1
PLCC
7
8
9
10
11
12
13
14
15
16
17
39
38
37
36
35
34
33
32
31
30
29
P1.5
P1.6
P1.7
RST
(RXD) P3.0
NC
(TXD) P3.1
(INT0) P3.2
(INT1) P3.3
(T0) P3.4
(T1) P3.5
P0.4 (AD4)
P0.5 (AD5)
P0.6 (AD6)
P0.7 (AD7)
EA/VPP
NC
ALE/PROG
PSEN
P2.7 (A15)
P2.6 (A14)
P2.5 (A13)
6
5
4
3
2
1
44
43
42
41
40
18
19
20
21
22
23
24
25
26
27
28
(WR) P3.6
(RD) P3.7
XTAL2
XTAL1
GND
NC
(A8) P2.0
(A9) P2.1
(A10) P2.2
(A11) P2.3
(A12) P2.4
P1.4
P1.3
P1.2
P1.1 (T2 EX)
P1.0 (T2)
NC
VCC
P0.0 (AD0)
P0.1 (AD1)
P0.2 (AD2)
P0.3 (AD3)
Features
Compatible with MCS-51 Products
20K Bytes of One-time Programmable QuickFlash Memory
4V to 5.5V Operating Range
Fully Static Operation: 0 Hz to 33 MHz
Three-level Program Memory Lock
256 x 8-bit Internal RAM
32 Programmable I/O Lines
Three 16-bit Timer/Counters
Eight Interrupt Sources
Programmable Serial Channel
Low-power Idle and Power-down Modes
Interrupt Recovery from Power-down Mode
Hardware Watchdog Timer
Dual Data Pointer
Power-off Flag
Description
The AT87F55WD is a low-power, high-performance CMOS 8-bit microcomputer with
20K bytes of QuickFlash one-time programmable (OTP) read only memory and 256
bytes of RAM. The device is manufactured using Atmel’s high-density nonvolatile
memory technology and is compatible with the industry standard 80C51 and 80C52
instruction set and pinout. The on-chip QuickFlash allows the program memory to be
user programmed by a conventional nonvolatile memory programmer. By combining a
versatile 8-bit CPU with QuickFlash on a monolithic chip, the Atmel AT87F55WD is a
powerful microcomputer which provides a highly-flexible and cost-effective solution to
many embedded control applications.
Rev. 1918A–08/00
8-bit
Microcontroller
with 20K Bytes
QuickFlash™
AT87F55WD
PDIP
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21
(T2) P1.0
(T2EX) P1.1
P1.2
P1.3
P1.4
P1.5
P1.6
P1.7
RST
(RXD) P3.0
(TXD) P3.1
(INT0) P3.2
(INT1) P3.3
(T0) P3.4
(T1) P3.5
(WR) P3.6
(RD) P3.7
XTAL2
XTAL1
GND
VCC
P0.0 (AD0)
P0.1 (AD1)
P0.2 (AD2)
P0.3 (AD3)
P0.4 (AD4)
P0.5 (AD5)
P0.6 (AD6)
P0.7 (AD7)
EA/VPP
ALE/PROG
PSEN
P2.7 (A15)
P2.6 (A14)
P2.5 (A13)
P2.4 (A12)
P2.3 (A11)
P2.2 (A10)
P2.1 (A9)
P2.0 (A8)
Pin Configurations
TQFP
1
2
3
4
5
6
7
8
9
10
11
33
32
31
30
29
28
27
26
25
24
23
P1.5
P1.6
P1.7
RST
(RXD) P3.0
NC
(TXD) P3.1
(INT0) P3.2
(INT1) P3.3
(T0) P3.4
(T1) P3.5
P0.4 (AD4)
P0.5 (AD5)
P0.6 (AD6)
P0.7 (AD7)
EA/VPP
NC
ALE/PROG
PSEN
P2.7 (A15)
P2.6 (A14)
P2.5 (A13)
44
43
42
41
40
39
38
37
36
35
34
12
13
14
15
16
17
18
19
20
21
22
(WR) P3.6
(RD) P3.7
XTAL2
XTAL1
GND
GND
(A8) P2.0
(A9) P2.1
(A10) P2.2
(A11) P2.3
(A12) P2.4
P1.4
P1.3
P1.2
P1.1 (T2 EX)
P1.0 (T2)
NC
VCC
P0.0 (AD0)
P0.1 (AD1)
P0.2 (AD2)
P0.3 (AD3)
AT87F55WD
2
Block Diagram
PORT 2 DRIVERS
PORT 2
LATCH
P2.0 - P2.7
QUICK
FLASH
PORT 0
LATCH
RAM
PROGRAM
ADDRESS
REGISTER
BUFFER
PC
INCREMENTER
PROGRAM
COUNTER
DUAL
DPTR
RAM ADDR.
REGISTER
INSTRUCTION
REGISTER
B
REGISTER
INTERRUPT, SERIAL PORT,
AND TIMER BLOCKS
STACK
POINTER
ACC
TMP2 TMP1
ALU
PSW
TIMING
AND
CONTROL
PORT 3
LATCH
PORT 3 DRIVERS
P3.0 - P3.7
PORT 1
LATCH
PORT 1 DRIVERS
P1.0 - P1.7
OSC
GND
VCC
PSEN
ALE/PROG
EA / VPP
RST
PORT 0 DRIVERS
P0.0 - P0.7
WATCH
DOG
AT87F55WD
3
The AT87F55WD provides the following standard features:
20K bytes of QuickFlash, 256 bytes of RAM, 32 I/O lines,
three 16-bit timer/counters, a six-vector, two-level interrupt
architecture, a full-duplex serial port, on-chip oscillator, and
clock circuitry. In addition, the AT87F55WD is designed
with static logic for operation down to zero frequency and
supports two software selectable power saving modes. The
Idle Mode stops the CPU while allowing the RAM,
timer/counters, serial port, and interrupt system to continue
functioning. The Power-down mode saves the RAM con-
tents but freezes the oscillator, disabling all other chip func-
tions until the next external interrupt or hardware reset.
Pin Description
VCC
Supply voltage.
GND
Ground.
Port 0
Port 0 is an 8-bit open-drain bidirectional I/O port. As an
output port, each pin can sink eight TTL inputs. When 1s
are written to port 0 pins, the pins can be used as high-
impedance inputs.
Port 0 can also be configured to be the multiplexed low-
order address/data bus during accesses to external
program and data memory. In this mode, P0 has internal
pullups.
Port 0 also receives the code bytes during QuickFlash pro-
gramming and outputs the code bytes during program veri-
fication. External pullups are required during program
verification.
Port 1
Port 1 is an 8-bit bidirectional I/O port with internal pullups.
The Port 1 output buffers can sink/source four TTL inputs.
When 1s are written to Port 1 pins, they are pulled high by
the internal pullups and can be used as inputs. As inputs,
Port 1 pins that are externally being pulled low will source
current (IIL) because of the internal pullups.
In addition, P1.0 and P1.1 can be configured to be the
timer/counter 2 external count input (P1.0/T2) and the
timer/counter 2 trigger input (P1.1/T2EX), respectively, as
shown in the following table.
Port 1 also receives the low-order address bytes during
QuickFlash programming and verification.
Port 2
Port 2 is an 8-bit bidirectional I/O port with internal pullups.
The Port 2 output buffers can sink/source four TTL inputs.
When 1s are written to Port 2 pins, they are pulled high by
the internal pullups and can be used as inputs. As inputs,
Port 2 pins that are externally being pulled low will source
current (IIL) because of the internal pullups.
Port 2 emits the high-order address byte during fetches
from external program memory and during accesses to
external data memory that use 16-bit addresses (MOVX @
DPTR). In this application, Port 2 uses strong internal pul-
lups when emitting 1s. During accesses to external data
memory that use 8-bit addresses (MOVX @ RI), Port 2
emits the contents of the P2 Special Function Register.
Port 2 also receives the high-order address bits and some
control signals during QuickFlash programming and verifi-
cation.
Port 3
Port 3 is an 8-bit bidirectional I/O port with internal pullups.
The Port 3 output buffers can sink/source four TTL inputs.
When 1s are written to Port 3 pins, they are pulled high by
the internal pullups and can be used as inputs. As inputs,
Port 3 pins that are externally being pulled low will source
current (IIL) because of the pullups.
Port 3 also serves the functions of various special features
of the AT87F55WD, as shown in the following table.
Port 3 also receives some control signals for QuickFlash
programming and verification.
RST
Reset input. A high on this pin for two machine cycles while
the oscillator is running resets the device. This pin drives
high for 96 oscillator periods after the Watchdog times out.
The DISRTO bit in SFR AUXR (address 8EH) can be used
to disable this feature. In the default state of bit DISTRO,
the RESET HIGH out feature is enabled.
ALE/PROG
Address Latch Enable is an output pulse for latching the
low byte of the address during accesses to external
Port Pin Alternate Functions
P1.0 T2 (external count input to Timer/Counter 2),
clock-out
P1.1 T2EX (Timer/Counter 2 capture/reload trigger
and direction control)
Port Pin Alternate Functions
P3.0 RXD (serial input port)
P3.1 TXD (serial output port)
P3.2 INT0 (external interrupt 0)
P3.3 INT1 (external interrupt 1)
P3.4 T0 (timer 0 external input)
P3.5 T1 (timer 1 external input)
P3.6 WR (external data memory write strobe)
P3.7 RD (external data memory read strobe)
AT87F55WD
4
memory. This pin is also the program pulse input (PROG)
during QuickFlash programming.
In normal operation, ALE is emitted at a constant rate of 1/6
the oscillator frequency and may be used for external
timing or clocking purposes. Note, however, that one
ALE pulse is skipped during each access to external data
memory.
If desired, ALE operation can be disabled by setting bit 0 of
SFR location 8EH. With the bit set, ALE is active only dur-
ing a MOVX or MOVC instruction. Otherwise, the pin is
weakly pulled high. Setting the ALE-disable bit has no
effect if the microcontroller is in external execution mode.
PSEN
Program Store Enable is the read strobe to external pro-
gram memory.
When the AT87F55WD is executing code from external
program memory, PSEN is activated twice each machine
cycle, except that two PSEN activations are skipped during
each access to external data memory.
EA/VPP
External Access Enable. EA must be strapped to GND in
order to enable the device to fetch code from external pro-
gram memory locations starting at 0000H up to FFFFH.
Note, however, that if lock bit 1 is programmed, EA will be
internally latched on reset.
EA should be strapped to VCC for internal program execu-
tions.
This pin also receives the 12-volt programming enable volt-
age (VPP) during QuickFlash programming.
XTAL1
Input to the inverting oscillator amplifier and input to the
internal clock operating circuit.
XTAL2
Output from the inverting oscillator amplifier.
Table 1. AT87F55WD SFR Map and Reset Values
0F8H 0FFH
0F0H B
00000000 0F7H
0E8H 0EFH
0E0H ACC
00000000 0E7H
0D8H 0DFH
0D0H PSW
00000000 0D7H
0C8H T2CON
00000000
T2MOD
XXXXXX00
RCAP2L
00000000
RCAP2H
00000000
TL2
00000000
TH2
00000000 0CFH
0C0H 0C7H
0B8H IP
XX000000 0BFH
0B0H P3
11111111 0B7H
0A8H IE
0X000000 0AFH
0A0H P2
11111111
AUXR1
XXXXXXX0
WDTRST
XXXXXXXX 0A7H
98H SCON
00000000
SBUF
XXXXXXXX 9FH
90H P1
11111111 97H
88H TCON
00000000
TMOD
00000000
TL0
00000000
TL1
00000000
TH0
00000000
TH1
00000000
AUXR
XXX00XX0 8FH
80H P0
11111111
SP
00000111
DP0L
00000000
DP0H
00000000
DP1L
00000000
DP1H
00000000
PCON
0XXX0000 87H
AT87F55WD
5
Special Function Registers
A map of the on-chip memory area called the Special Func-
tion Register (SFR) space is shown in Table 1.
Note that not all of the addresses are occupied, and unoc-
cupied addresses may not be implemented on the chip.
Read accesses to these addresses will in general return
random data, and write accesses will have an indetermi-
nate effect.
User software should not write 1s to these unlisted loca-
tions, since they may be used in future products to invoke
new features. In that case, the reset or inactive values of
the new bits will always be 0.
Timer 2 Registers: Control and status bits are contained in
registers T2CON (shown in Table 2) and T2MOD (shown in
Table 4) for Timer 2. The register pair (RCAP2H, RCAP2L)
are the Capture/Reload registers for Timer 2 in 16-bit cap-
ture mode or 16-bit auto-reload mode.
Interrupt Registers: The individual interrupt enable bits
are in the IE register. Two priorities can be set for each of
the six interrupt sources in the IP register.
Table 2. T2CON Timer/Counter 2 Control Register
T2CON Address = 0C8H Reset Value = 0000 0000B
Bit Addressable
Bit TF2 EXF2 RCLK TCLK EXEN2 TR2 C/T2 CP/RL2
76543210
Symbol Function
TF2 Timer 2 overflow flag set by a Timer 2 overflow and must be cleared by software. TF2 will not be set when either RCLK = 1
or TCLK = 1.
EXF2 Timer 2 external flag set when either a capture or reload is caused by a negative transition on T2EX and EXEN2 = 1. When
Timer 2 interrupt is enabled, EXF2 = 1 will cause the CPU to vector to the Timer 2 interrupt routine. EXF2 must be cleared
by software. EXF2 does not cause an interrupt in up/down counter mode (DCEN = 1).
RCLK Receive clock enable. When set, causes the serial port to use Timer 2 overflow pulses for its receive clock in serial port
Modes 1 and 3. RCLK = 0 causes Timer 1 overflow to be used for the receive clock.
TCLK Transmit clock enable. When set, causes the serial port to use Timer 2 overflow pulses for its transmit clock in serial port
Modes 1 and 3. TCLK = 0 causes Timer 1 overflows to be used for the transmit clock.
EXEN2 Timer 2 external enable. When set, allows a capture or reload to occur as a result of a negative transition on T2EX if Timer
2 is not being used to clock the serial port. EXEN2 = 0 causes Timer 2 to ignore events at T2EX.
TR2 Start/Stop control for Timer 2. TR2 = 1 starts the timer.
C/T2 Timer or counter select for Timer 2. C/T2 = 0 for timer function. C/T2 = 1 for external event counter (falling edge triggered).
CP/RL2 Capture/Reload select. CP/RL2 = 1 causes captures to occur on negative transitions at T2EX if EXEN2 = 1. CP/RL2 = 0
causes automatic reloads to occur when Timer 2 overflows or negative transitions occur at T2EX when EXEN2 = 1. When
either RCLK or TCLK = 1, this bit is ignored and the timer is forced to auto-reload on Timer 2 overflow.
AT87F55WD
6
Dual Data Pointer Registers: To facilitate accessing both
internal and external data memory, two banks of 16-bit
Data Pointer Registers are provided: DP0 at SFR address
locations 82H-83H and DP1 at 84H-85H. Bit DPS = 0 in
SFR AUXR1 selects DP0 and DPS = 1 selects DP1.
The user should always initialize the DPS bit to the appro-
priate value before accessing the respective Data Pointer
Register.
Power Off Flag: The Power Off Flag (POF) is located at bit
4 (PCON.4) in the PCON SFR. POF is set to 1 during
power up. It can be set and rest under software control and
is not affected by reset.
Table 3a. AUXR: Auxiliary Register
AUXR Address = 8EH Reset Value = XXX00XX0B
Not Bit Addressable
–––WDIDLE DISRTO ––DISALE
Bit 7 6 5 4 3 2 1 0
Reserved for future expansion
DISALE Disable/Enable ALE
DISALE Operating mode
0 ALE is emitted at a constant rate of 1/6 the oscillator frequency
1 ALE is active only during a MOVX or MOVC instruction
DISTRO Disable/Enable Reset out
DISRTO
0 Reset pin is driven High after WDT times out
1 Reset pin is input only
WDIDLE Disable/Enable WDT in IDLE mode
WDIDLE
0 WDT continues to count in IDLE mode
1 WDT halts counting in IDLE mode
Table 3b. AUXR1: Auxiliary Register 1
AUXR1 Address = A2H Reset Value = XXXXXXX0B
Not Bit Addressable
––– DPS
Bit 7 6 5 4 3 2 1 0
Reserved for future expansion
DPS Data Pointer Register Select
DPS
0 Selects DPTR Registers DP0L, DP0H
1 Selects DPTR Registers DP1L, DP1H
AT87F55WD
7
Memory Organization
MCS-51 devices have a separate address space for Pro-
gram and Data Memory. Up to 64K bytes each of external
Program and Data Memory can be addressed.
Program Memory
If the EA pin is connected to GND, all program fetches are
directed to external memory.
On the AT87F55WD, if EA is connected to VCC, program
fetches to addresses 0000H through 4FFFH are directed to
internal memory and fetches to addresses 5000H through
FFFFH are directed to external memory.
Data Memory
The AT87F55WD implements 256 bytes of on-chip RAM.
The upper 128 bytes occupy a parallel address space to
the Special Function Registers. That means the upper 128
bytes have the same addresses as the SFR space but are
physically separate from SFR space.
When an instruction accesses an internal location above
address 7FH, the address mode used in the instruction
specifies whether the CPU accesses the upper 128 bytes
of RAM or the SFR space. Instructions that use direct
addressing access SFR space.
For example, the following direct addressing instruction
accesses the SFR at location 0A0H (which is P2).
MOV 0A0H, #data
Instructions that use indirect addressing access the upper
128 bytes of RAM. For example, the following indirect
addressing instruction, where R0 contains 0A0H, accesses
the data byte at address 0A0H, rather than P2 (whose
address is 0A0H).
MOV @R0, #data
Note that stack operations are examples of indirect
addressing, so the upper 128 bytes of data RAM are avail-
able as stack space.
AT87F55WD
8
Hardware Watchdog Timer
(One-time Enabled with Reset-out)
The WDT is intended as a recovery method in situations
where the CPU may be subjected to software upsets. The
WDT consists of a 14-bit counter and the Watchdog Timer
Reset (WDTRST) SFR. The WDT is defaulted to disable
from exiting reset. To enable the WDT, a user must write
01EH and 0E1H in sequence to the WDTRST register
(SFR location 0A6H). When the WDT is enabled, it will
increment every machine cycle while the oscillator is run-
ning. There is no way to disable the WDT except through
reset (either hardware reset or WDT overflow reset). When
WDT overflows, it will drive an output RESET HIGH pulse
at the RST pin.
Using the WDT
To enable the WDT, a user must write 01EH and 0E1H in
sequence to the WDTRST register (SFR location 0A6H).
When the WDT is enabled, the user needs to service it by
writing 01EH and 0E1H to WDTRST to avoid a WDT over-
flow. The 14-bit counter overflows when it reaches 16383
(3FFFH), and this will reset the device. When the WDT is
enabled, it will increment every machine cycle while the
oscillator is running. This means the user must reset the
WDT at least every 16383 machine cycles. To reset the
WDT the user must write 01EH and 0E1H to WDTRST.
WDTRST is a write-only register. The WDT counter cannot
be read or written. When WDT overflows, it will generate an
output RESET pulse at the RST pin. The RESET pulse
duration is 98xTOSC, where TOSC=1/FOSC. To make the
best use of the WDT, it should be serviced in those sec-
tions of code that will periodically be executed within the
time required to prevent a WDT reset.
WDT During Power-down and Idle Mode
In Power-down mode the oscillator stops, which means the
WDT also stops. While in Power-down mode, the user
does not need to service the WDT. There are two methods
of exiting Power-down mode: by a hardware reset or via a
level-activated external interrupt which is enabled prior to
entering Power-down mode. When Power-down is exited
with hardware reset, servicing the WDT should occur as it
normally does whenever the AT87F55WD is reset. Exiting
Power-down with an interrupt is significantly different. The
interrupt is held low long enough for the oscillator to stabi-
lize. When the interrupt is brought high, the interrupt is ser-
viced. To prevent the WDT from resetting the device while
the interrupt pin is held low, the WDT is not started until the
interrupt is pulled high. It is suggested that the WDT be
reset during the interrupt service for the interrupt used to
exit Power-down.
To ensure that the WDT does not overflow within a few
states of exiting Power-down, it is best to reset the WDT
just before entering Power-down.
Before going into the IDLE mode, the WDIDLE bit in SFR
AUXR is used to determine whether the WDT continues to
count if enabled. The WDT keeps counting during IDLE
(WDIDLE bit = 0) as the default state. To prevent the WDT
from resetting the AT87F55WD while in IDLE mode, the
user should always set up a timer that will periodically exit
IDLE, service the WDT, and reenter IDLE mode.
With WDIDLE bit enabled, the WDT will stop to count in
IDLE mode and resumes the count upon exit from IDLE.
UART
The UART in the AT87F55WD operates the same way as
the UART in the AT87F51 and AT87F52. For further infor-
mation, see the December 1997 Microcontroller Data Book,
page 2-48, section titled, Serial Interface.
Timer 0 and 1
Timer 0 and Timer 1 in the AT87F55WD operate the same
way as Timer 0 and Timer 1 in the AT87F51 and AT87F52.
Timer 2
Timer 2 is a 16-bit Timer/Counter that can operate as either
a timer or an event counter. The type of operation is
selected by bit C/T2 in the SFR T2CON (shown in Table 2).
Timer 2 has three operating modes: capture, auto-reload
(up or down counting), and baud rate generator. The
modes are selected by bits in T2CON, as shown in Table 4.
Timer 2 consists of two 8-bit registers, TH2 and TL2. In the
Timer function, the TL2 register is incremented every
machine cycle. Since a machine cycle consists of 12 oscil-
lator periods, the count rate is 1/12 of the oscillator fre-
quency.
Table 4. Timer 2 Operating Modes
In the Counter function, the register is incremented in
response to a 1-to-0 transition at its corresponding external
input pin, T2. In this function, the external input is sampled
during S5P2 of every machine cycle. When the samples
show a high in one cycle and a low in the next cycle, the
count is incremented. The new count value appears in the
register during S3P1 of the cycle following the one in which
RCLK +TCLK CP/RL2 TR2 MODE
0 0 1 16-bit Auto-reload
0 1 1 16-bit Capture
1 X 1 Baud Rate Generator
X X 0 (Off)
AT87F55WD
9
the transition was detected. Since two machine cycles (24
oscillator periods) are required to recognize a 1-to-0 transi-
tion, the maximum count rate is 1/24 of the oscillator fre-
quency. To ensure that a given level is sampled at least
once before it changes, the level should be held for at least
one full machine cycle.
Capture Mode
In the capture mode, two options are selected by bit
EXEN2 in T2CON. If EXEN2 = 0, Timer 2 is a 16-bit timer
or counter which upon overflow sets bit TF2 in T2CON.
This bit can then be used to generate an interrupt. If
EXEN2 = 1, Timer 2 performs the same operation, but a 1-
to-0 transition at external input T2EX also causes the
current value in TH2 and TL2 to be captured into RCAP2H
and RCAP2L, respectively. In addition, the transition at
T2EX causes bit EXF2 in T2CON to be set. The EXF2 bit,
like TF2, can generate an interrupt. The capture mode is
illustrated in Figure 5.
Auto-reload (Up or Down Counter)
Timer 2 can be programmed to count up or down when
configured in its 16-bit auto-reload mode. This feature is
invoked by the DCEN (Down Counter Enable) bit located in
the SFR T2MOD (see Table 5). Upon reset, the DCEN bit
is set to 0 so that timer 2 will default to count up. When
DCEN is set, Timer 2 can count up or down, depending on
the value of the T2EX pin.
Figure 5. Timer in Capture Mode
Figure 6 shows Timer 2 automatically counting up when
DCEN=0. In this mode, two options are selected by bit
EXEN2 in T2CON. If EXEN2 = 0, Timer 2 counts up to
0FFFFH and then sets the TF2 bit upon overflow. The
overflow also causes the timer registers to be reloaded with
the 16-bit value in RCAP2H and RCAP2L. The values in
Timer in Capture mode RCAP2H and RCAP2L are preset
by software. If EXEN2 = 1, a 16-bit reload can be triggered
either by an overflow or by a 1-to-0 transition at external
input T2EX. This transition also sets the EXF2 bit. Both the
TF2 and EXF2 bits can generate an interrupt if enabled.
Setting the DCEN bit enables Timer 2 to count up or down,
as shown in Figure 6. In this mode, the T2EX pin controls
the direction of the count. A logic 1 at T2EX makes Timer 2
count up. The timer will overflow at 0FFFFH and set the
TF2 bit. This overflow also causes the 16-bit value in
RCAP2H and RCAP2L to be reloaded into the timer regis-
ters, TH2 and TL2, respectively.
A logic 0 at T2EX makes Timer 2 count down. The timer
underflows when TH2 and TL2 equal the values stored in
RCAP2H and RCAP2L. The underflow sets the TF2 bit and
causes 0FFFFH to be reloaded into the timer registers.
The EXF2 bit toggles whenever Timer 2 overflows or
underflows and can be used as a 17th bit of resolution. In
this operating mode, EXF2 does not flag an interrupt.
OSC
EXF2
T2EX PIN
T2 PIN
TR2
EXEN2
C/T2 = 0
C/T2 = 1
CONTROL
CAPTURE
OVERFLOW
CONTROL
TRANSITION
DETECTOR TIMER 2
INTERRUPT
÷12
RCAP2LRCAP2H
TH2 TL2 TF2
AT87F55WD
10
Figure 6. Timer 2 Auto Reload Mode (DCEN = 0)
Table 5. T2MOD Timer 2 Mode Control Register
OSC
EXF2
TF2
T2EX PIN
T2 PIN
TR2
EXEN2
C/T2 = 0
C/T2 = 1
CONTR OL
RELOAD
CONTROL
TRANSITION
DETECTOR
TIMER 2
INTERRUPT
12
RCAP2LRCAP2H
TH2 TL2
OVERFLOW
T2MOD Address = 0C9H Reset Value = XXXX XX00B
Not Bit Addressable
––––––T2OE DCEN
Bit76543210
Symbol Function
Not implemented, reserved for future
T2OE Timer 2 Output Enable bit.
DCEN When set, this bit allows Timer 2 to be configured as an up/down counter.
AT87F55WD
11
Figure 7. Timer 2 Auto Reload Mode (DCEN = 1)
Figure 8. Timer 2 in Baud Rate Generator Mode
OSC
EXF2
TF2
T2EX PIN
COUNT
DIRECTION
1=UP
0=DO
T2 PIN
TR2
CONTROL
OVERFLOW
TOGGLE
TIMER 2
INTERRUPT
12
RCAP2LRCAP2H
0FFH0FFH
TH2 TL2
C/T2 = 0
C/T2 = 1
(DOWN COUNTING RELOAD VALUE)
(UP COUNTING RELOAD VALUE)
OSC
SMOD1
RCLK
TCLK
Rx
CLOCK
Tx
CLOCK
T2EX PIN
T2 PIN
TR2
CONTROL
"1"
"1"
"1"
"0"
"0"
"0"
TIMER 1 OVERFLOW
NOTE: OSC. FREQ. IS DIVIDED BY 2, NOT 12
TIMER 2
INTERRUPT
2
2
16
16
RCAP2LRCAP2H
TH2 TL2
C/T2 = 0
C/T2 = 1
EXF2
CONTROL
TRANSITION
DETECTOR
EXEN2
÷
÷
÷
÷
AT87F55WD
12
Baud Rate Generator
Timer 2 is selected as the baud rate generator by setting
TCLK and/or RCLK in T2CON (Table 2). Note that
the baud rates for transmit and receive can be different if
Timer 2 is used for the receiver or transmitter and Timer 1
is used for the other function. Setting RCLK and/or TCLK
puts Timer 2 into its baud rate generator mode, as shown in
Figure 8.
The baud rate generator mode is similar to the auto-reload
mode, in that a rollover in TH2 causes the Timer 2 registers
to be reloaded with the 16-bit value in registers RCAP2H
and RCAP2L, which are preset by software.
The baud rates in modes 1 and 3 are determined by Timer
2s overflow rate according to the following equation.
The Timer can be configured for either timer or counter
operation. In most applications, it is configured for timer
operation (CP/T2 = 0). The timer operation is different for
Timer 2 when it is used as a baud rate generator. Normally,
as a timer, it increments every machine cycle (at 1/12 the
oscillator frequency). As a baud rate generator, however, it
increments every state time (at 1/2 the oscillator fre-
quency). The baud rate formula is given below.
where (RCAP2H, RCAP2L) is the content of RCAP2H and
RCAP2L taken as a 16-bit unsigned integer.
Timer 2 as a baud rate generator is shown in Figure 8. This
figure is valid only if RCLK or TCLK = 1 in T2CON. Note
that a rollover in TH2 does not set TF2 and will not gener-
ate an interrupt. Note too, that if EXEN2 is set, a 1-to-0
transition in T2EX will set EXF2 but will not cause a reload
from (RCAP2H, RCAP2L) to (TH2, TL2). Thus when Timer
2 is in use as a baud rate generator, T2EX can be used as
an extra external interrupt.
Note that when Timer 2 is running (TR2 = 1) as a timer in
the baud rate generator mode, TH2 or TL2 should not be
read from or written to. Under these conditions, the Timer is
incremented every state time, and the results of a read or
write may not be accurate. The RCAP2 registers may be
read but should not be written to, because a write might
overlap a reload and cause write and/or reload errors. The
timer should be turned off (clear TR2) before accessing the
Timer 2 or RCAP2 registers.
Figure 9. Timer 2 in Clock-Out Mode
Mdes 1 and 3 Baud Rates Timer 2 Overflow Rate
16
------------------------------------------------------------=
Modes 1 and 3
Baud Rate
--------------------------------------- Oscillator Frequency
32 x [65536-RCAP2H,RCAP2L)]
--------------------------------------------------------------------------------------=
OSC
EXF2
P1.0
(T2)
P1.1
(T2EX)
TR2
EXEN2
C/T2 BIT
TRANSITION
DETECTOR
TIMER 2
INTERRUPT
T2OE (T2MOD.1)
2TL2
(8-BITS)
RCAP2L RCAP2H
TH2
(8-BITS)
2
AT87F55WD
13
Programmable Clock Out
A 50% duty cycle clock can be programmed to come out on
P1.0, as shown in Figure 9. This pin, besides being a regu-
lar I/O pin, has two alternate functions. It can be pro-
grammed to input the external clock for Timer/Counter 2 or
to output a 50% duty cycle clock ranging from 61 Hz to
4 MHz at a 16 MHz operating frequency.
To configure the Timer/Counter 2 as a clock generator, bit
C/T2 (T2CON.1) must be cleared and bit T2OE (T2MOD.1)
must be set. Bit TR2 (T2CON.2) starts and stops the timer.
The clock-out frequency depends on the oscillator fre-
quency and the reload value of Timer 2 capture registers
(RCAP2H, RCAP2L), as shown in the following equation.
In the clock-out mode, Timer 2 roll-overs will not generate
an interrupt. This behavior is similar to when Timer 2 is
used as a baud-rate generator. It is possible to use Timer 2
as a baud-rate generator and a clock generator simulta-
neously. Note, however, that the baud-rate and clock-out
frequencies cannot be determined independently from one
another since they both use RCAP2H and RCAP2L.
Interrupts
The AT87F55WD has a total of six interrupt vectors: two
external interrupts (INT0 and INT1), three timer interrupts
(Timers 0, 1, and 2), and the serial port interrupt. These
interrupts are all shown in Figure 10.
Each of these interrupt sources can be individually enabled
or disabled by setting or clearing a bit in Special Function
Register IE. IE also contains a global disable bit, EA, which
disables all interrupts at once.
Note that Table 5 shows that bit position IE.6 is unimple-
mented. In the AT87F55WD, bit position IE.5 is also unim-
plemented. User software should not write 1s to these bit
positions, since they may be used in future AT89 products.
Timer 2 interrupt is generated by the logical OR of bits TF2
and EXF2 in register T2CON. Neither of these flags is
cleared by hardware when the service routine is vectored
to. In fact, the service routine may have to determine
whether it was TF2 or EXF2 that generated the interrupt,
and that bit will have to be cleared in software.
The Timer 0 and Timer 1 flags, TF0 and TF1, are set at
S5P2 of the cycle in which the timers overflow. The values
are then polled by the circuitry in the next cycle. However,
the Timer 2 flag, TF2, is set at S2P2 and is polled in the
same cycle in which the timer overflows.
Table 6. Interrupt Enable (IE) Register
Figure 10. Interrupt Sources
Clock-out Frequency Oscillator Frequency
4 x [65536-(RCAP2H,RCAP2L)]
-------------------------------------------------------------------------------------=
(MSB) (LSB)
EA ET2 ES ET1 EX1 ET0 EX0
Enable Bit = 1 enables the interrupt.
Enable Bit = 0 disables the interrupt.
Symbol Position Function
EA IE.7 Disables all interrupts. If EA = 0,
no interrupt is acknowledged. If
EA = 1, each interrupt source is
individually enabled or disabled
by setting or clearing its enable
bit.
IE.6 Reserved.
ET2 IE.5 Timer 2 interrupt enable bit
ES IE.4 Serial Port interrupt enable bit
ET1 IE.3 Timer 1 interrupt enable bit
EX1 IE.2 External interrupt 1 enable bit
ET0 IE.1 Timer 0 interrupt enable bit
EX0 IE.0 External interrupt 0 enable bit
User software should never write 1s to unimplemented bits,
because they may be used in future AT87 products.
IE1
IE0
1
1
0
0
TF1
TF0
INT1
INT0
TI
RI
TF2
EXF2
AT87F55WD
14
Oscillator Characteristics
XTAL1 and XTAL2 are the input and output, respectively,
of an inverting amplifier that can be configured for use as
an on-chip oscillator, as shown in Figure 11. Either a quartz
crystal or ceramic resonator may be used. To drive the
device from an external clock source, XTAL2 should be left
unconnected while XTAL1 is driven, as shown in Figure 12.
There are no requirements on the duty cycle of the external
clock signal, since the input to the internal clocking circuitry
is through a divide-by-two flip-flop, but minimum and maxi-
mum voltage high and low time specifications must be
observed.
Idle Mode
In idle mode, the CPU puts itself to sleep while all the on-
chip peripherals remain active. The mode is invoked by
software. The content of the on-chip RAM and all the spe-
cial functions registers remain unchanged during this
mode. The idle mode can be terminated by any enabled
interrupt or by a hardware reset.
Note that when idle mode is terminated by a hardware
reset, the device normally resumes program execution
from where it left off, up to two machine cycles before the
internal reset algorithm takes control. On-chip hardware
inhibits access to internal RAM in this event, but access to
the port pins is not inhibited. To eliminate the possibility of
an unexpected write to a port pin when idle mode is termi-
nated by a reset, the instruction following the one that
invokes idle mode should not write to a port pin or to exter-
nal memory.
Power-down Mode
In the Power-down mode, the oscillator is stopped, and the
instruction that invokes power-down is the last instruction
executed. The on-chip RAM and Special Function Regis-
ters retain their values until the power-down mode is termi-
nated. Exit from power-down can be initiated either by a
hardware reset or by an enabled external interrupt. Reset
redefines the SFRs but does not change the on-chip RAM.
The reset should not be activated before VCC is restored to
its normal operating level and must be held active long
enough to allow the oscillator to restart and stabilize.
Figure 11. Oscillator Connections
Note: C1, C2 = 30 pF ± 10 pF for Crystals
= 40 pF ± 10 pF for Ceramic Resonators
Figure 12. External Clock Drive Configuration
C2
XTAL2
GND
XTAL1
C1
XTAL2
XTAL1
GND
NC
EXTERNAL
OSCILLATOR
SIGNAL
Table 7. Status of External Pins During Idle and Power-down Modes
Mode Program Memory ALE PSEN PORT0 PORT1 PORT2 PORT3
Idle Internal 1 1 Data Data Data Data
Idle External 1 1 Float Data Address Data
Power-down Internal 0 0 Data Data Data Data
Power-down External 0 0 Float Data Data Data
AT87F55WD
15
Program Memory Lock Bits
The AT87F55WD has three lock bits that can be left unpro-
grammed (U) or can be programmed (P) to obtain the addi-
tional features listed in the following table.
When lock bit 1 is programmed, the logic level at the EA pin
is sampled and latched during reset. If the device is pow-
ered up without a reset, the latch initializes to a random
value and holds that value until reset is activated. The
latched value of EA must agree with the current logic level
at that pin in order for the device to function properly.
Programming the QuickFlash
The AT87F55WD is shipped with the on-chip QuickFlash
memory array ready to be programmed. The programming
interface needs a high-voltage (12-volt) program enable
signal and is compatible with conventional third-party Flash
or EPROM programmers.
The AT87F55WD code memory array is programmed byte-
by-byte.
Programming Algorithm: Before programming the
AT87F55WD, the address, data, and control signals should
be set up according to the QuickFlash programming mode
table and Figure 13 and Figure 14. To program the
AT87F55WD, take the following steps:
1. Input the desired memory location on the address
lines.
2. Input the appropriate data byte on the data lines.
3. Activate the correct combination of control signals.
4. Raise EA/VPP to 12V.
5. Pulse ALE/PROG once to program a byte in the
QuickFlash array or the lock bits. The byte-write
cycle is self-timed and typically takes no more than
50 µs. Repeat steps 1 through 5, changing the
address and data for the entire array or until the end
of the object file is reached.
Data Polling: The AT87F55WD features Data Polling to
indicate the end of a write cycle. During a write cycle, an
attempted read of the last byte written will result in the com-
plement of the written data on P0.7. Once the write cycle
has been completed, true data is valid on all outputs, and
the next cycle may begin. Data Polling may begin any time
after a write cycle has been initiated.
Ready/Busy: The progress of byte programming can also
be monitored by the RDY/BSY output signal. P3.0 is pulled
low after ALE goes high during programming to indicate
BUSY. P3.0 is pulled high again when programming is
done to indicate READY.
Program Verify: If lock bits LB1 and LB2 have not been
programmed, the programmed code data can be read back
via the address and data lines for verification. The lock bits
cannot be verified directly. Verification of the lock bits is
achieved by observing that their features are enabled.
Reading the Signature Bytes: The signature bytes are
read by the same procedure as a normal verification of
locations 000H, 100H, and 200H, except that P3.6 and
P3.7 must be pulled to a logic low. The values returned are
as follows.
(000H) = 1EH indicates manufactured by Atmel
(100H) = 87H indicates 87F family
(200H) = 05H indicates 87F55WD
Table 8. Lock Bit Protection Modes
Program Lock Bits
LB1 LB2 LB3 Protection Type
1 U U U No program lock features
2PUU
MOVC instructions executed
from external program
memory are disabled from
fetching code bytes from
internal memory, EA is
sampled and latched on reset,
and further programming of
the QuickFlash memory is
disabled.
3PPU
Same as mode 2, but verify is
also disabled
4PPP
Same as mode 3, but external
execution is also disabled
AT87F55WD
16
Programming Interface
Every code byte in the QuickFlash array can be pro-
grammed by using the appropriate combination of control
signals. The write operation cycle is self-timed and once
initiated, will automatically time itself to completion.
All major programming vendors offer worldwide support for
the Atmel microcontroller series. Please contact your local
programming vendor for the appropriate software revision.
Notes: 1. Each Prog pulse is 200 ns for Write Code Data and 100 µs for Write Lock Bits.
2. RDY/BSY signal is output on P3.0 during programming.
Figure 13. Programming the QuickFlash Memory Figure 14. Verifying the QuickFlash Memory
*Programming address line A14 (P3.4) is not the same as the external memory address line A14 (P2.6).
Table 9. QuickFlash Programming Modes
Mode VCC RST PSEN
ALE/
PROG
EA/
VPP P2.6 P2.7 P3.3 P3.6 P3.7
P0.7-0
Data
P3.4 P2.5-0 P1.7-0
Address
Write Code Data 5V H L 12V L HHHH D
IN A14 A13-8 A7-0
Read Code Data 5V H L H H/12V L L L H H DOUT A14 A13-8 A7-0
Write Lock Bit 16.5VH L 12VHHHHH X X X X
Write Lock Bit 2 6.5V H L 12V H H H L L X X X X
Write Lock Bit 3 6.5V H L 12V H L H H L X X X X
Read Lock Bits
1, 2, 3 5V H L H H H H L H L D2, 3, 4 X X X
Read Atmel ID 5V H L H H L L L L L 1EH X X 000H
Read Device ID 5V H L H H L L L L L 87H X X 100H
Read Device ID 5V H L H H L L L L L 05H X X 200H
P1.0-P1.7
P2.6
P3.6
P2.0 - P2.5
A0 - A7
ADDR.
0000H/4FFFH
SEE FLASH
PROGRAMMING
MODES TABLE
3-33 MHz
A14*
P0
+5V
P2.7
PGM
DATA
PROG
V/V
IH PP
VIH
ALE
P3.7
XTAL2 EA
RST
PSEN
XTAL1
GND
VCC
AT87F55WD
P3.4
P3.3
P3.0 RDY/
BSY
A8 - A13
P1.0-P1.7
P2.6
P3.6
P2.0 - P2.5
A0 - A7
ADDR.
0000H/4FFFH
SEE FLASH
PROGRAMMING
MODES TABLE
3-33 MHz
P0
+5V
P2.7
PGM DATA
(USE 10K
PULLUPS)
VIH
VIH
ALE
P3.7
XTAL 2 EA
RST
PSEN
XTAL1
GND
V
CC
A14*
AT87F55WD
P3.4
P3.3
A8 - A13
AT87F55WD
17
QuickFlash Programming and Verification Characteristics
TA = 20°C to 30°C, VCC = 4.5V to 5.5V
Symbol Parameter Min Max Units
VPP Programming Supply Voltage 11.5 12.5 V
IPP Programming Supply Current 10 mA
ICC VCC Supply Current 30 mA
1/tCLCL Oscillator Frequency 3 33 MHz
tAVGL Address Setup to PROG Low 48tCLCL
tGHAX Address Hold After PROG 48tCLCL
tDVGL Data Setup to PROG Low 48tCLCL
tGHDX Data Hold After PROG 48tCLCL
tEHSH P2.7 (ENABLE) High to VPP 48tCLCL
tSHGL VPP Setup to PROG Low 10 µs
tGHSL VPP Hold After PROG 10 µs
tGLGH PROG Width 0.2 1 µs
tAVQV Address to Data Valid 48tCLCL
tELQV ENABLE Low to Data Valid 48tCLCL
tEHQZ Data Float After ENABLE 048t
CLCL
tGHBL PROG High to BUSY Low 1.0 µs
tWC Byte Write Cycle Time 80 µs
AT87F55WD
18
QuickFlash Programming and Verification Waveforms
tGLGH
tGHSL
tAVGL
tSHGL
tDVGL tGHAX
tAVQV
tGHDX
tEHSH tELQV
tWC
BUSY READY
tGHBL
tEHQZ
P1.0 - P1.7
P2.0 - P2.5
P3.4
ALE/PROG
PORT 0
LOGIC 1
LOGIC 0
EA/V
PP
VPP
P2.7
(ENABLE)
P3.0
(RDY/BSY)
PROGRAMMING
ADDRESS
VERIFICATION
ADDRESS
DATA I N DATA O U T
AT87F55WD
19
Notes: 1. Under steady state (non-transient) conditions, IOL must be externally limited as follows:
Maximum IOL per port pin: 10 mA
Maximum IOL per 8-bit port:
Port 0: 26 mA Ports 1, 2, 3: 15 mA
Maximum total IOL for all output pins: 71 mA
If IOL exceeds the test condition, VOL may exceed the related specification. Pins are not guaranteed to sink current greater
than the listed test conditions.
2. Minimum VCC for Power-down is 2V.
Absolute Maximum Ratings*
Operating Temperature.................................. -55°C to +125°C*NOTICE: Stresses beyond those listed under Absolute
Maximum Ratings may cause permanent dam-
age to the device. This is a stress rating only and
functional operation of the device at these or any
other conditions beyond those indicated in the
operational sections of this specification is not
implied. Exposure to absolute maximum rating
conditions for extended periods may affect
device reliability.
Storage Temperature ..................................... -65°C to +150°C
Voltage on Any Pin
with Respect to Ground .....................................-1.0V to +7.0V
Maximum Operating Voltage ............................................ 6.6V
DC Output Current...................................................... 15.0 mA
DC Characteristics
The values shown in this table are valid for TA = -40°C to 85°C and VCC = 4.0V to 5.5V, unless otherwise noted.
Symbol Parameter Condition Min Max Units
VIL Input Low Voltage (Except EA)-0.50.2 V
CC-0.1 V
VIL1 Input Low Voltage (EA)-0.50.2 V
CC-0.3 V
VIH Input High Voltage (Except XTAL1, RST) 0.2 VCC+0.9 VCC+0.5 V
VIH1 Input High Voltage (XTAL1, RST) 0.7 VCC VCC+0.5 V
VOL Output Low Voltage(1) (Ports 1,2,3) IOL = 1.6 mA 0.45 V
VOL1
Output Low Voltage(1)
(Port 0, ALE, PSEN)IOL = 3.2 mA 0.45 V
VOH
Output High Voltage
(Ports 1,2,3, ALE, PSEN)
IOH = -60 µA, VCC = 5V ± 10% 2.4 V
IOH = -25 µA 0.75 VCC V
IOH = -10 µA0.9 V
CC V
VOH1
Output High Voltage
(Port 0 in External Bus Mode)
IOH = -800 µA, VCC = 5V ± 10% 2.4 V
IOH = -300 µA 0.75 VCC V
IOH = -80 µA0.9 V
CC V
IIL Logical 0 Input Current (Ports 1,2,3) VIN = 0.45V -50 µA
ITL
Logical 1 to 0 Transition Current
(Ports 1,2,3) VIN = 2V, VCC = 5V ± 10% -650 µA
ILI Input Leakage Current (Port 0, EA) 0.45 < VIN < VCC ±10 µA
RRST Reset Pulldown Resistor 50 300 K
CIO Pin Capacitance Test Freq. = 1 MHz, TA = 25°C10pF
ICC
Power Supply Current
Active Mode, 12 MHz 25 mA
Idle Mode, 12 MHz 6.5 mA
Power Down Mode(1) VCC = 5.5V 100 µA
AT87F55WD
20
AC Characteristics
Under operating conditions, load capacitance for Port 0, ALE/PROG, and PSEN = 100 pF; load capacitance for all other
outputs = 80 pF.
External Program and Data Memory Characteristics
Symbol Parameter
12 MHz Oscillator Variable Oscillator
UnitsMin Max Min Max
1/tCLCL Oscillator Frequency 0 33 MHz
tLHLL ALE Pulse Width 127 2tCLCL-40 ns
tAVLL Address Valid to ALE Low 43 tCLCL-25 ns
tLLAX Address Hold After ALE Low 48 tCLCL-25 ns
tLLIV ALE Low to Valid Instruction In 233 4tCLCL-65 ns
tLLPL ALE Low to PSEN Low 43 tCLCL-25 ns
tPLPH PSEN Pulse Width 205 3tCLCL-45 ns
tPLIV PSEN Low to Valid Instruction In 145 3tCLCL-60 ns
tPXIX Input Instruction Hold After PSEN 00ns
tPXIZ Input Instruction Float After PSEN 59 tCLCL-25 ns
tPXAV PSEN to Address Valid 75 tCLCL-8 ns
tAVIV Address to Valid Instruction In 312 5tCLCL-80 ns
tPLAZ PSEN Low to Address Float 10 10 ns
tRLRH RD Pulse Width 400 6tCLCL-100 ns
tWLWH WR Pulse Width 400 6tCLCL-100 ns
tRLDV RD Low to Valid Data In 252 5tCLCL-90 ns
tRHDX Data Hold After RD 00ns
tRHDZ Data Float After RD 97 2tCLCL-28 ns
tLLDV ALE Low to Valid Data In 517 8tCLCL-150 ns
tAVDV Address to Valid Data In 585 9tCLCL-165 ns
tLLWL ALE Low to RD or WR Low 200 300 3tCLCL-50 3tCLCL+50 ns
tAVWL Address to RD or WR Low 203 4tCLCL-75 ns
tQVWX Data Valid to WR Transition 23 tCLCL-30 ns
tQVWH Data Valid to WR High 433 7tCLCL-130 ns
tWHQX Data Hold After WR 33 tCLCL-25 ns
tRLAZ RD Low to Address Float 0 0 ns
tWHLH RD or WR High to ALE High 43 123 tCLCL-25 tCLCL+25 ns
AT87F55WD
21
External Program Memory Read Cycle
External Data Memory Read Cycle
tLHLL
tLLIV
tPLIV
tLLAX
tPXIZ
tPLPH
tPLAZ
tPXAV
tAVLL tLLPL
tAVIV
tPXIX
ALE
PSEN
PORT 0
PORT 2
A8 - A15
A0 - A7 A0 - A7
A8 - A15
INSTR IN
tLHLL
tLLDV
tLLWL
tLLAX
tWHLH
tAVLL
tRLRH
tAVDV
tAVWL
tRLAZ tRHDX
tRLDV tRHDZ
A0 - A7 FROM RI OR DPL
ALE
PSEN
RD
PORT 0
PORT 2
P2.0 - P2.7 OR A8 - A15 FROM DPH
A0 - A7 FROM PCL
A8 - A15 FROM PCH
DATA IN INSTR IN
AT87F55WD
22
External Data Memory Write Cycle
External Clock Drive Waveforms
tLHLL
tLLWL
tLLAX
tWHLH
tAVLL
tWLWH
tAVWL
tQVWX tQVWH
tWHQX
A0 - A7 FROM RI OR DPL
ALE
PSEN
WR
PORT 0
PORT 2
P2.0 - P2.7 OR A8 - A15 FROM DPH
A0 - A7 FROM PCL
A8 - A15 FROM PCH
DATA OUT INSTR IN
tCHCX
tCHCX
tCLCX
tCLCL
tCHCL
tCLCH
V - 0.5V
CC
0.45V
0.2 V - 0.1V
CC
0.7 VCC
External Clock Drive
Symbol Parameter Min Max Units
1/tCLCL Oscillator Frequency 0 33 MHz
tCLCL Clock Period 30 ns
tCHCX High Time 12 ns
tCLCX Low Time 12 ns
tCLCH Rise Time 5 ns
tCHCL Fall Time 5 ns
AT87F55WD
23
Shift Register Mode Timing Waveforms
AC Testing Input/Output Waveforms(1)
Note: 1. AC Inputs during testing are driven at VCC - 0.5V
for a logic 1 and 0.45V for a logic 0. Timing mea-
surements are made at VIH min. for a logic 1 and VIL
max. for a logic 0.
Float Waveforms(1)
Note: 1. For timing purposes, a port pin is no longer floating
when a 100 mV change from load voltage occurs. A
port pin begins to float when a 100 mV change from
the loaded VOH/VOL level occurs.
Serial Port Timing: Shift Register Mode Test Conditions
The values in this table are valid for VCC = 4.0V to 5.5V and Load Capacitance = 80 pF.
Symbol Parameter
12 MHz Osc Variable Oscillator
UnitsMin Max Min Max
tXLXL Serial Port Clock Cycle Time 1.0 12tCLCL µs
tQVXH Output Data Setup to Clock Rising Edge 700 10tCLCL-133 ns
tXHQX Output Data Hold After Clock Rising Edge 50 2tCLCL-80 ns
tXHDX Input Data Hold After Clock Rising Edge 0 0 ns
tXHDV Clock Rising Edge to Input Data Valid 700 10tCLCL-133 ns
t
XHDV
t
QVXH
t
XLXL
t
XHDX
t
XHQX
ALE
INPUT DATA
CLEAR RI
OUTPUT DATA
WRITE TO SBUF
INSTRUCTION
CLOCK
0
0
1
1
2
2
3
3
4
4
5
5
6
6
7
7
SET TI
SET RI
8
VALID VALIDVALID VALIDVALID VALIDVALID VALID
0.45V
TEST POINTS
V - 0.5V
CC 0.2 V + 0.9V
CC
0.2 V - 0.1V
CC
VLOAD+ 0.1V
Timing Reference
Points
V
LOAD - 0.1V
LOAD
VVOL+ 0.1V
VOL - 0.1V
AT87F55WD
24
Ordering Information
Speed
(MHz)
Power
Supply Ordering Code Package Operation Range
24 4.0V to 5.5V AT87F55WD-24AC
AT87F55WD-24JC
AT87F55WD-24PC
44A
44J
40P6
Commercial
(0°C to 70°C)
AT87F55WD-24AI
AT87F55WD-24JI
AT87F55WD-24PI
44A
44J
40P6
Industrial
(-40°C to 85°C)
33 4.5V to 5.5V AT87F55WD-33AC
AT87F55WD-33JC
AT87F55WD-33PC
44A
44J
40P6
Commercial
(0°C to 70°C)
Package Type
44A 44-lead, Thin Plastic Gull Wing Quad Flatpack (TQFP)
44J 44-lead, Plastic J-leaded Chip Carrier (PLCC)
40P6 40-lead, 0.600" Wide, Plastic Dual Inline Package (PDIP)
= Preliminary Availability
AT87F55WD
25
Packaging Information
*Controlling dimension: millimeters
1.20(0.047) MAX
10.10(0.394)
9.90(0.386) SQ
12.21(0.478)
11.75(0.458) SQ
0.75(0.030)
0.45(0.018)
0.15(0.006)
0.05(0.002)
0.20(.008)
0.09(.003)
0
7
0.80(0.031) BSC
PIN 1 ID
0.45(0.018)
0.30(0.012)
.045(1.14) X 45°PIN NO. 1
IDENTIFY
.045(1.14) X 30° - 45°.012(.305)
.008(.203)
.021(.533)
.013(.330)
.630(16.0)
.590(15.0)
.043(1.09)
.020(.508)
.120(3.05)
.090(2.29)
.180(4.57)
.165(4.19)
.500(12.7) REF SQ
.032(.813)
.026(.660)
.050(1.27) TYP
.022(.559) X 45° MAX (3X)
.656(16.7)
.650(16.5)
.695(17.7)
.685(17.4)SQ
SQ
2.07(52.6)
2.04(51.8) PIN
1
.566(14.4)
.530(13.5)
.090(2.29)
MAX
.005(.127)
MIN
.065(1.65)
.015(.381)
.022(.559)
.014(.356)
.065(1.65)
.041(1.04)
0
15 REF
.690(17.5)
.610(15.5)
.630(16.0)
.590(15.0)
.012(.305)
.008(.203)
.110(2.79)
.090(2.29)
.161(4.09)
.125(3.18)
SEATING
PLANE
.220(5.59)
MAX
1.900(48.26) REF
44A, 44-lead, Thin (1.0 mm) Plastic Gull Wing Quad
Flat Package (TQFP)
Dimensions in Millimeters and (Inches)*
44J, 44-lead, Plastic J-leaded Chip Carrier (PLCC)
Dimensions in Inches and (Millimeters)
40P6, 40-pin, 0.600" Wide, Plastic Dual Inline
Package (PDIP)
Dimensions in Inches and (Millimeters)
JEDEC STANDARD MS-011 AC
© Atmel Corporation 2000.
Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Companys standard war-
ranty which is detailed in Atmels Terms and Conditions located on the Companys web site. The Company assumes no responsibility for
any errors which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without
notice, and does not make any commitment to update the information contained herein. No licenses to patents or other intellectual prop-
erty of Atmel are granted by the Company in connection with the sale of Atmel products, expressly or by implication. Atmels products are
not authorized for use as critical components in life support devices or systems.
Atmel Headquarters Atmel Operations
Corporate Headquarters
2325 Orchard Parkway
San Jose, CA 95131
TEL (408) 441-0311
FAX (408) 487-2600
Europe
Atmel U.K., Ltd.
Coliseum Business Centre
Riverside Way
Camberley, Surrey GU15 3YL
England
TEL (44) 1276-686-677
FAX (44) 1276-686-697
Asia
Atmel Asia, Ltd.
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimhatsui
East Kowloon
Hong Kong
TEL (852) 2721-9778
FAX (852) 2722-1369
Japan
Atmel Japan K.K.
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
TEL (81) 3-3523-3551
FAX (81) 3-3523-7581
Atmel Colorado Springs
1150 E. Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906
TEL (719) 576-3300
FAX (719) 540-1759
Atmel Rousset
Zone Industrielle
13106 Rousset Cedex
France
TEL (33) 4-4253-6000
FAX (33) 4-4253-6001
Fax-on-Demand
North America:
1-(800) 292-8635
International:
1-(408) 441-0732
e-mail
literature@atmel.com
Web Site
http://www.atmel.com
BBS
1-(408) 436-4309
Printed on recycled paper.
1918A08/00/xM
Marks bearing ® and/or are registered trademarks and trademarks of Atmel Corporation.
Terms and product names in this document may be trademarks of others.