LM613 Adjustable Reference General Description The LM613 consists of dual op-amps, dual comparators, and a programmable voltage reference in a 16-pin package. The op-amps out-performs most single-supply op-amps by pro- viding higher speed and bandwidth along with low supply current. This device was specifically designed to lower cost and board space requirements in transducer, test, measure- ment, and data acquisition systems. Combining a stable voltage reference with wide output swing op-amps makes the LM613 ideal for single supply transduc- ers, signal conditioning and bridge driving where large common-mode-signals are common. The voltage reference consists of a reliable band-gap design that maintains low dy- namic output impedance (1Q typical), excellent initial toler- ance (0.6%), and the ability to be programmed from 1.2V to 6.3V via two external resistors. The voltage reference is very stable even when driving large capacitive loads, as are com- monly encountered in CMOS data acquisition systems. As a member of Nationals Super-Block family, the LM613 is a space-saving monolithic alternative to a multi-chip solu- tion, offering a high level of integration without sacrificing performance. AV vationat Semiconductor Dual Operational Amplifiers, Dual Comparators, and June 1998 Features OP AMP w@ Low operating current (Op Amp): 300 A Wide supply voltage range: 4V to 36V Wide common-mode range: V- to (V* - 1.8V) Wide differential input voltage: +36V Available in plastic package rated for Military Temp. Range Operation REFERENCE Adjustable output voltage: 1.2V to 6.3V Tight initial tolerance available: 0.6% Wide operating current range: 17 pA to 20 mA Tolerant of load capacitance Applications m@ Transducer bridge driver mw Process and mass flow control systems mw Power supply voltage monitor w Buffered voltage references for A/Ds Connection Diagrams COMPARATOR COMPARATOR Ve ve me fw te la la u OP AMP 0 OP AMP FEEDBACK CATHODE bso0g226-1 Top View Super-Block is a trademark of National Semiconductor Corporation. E Package Pinout -IN Comp Comp -IN Comp Out Out Comp a) (1) (4) (4) Out Feed Cath- Out Amp Back ode Amp (2) (3) DS009226-48 1999 National Semiconductor Corporation DS009226 www.national.com aoualajay aiqeisnipy pue siojyesedwioy jeng siayijdwy jeuoneiado jeng L9NIOrdering Information Surface Mount Reference Temperature Range Package NSC Tolerance & Vos Military Industrial Commercial Drawing -55C + 0.95 V (Max) Swing Low Vt = 36V (32V for LM613C) V-+0.9 ) V>+1.0 V-+1.0 V (Max) lout Output Source Current Vout = 2.5V, Viin = OV, 25 20 16 mA (Min) Vin = -0.3V 15 13 13 mA (Min) Isink Output Sink Current Vout = 1.6V, Vin = OV, 17 14 13 mA (Min) Vin = 0.8V 9 8 8 mA (Min) IsHoRT Short Circuit Current Vout = OV,VtiIn = 3V, 30 50 50 mA (Max) Vin = eV 40 60 60 mA (Max) Vout = 5V, Vin = 2V, 30 60 70 mA (Max) Vin = 8V 32 80 90 mA (Max) COMPARATORS Vos Offset Voltage 4V < Vt < 36V (32V for LM613C), 1.0 3.0 5.0 mV (Max) R_ = 15 kQ 2.0 6.0 7.0 mV (Max) Vos Offset Voltage OV < Vow = 36V 1.0 3.0 5.0 mV (Max) Vom over Vom Vt = 36V, (32V for LM613C) 1.5 6.0 7.0 mV (Max) Vos Average Offset 15 uv? AT Voltage Drift (Max) lp Input Bias Current 5 25 35 nA (Max) 8 30 40 nA (Max) los Input Offset Current 0.2 4 4 nA (Max) 0.3 5 5 nA (Max) Ay Voltage Gain Ri = 10 kQ to 36V (32V for 500 VimV LM613C) 2V = 8 125 a -55 C t 25C @ 125C -5 L 0.002 0.02 0.2 2 20 REFERENCE CURRENT (mA) 08009226-62 Reference Voltage vs Reference Current 7 6 5 O~100V REFERENCE VOLTAGE () wu -10 -0.1 40.001 0.1 16 REFERENCE CURRENT (rr A) 08009226-65 Reference Voltage Drift 0.10 0.08 0.06 0.04 0.02 0.00 -0.02 0.04 -0.06 -0.08 -0.10 Te Veep Change (%) 40C @ 250 500 750 10001250150017502000 TIME (Hours) Reference Voltage vs Current and Temperature DS009226-50 10 r > 0~100 = ua 3 Zz & Sf 125 C oy 25 C a 5 3 > 125 C (OPE s 3 -55q a y ta 25C & -55 C Vig = 6.3V -5 ! i 0.002 0.02 0.2 2 20 REFERENCE CURRENT (mA) Reference AC Stability Range DS009226-63 100 I T T 40 [\ -55 <1, = 125C _| S 1.2 2 La 3 2 oe 1 e oi a a 125C 25C 55C -10 0 -0.1 40.001 0.1 10 REFERENCE CURRENT (mA) DS009226-64 FEEDBACK Current vs FEEDBACK-to-Anode Voltage 20 25C = 10 = = S a a ee z 2-10 = 8 BZ -20 a 8 g a -40 -10123456 10 20 30 40 ANODE - TO - FEEDBACK VOLTAGE (V) DS009226-67 www.national.comTypical Performance Characteristics (Reference) 1, = 25c, FEEDBACK pin shorted to V- = OV, unless otherwise noted (Continued) FEEDBACK Current vs FEEDBACK-to-Anode Voltage 20 10 = Z 5 0 a a = B -10 = g ag -20 a 3 a a ' ow So -40 -10123456 10 20 30 40 ANODE - TO - FEEDBACK VOLTAGE (V) DS008226-58 Reference Power-Up Time Vt=5Vv V+ =0V 288k0 BETWEEN V+ AND CA a REFERENCE VOLTAGE () 5 a 100 200 300 400 TIME (js) DS008226-61 Reference Step Response for 100 pA ~ 10 mA Current Step 3 Vege AG COUPLED (mV) 1 6 100 200 300 400 500 600 700 TIME (js) DS009226-64 Reference Noise Voltage vs Frequency 10000 -4 Hz) Veo r NOISE VOLTAGE (nVrmsA | Ml too IL EI 1 10 100 1000 10000 FREQUENCY (Hz) 08009226-69 Reference Voltage with FEEDBACK Voltage Step o REFERENCE OUTPUT VOLTAGE (V} ol. Ny uw eR G 160 200 300 400 500 600 700 TIME (ss) DS009226-62 Reference Voltage Change with Supply Voltage Step 2.0 15 1.0 0.5 REFERENCE VOLTAGE (mv) TIME (ms) DS009226-65 Reference Small-Signal Resistance vs Frequency 10000 e 100 SMALL SIGNAL RESISTANCE (2) 0.1 1 10 100 1000 FREQUENCY (kHz) 08009226-60 Reference Voltage with 100 ~ 12 PA Current Step 2 REFERENCE VOLTAGE CHANGE (mY) -1 0 100 200 300 400 500 600 700 TIME (js) DS009226-63 Reference Change vs Common-Mode Voltage (vt-2) (Wt-4) 0 ve 10 -55 REFERENCE VOLTAGE CHANGE (m) 5 0 5 1015 20 2530.030.531.031.532.0 REFERENCE ANODE -TO- V VOLTAGE () DS008226-66 www.national.comTypical Performance Characteristics (Op Amps) v: = sv, v- = GND = oV, Voy = V2, Vout = V*/2, Ty = 25C, unless otherwise noted Input Common-Mode Vos vs Junction Input Bias Current vs Voltage Range vs Temperature Common-Mode Voltage Temperature 4 ve 3 Evi-o.5 = 2 2 & uy 1 Z x ve a a g ge : 5 wyt-15 oy $ NORMAL 2 5 4 vo 5S 72 z = -3 BV -05 1 vrasv vet -60-40-20 0 20 40 60 80 100120140 -101234510 20 40 60 80 -60-40-20 0 20 40 60 80 100120140 JUNCTION TEMPERATURE (C) INPUT VOLTAGE (V) JUNCTION TEMPERATURE (C} 0S009226-68 DS009226-69 DS009226-67 Large-Signal Output Voltage Swing Step Response vs Temp. and Current v = gv Pt 2 & yea Co 3 SOUL | dL . s 10mA LOAD 1 yA LOAD 5 v2 5 5 oye v 0 10 200 30 4050 60-40-20 0 20 40 60 80 100120140 TIME (28) JUNCTION TEMPERATURE (C) 0$009226-70 0$009226-71 Output Source Current vs Output Sink Current vs Output Swing, Output Voltage and Temp. Output Voltage Large Signal 20 20 30 2.8 $ Vin] | FOLLOWER B 5 -20 20 1 = 10 2 = | 2 -40 > -40 | me 100 pF, 2k0 TO vt | | Sarr. 10-2 -80 -80 aaron 0.01 0.1 1 10 100 1000 0 2 4 6 8 10 0 2 4 6 8 10 FREQUENCY (kHz) TIME (28) TIME (ys) DS008226-75 Op Amp Voltage Noise vs Frequency 1000 100 140 55e = 120 25C a = 100 1 NOISE VOLTAGE (nVrms{/Hz) 1k FREQUENCY (Hz) 08009226-78 Small-Signal Voltage Gain vs Frequency and Load 140 yt=i5 4 7256 140 ian Voe-l 25 100 2 -55C 120 80 100 pF, 2k to a = itude 100 @ eo 100 pF, 2 _ Bo 0 ~ e = 40 z a Phase e z 80 2 ~ 2 7 45 3 we a = 3 ee E S 60H jo) 10M0 8 0 = S 25 a = w = -4 - -90 = , = -90 = 55C z aol # & Glead = 19 pF 2 -40 = _a| Vt= -t352 -60 = V-= 15V = 20 Follower -80 -8 -180 0 0.01 1 100 10k 1M 20 50 100 200 500 10002000 FREQUENCY (Hz) ps009226-81 FREQUENCY (kHz) FREQUENCY (Hz) Small Signal Pulse Response vs Temp. -60 DS008226-76 Op Amp Current Noise vs Frequency NOISE CURRENT (fArms, 40 FREQUENCY (Hz) D8009226-79 Follower Small-Signal Frequency Response DS009226-82 Small-Signal Pulse Response vs Load 60/100 pF, 2kO TOV DS009226-77 Small-Signal Voltage Gain vs Frequency and Temperature 80 60 40 20 0 -20 -40 -60 MAGNITUDE (dB) PHASE SHIFT (DEG) 0.01 1 100 10k 1M FREQUENCY (Hz) 0S009226-80 Common-Mode Input Voltage Rejection Ratio DS009226-83 aml www.national.comPower Supply Current vs Power Supply Voltage 1000 900 800 700 600 500 400 300 200 100 0 +125C SUPPLY CURRENT (2A) Oo 1 2 3 4 5 10 20 30 40 50 60 TOTAL SUPPLY VOLTAGE () 08009226-84 Slew Rate vs Temperature 0.8 0.7 Rising 0.6 0.5 =0V is worst SLEW RATE (V/ ys) 10V JL 200 mV 9 -60-40-20 0 20 40 60 80 100120140 JUNCTION TEMPERATURE (C) D8009226-87 Output Sink Current 100 50 = 10 40 E + 2 aed a 125C = 30 3 1 =550C - 20 x a z oe a > E a 10 | 5 5 = 0 3 z -10 0.01 00 05 #10 15 25 3.0 =20 Positive Power Supply Voltage Rejection Ratio 140 +PSRR (dB) 102 10 10? 104 108 FREQUENCY (Hz) DS009226-85 Input Offset Current vs Junction Temperature 1000 los (pA) -1000 2000 -60-40-20 0 20 40 60 80 100120140 JUNCTION TEMPERATURE (C) 08009226-88 Typical Performance Characteristics (Op Amps) v: = sv, v- = GND = ov, Vey = v2, Vout = Vt/2, Ty = 25C, unless otherwise noted (Continued) Negative Power Supply Voltage Rejection Ratio 140 120 100 80 60 40 -PSRR (dB) io? 10 102 104 108 FREQUENCY (Hz) DS009226-86 Input Bias Current vs Junction Temperature BIAS CURRENT (na) i n -10 12 -60 -40-20 6 20 40 60 80100120140 JUNCTION TEMPERATURE (C) D8009226-89 Typical Performance Characteristics (Comparators) Input Bias Current vs Common-Mode Voltage y= 10 20 30 40 50 660 70 OUTPUT VOLTAGE (V) Bs009226-10 INPUT VOLTAGE REFERRED TO V7 (V) bso09226-11 www.national.comTypical Performance Characteristics (Comparators) (continue) Comparator Response Times Inverting Input, Positive Transition 35 a ld oo = 125C a L =55C z 2 a 3 1 1 o = 90 +5 mV = 0 -5 mV 005 115 2 25 3 35 4 Time (us) DS009226-12 Comparator Response Times Non-Inverting Input, Positive Transition ~ 35 a eo 4 t 5 S 3 5 a 5 -55C oo 1 #1259C #25C > +5 mV = 0 -5 mV 005 115 2 25 3 35 4 Time (us) DBS009226-14 Comparator Response Times Inverting Input, Positive Transition 15 10 5.1K 5 Yin y 259C 9 0 =15V | 55C #125C Vg OUTPUT VOLTAGE () 0 02 04 0.6 68 1.0 1.2 1.4 16 18 Time (us) DS009226-16 Comparator Response Times Inverting Input, Negative Transition 5 4 #25C #125C Yo OUTPUT VOLTAGE (V) w +5 mV = 0a -5 mV 005 115 2 25 3 35 4 Time (us) DS009226-13 Comparator Response Times Non-Inverting Input, Negative Transition 5 4 425C 55C 125C Vo OUTPUT VOLTAGE () w +5 mV = 0a -5 mV 005 115 2 25 3 35 4 Time (us) DS009226-16 Comparator Response Times Inverting Input, Negative Transition 15 10 Vin 5 ~15 #25C =55C #125C Vo OUTPUT VOLTAGE () 0 02 04 06 08 1.0 12 14 16 18 Time (us) DS009226-17 13 www.national.comUNITS UNITS Vg - OUTPUT VOLTAGE (V) Comparator Response Times Non-Inverting Input, Positive Transition 15V 10 5.1K Vin 5 3 =15 125C -10 -15V SV Vin Qo 0 02 04 0.6 08 16 12 14 16 18 Time (us) DS009226-18 Typical Performance Distributions Average Vog Drift Military Temperature Range ey y) y y LALLA 0 5 10 15 20 25 30 35 40 45 50 Vos DRIFT (uV/C) DS008226-20 Average Vos Drift Commercial Temperature Range 40 y y) Y L400 z 5 10 15 20 25 30 35 40 45 50 Vos DRIFT (uV/C) DS008226-22 DCEEE_C WSW\)J.).).K N WWJK?WUE SK MG]bWG Typical Performance Characteristics (Comparators) (continue) Comparator Response Times Non-Inverting Input, Negative Transition Vg OUTPUT VOLTAGE () 15 10 5.1K Vin 5 28 0 5 10 -15V 5v 0 Sv Vin UNITS UNITS 0 02 04 06 08 10 12 14 16 18 Time (us) bs009226-19 Average Vos Drift Industrial Temperature Range 40 Y K.D50VWO. CG NLL Vos DRIFT (u/C) DS00g226-21 Average log Drift Military Temperature Range 30 an PA 12 18 24 30 36 42 los DRIFT (pA/C) DS009226-23 www.national.comTypical Performance Distributions (continued) Average log Drift Industrial Temperature Range UNITS 0 4 8 12 16 20 24 2 los DRIFT (pA/C) DS009226-24 Average log Drift Commercial Temperature Range UNITS 0 4 8 12 16 20 24 28 los DRIFT (pA/C) DS009226-25 Voltage Reference Broad-Band Noise Distribution 30 10 = f =10,000 Hz 20 UNITS 0 0 4 8 1216 20 24 28 32 36 40 44 48 VOLTAGE NOISE (1Veys) DS009226-26 Op Amp Voltage Noise Distribution 30 100 Hz Amps 1, 2, 3, 4 7 y y 20 y p Y Ee Yj zZ y y 10 y y WA 0. Mia QO 8 16 24 32 40 48 56 64 72 80 88 96 VOLTAGE NOISE (nVpys /VHz ) DS009226-27 Op Amp Current Noise Distribution 307 00Hz Amps 1, 2, 3, 4 16 10 Zz 2 16 16 6 IT 0 8 16 2432 40 48 56 64 72 80 88 96 CURRENT NOISE (fApys /VHZ) DS009226-28 Application Information VOLTAGE REFERENCE Reference Biasing The voltage reference is of a shunt regulator topology that models as a simple zener diode. With current I, flowing in the forward direction there is the familiar diode transfer func- tion. |, flowing in the reverse direction forces the reference voltage to be developed from cathode to anode. The cath- ode may swing from a diode drop below V to the reference voltage or to the avalanche voltage of the parallel protection diode, nominally 7V. A 6.3V reference with V* = 3V is allowed. 15 www.national.comApplication Information (continued) | 7 pASIr<20 mA Vr=1.2V 1.2 t PTAT > > DS009226-36 FIGURE 8. Diode in Series with R1 Causes Voltage Across Ri and R2 to be Proportional to Absolute Temperature (PTAT) Connecting a resistor across Cathode-to-FEEDBACK cre- ates a 0 TC current source, but a range of TCs may be synthesized. DS009226-37 | = Wr/R1 = 1.24/R1 FIGURE 9. Current Source is Programmed by R1 DS009226-38 FIGURE 10. Proportional-to-Absolute-Temperature Current Source THERMISTOR DS609226-39 FIGURE 11. Negative-TC Current Source Reference Hysteresis The reference voltage depends, slightly, on the thermal his- tory of the die. Competitive micro-power products vary al- ways check the data sheet for any given device. Do not as- sume that no specification means no hysteresis. OPERATIONAL AMPLIFIERS AND COMPARATORS Any amp, comparator, or the reference may be biased in any way with no effect on the other sections of the LM613, ex- cept when a substrate diode conducts, see Electrical Char- acteristics (Note 1). For example, one amp input may be out- side the common-mode range, another amp may be operating as a comparator, and all other sections may have all terminals floating with no effect on the others. Tying in- verting input to output and non-inverting input to V~ on un- used amps is preferred. Unused comparators should have non-inverting input and output tied to V*, and inverting input tied to V-. Choosing operating points that cause oscillation, such as driving too large a capacitive load, is best avoided. Op Amp Output Stage These op amps, like the LM124 series, have flexible and relatively wide-swing output stages. There are simple rules to optimize output swing, reduce cross-over distortion, and optimize capacitive drive capability: 1. Output Swing: Unloaded, the 42 YA pull-down will bring the output within 300 mV of V over the military tempera- ture range. If more than 42 Ais required, a resistor from output to V~ will help. Swing across any load may be im- proved slightly if the load can be tied to V*, at the cost of poorer sinking open-loop voltage gain. 17 www.national.comApplication Information (continued) 2. Cross-Over Distortion: The LM613 has lower cross-over distortion (a 1 Vge deadband versus 3 Vpe for the LM124), and increased slew rate as shown in the char- acteristic curves. A resistor pull-up or pull-down will force class-A operation with only the PNP or NPN output tran- sistor conducting, eliminating cross-over distortion. 3. Capacitive Drive: Limited by the output pole caused by the output resistance driving capacitive loads, a pull-down resistor conducting 1 mA or more reduces the output stage NPN r, until the output resistance is that of the current limit 25Q. 200 pF may then be driven without oscillation. Comparator Output Stage The comparators, like the LM139 series, have open-collector output stages. A pull-up resistor must be added from each output pin to a positive voltage for the output transistor to switch properly. When the output transistor is OFF, the out- put voltage will be this external positive voltage. Typical Applications For the output voltage to be under the TTL-low voltage threshold when the output transistor is ON, the output cur- rent must be less than 8 mA (over temperature). This im- pacts the minimum value of pull-up resistor. The offset voltage may increase when the output voltage is low and the output current is less than 30 YA. Thus, for best accuracy, the pull-up resistor value should be low enough to allow the output transistor to sink more than 30 YA. Op Amp and Comparator Input Stage The lateral PNP input transistors, unlike those of most op amps, have BVego equal to the absolute maximum supply voltage. Also, they have no diode clamps to the positive sup- ply nor across the inputs. These features make the inputs look like high impedances to input sources producing large differential and common-mode voltages. +V0 3k 2N2222 2N2907 oQror DS008226-40 FIGURE 12. High Current, High Voltage Switch > .S IY ~ a Oo 5 AA v > 5000 30pF <2 nr [ie 1N914 2N2907 O-Vv DS609226-41 FIGURE 13. High Speed Level Shifter. Response time is approximately 1.5 ps, where output is either approximately +V or -V. www.national.com 18Typical Applications (continued) ing . 6V L 0.1 a] = 35k = q 2N2907 7000 > > 15k LZ Nek = 31.6k AW Vout 2 a 5.0V S 10k s 4.7 pF T 50 mA DS009226-42 FIGURE 14. Low Voltage Regulator. Dropout voltage is approximately 0.2V. V IN o 10k AA, 12 L : w 1 uF | s 10k | s+ 75k 40 pF $s - 10.000V = At Lo WA * 3320 15k + ly < 10 pF 5 uF 7 LM6 1374 > 10k* t T | DS009226-43 *10k must be low tc. trimpot FIGURE 15. Ultra Low Noise, 10.00V Reference. Total output noise is typically 14 WVams.- 19 www.national.comTypical Applications (continued) O Your DS009226-44 FIGURE 16. Basic Comparator a Strobe DS009226-45 FIGURE 17. Basic Comparator with External Strobe 15V0 TTL Output oO < 100 pF 75k 2N2222 S 4.7k 4700. o DS009226-46 FIGURE 18. Wide-Input Range Comparator with TTL Output +V Stk 1M > AAA v tk ow Ps Wp o o_; DS009226-47 FIGURE 19. Comparator with Hysteresis (AV,, = *V(1k/1M)) www.national.com 20Physical DimeNnsiONS inches (millimeters) unless otherwise noted 0.200 + 0.005 (5.080 40.127) TYP 0.015 +0.010 45>x% Aeeraees x >! S- (0.381 0.254) 0.350 +0.008 0.015 pS J "je.s00 20.203) >| _ 0.063 - 0.075 aay NX | 8.007 0.011 (1.600 1.905) MIN TYP Y- (0.178 ~ 0.279) | R TYP 0.0220.028 > (0.559 0.711) 0.070.093 A 1 Ty (1.959 2.362) J m 0.045 0.055 { a, (1.143 1.397) Zora Tye 0.067 = 0.083 >| |-< A 0.045 0.055 (1.702 2.108) 103 1.397) Top View Side View Typ TYP 45 x 0.040+0.010 (1.016 0.254) 3 PLCS Bottom View 0.015 0.003 (0.076) (0.381) MIN we Y ey ~ MAXTYP 0.022 A t (0.559) |<_ 0.006 MAX TYP (0.152) MIN TYP Detail A E208 (REY DP: 20-Lead Small Outline Package (E) Order Number LM613AME/883 NS Package Number E20A 0.785, [19.94] MAX > 16 g Rot Aa 0.095 Powe oo Ro: [0.64] 1 8 0.037 40.005 >| I fo.9440.13] [YP 0.005 . : . . | Le 0.055 40.005 37-8. an we i ~| ft [iaoeo.rsy MP GLASS SEALANT 0.200 . 52] 7] [5.08] - 1.5 we = E 0.010 40.002 TYP i 0.150 f [0.254 0.05] 4 1 Wt ! Peleg Min TYP I } 9.125-0.200 Typ 90 + 4 9504 50 [3.18-5.08] es set 0.080 2.03] MAX] ry BOTH ENDS 0.018 + 0.003 0.310-0.410 mI [o.a6aacoa] YP [7.87-10.41] s154 (EV L) 0.1004 0.010 [2.5440,25] [YP 16-Lead Ceramic Dual-In-Line Package (J) Order Number LM613AMJ/883 NS Package Number J16A a1 www.national.comPhysical DimensioON$ inches (millimeters) unless otherwise noted (Continued) B- 0.3977-0.4133 10.10-10.50 16 15 14 #13 #12 #11 10 9 LEAD NO 1 IDENTIFICATION rt a 0.2914-0.2992 = = 7. 6 0.3940-0.4190 10.00-10.65 HUCHOREE 7 Tass 0,010-0,029 0,0091-0,0125 fo x 9:010-0.029 0.0926-0.1043 45 X 925-0.75 9,250.32 TYP ALL LEADS 239 2.65 0,0040-0.0118 0.1-0.5 : 0.004 SEATING + - + PLANE f_ 0.014 Lope] B MAX ve ALL LEAD TIPS ALL LEADS 0.0160-0.0500 ~~ 0.40-1.27 TYP ALL LEADS N16B (REV F) 16-Lead Small Outline Package (WM) Order Number LM613IWM NS Package Number M16B 0.843-0.870 0.090 21,41~22.10 om 2286] |< } 2.337 ol NOM vom fre) fs) fra]_fr3]_ fre] fav) ro] [9] (2x) PIN NO. 1 IDENT l 0.260 0.005 oN (6.350 0.127) nam Saree mani! gam Toa ae oo at min (0.762) aan) Mex 0.060 baad 0.130 +0.005 | (7-620-8.128) 0.065 k a8) | (1.651) (1.824) TYP (3.302 +0.127) 1 Coa tt Lo_J i 1 | I 0.145-0.200 { (3.6835.080) 95 45 0.090.015 0.020 WT" (9.229-0.381) 7 0.075 =0.015 0.018 0.003 0.125~0.140 O6NB) ~| ~ (3.175-3.556) as he (7.905 0.381) (0.487 -0.076) _- 0.100 -0.010 (oss *1018) 0.100 0.010 ~ 255 381 (2.540 =0.254) NAGA iREV Ei 16-Lead Molded Dual-In-Line Package (N) Order Number LM613CN, LM613AIN, LM613IN, LM613AMN or LM613MN NS Package Number N16A www.national.com 22Notes LIFE SUPPORT POLICY NATIONALS PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein: 1. Life support devices or systems are devices or 2. systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. National Semiconductor National Semiconductor Corporation Europe Americas Fax: +49 (0) 1 80-530 85 86 Tel: 1-800-272-9959 Email: europe.support@nsc.com Fax: 1-800-737-7018 Deutsch Tel: +49 (0) 1 80-530 85 85 Email: support@nsc.com English Tel: +49 (0) 1 80-532 78 32 Frangais Tel: +49 (0) 1 80-532 93 58 www.national.com Italiano Tel: +49 (0) 1 80-534 16 80 National Semiconductor National Semiconductor Asia Pacific Customer Japan Ltd. Response Group Tel: 81-3-5639-7560 Tel: 65-2544466 Fax: 81-3-5639-7507 Fax: 65-2504466 Email: sea.support@nsc.com National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications. aoualajay aiqeisnipy pue siojyesedwioy jeng siayijdwy jeuoneiado jeng L9NI