Specifications and information are subject to change without notice
WJ Communications, Inc Phone 1-800-WJ1-4401 FAX: 408-577-6621 e-mail: sales@wj.com Web site: www.wj.com, www.TriQuint.com Page 1 of 12 March 2008
FP31QF
2-Watt HFET
Product Features
50 – 4000 MHz
18 dB Gain @ 900 MHz
+34 dBm P1dB
+46 dBm Output IP3
High Drain Efficiency
Single Voltage Supply
Robust 1000V ESD, Class IC
Lead free/green/RoHS-compliant
6mm 28-pin QFN package
Applications
Mobile Infrastructure
CATV / DBS
W-LAN / ISM
RFID
Defense / Homeland Security
Fixed Wireless
Product Description
The FP31QF is a high performance 2-Watt HFET
(Heterostructure FET) in a low-cost lead-free/RoHS-
compliant 28-pin 6x6 mm QFN (Quad Flatpack, No-
Lead) surface-mount package. This device works
optimally at a drain bias of +9 V and 450 mA to achieve
+46 dBm output IP3 performance and an output power of
+34 dBm at 1-dB compression.
The device conforms to WJ Communications’ long
history of producing high reliability and quality
components. The FP31QF has an associated MTTF of a
minimum of 100 years at a mounting temperature of
85°C. All devices are 100% RF & DC tested.
The product is targeted for use as driver amplifiers for
wireless infrastructure where high performance and high
efficiency are required.
Functional Diagram
Function Pin No.
Gate /
RF Input 3
Drain /
RF Output 19
Ground All other pins &
backside copper
Specifications
DC Parameter Units Min Typ Max
Saturated Drain Current, Idss mA 1170
Transconductance, Gm mS
590
Pinch Off Voltage, Vp (1) V
-2.0
RF Parameter (2) Units Min Typ Max
Operational Bandwidth MHz 50 4000
Test Frequency MHz 800
Small Signal Gain dB 18
Maximum Stable Gain dB 24
Output P1dB dBm +34
Output IP3 (3) dBm
+46
Noise Figure dB 3.5
1. Pinch-off voltage is measured when Ids = 4.8 mA.
2. Test conditions unless otherwise noted: T = 25 ºC, VDS = 9 V, IDQ = 450 mA, in a tuned
application circuit with ZL = ZLOPT, ZS = ZSOPT (optimized for output power).
3. 3OIP measured with two tones at an output power of +18 dBm/tone separated by 1 MHz. The
suppression on the largest IM3 product is used to calculate the 3OIP using a 2:1 rule.
Absolute Maximum Rating
Parameter Rating
Storage Temperature -55 to +125 °C
DC Power 7.5 W
RF Input Power (continuous) 6 dB above Input P1dB
Drain to Gate Voltage, Vdg +16 V
Thermal Resistance, Rth 18°C/W
Junction Temperature +160°C
Operation of this device above any of these parameters may cause permanent damage.
Typical Performance (4)
Parameter Units Typical
Frequency MHz 915 1960 2140 2450
Gain dB 18 13.5 13 12
S11 dB -20 -20 -18 -18
S22 dB -12 -11 -24 -15
Output P1dB dBm +34 +33.8 +33.2 +33.5
Output IP3 (3) dBm +46 +46.8 +46.6 +46.8
Noise Figure dB 3.5 4.5 4.6 4.6
IS-95 Channel Power
@ -45 dBc ACPR dBm +27.8 +27.3
W-CDMA Ch. Power
@ -45 dBc ACLR dBm +25
Drain Voltage (5) V +9
Drain Current (5) mA 450
4. Typical parameters represent performance in an application circuit.
5. Empirical measurements showed optimal power performance at a drain voltage = 9 volts at 450 mA.
Because the FP31QF is a discrete device, users can choose their own bias configuration. Performance
may vary from the data shown depending on the biasing conditions. To achieve a minimum 1 million
hours MTTF rating, the biasing condition should maintain a junction temperature below 160 °C over all
operating temperatures. This can be approximated by (drain voltage) x (drain current) x 17.5 °C/W +
(maximum operating temperature).
Ordering Information
Part No. Description
FP31QF-F 2-Watt HFET
(lead-free/RoHS-compliant 6mm QFN package)
FP31QF-PCB900 870 – 960 MHz Application Circuit
FP31QF-PCB1900 1930 – 1990 MHz Application Circuit
FP31QF-PCB2140 2110 – 2170 MHz Application Circuit
Standard tape / reel size = 500 pieces on a 7” reel
1
2
3
4
5
6
7
21
20
19
18
17
16
15
28
27 26 25 24 23 22
8 9 10 11 12 13 14
GND
GND
DRAIN /
RF OUT
GND
GND
GND
GND
GND
GND
GATE
/
RF IN
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
Specifications and information are subject to change without notice
WJ Communications, Inc Phone 1-800-WJ1-4401 FAX: 408-577-6621 e-mail: sales@wj.com Web site: www.wj.com, www.TriQuint.com Page 2 of 12 March 2008
FP31QF
2-Watt HFET
Typical Device Data
S-Parameters (VDS = +9 V, IDS = 450 mA, T = 25 °C, calibrated to device leads)
00.5 11.5 22.5 3
Frequency (GHz)
S21, Maximum Stable Gain vs. F requency
0
10
20
30
S21, MSG (dB)
DB(|S[2,1]|)
DB(MSG)
0
1.0 1.0-1.0
10.0
10.0
-10.0
5.0
5.0
-5.0
2.0
2.0
-2.0
3.0
3.0
-3.0
4.0
4.0
-4.0
0.2
0.2
-0.2
0.4
0.4
-0.4
0.6
0.6
-0.6
0.8
0.8
-0.8
S11 Swp Max
6GHz
Swp Min
0.01GHz
0
1.0 1.0-1.0
10.0
10.0
-10.0
5.0
5.0
-5.0
2.0
2.0
-2.0
3.0
3.0
-3.0
4.0
4.0
-4.0
0.2
0.2
-0.2
0.4
0.4
-0.4
0.6
0.6
-0.6
0.8
0.8
-0.8
S22 Swp Max
6GHz
Swp Min
0.01GHz
Note:
Measurements were made on the packaged device in a test fixture with 50 ohm input and output lines.
The S-parameters shown are the de-embedded data down to the device leads and represents typical performance of the device.
Freq (MHz) S11 (mag) S11 (ang) S21 (mag) S21 (ang) S12 (mag) S12 (ang) S22 (mag) S22 (ang)
50 0.985 -21.82 24.458 166.25 0.006 76.01 0.096 -110.34
250 0.936 -88.63 17.968 128.52 0.020 43.34 0.329 -135.13
500 0.913 -128.61 11.520 104.42 0.025 22.03 0.431 -151.01
750 0.899 -148.43 8.132 90.03 0.026 10.75 0.465 -158.3
1000 0.900 -160.54 6.225 79.35 0.026 4.56 0.490 -162.14
1250 0.900 -169.15 4.988 70.50 0.025 0.35 0.514 -163.92
1500 0.900 -176.01 4.125 62.56 0.025 -2.975 0.532 -166.86
1750 0.905 178.53 3.504 55.28 0.024 -4.91 0.560 -168.72
2000 0.909 172.99 3.046 47.93 0.023 -5.54 0.587 -170.95
2250 0.910 168.27 2.656 41.65 0.022 -4.44 0.606 -172.86
2500 0.914 164.14 2.349 34.95 0.021 -1.12 0.629 -175.13
2750 0.914 160.09 2.117 28.98 0.021 5.24 0.656 -177.13
3000 0.915 156.76 1.897 23.31 0.022 12.75 0.671 -179.41
3250 0.922 153.22 1.721 17.69 0.026 23.36 0.695 177.36
3500 0.926 149.22 1.563 11.97 0.034 32.54 0.720 175.05
3750 0.941 144.67 1.433 6.20 0.058 34.08 0.734 171.21
4000 0.943 140.45 1.318 0.98 0.102 23.74 0.768 165.82
Device S-parameters are available for download from the website at: http://www.wj.com
Load-Pull Data at 1.96 and 2.14 GHz
(Vds = 8 V, Ids = 500 mA, 25 °C, ZS = 50 Ω, calibrated to device pins)
Freq (GHz) ZS (Ω) ZL (Ω) Gain (dB) P1dB (dBm) OIP3 (dBm) PAE (%)
1.96 5 + j0 8 - j2 18.5 +34 +48 49
2.14 5 - j2 8 - j3 18.0 +34 +48 50
0
1.0 1.0-1.0
10.0
10.0
-10.0
5.0
5.0
-5.0
2.0
2.0
-2.0
3.0
3.0
-3.0
4.0
4.0
-4.0
0.2
0.2
-0.2
0.4
0.4
-0.4
0.6
0.6
-0.6
0.8
0.8
-0.8
P1dB Swp Max
1.96GHz
Swp Min
1e-009GHz
1.96 GHz
r 8 Ohm
x -2 Ohm
33 32 313029 28 27
0
1.0 1.0-1.0
10.0
10.0
-10.0
5.0
5.0
-5.0
2.0
2.0
-2.0
3.0
3.0
-3.0
4.0
4.0
-4.0
0.2
0.2
-0.2
0.4
0.4
-0.4
0.6
0.6
-0.6
0.8
0.8
-0.8
Outp ut IP3 Swp Max
1.96GHz
Swp Min
1e-009GHz
1.96 GHz
r 8 Ohm
x -2 Ohm
48 47 46 45 44 434241
P1dB max (1.96 GHz) = +34 dBm at ZL = 8 - j2 Ω OIP3 max (1.96 GHz) = +48 dBm at ZL = 8 - j2 Ω
1
2
3 4 5 6
1
2
3
4
5
6
Specifications and information are subject to change without notice
WJ Communications, Inc Phone 1-800-WJ1-4401 FAX: 408-577-6621 e-mail: sales@wj.com Web site: www.wj.com, www.TriQuint.com Page 3 of 12 March 2008
FP31QF
2-Watt HFET
Application Circuit: 870 – 960 MHz (FP31QF-PCB900)
The application circuit is matched for output power.
Typical RF Performance
Drain Bias = +9 V, Ids = 450 mA, 25 °C
Frequency MHz 870 915 960
S21 – Gain dB 18.3 18 17.7
S11 – Input Return Loss dB -15 -20 -16
S22 – Output Return Loss dB -9.3 -12 -16
Output P1dB dBm +33.9 +34 +33.7
Output IP3
(+18 dBm / tone, 1 MHz spacing) dBm +46
Noise Figure dB 3.4 3.5 3.5
IS-95 Channel Power
@ -45 dBc ACPR dBm +27.8
Circuit Board Material: .014” FR-4 (εr = 4.6),
4 layers (other layers added for rigidity), .062” total thickness, 1 oz copper
The main microstrip line has a line impedance of 50 .
Bill of Materials
Ref. Desig. Value Part style Size
C1, C4, C8, C10 100 pF Chip capacitor 0603
C2, C3 4.7 pF Chip capacitor 0603
C7, C11 1000 pF Chip capacitor 0603
C12 0.1 μF Chip capacitor 1206
L1, L2 27 nH Wirewound chip inductor 0805
L3 3.3 nH Multilayer chip inductor 0603
R1 10 Chip resistor 0603
R2 51 Chip resistor 0603
Q1 FP31QF WJ 2W HFET QFN 6x6
C5, C6 Do Not Place
The C2 and C3 placements are at silk screen markers, “H” and “9.5”, respectively.
The via hole spacing along the main microstrip line is .040”.
The distance from the edge of the FP31QF to the closer edge of L3 is .305”.
The transmission line lengths shown in the schematic are from the FP31QF
device edge to the component edge.
ID=R1
R=10 Ohm
ID=C1
C=100 pF
ID=L2
L=27 nH
ID=C10
C=100 pF
ID=C11
C=1000 pF
ID=C12
C=1e5 pF
ID=C4
C=100 pF
ID=C8
C=100 pF ID=C7
C=1000 pF
ID=C3
C=4.7 pF
ID=L1
L=27 nH
ID=R2
R=51 Ohm
ID=L3
L=3.3 nH
TLINP
ID=TL2
Z0=50 Ohm
L=520 mil
Eeff=3.46
Loss=0
F0=0 MHz
ID=C2
C=4.7 pF
TLINP
ID=TL1
Z0=50 Ohm
L=500 mil
Eeff=3.46
Loss=0
F0=0 MHz
1
2
NET="FP31QF"
-Vgg Vds=9V @ 450 mA
C2 C3
Specifications and information are subject to change without notice
WJ Communications, Inc Phone 1-800-WJ1-4401 FAX: 408-577-6621 e-mail: sales@wj.com Web site: www.wj.com, www.TriQuint.com Page 4 of 12 March 2008
FP31QF
2-Watt HFET
FP31QF-PCB900 Application Circuit Performance Plots
S1 1 vs. Frequen cy
-30
-25
-20
-15
-10
-5
0
860 880 900 920 940 960
Frequency (M Hz)
S11
(
dB
)
-40c +25c +85c
S2 1 vs. Frequen cy
15
16
17
18
19
20
860 880 900 920 940 960
Frequency (M H z)
S21
(
dB
)
-40c +25c +85c
S2 2 vs. Frequen cy
-30
-25
-20
-15
-10
-5
0
860 880 900 920 940 960
Frequency (M Hz)
S22
(
dB
)
-40c +25c +85c
P1dB vs. Frequency
26
28
30
32
34
36
860 880 900 920 940 960
Frequency (M H z)
P1dB
(
dBm
)
-40c +25c +85c
Noise Figure vs. Frequency
0
1
2
3
4
5
6
860 880 900 920 940 960
Frequency (M Hz)
NF
(
dB
)
-40c +25c +85c
ACP R v s . Ch a n ne l P ow e r
IS-95, 9 Ch. Forward, ±885 kHz offset, 30 kHz Meas BW
-70
-60
-50
-40
22 23 24 25 26 27 28 29
Output Channel Power (dBm)
ACPR
(
dBc
)
-4 0 C +25 C +85 C
freq = 915 M H
O IP 3 vs. Temperature
40
42
44
46
48
50
-40 -15 10 35 60 85
Tem perature (°C)
OIP3
(
dBm
)
freq = 915, 916 M Hz
+ 1 8 d Bm / to n e
IM D products vs. O utput P ower
fundam en tal frequency = 915 M Hz, 916 M Hz; Tem p = +25° C
-100
-80
-60
-40
-20
4 8 12 16 20 24 28
O utput Pow er (dB m )
IMD
p
roducts
(
dBm
)
IMD_Lo
w
IMD_High
OIP3 vs. Output Power
fundam en tal frequency = 915 M Hz, 916 M Hz; Tem p = +25° C
30
35
40
45
50
4 8 12 16 20 24 28
Output Power (dBm)
OIP3
(
dBm
)
O utput Pow er / Gain vs. Input Pow er
frequency = 915 M Hz, Tem p = -40° C
10
12
14
16
18
20
-4 0 4 8 12 16 20
Input Power (dBm )
Gain
(
dB
)
16
20
24
28
32
36
Out
p
ut Power
(
dBm
)
Ou tp u t P o we
r
Gain
O utput Pow er / Gain vs. Input Pow er
frequency = 915 MH z, Tem p = +25° C
10
12
14
16
18
20
-4 0 4 8 12 16 20
Input Power (dBm )
Gain
(
dB
)
16
20
24
28
32
36
Out
p
ut Power
(
dBm
)
Ou tp u t P o we
r
Gain
O utput Pow er / Gain vs. Input Pow er
frequency = 915 MH z, Tem p = +85° C
10
12
14
16
18
20
-4 0 4 8 12 16 20
Input Power (dBm )
Gain
(
dB
)
16
20
24
28
32
36
Out
p
ut Power
(
dBm
)
Ou tp u t P o we
r
Gain
Specifications and information are subject to change without notice
WJ Communications, Inc Phone 1-800-WJ1-4401 FAX: 408-577-6621 e-mail: sales@wj.com Web site: www.wj.com, www.TriQuint.com Page 5 of 12 March 2008
FP31QF
2-Watt HFET
Application Circuit: 1930 – 1960 MHz (FP31QF-PCB1900)
The application circuit is matched for output power.
Typical RF Performance
Drain Bias = +9 V, Ids = 450 mA, 25 °C
Frequency MHz 1930 1960 1990
S21 – Gain dB 14 13.8 13.8
S11 – Input Return Loss dB -17 -21 -27
S22 – Output Return Loss dB -11 -11 -13
Output P1dB dBm +33.5 +33.8 +33.8
Output IP3
(+18 dBm / tone, 1 MHz spacing) dBm +46.8
Noise Figure dB 4.3 4.5 4.4
IS-95 Channel Power
@ -45 dBc ACPR dBm +27.3
Circuit Board Material: .014” FR-4 (εr = 4.6),
4 layers (other layers added for rigidity), .062” total thickness, 1 oz copper
The main microstrip line has a line impedance of 50 .
Bill of Materials
Ref. Desig. Value Part style Size
C1, C4, C8, C10 22 pF Chip capacitor 0603
C2 2.2 pF Chip capacitor 0603
C3 2.0 pF Chip capacitor 0603
C7, C11 1000 pF Chip capacitor 0603
C12 0.1 μF Chip capacitor 1206
L1, L2 12 nH Wirewound chip inductor 0805
L3 4.7 nH Multilayer chip inductor 0603
R1 5.1 Chip resistor 0603
R2 51 Chip resistor 0603
Q1 FP31QF WJ 2W HFET QFN 6x6
C5, C6 Do Not Place
The C2 and C3 placements are at silk screen markers, “B” and “3”, respectively.
The via hole spacing along the main microstrip line is .040”.
The distance from the edge of the FP31QF to the closer edge of L3 is .305”.
The transmission line lengths shown in the schematic are from the FP31QF
device edge to the component edge.
ID=R1
R=5.1 Ohm
ID=C1
C=22 pF
ID=L2
L=12 nH
ID=C10
C=22 pF
ID=C11
C=1000 pF
ID=C12
C=1e5 pF
ID=C4
C=22 pF
ID=C8
C=22 pF ID=C7
C=1000 pF
ID=C3
C=2 pF
ID=L1
L=12 nH
ID=R2
R=51 Ohm
ID=L3
L=4.7 nH
TLINP
ID=TL2
Z0=50 Ohm
L=200 mi l
Eeff=3.46
Loss=0
F0=0 MHz
ID=C2
C=2.2 pF
TLINP
ID=TL1
Z0=50 Ohm
L=190 mil
Eeff=3.46
Loss=0
F0=0 MHz
1
2
NET="FP31QF"
-Vgg Vds=9V @ 450 mA
C2 C3
Specifications and information are subject to change without notice
WJ Communications, Inc Phone 1-800-WJ1-4401 FAX: 408-577-6621 e-mail: sales@wj.com Web site: www.wj.com, www.TriQuint.com Page 6 of 12 March 2008
FP31QF
2-Watt HFET
FP31QF-PCB1900 Application Circuit Performance Plots
S1 1 vs. Frequen cy
-30
-25
-20
-15
-10
-5
0
1930 1950 1970 1990
Frequency (M Hz)
S11
(
dB
)
-40C +25C +85C
S2 1 vs. Frequen cy
11
12
13
14
15
16
1930 1950 1970 1990
Frequency (M H z)
S21
(
dB
)
-40C +25C +85C
S2 2 vs. Frequen cy
-30
-25
-20
-15
-10
-5
0
1930 1950 1970 1990
Frequency (M Hz)
S22
(
dB
)
-40C +25C +85C
P1dB vs. Frequency
26
28
30
32
34
36
1930 1950 1970 1990
Frequency (M H z)
P1dB
(
dBm
)
-40c +25c +85c
Noise Figure vs. Frequency
0
1
2
3
4
5
6
1930 1950 1970 1990
Frequency (M H z)
NF
(
dB
)
-40c +25c +85c
ACP R v s . Ch a n ne l P ow e r
IS-95, 9 Ch. Forward, ±885 kHz offset, 30 kHz Meas BW
-75
-65
-55
-45
-35
22 23 24 25 26 27 28 29
O utput Channel Pow er (dBm )
ACPR
(
dBc
)
-4 0 C +25 C +85 C
freq = 1960 M H
z
O IP 3 vs. Temperature
40
42
44
46
48
50
-40 -15 10 35 60 85
Tem perature (°C)
OIP3
(
dBm
)
freq = 1960, 1961 M Hz
+ 1 8 d Bm / to n e
IM D products vs. O utput P ower
fundam ental frequency = 1960, 1961 M Hz; Tem p = +25° C
-100
-80
-60
-40
-20
4 8 12 16 20 24 28
O utput Pow er (dB m )
IMD
p
roducts
(
dBm
)
IMD_Lo
w
IMD_High
OIP3 vs. Output Power
fundam ental frequency = 1960, 1961 M Hz; Tem p = +25° C
30
35
40
45
50
4 8 12 16 20 24 28
Output Power (dBm)
OIP3
(
dBm
)
O utput Pow er / Gain vs. Input Pow er
frequency = 1960 MH z, Tem p = -40° C
6
8
10
12
14
16
2 6 10 14 18 22 26
Input Power (dBm )
Gain
(
dB
)
16
20
24
28
32
36
Out
p
ut Power
(
dBm
)
Ou tp u t P o we
r
Gain
O utput Pow er / Gain vs. Input Pow er
frequency = 1960 M Hz, Tem p = +25° C
6
8
10
12
14
16
2 6 10 14 18 22 26
Input Power (dBm )
Gain
(
dB
)
16
20
24
28
32
36
Out
p
ut Power
(
dBm
)
Ou tp u t P o we
r
Gain
O utput Pow er / Gain vs. Input Pow er
frequency = 1960 M Hz, Tem p = +85° C
6
8
10
12
14
16
2 6 10 14 18 22 26
Input Power (dBm )
Gain
(
dB
)
16
20
24
28
32
36
Out
p
ut Power
(
dBm
)
Ou tp u t P o we
r
Gain
Specifications and information are subject to change without notice
WJ Communications, Inc Phone 1-800-WJ1-4401 FAX: 408-577-6621 e-mail: sales@wj.com Web site: www.wj.com, www.TriQuint.com Page 7 of 12 March 2008
FP31QF
2-Watt HFET
Application Circuit: 2110 – 2170 MHz (FP31QF-PCB2140)
The application circuit is matched for output power.
Typical RF Performance
Drain Bias = +9 V, Ids = 450 mA, 25 °C
Frequency MHz 2110 2140 2170
S21 – Gain dB 13.2 13.3 13.1
S11 – Input Return Loss dB -17 -19 -16
S22 – Output Return Loss dB -14 -24 -18
Output P1dB dBm +33.6 +33.2 +33.3
Output IP3
(+18 dBm / tone, 1 MHz spacing) dBm +46.6
Noise Figure dB 4.7 4.6 4.9
IS-95 Channel Power
@ -45 dBc ACPR dBm +25
Circuit Board Material: .014” FR-4 (εr = 4.6),
4 layers (other layers added for rigidity), .062” total thickness, 1 oz copper
The main microstrip line has a line impedance of 50 .
Bill of Materials
Ref. Desig. Value Part style Size
C1, C4, C8, C10 22 pF Chip capacitor 0603
C2, C3 2 pF Chip capacitor 0603
C7, C11 1000 pF Chip capacitor 0603
C12 0.1 μF Chip capacitor 1206
L1, L2 12 nH Wirewound chip inductor 0805
L3 4.7 nH Multilayer chip inductor 0603
R1 5.1 Chip resistor 0603
R2 51 Chip resistor 0603
Q1 FP31QF WJ 2W HFET QFN 6x6
C5, C6 Do Not Place
The C2 and C3 placements are at silk screen markers, “A” and “2.5”, respectively.
The via hole spacing along the main microstrip line is .040”.
The distance from the edge of the FP31QF to the closer edge of L3 is .305”.
The transmission line lengths shown in the schematic are from the FP31QF
device edge to the component edge.
ID=R1
R=5.1 Ohm
ID=C1
C=22 pF
ID=L2
L=12 nH
ID=C10
C=22 pF
ID=C11
C=1000 pF
ID=C12
C=1e5 pF
ID=C4
C=22 pF
ID=C8
C=22 pF ID=C7
C=1000 pF
ID=C3
C=2 pF
ID=L1
L=12 nH
ID=R2
R=51 Ohm
ID=L3
L=4.7 nH
TLINP
ID=TL2
Z0=50 Ohm
L=180 mi l
Eeff=3.46
Loss=0
F0=0 MHz
ID=C2
C=2 pF
TLINP
ID=TL1
Z0=50 Ohm
L=150 mil
Eeff=3.46
Loss=0
F0=0 MHz
1
2
NET="FP31QF"
-Vgg Vds=9V @ 450 mA
C2 C3
Specifications and information are subject to change without notice
WJ Communications, Inc Phone 1-800-WJ1-4401 FAX: 408-577-6621 e-mail: sales@wj.com Web site: www.wj.com, www.TriQuint.com Page 8 of 12 March 2008
FP31QF
2-Watt HFET
FP31QF-PCB2140 Application Circuit Performance Plots
S1 1 vs. Frequen cy
-30
-25
-20
-15
-10
-5
0
2110 2130 2150 2170
Frequency (M Hz)
S11
(
dB
)
-40c +25c +85c
S2 1 vs. Frequen cy
10
11
12
13
14
15
2110 2130 2150 2170
Frequency (M H z)
S21
(
dB
)
-40c +25c +85c
S2 2 vs. Frequen cy
-30
-25
-20
-15
-10
-5
0
2110 2130 2150 2170
Frequency (M Hz)
S22
(
dB
)
-40c +25c +85c
P1dB vs. Frequency
26
28
30
32
34
36
2110 2130 2150 2170
Frequency (M H z)
P1dB
(
dBm
)
-40C +25C +85C
Noise Figure vs. Frequency
0
1
2
3
4
5
6
2110 2130 2150 2170
Frequency (M H z)
NF
(
dB
)
-40C +25C +85C
ACP R v s . Ch a n ne l P ow e r
3GP P W -CD M A, Test Model 1 + 64 DPC H, ±5 MH z offset
-60
-55
-50
-45
-40
-35
22 23 24 25 26 27
O utput Channel Power (dBm )
ACPR
(
dBc
)
-4 0 C +25 C +85 C
fre q = 21 4 0 MH
z
O IP 3 vs. Temperature
40
42
44
46
48
50
-40 -15 10 35 60 85
Tem perature (°C)
OIP3
(
dBm
)
freq = 2140, 2141 M Hz
+ 1 8 d Bm / to n e
IMD pro d uc ts v s . Ou tp ut P o we r
fundam ental frequency = 2140, 2141 M Hz; Tem p = +25° C
-100
-80
-60
-40
3 6 9 12151821
O utput Pow er (dB m )
IMD
p
roducts
(
dBm
)
IMD_Lo
w
IMD_High
OIP3 vs. Output Power
fundam ental frequency = 2140, 2141 M Hz; Tem p = +25° C
30
35
40
45
50
3 6 9 12 15 18 21
Output Power (dBm)
OIP3
(
dBm
)
O utput Power / Gain vs. Input Power
frequency = 2140 M Hz, Temp = -40° C
4
6
8
10
12
14
2 6 10 14 18 22 26
Input Pow er (dBm )
Gain
(
dB
)
16
20
24
28
32
36
Out
p
ut Power
(
dBm
)
O utput P owe
r
Gain
O utput Pow er / Gain vs. Input Pow er
frequency = 2140 M Hz, Tem p = +25° C
4
6
8
10
12
14
2 6 10 14 18 22 26
Input Power (dBm )
Gain
(
dB
)
16
20
24
28
32
36
Out
p
ut Power
(
dBm
)
Ou tp u t P o we
r
Gain
O utput Pow er / Gain vs. Input Pow er
frequency = 2140 M Hz, Tem p = +85° C
4
6
8
10
12
14
2 6 10 14 18 22 26
Input Power (dBm )
Gain
(
dB
)
16
20
24
28
32
36
Out
p
ut Power
(
dBm
)
Ou tp u t P o we
r
Gain
Specifications and information are subject to change without notice
WJ Communications, Inc Phone 1-800-WJ1-4401 FAX: 408-577-6621 e-mail: sales@wj.com Web site: www.wj.com, www.TriQuint.com Page 9 of 12 March 2008
FP31QF
2-Watt HFET
Reference Design: 2400 – 2500 MHz
The application circuit is matched for output power.
Typical RF Performance
Drain Bias = +9 V, Ids = 450 mA, 25 °C
Frequency MHz 2400 2500
S21 – Gain dB 12.1 12.0
S11 – Input Return Loss dB -13 -16
S22 – Output Return Loss dB -13 -17
Output P1dB dBm +33.5
Output IP3
(+18 dBm / tone, 1 MHz spacing) dBm +46.8
Noise Figure dB 4.6
The 2.4 – 2.5 GHz Reference Circuit is shown for design purposes only. An
evaluation board is not readily available for this application. The reader can
obtain any FP31QF evaluation board and modify it with the circuit shown to
achieve the performance shown in this reference design.
2.3 2.35 2.4 2.45 2.5 2.55 2.6
Fr eque ncy (GH z)
Measured S-Parameters
-25
-20
-15
-10
-5
0
5
10
15
(dB)
DB(|S[1,1]|) DB(|S[2,1]|) DB(|S[2,2]|)
Circuit Board Material: .014” FR-4 (εr = 4.6),
4 layers (other layers added for rigidity), .062” total thickness, 1 oz copper
The main microstrip line has a line impedance of 50 .
Bill of Materials
Ref. Desig. Value Part style Size
C1, C4, C8, C10 22 pF Chip capacitor 0603
C2, C3 1.5 pF Chip capacitor 0603
C7, C11 1000 pF Chip capacitor 0603
C12 0.1 μF Chip capacitor 1206
L1, L2 12 nH Wirewound chip inductor 0805
L3 3.3 nH Multilayer chip inductor 0603
R1 5.1 Chip resistor 0603
R2 50 Chip resistor 0603
Q1 FP31QF WJ 2W HFET QFN 6x6
C5, C6 Do Not Place
The C2 and C3 placements are at silk screen markers, “A” and “2”, respectively.
The via hole spacing along the main microstrip line is .040”.
The distance from the edge of the FP31QF to the closer edge of L3 is .305”.
The transmission line lengths shown in the schematic are from the FP31QF
device edge to the component edge.
ID=R1
R=5.1 Ohm
ID=C1
C=22 pF
ID=L2
L=12 nH
ID=C10
C=22 pF
ID=C11
C=1000 pF
ID=C12
C=1e5 pF
ID=C4
C=22 pF
ID=C8
C=22 pF ID=C7
C=1000 pF
ID=C3
C=1.5 pF
ID=L1
L=12 nH
ID=R2
R=51 Ohm
ID=L3
L=3.3 nH
TLINP
ID=TL2
Z0=50 Ohm
L=180 mi l
Eeff=3.46
Loss=0
F0=0 MHz
ID=C2
C=1.5 pF
TLINP
ID=TL1
Z0=50 Ohm
L=150 mil
Eeff=3.46
Loss=0
F0=0 MHz
1
2
NET="FP31QF"
-Vgg Vds= 9V @ 450 mA
C2 C3
Specifications and information are subject to change without notice
WJ Communications, Inc Phone 1-800-WJ1-4401 FAX: 408-577-6621 e-mail: sales@wj.com Web site: www.wj.com, www.TriQuint.com Page 10 of 12 March 2008
FP31QF
2-Watt HFET
Reference Design: 3500 MHz
The application circuit is matched for output power.
Typical RF Performance
Drain Bias = +9 V, Ids = 450 mA, 25 °C
Frequency MHz 3500
S21 – Gain dB 11.9
S11 – Input Return Loss dB -16
S22 – Output Return Loss dB -8.8
Output P1dB dBm +33.5
Output IP3
(+18 dBm / tone, 1 MHz spacing) dBm +45
The 3.5 GHz Reference Circuit is shown for design purposes only. An
evaluation board is not readily available for this application. The reader can
obtain any FP31QF evaluation board and modify it with the circuit shown to
achieve the performance shown in this reference design.
3.3 3.35 3.4 3.45 3.5 3.55 3.6 3.65 3.7
Frequency (GHz)
Measured S -Parameters
-25
-20
-15
-10
-5
0
5
10
15
(dB)
DB(|S[1,1]|) DB(|S[2,1]|) DB(|S[2,2]|)
Circuit Board Material: .014” FR-4 (εr = 4.6),
4 layers (other layers added for rigidity), .062” total thickness, 1 oz copper
The main microstrip line has a line impedance of 50 .
Bill of Materials
Ref. Desig. Value Part style Size
C1, C4, C8, C10 22 pF Chip capacitor 0603
C2 0.9 pF Chip capacitor 0603
C3 1.0 pF Chip capacitor 0603
C7, C11 1000 pF Chip capacitor 0603
C12 0.1 μF Chip capacitor 1206
L1, L2 6.8 nH Wirewound chip inductor 0805
L3 3.3 nH Multilayer chip inductor 0603
R1 2.2 Chip resistor 0603
R2 50 Chip resistor 0603
Q1 FP31QF WJ 2W HFET QFN 6x6
C5, C6 Do Not Place
Both the C2 and C3 placements are between the first and second via locations
along the main microstrip line leading from the FP31QF device. Further
descriptions are shown in the diagram on the left.
The via hole spacing along the main microstrip line is .040”.
The distance from the edge of the FP31QF to the closer edge of L3 is .305”.
The transmission line lengths shown in the schematic are from the FP31QF
device edge to the component edge.
ID=C1
C=22 pF
ID=C2
C=0.9 pF ID=C3
C=1 pF
ID=C4
C=22 pF
ID=C8
C=22 pF ID=C7
C=1000 pF
ID=C10
C=22 pF
ID=C12
C=1e4 pF
ID=C11
C=1000 pF
ID=L1
L=6.8 nH ID=L2
L=6.8 nH
ID=L3
L=3.3 nH
ID=R1
R=2.2 Ohm
ID=R2
R=51 Ohm
TLIN
Z0=50 Ohm
EL=55 Deg
F0=3.5 GHz
TLIN
Z0=50 Ohm
EL=5.9 Deg
F0=3.5 GHz
TLIN
Z0=50 Ohm
EL=12.8 Deg
F0=3.5 GHz
1
2
NET="FP31QF"
-Vgg Vds=9V @ 450 mA
C2
C3
Specifications and information are subject to change without notice
WJ Communications, Inc Phone 1-800-WJ1-4401 FAX: 408-577-6621 e-mail: sales@wj.com Web site: www.wj.com, www.TriQuint.com Page 11 of 12 March 2008
FP31QF
2-Watt HFET
Application Note: Constant-Current Active-Biasing
Special attention should be taken to properly bias the FP31QF.
Power supply sequencing is required to prevent the device from
operating at 100% Idss for a prolonged period of time and possibly
causing damage to the device. It is recommended that for the safest
operation, the negative supply be “first on and last off.” With a
negative gate voltage present, the drain voltage can then be applied
to the device. The gate voltage can then be adjusted to have the
device be used at the proper quiescent bias condition.
An optional active-bias current mirror is recommended for use with
the application circuits shown this datasheet. Generally in a
laboratory environment, the gate voltage is adjusted until the drain
draws the recommended operating current. The gate voltage
required can vary slightly from device to device because of device
pinchoff variation, while also varying slightly over temperature.
The active-bias circuit, shown on the right, uses dual PNP transistors
to provide a constant drain current into the FP31QF, while also
eliminating the effects of pinchoff variation. This configuration is
best suited for applications where the intended output power level of
the amplifier is backed off at least 6 dB away from its compression
point. With the implementation of the circuit, lower P1dB values
may be measured for a Class-AB amplifier, where the device will
attempt to source more drain current while the circuit tries to provide
a constant drain current. The circuit should be connected directly in
line with where the voltage supplies would be normally connected
with the amplifier circuit, as shown the diagram. Any required
matching circuitry remains the same, although it is not shown in the
diagram. This recommended active-bias constant-current circuit
adds 7 components to the parts count for implementation, but should
cost only an extra $0.144 to realize ($0.10 for U1, $0.0029 for R1,
R3, R4, R5, $0.024 for R2, and $0.0085 for C1).
Temperature compensation is achieved by tracking the voltage
variation with the temperature of the emitter-to-base junction of the
two PNP transistors. As a 1st order approximation, this is achieved
by using matched transistors with approximately the same Ibe
current. Thus the transistor emitter voltage adjusts the HFET gate
voltage so that the device draws a constant current, regardless of the
temperature. A Rohm dual transistor - UMT1N - is recommended
for cost, minimal board space requirements, and to minimize the
variation between the two transistors. Minimizing the variability
between the base-to-emitter junctions allow more accuracy in setting
the current draw. More details can be found in a separate application
note “Active-bias Constant-current Source Recommended for
HFETs” found on the WJ website.
Parameter FP31QF
Pos Supply, Vdd +9 V
Neg Supply, Vgg -5 V
Vds +8.75. V
Ids 450 mA
R1 62 Ω
R2* 0.56 Ω
R3 2 kΩ
R4 1 kΩ
R5 1 kΩ
*R2 should be of size 1206 to dissipate 0.113 Watts.
This should be of 1% tolerance. Two 1.1 Ω resistors in
parallel of size 0805 can also be used.
6
1
5
2
4
3
R1 R2
R3
R4
1 kΩ
-Vgg
+Vdd
U1
Rohm UMT1N
RF IN RF OUT
DUT
M.N. M.N.
HFET A
pp
lication Circuit
R5
C1
.01 μF
Specifications and information are subject to change without notice
WJ Communications, Inc Phone 1-800-WJ1-4401 FAX: 408-577-6621 e-mail: sales@wj.com Web site: www.wj.com, www.TriQuint.com Page 12 of 12 March 2008
FP31QF
2-Watt HFET
FP31QF-F Mechanical Information
This package is lead-free/RoHS-compliant. It is compatible with both lead-free (maximum 260 °C reflow temperature) and leaded
(maximum 245 °C reflow temperature) soldering processes. The plating material on the pins is annealed matte tin over copper.
Outline Drawing
Mounting Configuration / Land Pattern
Product Marking
The component will be lasermarked with a
“FP31FF” product label with an alphanumeric
lot code on the top surface of the package.
The obsolete tin-lead package is marked with
an “FP31QF” designator followed by an
alphanumeric lot code.
Tape and reel specifications for this part will
be located on the website in the “Application
Notes” section.
ESD / MSL Information
ESD Rating: Class 1C
Value: Passes /1000V to <2000V
Test: Human Body Model (HBM)
Standard: JEDEC Standard JESD22-A114
ESD Rating: Class IV
Value: Passes /1000V
Test: Charged Device Model (CDM)
Standard: JEDEC Standard JESD22-C101
MSL Rating: Level 2 at +260 °C convection reflow
Standard: JEDEC Standard J-STD-020
Functional Pin Layout
Pin FUNCTION
3 Gate /RF Input
19 Drain / RF Output
The backside paddle is the Source and should be
grounded for thermal and electrical purposes. All
other pins should be grounded on the PCB.