2 mm pitch with 0.3 to 0.33 mm via diameter.
For further details please refer to the relevant application note from package vendor Amkor (see list of references at
the end of this document). Much of the material in this section has been adopted from the Amkor SMT application
note.
Figure 1-12. PCB Pad Extensions
Figure 1-13. Recommended Via Array for Thermal Pad
.1 mm
.05mmPCB Pad
Product Specifications
21260-DSH-001-H Mindspeed Technologies®28
Mindspeed Proprietary and Confidential
1.7 PCB High-Speed Design and Layout Guidelines
A single power plane for the AVDDIO and AVDDCORE power supplies with bulk capacitors (typically 10 µF)
distributed throughout the board will mitigate most power-rail related voltage transients. A bulk capacitor should
also be placed where the power enters the board. It is recommended that decoupling capacitors only be routed
directly to the power pin if they can be placed within 1/8 of an inch of the pin. Decoupling capacitors should be
dispersed around the outside of the device on the top side and underneath the IC on the bottom side of the board.
It is recommended that 0.1 µF and 0.01 µF decoupling capacitors be used. All three capacitor values are not
required on each pin, but should be dispersed uniformly to filter different frequencies of noise.
A continuous ground plane is the best way to minimize ground impedance. Return currents and power supply
transients produce most ground noise during switching. Reducing ground plane impedance minimizes this effect.
There is a high frequency decoupling effect from the capacitive effect of power/ground planes and this can be used
to help minimize the amount of high frequency decoupling capacitors.
High-speed PCML signals should be routed with 50Ω equal length traces for P and N signals within each
differential pair. Buried strip line is recommended for internal layers while microstrip line is used for signals routed
on surface layers. There should be no discontinuity in the ground planes during the path of the signal traces.
Impedance discontinuities occur when a signal passes through vias and travels between layers. It is recommended
to minimize the number of vias and layers that the transmit/receive signals travel through in the design. The system
PCB should be designed so that high-speed signals pass through a minimal number of vias and remain on a single
internal high-speed routing layer.
When vias need to be used, the via design should match the transmission line impedance by observing the
following:
Avoid through-hole vias; they cause stubs by extending the full cross-section of the PCB despite the fact that
the layer change requires only a small length via (as in the case of adjacent layers). Use short blind vias.
Avoid layer changes in general as the characteristic impedance of the transmission line changes as a result.
In general, some rules of thumb for PCB design for high data-rates are:
PCB trace width for high-speed signals should closely match the SMT component width, so as to prevent stub
effects from a sudden change in stripline width. A gradual increase in trace width is recommended as it meets
the SMT pad.
The PCB ground/power planes should be removed from under the I/O pins so as to reduce parasitic
capacitance.
High-speed traces should avoid sharp changes in direction. Using large radii will minimize impedance
changes. Avoid bending traces by more than 45 degrees; otherwise, provide a circular bend so as to prevent
the trace width from widening at the bend.
Avoid trace stubs by minimizing components (resistors, capacitors) on the board. For instance, a termination
resistor at the input of a receiver will inflict a stub effect at high frequency. Termination resistors integrated on
chip will eliminate the stub. Components designed to DC couple to one another avoid the need for coupling
capacitors and the inherent stubs created from them.
For high-speed differential signals, the trace lengths of each side of the differential pair should be matched to each
other as much as possible. The skew between the P and N signals in a differential pair should be tightly controlled
in order for the differential receiver to detect a valid data transition. When matching trace-lengths within a
differential pair, care should be taken to avoid introducing large impedance discontinuities. The figures below show
two methods of matching the trace-lengths for a differential pair.
Typically, the preferred solution for trace-length matching in differential pairs is to use a serpentine pattern for the
shorter signal as shown in Figure 1-14. Using a serpentine pattern for length matching will minimize the differential
impedance discontinuity while making both trace-lengths equal.
Product Specifications
21260-DSH-001-H Mindspeed Technologies®29
Mindspeed Proprietary and Confidential
The loop length matching method shown in Figure 1-15 will match the trace lengths of a differential pair, but will
create a large impedance discontinuity in the transmission line, which could result in higher jitter on the signal and/
or a greater sensitivity to noise for the differential pair.
When using capacitors to AC-couple the input, care should be taken to minimize the pattern-dependant jitter (PDJ)
associated with the low-frequency cutoff of the coupling network. When NRZ data containing long strings of 1s or
0s is applied to a high-pass filter, a voltage droop occurs. This voltage droop causes PDJ in much the same fashion
as inter-symbol interference (ISI) is generated from dispersion effects of long trace-lengths in backplane material.
If needed, use 0.1 µF capacitors to AC-couple the high-speed output signals, and the reference clock inputs. The
high-speed data input signals can be DC-coupled.
On the Evaluation Module (EVM), we have tied DVDDIO and AVDDIO together to minimize the number of power
supply jacks. They are kept separate on-chip to give the flexibility to the system designers to supply a different
voltage level for each. For instance, an FPGA can be used to supply power to DVDDIO, while a lower voltage can be
used to power AVDDIO to minimize power dissipation. On the EVM, we have also tied DVDDCORE and AVDDCORE
together to minimize the number of power supply jacks. They are kept separate on-chip to provide more isolation,
however, if the system board plane is properly decoupled, they can be tied together.
No inductive filtering on the system board is necessary between different power supplies of the IC. It is up to the
system designer to determine if this needs to be considered for supplies that are coming from other parts of the
system board (such as switching regulators or ASICs).
An inductor should not be used at the VddT pins. These pins were made available to create a low AC impedance,
such that the 50Ω on-chip termination impedances see a common AC ground. This assures both common-mode
and differential termination. If common-mode termination is not important (such as in LVDS applications), simply
leave the VddT pins floating. Note that a low AC impedance can also be created by tying the VddT pins to the
AVDDIO plane, thus saving on the number of external capacitors. This, however, implies a CML-like data interface
(unless the data is AC-coupled). VddT is not really a supply plane on-chip, it is simply the point to which the 50Ω
input impedances are tied.
Power planes should be decoupled to ground planes using thin dielectric layers, to increase capacitance
(preferably 2-4 mils). Reference ground layers should be used on both sides of inner layer routing planes, with
controlled impedance. The total board thickness should meet the standard drill holes to board thickness ratio of
1:12 or 1:14.
Figure 1-14. Trace-Length Matching Using Serpentine Pattern
Figure 1-15. Loop Length Matching for Differential Traces
Product Specifications
21260-DSH-001-H Mindspeed Technologies®30
Mindspeed Proprietary and Confidential
Use 1/2 ounce copper clad on all layers, which is approximately 0.7 mils. Avoid placing solder mask and silk-screen
on top of transmission lines; solder mask will add 1 - 2Ω to the overall impedance of the transmission line. Dielectric
core material should be used wherever possible, as it will maintain its thickness and geometry during processing,
better than pliable prepreg.
The microwave ground should follow the transmission line from end to end, or from signal input to output. It is best
to designate layers as dedicated microwave/circuit ground planes, and properly isolate them from other ground
planes by providing adequate distance. All microwave ground planes should be tied together.
Uncoupled microstrip transmission lines should be placed at a distance from each other of at least three times the
transmission line width. Coupled microstrip transmission lines, such as differential signal pairs, must be placed
close to each other and maintain the same separation distance throughout the board (separation distance of at
most twice the trace-width). For buried stripline transmission lines, it is good design practice to maintain equal
distance between the conductor and the ground plane on both sides.
During PCB manufacturing, over- and under-etching of traces used for transmission lines results in impedance
discontinuities. Use of wide traces for transmission lines will reduce the impact of etching issues. Wide traces also
help compensate for skin-effect losses in transmission lines. It should be noted, however, that the wider the traces
in a differential pair, the thicker the underlying dielectric layer needs to be.
Surface mount connectors are preferred over through-mount connectors. Connectors should be selected that have
controlled characteristic impedances that match the characteristic impedances of the transmission lines.
1.8 Auto Rate Detect (ARD)
For many video applications, CDR/reclockers are required to auto rate detect (ARD) the incoming data rate.
Mindspeed has developed a reference design for an ARD implementation. The reference design includes binary
files for the ARD software and a hardware reference design based on the ATMEL AT89C51Rx2 series of micro
controllers. The ARD automatically configures the device for nine possible fixed data rates of 143, 177, 270, 360,
540, 1483.5, 1485, 2967, or 2970 Mbps for the M21260. If desired, customers can expand the ARD code to include
operation at other data rates.
Please refer to the M2125X and M2126X ARD software description documents for details on Mindspeed’s
implementation of Auto Rate Detect for this device.
21260-DSH-001-H Mindspeed Technologies®31
Mindspeed Proprietary and Confidential
2.0 Registers
Table 2-1. Register Table Summary
Addr Register Name d7: MSB d6 d5 d4 d3 d2 d1 d0: LSB
Common Registers
00h Globctrl powerup MSPD int MSPD int MSPD int MSPD int MSPD int reserved clear_alm
01h XPoint_ctrl port3[1] port3[0] port2[1] port2[0] port1[1] port1[0] port0[1] port0[0]
04h Refclk_ctrl reserved reserved reserved reserved ref_divr[2] ref_divr[1] ref_divr[0] MSPD int
05h Mastreset rst rst rst rst rst rst rst rst
06h Chipcode chipcode[7] chipcode[6] chipcode[5] chipcode[4] chipcode[3] chipcode[2] chipcode[1] chipcode[0]
07h Revcode revcode[7] revcode[6] revcode[5] revcode[4] revcode[3] revcode[2] revcode[1] revcode[0]
10h BISTrx_chsel reserved chan[2] chan[1] chan[0]
11h BISTrx_ctrl MSPD int rx_ctrclr rx_patt[3] rx_patt[2] rx_patt[1] rx_patt[0] en_rx rx_rst
12h BISTrx_error err[7] err[6] err[5] err[4] err[3] err[2] err[1] err[0]
14h BISTtx_chsel reserved reserved reserved reserved reserved reserved tx_chan_1 tx_chan_0
15h BISTtx_ctrl err_insert rx2txclk tx_patt[3] tx_patt[2] tx_patt[1] tx_patt[0] en_tx tx_rst
17h BISTtx_LOLctrl tacq_LOL[2] tacq_LOL[1] tacq_LOL[0] narwin_LOL[3] narwin_LOL[2] narwin_LOL[1] narwin_LOL[0] widwin_LOL[0]
18h BISTtx_PLL_ctrlA softreset MSPD int reserved MSPD int reserved MSPD int reserved MSPD int
19h BISTtx_PLL_ctrlB PLLmode[1] PLLmode[0] MSPD int MSPD int data_rate[3] data_rate[2] data_rate[1] data_rate[0]
1Ah BISTtx_PLL_ctrlC VCO_divr[7] VCO_divr[6] VCO_divr[5] VCO_divr[4] VCO_divr[3] VCO_divr[2] VCO_divr[1] VCO_divr[0]
1Bh BIST_pattern0 pattern[19] pattern[18] pattern[17] pattern[16]
1Ch BIST_pattern1 pattern[15] pattern[14] pattern[13] pattern[12] pattern[11] pattern[10] pattern[9] pattern[8]
1Dh BIST_pattern2 pattern[7] pattern[6] pattern[5] pattern[4] pattern[3] pattern[2] pattern[1] pattern[0]
1Fh BISTtx_alarm tx_LOL reserved reserved MSPD int MSPD int MSPD int MSPD int MSPD int
20h Temp_mon reserved reserved en_temp_mon strobe_temp
21h Temp_value temp[3] temp[2] temp[1] temp[0]
30h Alarm_LOL MSPD int MSPD int MSPD int MSPD int LOL_3 LOL_2 LOL_1 LOL_0
31h Alarm_LOA MSPD int MSPD int MSPD int MSPD int LOA_3 LOA_2 LOA_1 LOA_0
32h Alarm_trim reserved reserved reserved reserved trim_alarm_3 trim_alarm_2 trim_alarm_1 trim_alarm_0
Per channel registers (N = channel/RCLK#, M = N+4)
M0h cdr_ctrlA_N softreset force_filter_rst inh_force lol_force autoinh_en freqwin_en los_en trim_en
M1h cdr_ctrlB_N CDRmode[1] CDRmode[0] test_1010pa
treserved data_rate[3] data_rate[2] data_rate[1] data_rate[0]
M2h RCLK_ctrlC_N VCO_divr[7] VCO_divr[6] VCO_divr[5] VCO_divr[4] VCO_divr[3] VCO_divr[2] VCO_divr[1] VCO_divr[0]
M3h Out_ctrl_N outlvl[1] outlvl[0] reserved reserved data_pol_flip dataout_en MSPD int MSPD int
M4h Preemp_ctrl_N reserved MSPD int MSPD int MSPD int MSPD int preemph[2] preemph[1] preemph[0]
M5h Ineq_ctrl_N reserved MSPD int MSPD int en_DCservo MSPD int in_eq[2] in_eq[1] in_eq[0]
M6h Phadj_ctrl_N i_trim[1] i_trim[0] r_sel[1] r_sel[0] phase_adj[3] phase_adj[2] phase_adj[1] phase_adj[0]
M8h LOA_ctrl_N tacq_LOA[2] tacq_LOA[1] tacq_LOA[0] narwin_LOA[3] narwin_LOA[2] narwin_LOA[1] narwin_LOA[0] widwin_LOA[0]
M9h LOL_ctrl_N tacq_LOL[2] tacq_LOL[1] tacq_LOL[0] narwin_LOL[3] narwin_LOL[2] narwin_LOL[1] narwin_LOL[0] widwin_LOL[0]
MAh trim_force_N force_FDAdiv en_LOT force_trimms
btrim_force[4] trim_force[3] trim_force[2] trim_force[1] trim_force[0]
MBh trim_value_N reserved reserved reserved trim_val[4] trim_val[3] trim_val[2] trim_val[1] trim_val[0]
Notes:
1. N = 0 for channel/
RCLK
0, N = 1 for channel/
RCLK
1,., N = 3 for channel/
RCLK
3.
2. M = 4 for channel/
RCLK
0, M = 5 for channel/
RCLK
1,..., M = 7 for channel/
RCLK
3. For example channel/
RCLK
0 starts at address 40h, channel/
RCLK
1 at 50h, channel/
RCLK
2 at 60h, channel/
RCLK
3 at 70h.
Registers
21260-DSH-001-H Mindspeed Technologies®32
Mindspeed Proprietary and Confidential
2.1 Global Control Registers
Nomenclature:
1. Reserved bits: bits that exist and are reserved for future use by Mindspeed.
2. Bits not defined and not reserved do not exist.
3. Do not write to reserved or undefined bits – operation not guaranteed.
4. MSPD internal: defines an internal function. Must always write the default value to MSPD internal bits. When in
doubt, read back default value after reset.
2.1.1 Global Control
Table 2-2. Global Control (Globctrl: Address 00h)
Bits Type Default Label Description
7 R/W 1b powerup Powers up the IC by enabling the current references
1b: Power up the IC (chip powerup, default)
0b: Power down the IC
6:2 R/W 00000b MSPD internal N/A
1 R/W 0b Reserved N/A
0 R/W 0b clear_alm Clears Alarm_LOL, Alarm_LOA alarm registers (write only)
1b: Clear alarms
0b: Normal operation - latch alarm bits (default)
Note: Upon writing a 1b to this bit, it clears the registers, and user
needs to write a 0b to enable the normal state.
Registers
21260-DSH-001-H Mindspeed Technologies®33
Mindspeed Proprietary and Confidential
2.1.2 Crosspoint Switch-State Setting
2.1.3 04h: External Reference Frequency Divider Control (RFD)
Table 2-3. Crosspoint Switch-State Setting (XPoint_ctrl: Address 01h)
Bits Type Default Label Description
7:6 R/W 11b port 3 Determines input channel for output 3
00b: Selects input 0
01b: Selects input 1
10b: Selects input 2
11b: Selects input 3 (default)
5:4 R/W 10b port 2 Determines input channel for output 2
00b: Selects input 0
01b: Selects input 1
10b: Selects input 2 (default)
11b: Selects input 3
3:2 R/W 01b port 1 Determines input channel for output 1
00b: Selects input 0
01b: Selects input 1 (default)
10b: Selects input 2
11b: Selects input 3
1:0 R/W 00b port 0 Determines input channel for output 0
00b: Selects input 0 (default)
01b: Selects input 1
10b: Selects input 2
11b: Selects input 3
Table 2-4. External Reference Frequency Divider Control (RFD) (Refclk_ctrl: Address 04h)
Bits Type Default Label Description
7:4 R/W 0b Reserved N/A (0 default)
3:1 R/W 000b ref_divr Sets the divider ratio to scale down RefClk to the internal rate for FRA/
LOA
000b: RFD = 1 (default)
001b: RFD = 2
010b: RFD = 4
011b: RFD = 8
100b: RFD = 12
101b: RFD = 16
110b: RFD = 32
0 R/W 0b MSPD internal N/A (0 default)
Registers
21260-DSH-001-H Mindspeed Technologies®34
Mindspeed Proprietary and Confidential
2.1.4 Master IC Reset
2.1.5 IC Electronic Identification
2.1.6 IC Revision Code
2.1.7 Built In Self-Test (BIST) Receiver Channel Select
Table 2-5. Master IC Reset (Mastreset: Address 05h)
Bits Type Default Label Description
7:0 R/W 0b rst Same feature as hardware xRST. Resets the entire IC
AAh: Reset upon write to this register with AAh
00h: Normal operation [Default]
Note: All other values are ignored.
Table 2-6. IC Electronic ID (Chipcode: Address 06h)
Bits Type Default Label Description
7:0 R 26h chipcode This register contains the identification of this IC.
Table 2-7. IC Revision Code (Revcode: Address 07h)
Bits Type Default Label Description
7:0 R 23h revcode This register contains the revision of the IC.
Table 2-8. Built In Self-Test (BIST) Receiver Channel Select (BISTrx_chsel: Address 10h)
Bits Type Default Label Description
7:3 R/W 0b Reserved N/A
2:0 R/W 000b chan Selects which RCLK to route into the BIST receiver (active when
BISTrx_ctrl [1]=1)
000b: Output RCLK 0 to BIST (default)
001b: Output RCLK 1 to BIST
010b: Output RCLK 2 to BIST
011b: Output RCLK 3 to BIST
Registers
21260-DSH-001-H Mindspeed Technologies®35
Mindspeed Proprietary and Confidential
2.1.8 Built In Self-Test (BIST) Receiver Main Control Register
2.1.9 Built In Self-Test (BIST) Receiver Bit Error Counter
Table 2-9. Built In Self-Test (BIST) Receiver Main Control Register (BISTrx_ctrl: Address 11h)
Bits Type Default Label Description
7 R/W 0b MSPD internal N/A
6 R/W 0b rx_ctrclr Clear the BIST Rx error count register, BISTrx_error (active when
BISTrx_ctrl [1] = 1)
0b: Normal operation (default)
1b: Clear register
5:2 R/W 0000b rx_patt Selects the BIST Rx test pattern (active when BISTrx_ctrl [1] = 1)
0000b: PRBS 27-1 (default)
0001b: PRBS 215-1
0010b: PRBS 223-1
0011b: PRBS 231-1
0100b: Fibre channel CJTPAT
0101b: Fibre channel CRPAT
0110b: 8b/10b countdown pattern
0111b: 16 bit user programmable pattern
1000b: 20 bit user programmable pattern
1 R/W 0b en_rx Powers up the BIST Rx
0b: Power down (default)
1b: Power up and enable
0 R/W 1b rx_rst Resets the BIST Rx (recommended after powerup/enable, active when
BISTrx_ctrl [1] = 1)
0b: Normal BIST Rx operation
1b: Reset of BIST Rx (default)
Table 2-10. Built In Self-Test (BIST) Receiver Bit Error Counter (BISTrx_error: Address 12h)
Bits Type Default Label Description
7:0 R/W 00h err Bit error count (active when BISTrx_ctrl [1] = 1)
This register is set to 00h upon reset, and is incremented for every bit
error the BIST Rx receives, up to FFh. At FFh, the register will stay at
this level until cleared.
Registers
21260-DSH-001-H Mindspeed Technologies®36
Mindspeed Proprietary and Confidential
2.1.10 Built In Self-Test (BIST) Transmitter Channel Select
Table 2-11. Built In Self-Test (BIST) Transmitter Channel Select (BISTtx_chsel: Address 14h)
Bits Type Default Label Description
7:4 R/W 0000b Reserved N/A
3:0 R/W 0000b tx_chan Selects which output channel the BIST Tx outputs the test pattern on
(active when BISTtx_ctrl [1] = 1)
Bit map: 1b = BIST Tx on, 0b = BIST Tx off
[3]: N/A, set to “0”
[2]: N/A, set to “0”
[1]: Output channel 1
[0]: Output channel 0
Note: Registers are set up to allow for multicasting BIST Tx output.
Registers
21260-DSH-001-H Mindspeed Technologies®37
Mindspeed Proprietary and Confidential
2.1.11 Built In Self-Test (BIST) Transmitter Main Control Register
Table 2-12. Built In Self-Test (BIST) Transmitter Main Control Register (BISTtx_ctrl: Address 15h)
Bits Type Default Label Description
7 R/W 0b err_insert Inserts a single bit error into the PRBS Tx
1b: Insert error
0b: Normal operation (default)
Note: Setting the register high allows one error to be inserted into the
data stream. To insert another error, the user needs to clear, then set
this register bit.
6 R/W 0b rx2txclk Selects the source of the clock for the BIST Tx PLL (active when
BISTtx_ctrl [1] = 1)
0b: External reference frequency (default)
1b: Recovered clock from BIST Rx
Note: For the recovered clock option, the BIST Rx must be enabled
with BISTrx_ctrl [1] = 1, and use the recovered clock from the same
RCLK selected by BIST Rx. This option only works for the full-rate
case.
5:2 R/W 0000b tx_patt Selects the BIST Tx test pattern (active when BISTtx_ctrl [1] = 1)
0000b: PRBS 27-1 (default)
0001b: PRBS 215-1
0010b: PRBS 223-1
0011b: PRBS 231-1
0100b: Fibre channel CJTPAT
0101b: Fibre channel CRPAT
0110b: 8b/10b countdown pattern
0111b: 16 bit user programmable pattern
1000b: 20 bit user programmable pattern
1 R/W 0b en_tx Powers up the BIST Tx and PLL
0b: Power down (default)
1b: Power up and enable
0 R/W 1b tx_rst Resets the BIST Tx (recommended after powerup/enable; active when
BISTtx_ctrl [1] = 1)
0b: Normal BIST Tx operation
1b: Reset of BIST Tx (default)
Registers
21260-DSH-001-H Mindspeed Technologies®38
Mindspeed Proprietary and Confidential
2.1.12 Built In Self-Test (BIST) Transmitter PLL Loss of Lock Register
Table 2-13. Built In Self-Test (BIST) Transmitter PLL Loss of Lock Register (BISTtx_LOLctrl: Address 17h)
Bits Type Default Label Description
7:5 R/W 101b tacq_LOL Sets the value for the LOL reference window
Code
000b
001b
010b
011b
100b
101b
110b
111b
Value
128
256
512
1024
2048
4096 (default)
8192
16384
4:1 R/W 0100b narwin_LOL Sets the narrow LOL window for the LOL = H to LOL = L transition
(transition to in lock threshold)
Code
0000b
0001b
0010b
0011b
0100b
0101b
0110b
0111b
1000b
1001b
1010b
1011b
1100b
1101b
1110b
1111b
Value
2
3
4
6
8 (default)
12
16
24
9
10
11
12
13
14
15
32
Registers
21260-DSH-001-H Mindspeed Technologies®39
Mindspeed Proprietary and Confidential
2.1.13 Built In Self-Test (BIST) Transmitter PLL Control Register A
0 R/W 0b widwin_LOL Sets the wide LOL window for the LOL = L to LOL = H transition
(transition to out of lock threshold)
Narrow
Code
0000b
0001b
0010b
0011b
0100b
0101b
0110b
0111b
1000b
1001b
1010b
1011b
1100b
1101b
1110b
1111b
Wide
Code 0b (default)
3
4
6
8
12
16
24
32
12
12
12
16
16
16
16
32
Wide
Code 1b
8
12
16
24
32
32
32
32
32
32
32
32
32
32
32
32
Table 2-14. Built In Self-Test (BIST) Transmitter PLL Control Register A (BISTtx_PLL_ctrlA: Address 18h)
Bits Type Default Label Description
7 R/W 0b softreset Resets the BIST transmitter PLL (assuming BISTtx_ctrl [1] = 1b)
0b: Normal operation (default)
1b: Reset PLL only
6 R/W 0b MSPD internal N/A
5 R/W 0b Reserved N/A
4 R/W 0b MSPD internal N/A
3 R/W 0b Reserved N/A
2 R/W 1b MSPD internal N/A
1 R/W 0b Reserved N/A
0 R/W 1b MSPD internal N/A
Table 2-13. Built In Self-Test (BIST) Transmitter PLL Loss of Lock Register (BISTtx_LOLctrl: Address 17h)
Bits Type Default Label Description
Registers
21260-DSH-001-H Mindspeed Technologies®40
Mindspeed Proprietary and Confidential
2.1.14 Built In Self-Test (BIST) Transmitter PLL Control Register B
2.1.15 Built In Self-Test (BIST) Transmitter PLL Control Register C
Table 2-15. Built In Self-Test (BIST) Transmitter PLL Control Register B (BISTtx_PLL_ctrlB: Address 19h)
Bits Type Default Label Description
7:6 R/W 00b PLLmode Determines state of the PLL. Must be enabled in addition to the BIST
Tx (BISTtx_ctrl [1] = 1b)
00b: Channel active, PLL powered up (default)
11b: Channel active, PLL powered down
5:4 R/W 01b MSPD internal N/A
3:0 R/W 0000b data_rate Data-rate divider (DRD): this divides down the VCO frequency to the
desired data-rate
0000b = DRD = 1 (default)
0001b = DRD = 2
0010b = DRD = 4
0011b = DRD = 8
0100b = DRD = 12
0101b = DRD = 16
0110b = DRD = 24
0111b = DRD = 32
1000b = DRD = 48
Note: Consult FVCO, MAX and FVCO, MIN to determine the frequency
range for each DRD ratio.
Table 2-16. Built In Self-Test (BIST) Transmitter PLL Control Register C (BISTtx_PLL_ctrlC: Address 1Ah)
Bits Type Default Label Description
7:0 R/W 10000000b VCO_divr VCO comparison divider (VCD):
Binary value reflects the divider ratio
01h: Minimum value (VCO /1)
.
.
.
FFh: Maximum value (VCO / 255)
Note: Refer to Table 3-13 for recommended values of VCD for video
data rates.
Registers
21260-DSH-001-H Mindspeed Technologies®41
Mindspeed Proprietary and Confidential
2.1.16 Built In Self-Test (BIST) Transmitter 20 bit User Programmable Pattern
2.1.17 Built In Self-Test (BIST) Transmitter 16/20 bit User Programmable Pattern
2.1.18 Built In Self-Test (BIST) Transmitter 16/20 bit User Programmable Pattern
Table 2-17. Built In Self-Test (BIST) Transmitter 20 bit User Programmable Pattern
(BIST_pattern0: Address 1Bh)
Bits Type Default Label Description
3:0 R/W 1100b pattern Sets the 20 bit user programmable pattern used in the BIST
[3] MSB: Pattern bit#19
[2]: Pattern bit#18
[1]: Pattern bit#17
[0] LSB: Pattern bit#16
Table 2-18. Built In Self-Test (BIST) Transmitter 16/20 bit User Programmable Pattern
(BIST_pattern1: Address 1Ch)
Bits Type Default Label Description
7:0 R/W 11001100b pattern Sets the 16/20 bit user programmable pattern used in the BIST
[7] MSB: Pattern bit#15
[6]: Pattern bit#14
[5]: Pattern bit#13
[4]: Pattern bit#12
[3]: Pattern bit#11
[2]: Pattern bit#10
[1]: Pattern bit#9
[0] LSB: Pattern bit#8
Table 2-19. Built In Self-Test (BIST) Transmitter 16/20 bit User Programmable Pattern
(BIST_pattern2: Address 1Dh)
Bits Type Default Label Description
7:0 R/W 11001100b pattern Sets the 16/20 bit user programmable pattern used in the BIST
[7] MSB: Pattern bit#7
[6]: Pattern bit#6
[5]: Pattern bit#5
[4]: Pattern bit#4
[3]: Pattern bit#3
[2]: Pattern bit#2
[1]: Pattern bit#1
[0] LSB: Pattern bit#0
Registers
21260-DSH-001-H Mindspeed Technologies®42
Mindspeed Proprietary and Confidential
2.1.19 Built In Self-Test (BIST) Transmitter Alarm
2.1.20 Internal Junction Temperature Monitor
Table 2-20. Built In Self-Test (BIST) Transmitter Alarm (BISTtx_alarm: Address 1Fh)
Bits Type Default Label Description
7 R N/A tx_LOL Loss of lock for the BIST Tx PLL (active when BISTtx_ctrl [1] = 1)
0b: Normal operation
1b: Loss of lock
6:5 R/W 00b Reserved N/A
4:0 R/W 00000b MSPD internal N/A
Table 2-21. Internal Junction Temperature Monitor (Tem p _ m o n : Address 20h)
Bits Type Default Label Description
3:2 R/W 00b Reserved N/A
1 R/W 0b en_temp_mon Power up and enable the temperature monitor
1b: Enable and power up temperature monitor
0b: Disable temperature monitor (default)
0 R/W 0b strobe_temp Strobes ADC for temperature measurement
1b: Read temperature
0b: Ok to read temperature (default)
Note: To strobe ADC, a rising edge should be provided by writing 1b,
then writing 0b to return to default state.
Registers
21260-DSH-001-H Mindspeed Technologies®43
Mindspeed Proprietary and Confidential
2.1.21 Internal Junction Temperature Value
2.1.22 CDR/RCLK Loss of Lock Register Alarm Status
Table 2-22. Internal Junction Temperature Value (Temp_value: Address 21h)
Bits Type Default Label Description
3:0 R N/A temp A read of these bits returns the temperature from the last write cycle
(to strobe_temp)
Case Temperature
To 130°C
130°C > TCASE 120°C
120°C > TCASE 110°C
110°C > TCASE 100°C
100°C > TCASE 90°C
90°C > TCASE 80°C
80°C > TCASE 10°C
10°C > TCASE 0°C
0°C > TCASE -10°C
-10°C > TCASE -20°C
-20°C > TCASE -30°C
-30°C > TCASE -40°C
-40°C > TCASE
temp
1100b
1011b
1010b
1001b
1000b
0111b
0110b
0101b
0100b
0011b
0010b
0001b
0000b
Condition
High-alarm
High-alarm
High-warning
Normal
Normal
Normal
Normal
Normal
Normal
Normal
Low-warning
Low-alarm
Low-alarm
Table 2-23. CDR/RCLK Loss of Lock Register Alarm Status (Alarm_LOL: Address 30h)
Bits Type Default Label Description
7:4 N/A 0000b MSPD internal N/A
3:0 R N/A LOL Latched loss of lock alarm status
1b = loss of CDR/RCLK lock
0b = normal operation
[3]: CDR/RCLK 3
[2]: CDR/RCLK 2
[1]: CDR/RCLK 1
[0]: CDR/RCLK 0
Note: After a clear (Globctrl [0] = 1), this register is cleared and will latch any new
alarms that make a L to H transition, and set any pre-existing alarm conditions to H.
Registers
21260-DSH-001-H Mindspeed Technologies®44
Mindspeed Proprietary and Confidential
2.1.23 CDR/RCLK Loss of Activity Register Alarm Status
2.1.24 32h:VCO Trim Alarm Window
Table 2-24. CDR/RCLK Loss of Activity Register Alarm Status (Alarm_LOA: Address 31h)
Bits Type Default Label Description
7:4 N/A 0000b MSPD internal N/A
3:0 R N/A LOA Latched loss of activity alarm status
1b = Alarm asserted
0b = Alarm de-asserted
[3]: CDR/RCLK 3
[2]: CDR/RCLK 2
[1]: CDR/RCLK 1
[0]: CDR/RCLK 0
Note: After a clear (Globctrl [0] = 1), this register is cleared and will latch any new
alarms that make a L to H transition, and set any pre-existing alarm conditions to H.
Table 2-25. VCO Trim Alarm Window Trim (Alarm_trim: Address 32h)
Bits Type Default Label Description
7:0 R 0000b MSPD internal Indicates that CDR N is unavailable due to VCO coarse trimming (Read only)
1b= Trim, 0b = Normal Operation
[3]: CDR #3 (Mapped to Output 3)
[2]: CDR #2 (Mapped to Output 2)
[1]: CDR #1 (Mapped to Output 1)
[0]: CDR #0 (Mapped to Output 0)
Note: After a clear (Globctrl[0]=1), the register is cleared and
1) will latch any new alarms that makes a L to H transition and
2) set any pre-existing alarm conditions to H.
Registers
21260-DSH-001-H Mindspeed Technologies®45
Mindspeed Proprietary and Confidential
2.2 Individual Channel/CDR/RCLK Control
Multiple Instance Nomenclature
1. N = 0 for channel/CDR/RCLK 0, N = 1 for channel/CDR/RCLK 1,., N = 3 for channel/CDR/RCLK 3.
2. M = 4 for channel/CDR/RCLK 0, M = 5 for channel/CDR/RCLK 1,..., M = 7 for channel/CDR/RCLK 3. For
example channel/CDR/RCLK 0 starts at address 40h, channel/CDR/RCLK 1 at 50h, channel/CDR/RCLK 2 at
60h, channel/CDR/RCLK 3 at 70h.
2.2.1 M0h:CDR N Control Register A
Table 2-26. CDR N Control Register A (RCLK_ctrlA_N: Address M0h)
Bits Type Default Label Description
7 R/W 0b Softreset Resets an individual CDR#N (Setup registers remain unchanged, need to softreset
after rate change)
0b: Normal Operation [Default]
1b: Reset Single CDR only
6 R/W 0b force_filter_reset Shorts the charge pump output terminals for free running VCO in the CDR (test
mode)
0b: Open Circuit for Normal Operation [Default]
1b: Short Circuit for test
5 R/W 0b inh_force Manual Control of the Output Inhibit if Cdr_ctrlA_N[3]=0
0b: Normal operation [Default]
1b: Forced inhibit
4 R/W 0b lol_force Manual force LOL and Freq. Acq. only if Cdr_ctrlA_N[2]=0
0b: Force LOL=L and freq. acquisition circuit is disabled for phase lock (Default)
1b: Force LOL=H and both the phase and freq. acquisition circuit is on
3 R/W 1b autoinh_en Auto inhibit of the output N to logic L (output P=Low, output N=High) if CDR N has a
LOL or LOS condition (or Trim Alarm)
0b: Auto Inhibit disabled, Cdr_ctrlA_N[5] determines inhibit force state
1b: Auto Inhibit enabled [Default]
2 R/W 1b freqwin_en Disables use of Frequency Detector for freq. acquisition
0b: Freq. Acquisition is disabled and controlled with Cdr_ctrlA_N[4] (test mode)
1b: Freq. acquisition is enabled for normal operation [Default]
1 R/W 0b los_en Enables the transition density based Loss of Signal Detector for Output N
0b: Disable and power down LOS circuit
1b: Enable LOS circuit [default]
Note: Signal Detector is not mapped to input channel but the output channel [Delete
mapping line for CDR products]
0 R/W 1b trim_en Enables Auto trimming of the VCO center frequency
1b: Auto Trim Enabled for Normal Operation [Default]
0b: Force Time with trim_force_N registers
Notes:
1: N can denote input channel #, output channel#, or CDR # depending on the context.
2: M is the address MSB and its N+4h.
3: Example: N=0h & M=4h for CDR0, N=1h & M=5h for CDR1. This implies CDR0 at Address 40h, CDR 1 at 50h, CDR 2 at 60h, ..., CDR 7 at B0h.
Registers
21260-DSH-001-H Mindspeed Technologies®46
Mindspeed Proprietary and Confidential
2.2.2 M1h:CDR/RCLK N Control Register B
2.2.3 CDR/RCLK N Control Register C
Table 2-27. CDR N Control Register B (RCLK_ctrlB_N: Address M1h)
Bits Type Default Label Description
7:6 R/W 00b CDR mode Determines State of the PLL
00b: CDR Powered Up and Active [Default]
01b: CDR Powered Up and Bypassed
10b: CDR Powered Down (No signal through)
11b: CDR Powered Down and Bypassed
5 R/W 0b Enables CDR to operate correctly with a 1010 pattern (100% transition density)
1b: enabled
0b: normal mode, 50% transition density expected (Default)
4 R/W 0b Reserved Reserved (0=Default)
3:0 R/W 0000b data_rate Data rate divider (DRD): This divides down the VCO frequency to the desired data
rate to match input data rate.
0000b=VCO/1 [Default]
0001b=VCO/2
0010b=VCO/4
0011b=VCO/8
0100b=VCO/12
0101b=VCO/16
0110b=VCO/24
0111b=VCO/32
1000b=VCO/48
Consult VCO Fvco, max and Fvco, min to determine frequency range of each DRD
ratio.
Notes:
1: N can denote input channel #, output channel#, or CDR # depending on the context.
2: M is the address MSB and its N+4h.
3: Example: N=0h & M=4h for CDR0, N=1h & M=5h for CDR1. This implies CDR0 at Address 40h, CDR 1 at 50h, CDR 2 at 60h, ..., CDR 7 at B0h.
Table 2-28. CDR/RCLK N Control Register C (RCLK_ctrlC_N: Address M2h)
Bits Type Default Label Description
7:0 R/W 10000000b VCO_divr VCO comparison divider (VCD):
Binary value reflects the divider ratio
1h: Minimum value (VCO /1)
.
.
.
FFh: Maximum value (VCO / 255)
Note: Refer to Table 3-13 for recommended values of VCD for video
data rates.
Registers
21260-DSH-001-H Mindspeed Technologies®47
Mindspeed Proprietary and Confidential
2.2.4 Output Buffer Control for CDR/RCLK N
Table 2-29. Output Buffer Control for CDR/RCLK N (Out_ctrl_N: Address M3h)
Bits Type Default Label Description
7:6 R/W 10b outlvl Determines the output swing of a data buffer for CDR/RCLK N
In PCML mode:
00b: Power down
01b: 550 mV
10b: 900 mV (default)
11b: 1200 mV
For LVDS, the output swing is reduced to:
00b: Power down
01b: RRL 450 mV
10b: GPL 650 mV (default)
11b: 1000 mV
For PCML+, the output swing is increased to:
00b: Power down
01b: 900 mV
10b: 1200 mV (default)
11b: 1600 mV
5:4 R/W 00b Reserved N/A
3 R/W 0b data_pol_flip Flips the polarity of the output data
0b: Normal (default)
1b: Polarity flip
2 R/W 1b dataout_en Enables the data output driver N
1b: Data output enabled to level specified in Out_ctrl_N [7:6] (default)
0b: Data output disabled and powered down
1:0 R/W 00b MSPD internal N/A
Registers
21260-DSH-001-H Mindspeed Technologies®48
Mindspeed Proprietary and Confidential
2.2.5 Output Buffer Pre-Emphasis Control for Output N
2.2.6 Input Equalization Control for Output N
Table 2-30. Output Buffer Pre-Emphasis Control for Output N (Preemp_ctrl_N: Address M4h)
Bits Type Default Label Description
7 R/W 0b Reserved Default = 0b
6:3 R/W 1000b MSPD Internal N/A
2:0 R/W 000b preemph Selects the digital pre-emphasis level
111b: 200%
110b: 150%
101b: 100%
100b: 75%
011b: 50%
010b: 37.5%
001b: 25%
000b: Pre-emphasis off (default)
Table 2-31. Input Equalization Control for Output N (Ineq_ctrl_N: Address M5h)
Bits Type Default Label Description
7 R/W 0b Reserved N/A
6:5 R/W 00b MSPD internal N/A
4 R/W 0b en_DCservo Enables DC servo in the input channel to remove offset based
deterministic jitter
0b: DC servo tDJ attenuator off (default)
1b: DC servo tDJ attenuator on
3 R/W 0b MSPD internal N/A
2:0 R/W 100b in_eq Selects the input equalization level
111b: Maximum input equalization level
.
.
.
100b: Nominal input equalization level (default)
.
.
.
001b: Minimum input equalization level
000b: Input equalization disabled
Note: The 100b setting is optimized for PCB trace lengths between 10 -
46 inches, although other settings may be optimal for some
applications.
Registers
21260-DSH-001-H Mindspeed Technologies®49
Mindspeed Proprietary and Confidential
2.2.7 CDR/RCLK N Loop Bandwidth and Data Sampling Point Adjust
Table 2-32. CDR/RCLK N Loop Bandwidth and Data Sampling Point Adjust (Phadj_ctrl_N: Address M6h)
Bits Type Default Label Description
7:6 R/W 10b i_trim Adjusts the charge-pump current; the loop bandwifth (FLBW) scales
proportionately
00b: 0.65x
01b: 0.8x
10b: Nominal (default)
11b: 1.15x
5:4 R/W 01b r_sel Adjusts the resistor of the RCLK loop filter; the loop bandwifth (FLBW)
scales proportionately
00b: 80% of the nominal value
01b: Nominal (default)
10b: 4x nominal value
11b: 6x nominal value
3:0 R/W 0000b phase_adj Adjusts the static phase offset (sampling point) of the data
1111b: -122.5 mUI
1110b: -105 mUI
1101b: 87.5 mUI
1100b: -70 mUI
1011b: -52.5 mUI
1010b: -35.0 mUI
1001b: -17.5 mUI
1000b: 0 mUI
0000b: 0 mUI (default)
0001b: 17.5 mUI
0010b: 35.0 mUI
0011b: 52.5 mUI
0100b: 70.0 mUI
0101b: 87.5 mUI
0110b: 105 mUI
0111b: 122.5 mUI
Registers
21260-DSH-001-H Mindspeed Technologies®50
Mindspeed Proprietary and Confidential
2.2.8 CDR#N LOA Window Control (trim)
Table 2-33. CDR#N LOA Window Control (trim) (LOA_ctrl_N: Address M8h)
Bits Type Default Label Description
7:5 R/W 000b
tacq_LOA
Sets the value for the LOA reference window.
Code
000b
001b
010b
011b
100b
101b
110b
111b
Value
128 (default)
256
512
1024
2048
4096
8192
16384
4:1 R/W 0111b narwin_LOA Sets the narrow LOA window for the LOA=H to LOA=L transition
(transition to valid signal).
Code
0000b
0001b
0010b
0011b
0100b
0101b
0110b
0111b
1000b
1001b
1010b
1011b
1100b
1101b
1110b
1111b
Value
2
3
4
6
8
12
16
24 (default)
9
10
11
12
13
14
15
32
Registers
21260-DSH-001-H Mindspeed Technologies®51
Mindspeed Proprietary and Confidential
2.2.9 CDR/RCLK N LOL Window Control
0 R/W 0b widwin_LOA Sets the wide LOA window for the LOA L=H to LOL=S transition
(transition to loss of activity).
Narrow
Code
0000b
0001b
0010b
0011b
0100b
0101b
0110b
0111b
1000b
1001b
1010b
1011b
1100b
1101b
1110b
1111b
Wide
Code 0b (default)
3
4
6
8
12
16
24
32
12
12
12
16
16
16
16
32
Wide
Code 1b
8
12
16
24
32
32
32
32
32
32
32
32
32
32
32
32
Table 2-34. CDR/RCLK N LOL Window Control (LOL_ctrl_N: Address M9h)
Bits Type Default Label Description
7:5 R/W 101b
tacq_LOL
Sets the value for the LOL reference window
Code
000b
001b
010b
011b
100b
101b
110b
111b
Value
128
256
512
1024
2048
4096 (default)
8192
16384
Table 2-33. CDR#N LOA Window Control (trim) (LOA_ctrl_N: Address M8h)
Bits Type Default Label Description
Registers
21260-DSH-001-H Mindspeed Technologies®52
Mindspeed Proprietary and Confidential
4:1 R/W 0100b narwin_LOL Sets the narrow LOL window for the LOL = H to LOL = L transition
(transition to in lock threshold)
Code
0000b
0001b
0010b
0011b
0100b
0101b
0110b
0111b
1000b
1001b
1010b
1011b
1100b
1101b
1110b
1111b
Value
2
3
4
6
8 (default)
12
16
24
9
10
11
12
13
14
15
32
0 R/W 0b widwin_LOL Sets the wide LOL window for the LOL = L to LOL = H transition
(transition to out of lock threshold)
Narrow
Code
0000b
0001b
0010b
0011b
0100b
0101b
0110b
0111b
1000b
1001b
1010b
1011b
1100b
1101b
1110b
1111b
Wide
Code 0b (default)
3
4
6
8
12
16
24
32
12
12
12
16
16
16
16
32
Wide
Code 1b
8
12
16
24
32
32
32
32
32
32
32
32
32
32
32
32
Table 2-34. CDR/RCLK N LOL Window Control (LOL_ctrl_N: Address M9h)
Bits Type Default Label Description
Registers
21260-DSH-001-H Mindspeed Technologies®53
Mindspeed Proprietary and Confidential
2.2.10 MAh: Jitter Reduction Control
Table 2-35. Jitter Reduction Control (Jitter_reduc_N: Address MAh)
Bits Type Default Label Description
7:6 R/W 01b MSPD internal N/A
5 R/W 0b lowjitter When data-rate is in the range (2.45 Gbps - 2.55 Gbps)/DRD, setting this bit to 1b
will reduce output jitter (DRD is data-rate divider).
1b: When data rate is in the range (2.45 Gbps - 2.55 Gbps)/DRD
0b: When data rate is not in the range (2.45 Gbps - 2.55 Gbps)/DRD
Note: This bit should be set to 1b for SONET STS-N, and Gigabit Ethernet
applications.
4:0 R/W MSPD internal Any value may be written to this register with no effect on performance.
21260-DSH-001-H Mindspeed Technologies®54
Mindspeed Proprietary and Confidential
3.0 Functional Description
3.1 Applications
Figure 3-1. M21260 Application - Small Routing Switcher
4 x 4
XPT
Core
M21260
Cable
Equalizers
Cable
Drivers
8 SMPTE outputs
or
4 DVB - ASI outputs
Relockers Data Buffers
EQ0
EQ1
EQ2
EQ3
2
2
2
2
20
1
2
3
0
1
2
3
2
2
RCLK 0
RCLK 1
RCLK 2
RCLK 3
2
2
2
2
2
M21218
M21214
Functional Description
21260-DSH-001-H Mindspeed Technologies®55
Mindspeed Proprietary and Confidential
Figure 3-2. Module Application
Figure 3-3. Backplane Application
Linecard
Connector
Rx
Quad or
Octal
CDR
Quad or
Octal
CDR
Tx
PMD
Backplane
Linecard
Connector
Module #1
Module #2
Module #3
Module #3
Switch Card
Connector
QCDR
#1
QCDR
#1
QCDR
#2
QCDR
#2
Single
Fibre
Modules
Backplane
Linecard
Connector
Module #1
Module #2
Module #3
Module #3
Switch Card
Connector
QCDR
#1
QCDR
#1
QCDR
#2
QCDR
#2
Single
Fibre
Modules
Functional Description
21260-DSH-001-H Mindspeed Technologies®56
Mindspeed Proprietary and Confidential
Figure 3-4. Recommended Data and Reference Clock Input Coupling Circuitry
M21260
VddT
(connect to
AVdd_
CORE)
DinP
DinN
50Ω
50Ω
0.1 µF
0.1 µF
2 KΩ
50Ω
RefClkP
RefClkN
50Ω
Reference
Clock
Input
Buffer
2 KΩ
50Ω
50Ω
Vdd_I/O
10 KΩ
10 KΩ
Data
Input
Buffer
4.7 µF
4.7 µF
820Ω
(optional)
Functional Description
21260-DSH-001-H Mindspeed Technologies®57
Mindspeed Proprietary and Confidential
3.2 Detailed Feature Descriptions
3.2.1 Conventions
Throughout this data sheet, physical pins will be denoted in bold italic print. An array of pins can be called by each
individual pin name (e.g. MF0, MF1, MF2, MF3, and MF6) or as an array (e.g. MF [6,3:0]). The M21260 control is
accessed through registers that employ an 8-bit address and an 8-bit data scheme. Registers are denoted in italic
print, (e.g. TestRegister) and individual bits within the register will be called out as TestRegister [4:3] to denote the
4th and 3rd bit where bit 0 is the LSB and bit 7 is the MSB. Many features of the device are bit mapped within a
register; if the status of the other bits are uncertain, it is recommended that the user reads the value from the
register before writing, to assure only the desired bits change. Writing in the same value to the bits within a register
does not cause glitches to the unchanged features. The addresses for the registers as well as their functions can
be found in detail in Chapter 2. The purpose of the text description is to highlight the features of the registers. For
redundant items, such as the channel number, the registers will have a nomenclature of Te s t R e g _ 0 for channel 0,
Te s t R e g _ 1 for channel 1, Te s t R e g _ 2 for channel 2, TestReg_3 for channel 3. For general reference, the text will
denote such registers as Tes t R e g _ N where N can vary from 0 to 3. Individual RCLK circuits are mapped to output
channels.
3.2.2 Reset
Upon application of power, the M21260 automatically generates a master reset. At any time, forcing xRST = L
causes the M21260 to enter the master reset state. A master reset can also be initiated through the registers in the
serial interface control mode by writing AAh to Mastreset. Once a master reset is initiated, all registers are returned
to the default values, the internal state machines cleared, and all RCLK/BIST reset to the out-of-lock condition.
After a reset, the register Mastreset will automatically return to the default value of 00h.
Each individual RCLK can be soft reset by setting RCLK_ctrlA_N [7] = 1 where N = 0 for RCLK 0, N = 1 for RCLK 1
and so on. The bit should be returned to 0b for normal operation. After a soft reset, the registers that determine the
RCLK operation options such as data-rate, window sizes, etc., remain unchanged and only the RCLK state-
machine is reset, resulting in an out-of lock condition.
3.2.3 Internal Voltage Regulator
The digital and analog core are designed to run at 1.2V, however, for operation from 1.8V to 3.3V, an internal linear
regulator is provided. xRegu_En = L enables the voltage regulator which uses AVDDIO and DVDDIO to generate the
required 1.2V for AVDDCORE and DVDDCORE. In this mode, the AVDDCORE and DVDDCORE pins should be
connected to a floating DC low inductance PCB plane and AC bypassed to VSS using standard decoupling
techniques. If desired, AVDDCORE and DVDDCORE can be separated into individual planes. If 1.2V is available, it
can be connected directly to AVDDCORE and DVDDCORE, to save power, by bypassing the internal linear regulator
with xRegu_En = H. In this case, it is recommended that the AVDDCORE and DVDDCORE pins be tied together to a
common PCB plane, and bypassed to VSS with standard decoupling techniques.
3.2.4 High-Speed Input/Output Pins
The high-speed input data interface is a differential input buffer, similar to a PCML design that is referenced to
AVDDCORE (1.2V). The high-speed serial differential data (42 Mbps to 1600 Mbps) enters the device via Din [3:0,P/
N]. Inputs 0 and 1 are internally terminated with 50Ω to VddT0/1 and inputs 2 and 3 are terminated with 50Ω to
VddT2/3. The VddT pins should be connected to AVDDCORE for a proper termination of the inputs. Inputs can be
AC-coupled to LVPECL, LVDS, and PCML devices.
The M21260 supports multiple high-speed output modes. The output modes are selectable with hardwired pins
only. The I/O interface is set with Out_Mode [1:0] and the output level with MF [9:8] as shown in Ta b l e 3 - 1 . In the
-
Functional Description
21260-DSH-001-H Mindspeed Technologies®58
Mindspeed Proprietary and Confidential
serial interface mode, the Out_ctrl_N [7:6] register is used to set the data level, and Out_Mode [1:0] is used to set
the interface type. In the serial interface mode, the data output can be enabled with Out_ctrl_N [2] = 1b (default)
and the output data polarity can be flipped by setting Out_ctrl_N [3] = 1b (default: no inversion). Output data
polarity flip is an internal function that would have the same effect as switching the P and N terminals. The
recommended AVDDIO for the different output interfaces is shown in Ta b l e 3 - 2 .
3.2.5 Switch-State Settings
The M21260 contains a 4x4 non-blocking crosspoint switch with multicast and broadcast capabilities. The switch-
state can be set in one of two modes: through the register XPoint_ctrl or through the hardwired pins
XPoint_Mode_[3:0].
Ta bl e 3 - 3 details the crosspoint configuration for each setting for the hardwired pins XPoint_Mode_[3:0].
Table 3-1. Output Interface and Level Mapping (For both hardwired and software modes)
Multifunction Pins & Register
MF [9:8]
Out_ctrl_N [7:6]
PCML Mode
Out_Mode [1:0] = 00b
LVDS Mode
Out_Mode [1:0] = 01b
PCML+ Mode
Out_Mode [1:0] = 11b
00b Off Off Off
01b 550 mV RRL at 450 mV 900 mV
10b 900 mV GPL at 650 mV 1200 mV
11b 1200 mV 1000 mV 1500 mV
Table 3-2. Output Interface and Recommended AVDDIO Range
Output Logic AVDDIO Range (V)
Off 1.8 - 3.3
PCML at 550 mV 1.8 - 3.3
PCML at 900 mV 1.8 - 3.3
PCML at 1200 mV 1.8 - 3.3
PCML+ at 1500 mV 1.8 - 3.3
LVDS GPL 1.8 - 3.3
LVDS RRL 1.8 - 3.3
Functional Description
21260-DSH-001-H Mindspeed Technologies®59
Mindspeed Proprietary and Confidential
3.2.6 CDR/Reclocker Reference Frequency
An external 12 MHz reference clock is applied to RefClk[P/N] to enable frequency acquisition in the CDR/RCLK.
PCML, LVTTL, CMOS are examples of the wide variety of interfaces supported for the reference clock. The inputs
contain a DC-coupled 100Ω differential termination between RefClkP and RefClkN along with a 100 kΩ pull-down
on each terminal to VSS. After this termination/pull-down block, the inputs are AC coupled internally. The common-
mode and allowable voltage swings are specified in Ta bl e 1 - 1 0 . The RefClk common-mode must be above
250 mV, which may require external pull-ups in the case of external AC coupling.
3.2.7 Multifunction Pins Overview
The M21260 is designed to be an extremely versatile device, with many user selectable options in the CDR/RCLK
and I/O to optimize performance. All of these options can be accessed and controlled through the serial interface.
The serial interface I/O pins and address pins are mapped to the multifunction pins MF [11:0]. A subset of the key
features for most applications, such as standard data-rates, I/O levels, etc., can be selected through MF [11:0] in
the hardwired mode. The hardwired mode does not require the use of the serial interface. In this mode, upon power
up (auto reset on power up), the M21260 function is determined by the status of the hardwired pins. During
operation, the hardwired pins can change states, which would cause the crosspoint switch to follow with the
appropriate action. Another feature of the multifunction pins is to support JTAG testing of this device during PCB
manufacturing.
The various control and test modes of this device are selected with three pins: CTRL_Mode [1:0], and xJTAG_En.
xJTAG_En = L overrides CTRL_Mode [1:0], and puts the device in JTAG test mode, while xJTAG_En = H allows
CTRL_Mode [1:0] to determine the M21260 control mode, as summarized in Ta b l e 3 - 4 .
Table 3-3. Crosspoint Switch-State in Hardwired Mode
XPoint_Mode [3:0] out0 out1 out2 out3
0000 in0 in1 in2 in3
0001 in1 in2 in3 in0
0010 in2 in3 in0 in1
0011 in3 in0 in1 in2
0100 in0 in0 in0 in0
0101 in1 in1 in1 in1
0110 in2 in2 in2 in2
0111 in3 in3 in3 in3
1000 in0 in0 in2 in2
1001 in2 in2 in0 in0
1010 in1 in0 in3 in2
1011 in1 in1 in3 in3
1100 in3 in3 in1 in1
1101 in3 in2 in1 in0
1110 in1 in0 in2 in3
1111 in0 in1 in3 in2
Functional Description
21260-DSH-001-H Mindspeed Technologies®60
Mindspeed Proprietary and Confidential
3.2.8 Multifunction Pins Defined for Hardwired Mode
In the hardwired mode, a subset of options in the M21260 can be accessed with hardwired physical pins, as
defined in Ta bl e 3 - 5 . The hardwired bit rates along with the default reference clock frequency are shown in
Ta bl e 3 - 5 .
Table 3-4. Mode Select Pins
Pin JTAG Test Mode Hardwired Mode MSPD 4-Wire Serial I2C-Compatible 2-Wire Serial
xJTAG_En LH H H
CTRL_Mode [1:0] no impact 11b 00b 01b
Table 3-5. Multifunction Pins for Hardwired Mode
Pin Name Function Description
MF0 Rate_Sel_0 Data-rate selection CDR/reclocker data-rate select(1)
MF1 Rate_Sel_1 Data-rate selection CDR/reclocker data-rate select(1)
MF2 Rate_Sel_2 Data-rate selection CDR/reclocker data-rate select(1)
MF3 Rate_Sel_3 Data-rate selection CDR/reclocker data-rate select(1)
MF4 xPre_Emp_En Pre-emphasis control L = Pre-emphasis enable
H = Pre-emphasis disable (floating default)
MF5 MSPD_Int_0 Mindspeed internal Internal use only
MF6 MSPD_Int_1 Mindspeed internal Internal use only
MF7 xPol_Flip_En Data polarity flip L = Data polarity flip
H = Standard data polarity (floating default)
MF8 Out_Level_[1:0] Output level selection 00b: All outputs disabled
01b: 550 mV CML
10b: 900 mV CML
11b: 1200 mV CML (floating default)
See Table 3-1 for the other output interface modes.
MF9 Output level selection
MF10 xEQ_En Equalization control L = Input equalization enabled
H = Input equalization disabled (floating default)
MF11 xRCLK_BYP_En CDR/RCLK bypass control L = All CDR/reclocker bypassed and powered down
H = All CDR/reclocker enabled (floating default)
NOTE:
1. Video rates are not supported in hardware mode.
Functional Description
21260-DSH-001-H Mindspeed Technologies®61
Mindspeed Proprietary and Confidential
Please note that it is possible to configure the device for video rates using the hardware interface, but the video
patterns require additional configurations that are not available via hardware interface.
3.2.9 Multi-function Pins: Four-Wire Serial Interface
The second serial interface mode is a four-wire programming interface that has been traditionally used on MSPD
earlier generation crosspoints and CDRs and is capable of higher speed operation then the two-wire interface. The
interface consists of a uni-directional clock and a data input and data output line. For use with multiple ICs, a serial
interface chip select pin is provided. Ta bl e 3 - 7 illustrates how the four-wire serial interface maps into the multi-
function pins. This serial interface can operate with a maximum clock rate of 20 MHz.
The serial I/O shifts data in from the external controller on the rising edge of SCLK. The serial I/O operation is
gated by xCS. Data is shifted in on SDI on the falling edge of SCLK, and shifted out on SDO on the rising edge of
SCLK. To address a register, a 10-bit input consists of the first bit (Start Bit, SB = 1), the second bit (Operation Bit,
OP = 1 for read, = 0 for write), followed by the 8-bit ADDR (MSB first) as shown in fig. 4
Table 3-6. Hardwired Data-Rates and Associated Reference Clock Frequencies
Pins
MF [3:0] Application Signal Data-Rate (Mbps) Reference Frequency (MHz)
0000 10x Fibre Channel 3187.5 159.375
0001 10 Gigabit Ethernet 3125 156.25
0010 STS-48 + FEC 2666 19.44
0011 STS-48 2488.32 19.44
0101 2x Fibre Channel 2125 106.25
0110 Gigabit Ethernet 1250 125
0111 1x Fibre Channel 1062.5 106.25
1000 STS-12 622.08 19.44
1001 STS-3 155.52 19.44
1010 STS-1 51.84 19.44
1011 ESCON 200 10
1100 FDDI 125 12.5
1101 STS-48 2488.32 155.52
Table 3-7. Multi-function Pins for Four-Wire Interface
Pin Function Description
MF4 SDI Serial Data In
MF5 xCS Chip Select, active low
MF10 SCLK Clock
MF11 SDO Serial Data Out
Functional Description
21260-DSH-001-H Mindspeed Technologies®62
Mindspeed Proprietary and Confidential
Figure 3-6 illustrates the Serial Write Mode. To initiate a Write sequence, xCS goes low before the falling edge of
SCLK. On each falling edge of the clock, the 18-bits consisting of the SB = 1, OP = 0, ADDR, and DATA, are
latched into the input shift register. The rising edge of xCS must occur before the falling edge of SCLK for the last
bit. Upon receipt of the last bit, one additional cycle of SCLK is necessary before DATA transfers from the input shift
register to the addressed register. If consecutive read/write cycles are being performed, it is not necessary to insert
an extra clock cycle between read/write cycles, however one extra clock cycle is needed after the last data bit of the
last read/write cycle.
Figure 3-7 illustrates the Serial Read mode in where xCS goes low before the falling edge of SCLK. On each falling
edge of SCLK, the 10-bits consisting of SB = 1, OP = 1, and the 8-bit ADDR are written to the serial input shift
register and copied to the serial output shift register. On the next rising edge after the address LSB, the SB and 8-
bits of the DATA are shifted out. The SB for a Read is always 0.
Figure 3-5. Serial Word Format
Figure 3-6. Serial WRITE Mode
1
rw
A[7:0] D[7:0]
17
16
15
8 7 0
Start Bit Read/Write
Address Data
LSBMSB
MSB LSB
1
1
T
dw
Tens
T
clk T
wcl k
SCLK
SDI
T
cs T
ch
xC
S
T
ds T
dh
w
r a
4
a
5
a
6
a
7
a3 d7a0a1 d4d5d6 d
3
d
2
d
1
d0
Functional Description
21260-DSH-001-H Mindspeed Technologies®63
Mindspeed Proprietary and Confidential
On a Write cycle, any bits that follow the expected number of bits are ignored, and only the first 16-bits following SB
and OP are used. On a Read cycle, any extra clock cycles will result in the repeat of the data LSB. An invalid SB or
OP renders the operation undefined. The falling edge of xCS always resets the serial operation for a new Read or
Write cycle.
The timing diagrams for the serial write and read operations are shown in Figure 3-6 and Figure 3-7, respectively.
Figure 3-8 contains the specifications for the various timing parameters for the serial programming interface.
Figure 3-7. Serial READ Mode
Table 3-8. Serial Interface Timing – Specified at Recommended Operating Conditions
Symbol Item Notes Minimum Typical Maximum Units
tdw Data width 14 ns
tdh Data hold time 5 ns
tds Data setup time 5 ns
tens Enable setup time 5 ns
tcs Chip select setup time 2 Tclk - 2 ns
tch Chip select hold time 2 ns
trdd Read data output delay 1 ns
trds Read data valid 9 ns
Tclk SCLK period width 14 ns
twclk SCLK minimum low duration 5 Tclk - 5 ns
tROutput rise time 1 1 4 ns
tFOutput fall time 1 1 4 ns
NOTES:
1. Edge rate in the high edge-rate mode.
2. Designed for max serial speed of 20 MHz read/write.
X X X X X X X X1 1
0
X
SCLK
xCS
Trdd
Tdw
Tens Tds Tdh
Twc lk Tclk
Tcs Tch
SDO
SDI rd a2 a1 a0
d6d7 d5 d4 d3 d0d1d2
a4a5a6a7
Functional Description
21260-DSH-001-H Mindspeed Technologies®64
Mindspeed Proprietary and Confidential
3.2.10 Two-Wire Serial Interface
The two-wire serial interface is compatible with the I2C standard. The M21260 supports the read/write slave-only
mode, 7-bit device address field width, and supports the standard rate of 100 Kbps, fast mode of 400 Kbps, and
high-speed mode of 3.4 Mbps. The 7-bit address for the device is determined with MF [6:0], which allows for a
maximum of 124 unique addresses for this device. The four addresses 00001xx (4, 5, 6, 7) are reserved and
should not be used. SDA (MF11) and SCL (MF10) can drive a maximum of 500 pF each at the maximum rate.
During the write mode from the master to the M21260, data is latched into the internal M21260 registers on the
rising edge of SCL, during the acknowledge phase (ACK) of communication. Ta b l e 3 - 9 summarizes the
multifunction pins for the two-wire serial interface mode. For further information on timing, please see the I 2C bus
specification standard.
3.2.11 JTAG
The M21260 supports JTAG external boundary scan, which includes all of the high-speed I/O, as well as the
traditional digital I/O. Ta bl e 3 - 1 0 shows the multifunction pins signal mapping for JTAG testing.
3.2.12 Input Deterministic Jitter Attenuators
Each of the four input channels contains an independent input equalizer (IE). For the IE, the address N is mapped
to the input channel. In the hardwired mode, there is the option to set input equalization on or off. In the two-wire
serial interface control mode, the default state allows for configurable input equalization settings using Ineq_ctrl_N
[2:0], for which the setting of 100b is optimized for trace lengths between 10 - 46 inches.
The input equalization settings have been optimized for a variety of backplane and connectivity applications, such
as board traces and cables. For board traces on FR4, such as the Tyco Electronics Hm-Zd legacy backplane, the
input equalizer can drive trace-lengths of up to 60” at 3.1875 Gbps, and up to 72” at 2.125 Gbps. The equalizer has
Table 3-9. Multifunction Pins for Two-Wire Interface
Pin Function Description
MF0 Address bit 0 7-bit device address; address bit 0 is LSB, address bit 6 is MSB
MF1 Address bit 1
MF2 Address bit 2
MF3 Address bit 3
MF4 Address bit 4
MF5 Address bit 5
MF6 Address bit 6
MF10 SCL Clock input
MF11 SDA Data input/output
Table 3-10. Multifunction Pins for JTAG
Pin Function Description
MF8 TMS Test select
MF9 TDI Test data input
MF10 TCK Test clock
MF11 TDO Test data output
Functional Description
21260-DSH-001-H Mindspeed Technologies®65
Mindspeed Proprietary and Confidential
similar high performance on Nelco-13, Arlon 25, Rogers 3003, 4003C, 4340, GeTek PCB materials, and twinaxial
cables. The input equalizer was designed to compensate for the deterministic jitter accumulation effects of typical
backplane interconnects, which have bandwidths of hundreds of MHz to a few GHz. The equalizers are not
expected to make a significant difference in performance with signal data-rates less than 1 Gbps.
Another component of input deterministic jitter is inter-symbol interference (ISI) due to DC offsets. By default, a DC
servo-like circuit is enabled to correct for this type of deterministic jitter, and can be disabled by setting Ineq_ctrl_N
[4] = 0b. The DC servo can also be used to track changes in the common mode, for single-ended operation.
Figure 3-8. STS-48 waveform after transmission through 76” of PCB traces (input to M21260)
Functional Description
21260-DSH-001-H Mindspeed Technologies®66
Mindspeed Proprietary and Confidential
3.2.13 Output Pre-Emphasis
Each of the four output channels contains an independent output pre-emphasis circuit that can be used to select
the optimal pre-emphasis level. The pre-emphasis settings have been optimized for a variety of backplane PCB
applications. For board traces on FR4, the pre-emphasis circuit can drive trace-lengths up to 60” at 1.6 Gbps. Like
the input equalizer settings, the output pre-emphasis circuit has similar high performance on Nelco-13, Arlon 25,
Rogers 3003, 4003C, 4340, GeTek PCB materials, and twinaxial cables. The digital pre-emphasis level is selected,
for each output channel, with Preemp_ctrl_N [2:0], and the default value of 000b corresponds to pre-emphasis
disabled. The pre-emphasis circuit tracks the signal data-rate throughout the multi-rate range, however, like the
input equalizer, it is designed to compensate for the bandwidth limitations of the interconnect, and may not have the
desired effects at the low end of the multi-rate range. When the RCLKs have been disabled or bypassed, analog
pre-emphasis must be used in place of digital pre-emphasis. Writing the data value 1b to the register
Preemp_ctrl_N [3] enables analog pre-emphasis, whereas writing the data value 0b to the register Preemp_ctrl_N
[3] enables digital pre-emphasis. Once analog pre-emphasis has been enabled, the boost level may be chosen
with Preemp_ctrl_N [5:4], and the bandwidth may be chosen with Preemp_ctrl_N [6]. The output pre-emphasis
function is available for all data interfaces and levels.
Figure 3-9. STS-48 waveform at M21260 output with input shown in Figure 3-7
Functional Description
21260-DSH-001-H Mindspeed Technologies®67
Mindspeed Proprietary and Confidential
3.2.14 CDR/RCLK Overview
The M21260 contains 4 multi-rate CDR/RCLKs, that can each operate at independent bit rates. When the CDR/
RCLK achieves phase lock onto the incoming data stream, it removes the incoming random jitter above its loop
bandwidth. The M21260 output data has extremely low jitter, due to retiming with a very low jitter generation CDR/
RCLK. Clock outputs are also provided, but are disabled by default.
Each CDR/RCLK is capable of multi-rate operation which is achieved by a combination of built in VCO frequency
dividers (VCD), Data Rate Dividers (DRD), and a wide VCO tuning range (Fmin=2.0 GHz, Fmax = 3.2 GHz). As a
result, the allowed input data range is Fmin / DRDmax to Fmax / DRDmin. Although the ranges are not continuous, the
ranges are deliberately chosen to cover all typical applications.
By default, the loop-bandwidth is set to pass 3G-SDI Video and SONET STS-48 specifications, with less than
0.1 dB of bandwidth peaking. Within a given VCO frequency range, the bandwidth will scale proportionately. For
example, if the loop bandwidth (LBW) is 1.19 MHz at 1.485 GHz, then at 2.97 GHz the LBW will be 2.38 MHz, and
peaking will be less than 0.1 dB. When DRD is not equal to 1, the bandwidth at DRD=1 scales by the DRD divide
ratio. For example, if the LBW is 2.38 MHz at 3G-SDI with DRD=1, then if DRD= 2 for HD operation, the LBW will
be 1.19 MHz. In general, the default bandwidth will meet SMPTE specifications for all bit rates down to 143 MHz.
Internal filter components assure that the peaking will not exceed 0.1 dB for all DRDs up to 16. In the hardwired
mode, the LBW will be properly set for the hardwired bit rates. In the serial register mode, the default bandwidth
scales automatically with the input bit rate, and the bandwidth can be tuned through registers.
The CDR/RCLK requires an external reference clock to be connected to the RefClkP/N pins. The CDR/RCLK
contains an internal frequency pre-scaler that allows a single reference to be used for multiple bit rates and thereby
ease the burden of having to route and switch multiple frequency references.
Frequency acquisition is accomplished with two key sections. The first section is a secondary phase/frequency lock
loop (P/FLL) that drives the VCO towards the desired frequency. The second section is the loss-of-lock circuitry
(LOLCir), that turns on or off the secondary P/FLL. In general LOL has register bits (Alarm_LOL) which are active
high, and pins (xLOL[3:0]) which are active low, for wired OR use to be wired OR externally. In the general context,
they will be referred to as LOL which is active H. With both methods, frequency acquisition takes place when the
Figure 3-10. Definition of Pre-Emphasis Levels
B
V
S
V
Pre-Emphasis Level =
B
V
S
Vx 100
Functional Description
21260-DSH-001-H Mindspeed Technologies®68
Mindspeed Proprietary and Confidential
LOLCir determines an out of lock condition (LOL=H) for each CDR/RCLK, when the VCO frequency exceeds a
given range (window). LOLCir enables the secondary P/FLL to drive the VCO close to the desired frequency (the
input data bit rate). When the VCO falls within a given frequency range where the CDR/RCLK loop can acquire
phase lock, LOLCir turns off the secondary P/FLL and sets LOL=L, allowing the CDR/RCLK to achieve phase lock.
During this time, LOLCir continues to monitor the frequency difference and will signal a LOL=H to start the
acquisition routine again; if the frequency falls out of range. The LOLCir range is fixed in hardwired mode, and
programmable in 2-wire or 4-wire serial interface mode. In general, the frequency threshold (window) for LOL=H-to-
L and LOL=L-to-H are different to prevent LOL from toggling when the frequency is near one of the windows. These
registers also control the frequency acquisition time. Suggested values are given in this document for general
robust operation, and are used as register defaults, however, the programmability of the registers allow for
optimization based on a given application (e.g. faster lock times).
3.2.15 General CDR/RCLK Features
All of the CDR/RCLKs are reset upon xRST=L, Mastreset=AAh, or upon power up. A soft reset through
RCLK_ctrlA_N[3]=1b resets the individual CDR/RCLK state machine, and presets the CDR/RCLK to an out-of-lock
condition, however, the register contents that are related to CDR/RCLK setup are unchanged. It is required to force
a soft-reset if the bit rate is dynamically changed. The soft reset register bit needs to be cleared for proper
operation. In general, a reset during operation will cause bit errors, until the CDR/RCLK achieves phase lock.
By default, all of the CDR/RCLKs are active and powered up for normal operation. By setting
RCLK_ctrlB_N[7:6]=11b, a CDR/RCLK can be bypassed and powered down, to allow for non-standard bit rates, or
to save power when the CDR/RCLK is not required at lower bit rates. When RCLK_ctrlB_N[7:6]=01b, the CDR/
RCLK is bypassed so the output data is not retimed but active (VCO locked to the input data). In the last mode with
RCLK_ctrlB_N[7:6]=10b, the CDR/RCLK is powered down, and all signals along the input and output paths are
also powered down, to save power. In this case, the input data does not reach the output.
To prevent the propagation of noise in the case where there is a LOL condition, the CDR/RCLK contains an auto-
inhibit feature, which is enabled by default. When LOL is active, the output of the CDR/RCLK is fixed at a logic high
state (DoutP=H, DoutN=L). This feature can be disabled by setting RCLK_ctrlA_N[3]=0b, which allows
RCLK_ctrlA_N[5] to either force an inhibit (1b) or to never inhibit (0b).
In some applications, the optimal data sampling point is not in the middle of the data eye. By default, the RCLK
achieves phase lock very near the center of the eye. For optimal performance (jitter tolerance), the actual sampling
point can be adjusted with Phadj_ctrl_N[3:0]. The adjustment range is from –122.5 mUI to +122.5 mUI with
17.5 mUI steps.
3.2.16 Multi-Rate CDR Data-Rate Selection
For multi-rate operation, the first step is to determine the desired data-rate range. The input data range must be
bracketed by DFmin = Fvco,min/DRDmax to DFmax = Fvco,max/DRDmin. DFmax/min are the maximum/minimum input
data-rate frequencies, DRDmax/min are the maximum/minimum data-rate divider settings using CDR_ctrlB_N [3:0],
and Fvco,min/Fvco,max are the minimum/maximum VCO frequencies, which are 2.0 GHz and 3.2 GHz respectively.
The valid data-rates are shown in Ta bl e 3 - 1 1 .
Functional Description
21260-DSH-001-H Mindspeed Technologies®69
Mindspeed Proprietary and Confidential
It is important to note the difference between the VCO frequency (Fvco), and the data-rate frequency (DF). Fvco is
always between 2 GHz to 3.2 GHz, while DF is the divided down Fvco that matches the input data-rate.
3.2.17 Frequency Acquisition
Frequency acquisition is enabled by the LOLCir when LOL = H (Alarm_LOL =H or xLOL = L). A secondary FLL
attempts to lock the VCO to a frequency derived from the external reference. When the frequency is close to the
desired frequency, LOLCir sets LOL = L and disables the secondary FLL, thus, the main CDR/RCLK PLL is free to
phase lock to the incoming data. Although the main CDR/RCLK PLL can achieve frequency lock, the VCO
frequency tuning range typically exceeds the CDR/RCLK PLL inherent acquisition range. This implies that the FLL
needs to get the VCO within the CDR/RCLK PLL range. The loss of lock circuitry (LOLCir) is used to determine
when the secondary FLL is active. The LOLCir consists of window detectors that constantly compare a scaled VCO
frequency, to a frequency related to the external reference. When LOL = H the loop is out of lock, the FLL is
activated until the frequency difference is within the narrow reference window (NNARROW). When LOL = L, the FLL
is not engaged until the frequency exceeds the wide reference window (NWIDE). If a signal is not present, the FLL
circuit will drive the VCO frequency to the NNARROW and turn off. Without data present, the VCO would then drift
until the frequency difference exceeds the NWIDE, and repeat this cycle. To prevent this, by default, the FLL is
activated with LOL = H and de-activated with LOL = L.
Table 3-11. Valid Input Data Ranges
Parameter DFmin DFmax Units
Data-rate divider (DRD = 1): CDR_ctrlB_N [3:0] = 0000b 2.0 3.2 GHz
Data-rate divider (DRD = 2): CDR_ctrlB_N [3:0] = 0001b 1.0 1.6 GHz
Data-rate divider (DRD = 4): CDR_ctrlB_N [3:0] = 0010b 500 800 MHz
Data-rate divider (DRD = 8): CDR_ctrlB_N [3:0] = 0011b 250 400 MHz
Data-rate divider (DRD = 12): CDR_ctrlB_N [3:0] = 0100b 166.7 266.66 MHz
Data-rate divider (DRD = 16): CDR_ctrlB_N [3:0] = 0101b 125 200 MHz
Data-rate divider (DRD = 24): CDR_ctrlB_N [3:0] = 0110b 83.33 133.33 MHz
Data-rate divider (DRD = 32): CDR_ctrlB_N [3:0] = 0111b 62.5 100 MHz
Data-rate divider (DRD = 48): CDR_ctrlB_N [3:0] = 1000b 42 66.66 MHz
Functional Description
21260-DSH-001-H Mindspeed Technologies®70
Mindspeed Proprietary and Confidential
Figure 3-11 shows a block diagram of the frequency acquisition circuits. The secondary FLL compares a scaled
version of the internal VCO frequency (iFV) with a scaled version of the reference clock frequency (iFR); iFR and
iFV are limited to between 10 MHz and 25 MHz. The external reference clock frequency (FREF) is applied to the
RefClk [P/N] terminals. This reference frequency is scaled to the iFR by the reference frequency divider (RFD)
[Refclk_ctrl [3:1]], which allows for an external reference clock in the range of 10 MHz to 800 MHz. The RFD level is
a globally set value that applies to all CDR/RCLKs. Ta bl e 3 - 1 2 gives the divider ratio, along with the minimum and
maximum FREF values.
The VCO frequency is scaled to the iFV by the VCO comparison divider (VCD) [RCLK_ctrlC_N [7:0]]. Ta b l e 3 - 1 3
provides DRD, RFD, and VCD values for common applications. For applications that only deal with SONET/SDH
data-rates, a 19.44 MHz reference clock frequency must be used. For applications where a combination of
SONET/SDH and other data-rates are used, a 25 MHz reference clock frequency must be used. If either of
these reference clock frequencies is not available, please contact Mindspeed Technologies Applications
Engineering for other options.
For applications that only deal with SDI data rates, a 12 MHz reference clock frequency is recommended.
Figure 3-11. Block Diagram of Frequency Acquisition Circuits
Table 3-12. Reference Clock Frequency Ranges
RFD Value Minimum FREF (MHz) Maximum FREF (MHz)
RFD (Refclk_ctrl [3:1] = 000b): divide by 1 10 25
RFD (Refclk_ctrl [3:1] = 001b): divide by 2 20 50
RFD (Refclk_ctrl [3:1] = 010b): divide by 4 40 100
RFD (Refclk_ctrl [3:1] = 011b): divide by 8 80 200
RFD (Refclk_ctrl [3:1] = 100b): divide by 12 120 300
RFD (Refclk_ctrl [3:1] = 101b): divide by 16 160 400
RFD (Refclk_ctrl [3:1] = 110b): divide by 32 320 800
Din Dout
RefClk
LOL LOA
DR
FCLK
iFV
iFR
Fvco
Fref
VCO
Fvco,max > Fvco > Fvco,min
CDR
Din Dout
Cin
Error
FLL
Error
D1
D2
LOLCir
DRD
CDR_ctrlB [3:0]
VCD
RFD
CDR_ctrlC [7:0]
Refclk_ctrl [3:1]
Cout
Cout
Functional Description
21260-DSH-001-H Mindspeed Technologies®71
Mindspeed Proprietary and Confidential
Table 3-13. DRD/RFD/VCD Settings for Different Data-Rates and Reference Frequencies (1 of 2)
Application DR
(Mbps)
FREF
(MHz) DRD RFD VCD Notes
SD-143 143 12 5 191
SD-177 177 12 4 177
SD-270 270 12 3 180
SD-360 360 12 3 240
SD 540 12 2 180
HD 1483.5/1485 12 1 247
3G 2967/2970 12 0 247
10GE - XAUI 3125 156.25 1 8 160
10GE-XAUI 3125 25 1 2 250
10GFC - XAUI 3187.5 159.375 1 8 160
10GFC-XAUI 3187.5 25 1 2 255 1
STS-48+FEC 2666.06 19.44 1 1 137 1
STS-48 + FEC 2666.06 25 1 2 213 1
STS-48 2488.32 155.52 1 8 128
STS-48 2488.32 19.44 1 1 128
STS-48 2488.32 25 1 2 199 1
2GFC 2125 106.25 1 8 160
2GFC 2125 25 1 2 170
GE 1250 125 2 8 160
GE 1250 25 2 2 200
FC 1062.5 106.25 2 8 160
FC 1062.5 25 2 2 170 1
STS-12 622.08 19.44 4 1 128
STS-12 622.08 25 4 2 199 1
FC 531 25 4 2 170 1
FC 266 25 12 2 255 1
ESCON 200 10 12 1 240
ESCON 200 25 12 2 192
STS-3 155.52 19.44 16 1 128
STS-3 155.52 25 16 2 199 1
FC 133 25 24 2 255 1
FE 125 12.5 16 1 160
FE 125 25 24 2 240
STS-1 51.84 25 48 2 199 1
Functional Description
21260-DSH-001-H Mindspeed Technologies®72
Mindspeed Proprietary and Confidential
The FLL drives the iFV to iFR, and it is the primary function of the LOLCir to determine when to turn off the FLL, so
the CDR/RCLK can achieve phase lock. The LOLCir uses the frequency difference between iFV and iFR to switch
LOL, which turns on and off the secondary FLL. The thresholds where LOL makes a transition are defined as
windows. These windows are fixed in the hardwired mode, and programmable in the two-wire interface mode. To
prevent LOL from toggling at the thresholds, two windows are used for hysteresis. When LOL = L and the
frequency difference exceeds the larger window (NWIDE), LOL L-to-H occurs to signal an out of lock case. When
LOL = H (and LOA = L), the frequency difference is brought within the narrow reference window (NNARROW), after
which LOL makes a H-to-L transition signaling in-lock. If LOA = H when LOL = L, the FLL remains on to keep the
VCO locked to the reference, until a signal is present. NACQ is defined with LOL_ctrl_N [7:5], NNARROW is defined
with LOL_ctrl_N [4:1], and NWIDE is defined with LOL_ctrl_N [0]. The LOLCir averages a large number of
transitions before making an LOL decision. This averaging time is referred to as the LOL decision time or DTLOL.
Ta bl e 3 - 1 4 shows various window sizes for different applications, including the default value in both the hardwired
and two-wire serial interface modes.
3.2.18 CDR/Reclocker Data Rate Programming (3G/HD/SD-SDI data rates only)
If the automatic rate detection (ARD) algorithm developed by Mindspeed is used, it is not necessary for the user to
manually program the registers of the reclockers to configure the reclockers for operation at a specific data rate. In
applications where the ARD is not implemented and the device is used with software control, there are a few
parameters that must be configured for the reclocker to correctly lock to the input data. The parameters that need
to be programmed are the data rate divider (DRD) and the VCO frequency divider (VCD). The DRD is programmed
using bits [3:0] of register addresses 41h, 51h, 61h, and 71h. The VCD is programmed using bits [7:0] of register
addresses 42h, 52h, 62h, and 72h. Ta bl e 3 - 1 3 shows the recommended values of DRD and VCD for standard
video data rates.
STS-1 51.84 19.44 48 1 128 1
DS3 44.736 25 48 2 172 1
NOTES:
1. Set LOL_ctrl_N[0] = 1b, all other bits at default values.
Table 3-14. LOL Window Size and Decision Time Examples
Condition NACQ NNARROW NWIDE
Narrow
Window
(ppm)
Wide
Window
(ppm)
Decision
Time
(µs)
Hardwired mode default 101b 0100b 0b ±1955 ±2930 420
Two-wire serial interface mode default 101b 0100b 0b ±1955 ±2930 420
iFV = iFR 111b 0010b 1b ±245 ±975 1685
Fast lock 010b 0001b 0b ±5860 ±7800 56
NOTES:
1. Decision time is calculated with iFR = 19.44 MHz; will scale proportionally with iFR range from 10 to 25 MHz.
2. Above are examples showing ability to tailor windows for data-rates, reference frequencies, and acquisition times.
Table 3-13. DRD/RFD/VCD Settings for Different Data-Rates and Reference Frequencies (2 of 2)
Application DR
(Mbps)
FREF
(MHz) DRD RFD VCD Notes
Functional Description
21260-DSH-001-H Mindspeed Technologies®73
Mindspeed Proprietary and Confidential
3.2.19 Ambient Temperature Range Limitations
Ta bl e 3 - 1 5 summarizes the supported ambient temperature range as a function of data-rate, and indicates when it
is required to center the VCO.
FVCO is the VCO frequency, which always lies in the range 2.0 - 3.2 GHz. DR is the data-rate of the input signal,
and DRD is the data-rate divider (1, 2, 4, 8, 12, 16, 24, 32, 48) set with rclk_ctrlB_N[3:0]. Ta is the ambient
temperature supported, which decreases for FVCO > 2.666 GHz. As an example, if the data-rate is 800 Mbps DRD
should be set to 4; to lock to this signal the VCO needs to operate at 3.2 GHz. Under these conditions the ambient
temperature range supported is 0°C - 70°C, and it is necessary to center the VCO in each of the four lanes.
The VCO tuning range is roughly the same bandwidth as the variation in VCO center frequency between the
extremes of the operating temperature range. This issue can be resolved by centering the VCO frequency during
the in-circuit testing (ICT) phase prior to shipment of the customer systems.
NOTE: The CDR/RCLK must be powered up and configured at 25°C - 40°C ambient temperature during ICT.
1. Power up the device and configure the registers via the serial interface with the appropriate settings for the
application of interest.
2. Read and store the VCO trim code from register MBh[4:0].
3. Every time the device is powered up, this trim code must be forced by setting M0h[0] = 0b then writing the code
to MAh[4:0]. This can be done during the same write cycle as when the other registers are configured.
It should be noted that it is not possible to center the VCO in the hardwired mode, it is necessary to program the
CDR/RCLK using the serial interface.
3.2.20 Loss of Activity
By default, the LOA detector is disabled and can be enabled by setting CDR_ctrlA_N [1] = 1b, where N is the
channel number. Loss of activity measures the transition density of data to determine if the data is valid. With
PRBS data, the transition density is typically 50%+1-12%, averaged over long periods. During small time intervals,
data transition density variations are due to data content, packet headers, stress patterns, etc. In some
applications, when data is not present, noise produces rail-to-rail transitions that cause problems with level based
detectors. These applications include cascaded reclockers, high-gain crosspoints, and other devices. The data
transition density based LOA detector can separate data from random noise, determine false lock at the wrong
integer and non-integer data-rate, signal stuck high/low conditions, and determine false lock to re-timed noise.
Unlike level based detectors, it cannot determine false lock with low amplitude data. Data patterns that have
periods of high or low transitions density will cause the LOA alarm to trigger. In these cases, additional filtering of
the LOA is needed to ensure correct reading of the LOA.
Table 3-15. Supported Ambient Temperature Range by Data-Rate
FVCO (GHz) DR (Gbps) Ta (°C) VCO Centering Requirement
2.0 - 2.666 2.0/DRD - 2.666/DRD -40 - 85 N
2.7 - 2.97 2.7/DRD - 2.97/DRD 0 - 70 N
2.7 - 2.97 2.7/DRD - 2.97/DRD -40 - 85 Y
3.0 - 3.2 3.0/DRD - 3.2/DRD 0 - 70 Y
Functional Description
21260-DSH-001-H Mindspeed Technologies®74
Mindspeed Proprietary and Confidential
Common protocols that require additional filtering:
•Video SDI
8b/10b
3.2.21 Built-In Self Test (BIST) Overview
The M21260 contains a BIST test pattern generator as well as a test pattern receiver. Both the BIST transmitter
(BIST Tx), and BIST receiver (BIST Rx) are designed to operate with fixed patterns. For PRBS evaluation, the
PRBS 27-1, 215-1, 223-1, and 231-1 test patterns are provided. For 8b/10b testing, the fibre channel CRPAT and
CJTPAT standard patterns are supported. In addition, an 8b/10b countdown pattern is also provided; this is the 8b/
10b representation of a binary count from 255 to 0, while maintaining 8b/10b running disparity requirements. User
programmable 16 bit (PRBS) and 20 bit (8b/10b) patterns are also provided; they are typically used to generate
short patterns for debug, such as 1100b, as well as 8b/10b idle or control characters. The BIST is designed to
reduce system development time, as well as product test costs, and can be used by both the equipment provider as
well as the equipment end user.
When enabled, the BIST Rx allows one input from the crosspoint switch to enter the BIST receiver. The desired
channel to monitor is selected through a control register. The BIST Rx uses the recovered clock and data from the
selected RCLK to drive the pattern checker. Every time a bit error is received, the error register is incremented. The
maximum number of errors is FFh, and all subsequent errors will not be counted. At any time, the error register can
be cleared. By keeping track of the time between a clear and a read, a rough BER number can be obtained.
When enabled, the BIST Tx can broadcast the output test pattern to output channels 0 and 1 (the BIST Tx and Rx
can be used at the same time). The BIST Tx contains an internal clock multiplier (PLL), that can take its input from
either the external reference frequency, or from the same RCLK that is driving the BIST Rx (only in full-rate mode,
DRD = 1).
3.2.22 BIST Test Patterns
The test pattern is selected with BISTtx_ctrl [5:2] for the transmitter, and BISTrx_ctrl [5:2] for the receiver.
The PRBS patterns generated by the unit are ITU-T 0.151 compliant, and summarized in the table below.
Figure 3-12.
clk
100%
50%
Functional Description
21260-DSH-001-H Mindspeed Technologies®75
Mindspeed Proprietary and Confidential
For 8b/10b data, three patterns are available. The CJTPAT and CRPAT comply with the Fibre Channel T11.2/
Project 1230/Rev10 specifications.
Two user programmable patterns that are 16 bits long (BISTtx_ctrl [5:2] = BISTrx_ctrl [5:2] = 0111b) and 20 bits
long (BISTtx_ctrl [5:2] = BISTrx_ctrl [5:2] = 1000b) are determined with BIST_pattern0, BIST_pattern1,
BIST_pattern2. Note that the contents of these registers is used by both the BIST Tx and the BIST Rx, if they are
setup in this mode.
3.2.23 BIST Receiver (BIST Rx) Operation
The BIST Rx is enabled and powered up by setting BISTrx_ctrl [1] = 1b (off by default), resetting the BIST Rx block
with BISTrx_ctrl [0] = 1b (default), and selecting a pattern with BISTrx_ctrl [5:2]. The signal to the BIST Rx is routed
from the input of the device, and the BIST Rx can only check one channel at a time. The desired channel to monitor
is selected with BISTrx_chsel [2:0]. The BIST Rx uses the recovered clock from the RCLK to drive the BIST state-
machine, thus the RCLK must be enabled and locked to data for proper operation. When the data is valid,
BISTrx_ctrl [6] = 1b is used to clear the error register, and all subsequent errors can be read back through
BISTrx_error. The BIST Rx automatically synchronizes the input data with the pattern.
3.2.24 BIST Transmitter (BIST Tx) Operation
The BIST Tx is enabled and powered up by setting BISTtx_ctrl [1] = 1b (off by default), resetting the BIST Tx block
with BISTtx_ctrl [0] = 1b (default), and selecting a pattern with BISTtx_ctrl [5:2]. The BIST Tx can multicast the test
pattern to any channels selected with BISTtx_chsel [3:0]. The high-speed clock of the BIST Tx is generated from its
own frequency multiplier PLL, that uses a selectable frequency reference determined by BISTtx_ctrl [6]. With
BISTtx_ctrl [6] = 0b (default), the external reference clock is used and typically gives the lowest jitter output. With
BISTtx_ctrl [6] = 1b the reference clock is derived from the same RCLK used to drive the BIST Rx (this feature only
works with DRD = 1 for that RCLK). In this mode, the BIST Tx output is synchronous with the RCLK used in the
BIST Rx, however, it contains the low-frequency jitter from the input data. In either case, the BIST Tx PLL needs to
be configured for the proper data-rate. When the PLL is properly configured and locked to the reference, the LOL
flag should be low (BISTtx_alarm [7]). A bit error can be intentionally inserted into the BIST Tx output, by providing
a 0b, 1b, 0b sequence to BISTtx_ctrl [7].
The BIST Tx PLL setup is similar to the reclocker, thus, the description of similar registers for the RCLK also
applies and will not be repeated here. The desired output data-rate is set with the DRD register (BISTtx_PLL_ctrlB
Table 3-16. BIST PRBS Patterns
BISTtx_ctrl [5:2] / BISTrx_ctrl [5:2] Pattern Polynomial
0000b PRBS 27-1 27+26+1
0001b PRBS 215-1 215+214+1
0010b PRBS 223-1 223+218+1
0011b PRBS 231-1 231+228+1
Table 3-17. BIST 8b/10b Patterns
BISTtx_ctrl [5:2] / BISTrx_ctrl [5:2] Pattern
0100b CJTPAT
0101b CRPAT
0110b Countdown
Functional Description
21260-DSH-001-H Mindspeed Technologies®76
Mindspeed Proprietary and Confidential
[3:0]) and with the VCD register (BISTtx_PLL_ctrlC [7:0]). The input reference frequency is the same as for the
main RCLKs. Like the RCLKs, if the output data-rate of the BIST Tx needs to be changed, the BIST Tx requires a
softreset.
3.2.25 Junction Temperature Monitor
An internal junction temperature monitor with a range of –40°C to 130°C is integrated into the M21260. On the low
end, the temperature monitor (Tmon) is set to measure –40°C to 10°C in six 10°C steps, and on the high end, 80°C
to 130°C in six 10°C steps. The typical temperature resolution is 3°C. The temperature monitor is enabled with
Tem p_ mo n [1] = 1b. When enabled, the temperature measurement cycle is achieved by providing a rising edge for
Tem p_ mo n [0]. Afterwards, the correct temperature can be read from Temp_value [3:0]. Ta bl e 3 - 1 8 shows the
mapping of the temperature to Temp_value [3:0]. Enabling and strobing the temperature in the same write cycle will
not yield reliable results.
3.2.26 IC Identification / Revision Code
The IC identification can be read back from Chipcode, and the revision of the device can be read back from
Revcode. The assigned IC identification for the M21260-12/M21260G-12 is 26h and the revision code is 23h.
Table 3-18. Junction Temperature Monitor
Junction Temperature Temp_value [3:0] Condition
TCASE 130°C 1100b High-alarm
130°C > TCASE 120°C 1011b High-alarm
120°C > TCASE 110°C 1010b High-warning
110°C > TCASE 100°C 1001b Normal
100°C > TCASE 90°C 1000b Normal
90°C > TCASE 80°C 0111b Normal
80°C > TCASE 10°C 0110b Normal
10°C > TCASE 0°C 0101b Normal
0°C > TCASE -10°C 0100b Normal
-10°C > TCASE -20°C 0011b Normal
-20°C > TCASE -30°C 0010b Warning
-30°C > TCASE -40°C 0001b Low-alarm
-40°C > TCASE 0000b Low-alarm
Functional Description
21260-DSH-001-H Mindspeed Technologies®77
Mindspeed Proprietary and Confidential
3.3 Pin Definitions
Table 3-19. Power Pins
Pin Number Pin Name Function Type
Exposed pad VSS IC ground Power
1,31,54,63,64 AVDDIO Analog I/O positive supply Power
21,27,28,34,57,60,67,70 AVDDCORE Analog core positive supply Power
10 DVDDIO Digital I/O positive supply Power
11,22,33 DVDDCORE Digital core positive supply Power
NOTES:
1. If internal regulator is enabled, connect all of the AVDDCORE and/or DVDDCORE pins together to a common floating plane and bypass to VSS.
2. If internal regulator is NOT enabled, it is recommended that all AVDDCORE pins be tied to a plane at 1.2V, that is bypassed to ground. DVDDCORE
can be tied to this plane or separately decoupled.
3. IC ground (VSS) is established by contact with exposed pad on underside of package; there are no VSS pins.
Table 3-20. High-Speed Signal Pins
Pin Number Pin Name Function Termination Type
19 Din0P Serial positive data input for channel 0 50Ω pull up to VddT0/1 PCML referenced to AVDDCORE
20 Din0N Serial negative data input for channel 0 50Ω pull up to VddT0/1 PCML referenced to AVDDCORE
25 Din1P Serial positive data input for channel 1 50Ω pull up to VddT0/1 PCML referenced to AVDDCORE
26 Din1N Serial negative data input for channel 1 50Ω pull up to VddT0/1 PCML referenced to AVDDCORE
29 Din2P Serial positive data input for channel 2 50Ω pull up to VddT2/3 PCML referenced to AVDDCORE
30 Din2N Serial negative data input for channel 2 50Ω pull up to VddT2/3 PCML referenced to AVDDCORE
35 Din3P Serial positive data input for channel 3 50Ω pull up to VddT2/3 PCML referenced to AVDDCORE
36 Din3N Serial negative data input for channel 3 50Ω pull up to VddT2/3 PCML referenced to AVDDCORE
23 VddT0/1 Termination pin for Din [1:0] Terminate to AVDDCORE Termination
32 VddT2/3 Termination pin for Din [3:2] Terminate to AVDDCORE Termination
72 Dout0P Serial positive data output for channel 0 50Ω pull up to AVDDIO O - CML/LVDS
71 Dout0N Serial negative data output for channel 0 50Ω pull up to AVDDIO O - CML/LVDS
66 Dout1P Serial positive data output for channel 1 50Ω pull up to AVDDIO O - CML/LVDS
65 Dout1N Serial negative data output for channel 1 50Ω pull up to AVDDIO O - CML/LVDS
62 Dout2P Serial positive data output for channel 2 50Ω pull up to AVDDIO O - CML/LVDS
61 Dout2N Serial negative data output for channel 2 50Ω pull up to AVDDIO O - CML/LVDS
56 Dout3P Serial positive data output for channel 3 50Ω pull up to AVDDIO O - CML/LVDS
55 Dout3N Serial negative data output for channel 3 50Ω pull up to AVDDIO O - CML/LVDS
Functional Description
21260-DSH-001-H Mindspeed Technologies®78
Mindspeed Proprietary and Confidential
Table 3-21. Control, Interface, and Alarm Pins (1 of 2)
Pin
Number Pin Name Function Default Type
2MF0 Multifunction pin for hardwired mode, and serial interface Internal pull up I - CMOS
3MF1 Multifunction pin for hardwired mode, and serial interface Internal pull up I - CMOS
4MF2 Multifunction pin for hardwired mode, and serial interface Internal pull up I - CMOS
5MF3 Multifunction pin for hardwired mode, and serial interface Internal pull up I - CMOS
9MF4 Multifunction pin for hardwired mode, and serial interface Internal pull up I - CMOS
12 MF5 Multifunction pin for hardwired mode, and serial interface Internal pull up I - CMOS
13 MF6 Multifunction pin for hardwired mode, and serial interface Internal pull up I - CMOS
43 MF7 Multifunction pin for hardwired mode Internal pull up I - CMOS
52 MF8 Multifunction pin for hardwired mode, and JTAG Internal pull up I - CMOS
53 MF9 Multifunction pin for hardwired mode, and JTAG Internal pull up I - CMOS
8MF10 Multifunction pin for hardwired mode, serial interface, and JTAG Internal pull up I - CMOS
14 MF11 Multifunction pin for hardwired mode, serial interface, and JTAG Internal pull up I - CMOS
6CTRL_Mode0 Hardwired or serial interface mode control pin Internal pull up I - CMOS
7CTRL_Mode1 Hardwired or serial interface mode control pin Internal pull up I - CMOS
44 Out_Mode0 Output data interface control pin Internal pull down I - CMOS
45 Out_Mode1 Output data interface control pin Internal pull down I - CMOS
42 xRST Reset pin (L = reset) Internal pull up I - CMOS
15 xJTAG_En JTAG testing control pin (L = enable) Internal pull up I - CMOS
24 xRegu_En Internal voltage regulator control pin (L = enable) Internal pull up I - CMOS
47 RefClkP Reference clock positive input Internal pull down I - AC coupled
46 RefClkN Reference clock negative input Internal pull down I - AC coupled
18 XPoint_Mode_
0
Crosspoint switch-state setting pin Internal pull down I - CMOS
17 XPoint_Mode_
1
Crosspoint switch-state setting pin Internal pull down I - CMOS
37 XPoint_Mode_
2
Crosspoint switch-state setting pin Internal pull down I - CMOS
38 XPoint_Mode_
3
Crosspoint switch-state setting pin Internal pull down I - CMOS
69 xEn_Port0 Control pin to enable/disable output for channel 0 (L = enable) Internal pull up I - CMOS
68 xEn_Port1 Control pin to enable/disable output for channel 1 (L = enable) Internal pull up I - CMOS
59 xEn_Port2 Control pin to enable/disable output for channel 2 (L = enable) Internal pull up I - CMOS
58 xEn_Port3 Control pin to enable/disable output for channel 3 (L = enable) Internal pull up I - CMOS
16 xLOL0 CDR/RCLK loss of lock alarm for channel 0 No internal pull up or pull down O-open drain
39 xLOL1 CDR/RCLK loss of lock alarm for channel 1 No internal pull up or pull down O-open drain
40 xLOL2 CDR/RCLK loss of lock alarm for channel 2 No internal pull up or pull down O-open drain
Functional Description
21260-DSH-001-H Mindspeed Technologies®79
Mindspeed Proprietary and Confidential
41 xLOL3 CDR/RCLK loss of lock alarm for channel 3 No internal pull up or pull down O-open drain
48 xLOA0 CDR/RCLK loss of activity alarm for channel 0 No internal pull up or pull down O-open drain
49 xLOA1 CDR/RCLK loss of activity alarm for channel 1 No internal pull up or pull down O-open drain
50 xLOA2 CDR/RCLK loss of activity alarm for channel 2 No internal pull up or pull down O-open drain
51 xLOA3 CDR/RCLK loss of activity alarm for channel 3 No internal pull up or pull down O-open drain
Figure 3-13. M21260 Pinout Diagram (Top View)
Table 3-21. Control, Interface, and Alarm Pins (2 of 2)
Pin
Number Pin Name Function Default Type
Dout0P
Dout0N
AVDD_Core
MF5
MF6
MF11
NC
xJTAG_En
CTRL_M ode0
CTRL_M ode1
MF3
Din2N
xRegu_En
Din1N
AVDD_Core
AVDD_Core
Din2P
AVDD_I/O
Din1P
Din0N
VddT0/1
1
2
3
4
5
6
7
8
9
10
11
12
19 20 21 22 23 24 25 26 27 28 29 30
43
44
45
46
47
48
49
50
51
52
53
54
72 71 70 69 68 67 66 65 64 63 62 61
xEn_Port0
xEn_Port1
AVDD_Core
Dout1P
Dout1N
AVDD_I/O
AVDD_I/O
Dout2P
Dout2N
AVDD_Core
xEn_Port2
xEn_Port3
AVDD_Core
Dout3P
Dout3N
60 59 58 57 56 55
39
40
41
42
37
38
Din0P
Din3P
DVDD_Core
VddT2/3
AVDD_Core
Din3N
NC
31 32 33 34 35 36
MF1
MF2
MF0
AVDD_I/O
13
14
15
16
17
18
AVDD_I/O
XPoint_Mode_3
XPoint_Mode_2
MF9
MF8
RefClkP
RefClkN
NC
NC
NC
NC
Out_Mode1
Out_Mode0
MF7
xRST
NC
NC
DVDD_Core
DVDD_I/O
XPoint_Mode_0
XPoint_Mode_1
MF10
MF4
AVDD_Core
DVDD_Core
21260-DSH-001-H Mindspeed Technologies®80
Mindspeed Proprietary and Confidential
Appendix
A.1 Glossary of Terms/Acronyms
Ta bl e A - 1 contains a list of acronyms used in this data sheet.
A.2 Reference Documents
A.2.1 External
The following external documents were referenced in this data sheet.
Synchronous Optical Network (SONET) Transport Systems: Common Generic Criteria GR-253-CORE
Table A-1. Acronyms
AIE Adaptive Input Equalizer
BER Bit-Error Rate
BIST Built-In Self Test
RCLK Reclocker
DRD Data-Rate Divider
EVM Evaluation Module
FLL Frequency Lock Loop
FRA Frequency Reference Acquisition
ISI Inter-Symbol Interference
LOA Loss of Activity
LOL Loss of Lock
LOLCir Loss of Lock Circuitry
NNARROW Narrow Reference Window
PCB Printed Circuit Board
PLL Phase Lock Loop
RFD Reference Frequency Divider
SONET Synchronous Optical Network
VCD VCO Comparison Divider
NWIDE Wide Reference Window
XPTS Crosspoint Switch
Appendix
21260-DSH-001-H Mindspeed Technologies®81
Mindspeed Proprietary and Confidential
•The I
2C Bus Specification version 2.1
Serial ATA: High Speed Serialized AT Attachment revision 1.0a
Fibre Channel - Methodologies for Jitter and Signal Quality Specification - MJSQ
Application Notes for Surface Mount Assembly of QFN Packages
Amkor Technology Thermal Test Report TT-00-06
SMPTE 292M, SMPTE 259M, SMPTE 344M
DVB-ASI
Synchronous Optical Network (SONET) Transport Systems: Common Generic Criteria (GR 253-Core)
Fibre Channel - Methodologies for jitter and signal quality specification - MJSQ and FC-PI-2
A.2.2 Mindspeed
The following Mindspeed documents were referenced in this data sheet.
Application Note: Equipment Protection Switching Using Low-Cost Crosspoint Elements
M2125x and M2126x ARD Software Description (212xx-SWG-001)
Jitter tolerance and generation of Mindspeed crosspoint switches and CDR arrays (2110x-APP-003)
www.mindspeed.com
General Information:
Telephone: (949) 579-3000
Headquarters - Newport Beach
4000 MacArthur Blvd., East Tower
Newport Beach, CA 92660
© 2010 Mindspeed Technologies®, Inc. All rights reserved.
Information in this document is provided in connection with Mindspeed Technologies® ("Mindspeed®") products.
These materials are provided by Mindspeed as a service to its customers and may be used for informational
purposes only. Except as provided in Mindspeed’s Terms and Conditions of Sale for such products or in any
separate agreement related to this document, Mindspeed assumes no liability whatsoever. Mindspeed assumes
no responsibility for errors or omissions in these materials. Mindspeed may make changes to specifications and
product descriptions at any time, without notice. Mindspeed makes no commitment to update the information and
shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to its
specifications and product descriptions. No license, express or implied, by estoppel or otherwise, to any
intellectual property rights is granted by this document.
THESE MATERIALS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, RELATING TO SALE AND/OR USE OF MINDSPEED PRODUCTS INCLUDING LIABILITY OR
WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, CONSEQUENTIAL OR INCIDENTAL
DAMAGES, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER
INTELLECTUAL PROPERTY RIGHT. MINDSPEED FURTHER DOES NOT WARRANT THE ACCURACY OR
COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE
MATERIALS. MINDSPEED SHALL NOT BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS,
WHICH MAY RESULT FROM THE USE OF THESE MATERIALS.
Mindspeed products are not intended for use in medical, lifesaving or life sustaining applications. Mindspeed
customers using or selling Mindspeed products for use in such applications do so at their own risk and agree to
fully indemnify Mindspeed for any damages resulting from such improper use or sale.
21260-DSH-001-H Mindspeed Technologies®82
Mindspeed Proprietary and Confidential