Low Offset Voltage Dual Comparators

The LM393 series are dual independent precision voltage comparators capable of single or split supply operation. These devices are designed to permit a common mode range—to—ground level with single supply operation. Input offset voltage specifications as low as 2.0 mV make this device an excellent selection for many applications in consumer, automotive, and industrial electronics.

- Wide Single-Supply Range: 2.0 Vdc to 36 Vdc
- Split–Supply Range: ±1.0 Vdc to ±18 Vdc
- Very Low Current Drain Independent of Supply Voltage: 0.4 mA
- Low Input Bias Current: 25 nA
- Low Input Offset Current: 5.0 nA
- Low Input Offset Voltage: 5.0 mV (max) LM293/393
- Input Common Mode Range to Ground Level
- Differential Input Voltage Range Equal to Power Supply Voltage
- Output Voltage Compatible with DTL, ECL, TTL, MOS, and CMOS Logic Levels
- ESD Clamps on the Inputs Increase the Ruggedness of the Device without Affecting Performance

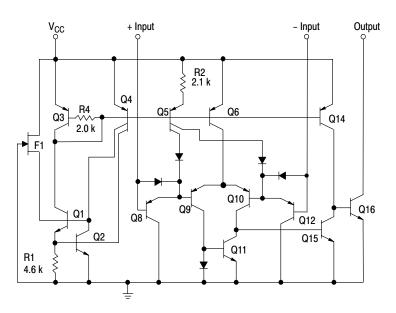
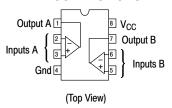


Figure 1. Representative Schematic Diagram (Diagram shown is for 1 comparator)

http://onsemi.com

PDIP-8 N SUFFIX CASE 626



SO-8 D SUFFIX CASE 751

Micro8™ DM SUFFIX CASE 846A

PIN CONNECTIONS

ORDERING & DEVICE MARKING INFORMATION

See detailed ordering and shipping information and marking information in the package dimensions section on page 6 of this data sheet.

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Power Supply Voltage	V _{CC}	+36 or ±18	Vdc
Input Differential Voltage Range	V _{IDR}	36	Vdc
Input Common Mode Voltage Range	V _{ICR}	-0.3 to +36	Vdc
Output Short Circuit-to-Ground Output Sink Current (Note 1)	Isc Isink	Continuous 20	mA
Power Dissipation @ T _A = 25°C Derate above 25°C	P _D 1/R _{θJA}	570 5.7	mW mW/°C
Operating Ambient Temperature Range LM293 LM393 LM2903 LM2903V, NCV2903 (Note 2)	T _A	-25 to +85 0 to +70 -40 to +105 -40 to +125	°C
Maximum Operating Junction Temperature LM393, 2903, LM2903V LM293, NCV2903	T _{J(max)}	150 150	°C
Storage Temperature Range	T _{stg}	-65 to +150	°C
ESD Protection at any Pin - Human Body - Machine		2000 200	V

The maximum output current may be as high as 20 mA, independent of the magnitude of V_{CC}, output short circuits to V_{CC} can cause excessive heating and eventual destruction.
 NCV2903 is qualified for automotive use.

ELECTRICAL CHARACTERISTICS ($V_{CC} = 5.0 \text{ Vdc}$, $T_{low} \le T_A \le T_{high}$, unless otherwise noted.)

		LM293, LM393		LM2903, LM2903V, NCV2903				
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Input Offset Voltage (Note 4)	V _{IO}							mV
$T_A = 25^{\circ}C$		-	±1.0	±5.0	_	±2.0	±7.0	
$T_{low} \le T_A \le T_{high}$		-	-	9.0	-	9.0	15	
Input Offset Current	I _{IO}							nA
$T_A = 25^{\circ}C$		-	±5.0	±50	_	±5.0	±50	
$T_{low} \le T_A \le T_{high}$		-	_	±150	-	±50	±200	
Input Bias Current (Note 5)	I _{IB}							nA
$T_A = 25^{\circ}C$		_	25	250	_	25	250	
$T_{low} \le T_A \le T_{high}$		_	_	400	-	200	500	
Input Common Mode Voltage Range (Note 5)	V_{ICR}			l.,			l.,	V
$T_A = 25^{\circ}C$		0	_	V _{CC} -1.5	0	_	V _{CC} –1.5	
$T_{low} \le T_A \le T_{high}$		0	_	V _{CC} -2.0	0	_	V _{CC} -2.0	
Voltage Gain	A_{VOL}	50	200	_	25	200	_	V/mV
$R_L \ge 15 \text{ k}\Omega, V_{CC} = 15 \text{ Vdc}, T_A = 25^{\circ}\text{C}$								
Large Signal Response Time	-	-	300	-	-	300	-	ns
$V_{in} = TTL \text{ Logic Swing, } V_{ref} = 1.4 \text{ Vdc}$								
$V_{RL} = 5.0 \text{ Vdc}, R_L = 5.1 \text{ k}\Omega, T_A = 25^{\circ}\text{C}$								
Response Time (Note 7)	t _{TLH}	_	1.3	_	_	1.5	_	μS
$V_{RL} = 5.0 \text{ Vdc}, R_L = 5.1 \text{ k}\Omega, T_A = 25^{\circ}\text{C}$								
Input Differential Voltage (Note 8)	V_{ID}	-	_	V_{CC}	-	_	V _{CC}	V
All $V_{in} \ge Gnd$ or $V-Supply$ (if used)								
Output Sink Current	I_{Sink}	6.0	16	_	6.0	16	_	mA
$V_{in} \ge 1.0 \text{ Vdc}, V_{in+} = 0 \text{ Vdc}, V_O \le 1.5 \text{ Vdc} T_A = 25^{\circ}C$								
Output Saturation Voltage	V_{OL}							mV
$V_{in} \ge 1.0 \text{ Vdc}, \ V_{in+} = 0, \ I_{Sink} \le 4.0 \text{ mA}, \ T_A = 25^{\circ}\text{C}$		-	150	400	-	_	400	
$T_{low} \le T_A \le T_{high}$		-	-	700	-	200	700	
Output Leakage Current	I _{OL}							nA
V_{in-} = 0 V, V_{in+} \geq 1.0 Vdc, V_O = 5.0 Vdc, T_A = 25°C		-	0.1	-	-	0.1	-	
$V_{in-} = 0 \text{ V}, V_{in+} \ge 1.0 \text{ Vdc}, V_{O} = 30 \text{ Vdc},$								
$T_{low} \le T_A \le T_{high}$		-	_	1000	-	_	1000	
Supply Current	Icc							mA
$R_L = \infty$ Both Comparators, $T_A = 25^{\circ}C$		_	0.4	1.0	-	0.4	1.0	
$R_L = \infty$ Both Comparators, $V_{CC} = 30 \text{ V}$		_	_	2.5	_	_	2.5	

$$\begin{split} LM293 \ T_{low} &= -25^{\circ}C, \ T_{high} = +85^{\circ}C \\ LM393 \ T_{low} &= 0^{\circ}C, \ T_{high} = +70^{\circ}C \end{split}$$

LM2903 $T_{low} = -40^{\circ}C$, $T_{high} = +105^{\circ}C$

LM2903V & NCV2903 $T_{low} = -40^{\circ}C$, $T_{high} = +125^{\circ}C$

NCV2903 is qualified for automotive use.

- 3. The maximum output current may be as high as 20 mA, independent of the magnitude of V_{CC} , output short circuits to V_{CC} can cause excessive heating and eventual destruction.
- 4. At output switch point, V_O=1.4 Vdc, R_S = 0 Ω with V_{CC} from 5.0 Vdc to 30 Vdc, and over the full input common mode range (0 V to $V_{CC} = -1.5 \text{ V}$).
- 5. Due to the PNP transistor inputs, bias current will flow out of the inputs. This current is essentially constant, independent of the output state, therefore, no loading changes will exist on the input lines.
- 6. Input common mode of either input should not be permitted to go more than 0.3 V negative of ground or minus supply. The upper limit of common mode range is V_{CC} –1.5 V.
- 7. Response time is specified with a 100 mV step and 5.0 mV of overdrive. With larger magnitudes of overdrive faster response times are obtainable.
- 8. The comparator will exhibit proper output state if one of the inputs becomes greater than V_{CC}, the other input must remain within the common mode range. The low input state must not be less than -0.3 V of ground or minus supply.

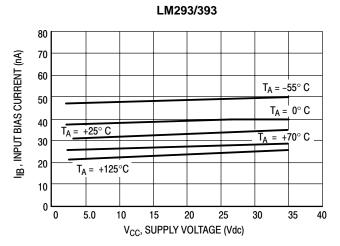


Figure 2. Input Bias Current versus Power Supply Voltage

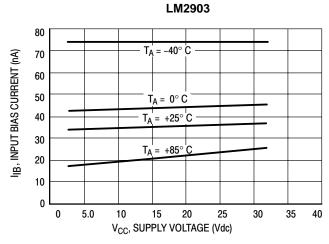


Figure 3. Input Bias Current versus Power Supply Voltage

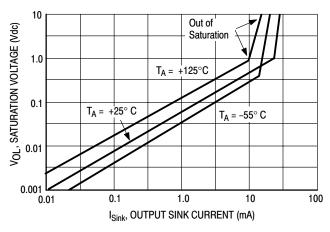


Figure 4. Output Saturation Voltage versus Output Sink Current

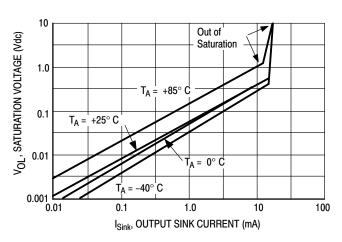


Figure 5. Output Saturation Voltage versus Output Sink Current

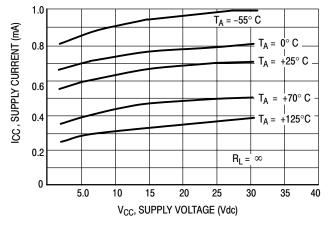
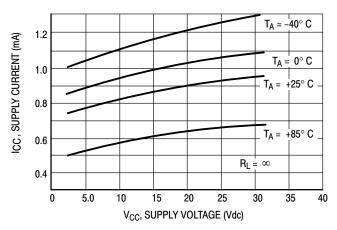
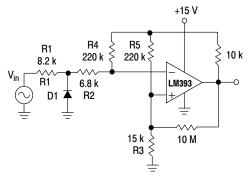


Figure 6. Power Supply Current versus Power Supply Voltage




Figure 7. Power Supply Current versus Power Supply Voltage

APPLICATIONS INFORMATION

These dual comparators feature high gain, wide bandwidth characteristics. This gives the device oscillation tendencies if the outputs are capacitively coupled to the inputs via stray capacitance. This oscillation manifests itself during output transitions (V $_{OL}$ to V $_{OH}$). To alleviate this situation, input resistors <10 k Ω should be used.

The addition of positive feedback ($<10\,\mathrm{mV}$) is also recommended. It is good design practice to ground all unused pins.

Differential input voltages may be larger than supply voltage without damaging the comparator's inputs. Voltages more negative than -0.3 V should not be used.

D1 prevents input from going negative by more than $\,$ 0.6 V.

$$R1 + R2 = R3$$

$$R3 \leq \ \frac{R5}{10} \ \ \text{for small error in zero crossing}.$$

Figure 8. Zero Crossing Detector (Single Supply)

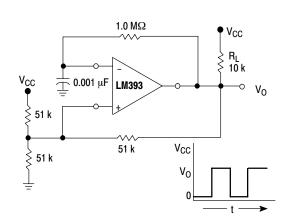
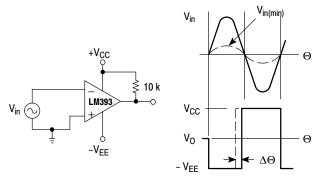



Figure 10. Free-Running Square-Wave Oscillator

 $V_{in(min)} \approx 0.4 \text{ V}$ peak for 1% phase distortion ($\Delta\Theta$).

Figure 9. Zero Crossing Detector (Split Supply)

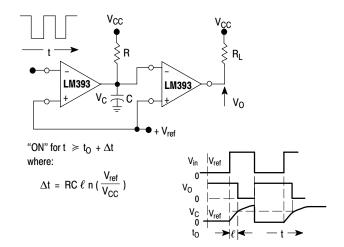


Figure 11. Time Delay Generator

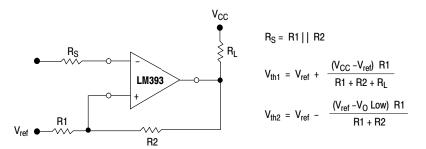
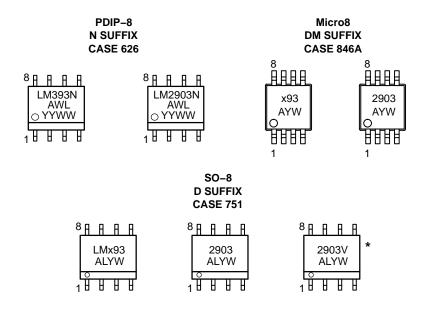



Figure 12. Comparator with Hysteresis

MARKING DIAGRAMS

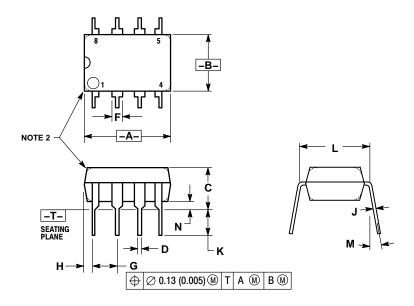
x = 2 or 3

A = Assembly Location

WL, L = Wafer Lot YY, Y = Year

WW, W = Work Week

*This marking diagram also applies to NCV2903DR2.

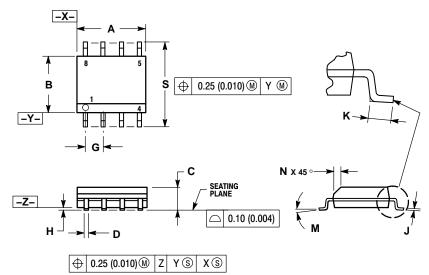

ORDERING INFORMATION

Device	Package	Shipping
LM293D	SO-8	98 Units / Rail
LM293DR2	SO-8	2500 Units / Reel
LM293DMR2	Micro8	4000 Tape and Reel
LM393D	SO-8	98 Units / Rail
LM393DR2	SO-8	2500 Units / Reel
LM393N	PDIP8	50 Units / Rail
LM393DMR2	Micro8	4000 Tape and Reel
LM2903D	SO-8	98 Units / Reel
LM2903DR2	SO-8	2500 Units /Reel
LM2903N	PDIP8	50 Units / Rail
LM2903DMR2	Micro8	4000 Tape and Reel
LM2903VD	SO-8	98 Units / Reel
LM2903VDR2	SO-8	2500 Units /Reel
LM2903VN	PDIP8	50 Units / Rail
NCV2903DR2 (Note 9)	SO-8	2500 Tape and Reel
NCV2903DMR2 (Note 9)	Micro8	4000 Tape and Reel

^{9.} NCV2903 is qualified for automotive use.

PACKAGE DIMENSIONS

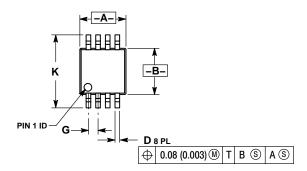
PDIP-8 **N SUFFIX** CASE 626-05 **ISSUE L**

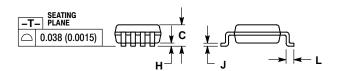


NOTES:

- DIES:
 DIMENSION L TO CENTER OF LEAD WHEN FORMED PARALLEL.
 PACKAGE CONTOUR OPTIONAL (ROUND OR SQUARE CORNERS).
- 3. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.

	MILLIMETERS		INCHES		
DIM	MIN	MAX	MIN	MAX	
Α	9.40	10.16	0.370	0.400	
В	6.10	6.60	0.240	0.260	
С	3.94	4.45	0.155	0.175	
D	0.38	0.51	0.015	0.020	
F	1.02	1.78	0.040	0.070	
G	2.54 BSC		0.100 BSC		
Н	0.76	1.27	0.030	0.050	
J	0.20	0.30	0.008	0.012	
K	2.92	3.43	0.115	0.135	
L	7.62 BSC		0.300 BSC		
M		10°		10°	
N	0.76	1.01	0.030	0.040	




- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: MILLIMETER.
- DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION.
- 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER
- SIDE.
 5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.
- 6. 751-01 THRU 751-06 ARE OBSOLETE. NEW STANDAARD IS 751-07

	MILLIMETERS		INCHES	
DIM	MIN	MAX	MIN	MAX
Α	4.80	5.00	0.189	0.197
В	3.80	4.00	0.150	0.157
С	1.35	1.75	0.053	0.069
D	0.33	0.51	0.013	0.020
G	1.27	7 BSC	0.05	0 BSC
Н	0.10	0.25	0.004	0.010
J	0.19	0.25	0.007	0.010
K	0.40	1.27	0.016	0.050
M	0 °	8 °	0 °	8 °
N	0.25	0.50	0.010	0.020
S	5.80	6.20	0.228	0.244

PACKAGE DIMENSIONS

Micro8 **DM SUFFIX** CASE 846A-02 **ISSUE F**

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- 2. CONTROLLING DIMENSION: MILLIMETER.
- 3. DIMENSION A DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE.
 4. DIMENSION B DOES NOT INCLUDE INTERLEAD
- FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE.

 5. 846A-01 OBSOLETE. NEW STANDARD 846A-02.

	MILLIMETERS		INCHES	
DIM	MIN	MAX	MIN	MAX
Α	2.90	3.10	0.114	0.122
В	2.90	3.10	0.114	0.122
С		1.10		0.043
D	0.25	0.40	0.010	0.016
G	0.65	BSC	0.026	BSC
Н	0.05	0.15	0.002	0.006
J	0.13	0.23	0.005	0.009
K	4.75	5.05	0.187	0.199
L	0.40	0.70	0.016	0.028

Micro8 is a trademark of International Rectifier.

ON Semiconductor and was are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its partnif rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada

Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free

Japan: ON Semiconductor, Japan Customer Focus Center 2-9-1 Kamimeguro, Meguro-ku, Tokyo, Japan 153-0051 Phone: 81-3-5773-3850

ON Semiconductor Website: http://onsemi.com

Order Literature: http://www.onsemi.com/litorder

For additional information, please contact your local Sales Representative.