This is information on a product in full production.
May 2016 DocID029104 Rev 1 1/40
VL53L0X
World smallest Time-of-Flight ranging and gesture detection sensor
Datasheet - production data
Features
Fully integrated miniature module
940nm Laser VCSEL
VCSEL driver
Ranging sensor with advanced embedded
micro controller
4.4 x 2.4 x 1.0mm
Fast, accurate distance ranging
Measures absolute range up to 2m
Reported range is independent of the
target reflectance
Operates in high infrared ambient light
levels
Advanced embedded optical cross-talk
compensation to simplify cover glass
selection
Eye safe
Class 1 laser device compliant with latest
standard IEC 60825-1:2014 - 3rd edition
Easy integration
Single reflowable component
No additional optics
Single power supply
I2C interface for device control and data
transfer
Xshutdown (Reset) and interrupt GPIO
Programmable I2C address
Applications
User detection for Personal Computers/
Laptops/Tablets and IoT (Energy saving).
Robotics (obstacle detection).
White goods (hand detection in automatic
faucets, soap dispensers etc...)
1D gesture recognition.
Laser assisted Auto-Focus. Enhances and
speeds-up camera AF system performance,
especially in difficult scenes (low light levels,
low contrast) or fast moving video mode.
Description
The VL53L0X is a new generation Time-of-Flight
(ToF) laser-ranging module housed in the
smallest package on the market today, providing
accurate distance measurement whatever the
target reflectances unlike conventional
technologies. It can measure absolute distances
up to 2m, setting a new benchmark in ranging
performance levels, opening the door to various
new applications.
The VL53L0X integrates a leading-edge SPAD
array (Single Photon Avalanche Diodes) and
embeds ST’s second generation FlightSenseTM
patented technology.
The VL53L0X’s 940nm VCSEL emitter (Vertical
Cavity Surface-Emitting Laser), is totally invisible
to the human eye, coupled with internal physical
infrared filters, it enables longer ranging distance,
higher immunity to ambient light and better
robustness to cover-glass optical cross-talk.
www.st.com
Contents VL53L0X
2/40 DocID029104 Rev 1
Contents
1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.1 Technical specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2 System block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Device pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 Application schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2 Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1 System functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Firmware state machine description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Customer manufacturing calibration flow . . . . . . . . . . . . . . . . . . . . . . . . . .11
2.3.1 SPAD and temperature calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3.2 Ranging offset calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.3 Cross-talk calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4 Ranging operating modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.5 Ranging profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.6 Ranging profile phases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.6.1 Initialization and load calibration data phase . . . . . . . . . . . . . . . . . . . . . 14
2.6.2 Ranging phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.6.3 Digital housekeeping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.7 Getting the data: interrupt or polling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.8 Device programming and control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.9 Power sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.9.1 Power up and boot sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.10 Ranging sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3 Control interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.1 I2C interface - timing characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2 I2C interface - reference registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.1 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.2 Recommended operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
DocID029104 Rev 1 3/40
VL53L0X Contents
3
4.3 ESD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.4 Current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.5 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.1 Measurement conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.2 Max ranging distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.3 Ranging accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.3.1 Standard deviation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.3.2 Range profile examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.3.3 Ranging offset error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
6 Outline drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
7 Laser safety considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
8 Packaging and labeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
8.1 Product marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
8.2 Inner box labeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
8.3 Packing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
8.3.1 Tape outline drawings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
8.4 Pb-free solder reflow process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
8.5 Handling and storage precautions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
8.5.1 Shock precaution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
8.5.2 Part handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
8.5.3 Compression force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
8.5.4 Moisture sensitivity level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
8.6 Storage temperature conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
9 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
10 Acronyms and abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
11 ECOPACK® . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
12 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
List of tables VL53L0X
4/40 DocID029104 Rev 1
List of tables
Table 1. Technical specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Table 2. VL53L0X pin description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Table 3. I2C interface - timing characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Table 4. Reference registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Table 5. 32-bit register example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Table 6. Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Table 7. Recommended operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Table 8. ESD performances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Table 9. Consumption at ambient temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Table 10. Digital I/O electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Table 11. Max ranging capabilities with 33ms timing budget . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Table 12. Ranging accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Table 13. Range profiles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Table 14. Ranging offset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Table 15. Recommended solder profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Table 16. Recommended storage conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Table 17. Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Table 18. Acronyms and abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Table 19. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
DocID029104 Rev 1 5/40
VL53L0X List of figures
5
List of figures
Figure 1. VL53L0X block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Figure 2. VL53L0X pinout (bottom view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Figure 3. VL53L0X schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Figure 4. VL53L0X system functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Figure 5. Firmware state machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Figure 6. Customer manufacturing calibration flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Figure 7. Range offset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Figure 8. Cross-talk compensation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Figure 9. Typical initialization / ranging / housekeeping phases . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Figure 10. Power up and boot sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Figure 11. Power up and boot sequence with XSHUT not controlled . . . . . . . . . . . . . . . . . . . . . . . . . 16
Figure 12. Ranging sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Figure 13. Data transfer protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Figure 14. VL53L0X I2C device address: 0x52 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Figure 15. VL53L0X data format (write). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Figure 16. VL53L0X data format (read) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Figure 17. VL53L0X data format (sequential write) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Figure 18. VL53L0X data format (sequential read) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Figure 19. I2C timing characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Figure 20. Typical ranging (default mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Figure 21. Typical ranging - Long range mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Figure 22. Outline drawing (page 1/3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Figure 23. Outline drawing (page 2/3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Figure 24. Outline drawing - with liner (page 3/3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Figure 25. Class 1 laser product label . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Figure 26. Example of marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Figure 27. Tape outline drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Figure 28. Solder profile. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Overview VL53L0X
6/40 DocID029104 Rev 1
1 Overview
1.1 Technical specification
1.2 System block diagram
Figure 1. VL53L0X block diagram
Table 1. Technical specification
Feature Detail
Package Optical LGA12
Size 4.40 x 2.40 x 1.00 mm
Operating voltage 2.6 to 3.5 V
Operating temperature: -20 to 70°C
Infrared emitter 940 nm
I2CUp to 400 kHz (FAST mode) serial bus
Address: 0x52
9//;PRGXOH
9//;VLOLFRQ
'HWHFWLRQDUUD\
6LQJOH3KRWRQ
$YDODQFKH'LRGH63$'
1RQ9RODWLOH
0HPRU\
520
5$0
0LFURFRQWUROOHU
$GYDQFHG
5DQJLQJ&RUH
9&6(/'ULYHU
QP
,5 ,5
$9''
$9''9&6(/$9669&6(/
;6+87
*3,26&/
6'$
*1'
DocID029104 Rev 1 7/40
VL53L0X Overview
37
1.3 Device pinout
Figure 2 shows the pinout of the VL53L0X (see also Figure 22).
Figure 2. VL53L0X pinout (bottom view)
Table 2. VL53L0X pin description
Pin number Signal name Signal type Signal description
1 AVDDVCSEL Supply VCSEL Supply, to be connected to main supply
2 AVSSVCSEL Ground VCSEL Ground, to be connected to main ground
3 GND Ground To be connected to main ground
4 GND2 Ground To be connected to main ground
5 XSHUT Digital input Xshutdown pin, Active LOW
6 GND3 Ground To be connected to main ground
7 GPIO1 Digital output Interrupt output. Open drain output.
8 DNC Digital input Do Not Connect, must be left floating.
9SDA
Digital
input/output I2C serial data
10 SCL Digital input I2C serial clock input
11 AVDD Supply Supply, to be connected to main supply
12 GND4 Ground To be connected to main ground
$9''9&6(/
$9669&6(/
*1'
*1'
;6+87
 $9''
6&/
6'$
'1&
*3,2
*1'
*1'
Overview VL53L0X
8/40 DocID029104 Rev 1
1.4 Application schematic
Figure 3 shows the application schematic of the VL53L0X.
Figure 3. VL53L0X schematic
Note: Capacitors on external supply AVDD should be placed as close as possible to the
AVDDVCSEL and AVSSVCSEL module pins.
Note: External pull-up resistors values can be found in I2C-bus specification. Pull-up are typically
fitted only once per bus, near the host.
Recommended values for pull-up resistors for an AVDD of 2.8V and 400KHz I2C clock
would be 1.5k to 2k Ohms.
Note: XSHUT pin must always be driven to avoid leakage current. Pull-up is needed if the host
state is not known.
XSHUT is needed to use HW standby mode (no I2C comm).
Note: XSHUT and GPIO1 pull up recommended values are 10k Ohms
Note: GPIO1 to be left unconnected if not used
9//;
;6+87
*3,2
6'$
6&/

+267
'1&
$9''9&6(/
$9''

Q) )
$9''
$9669&6(/
*1'
*1'
*1'
*1'

,29''
DocID029104 Rev 1 9/40
VL53L0X Functional description
37
2 Functional description
2.1 System functional description
Figure 4 shows the system level functional description. The host customer application is
controlling the VL53L0X device using an API (Application Programming Interface).
The API is exposing to the customer application a set of high level functions that allows
control of the VL53L0X Firmware (FW) like initialization/calibration, ranging Start/Stop,
choice of accuracy, choice of ranging mode.
The API is a turnkey solution, it consists of a set of C functions which enables fast
development of end user applications, without the complication of direct multiple register
access. The API is structured in a way that it can be compiled on any kind of platform
through a well isolated platform layer.
The API package allows the user to take full benefit of VL53L0X capabilities.
A detailed description of the API is available in the VL53L0X API User Manual (separate
document, DocID029105).
VL53L0X FW fully manages the hardware (HW) register accesses.
Section 2.2: Firmware state machine description details the Firmware state machine.
Figure 4. VL53L0X system functional description
+267
&XVWRPHU
$SSOLFDWLRQ
9//;
$3,
9//;
,&
)LUPZDUH +DUGZDUH
Functional description VL53L0X
10/40 DocID029104 Rev 1
2.2 Firmware state machine description
Figure 5 shows the Firmware state machine.
Figure 5. Firmware state machine
5DQJH0RGH
3RZHU2II
+RVWUHPRYHV$9''+RVWDSSOLHV$9''
+Z6WDQGE\
+RVWORZHUV;6+87
+RVWUDLVHV;6+87
)Z,QLWLDO%RRW
6Z6WDQGE\
+RVWLQLWLDWHV67$57
&RQWLQXRXV
5DQJH0HDV
1H[WVWDUWVWDUWV
DXWRPDWLFDOO\DIWHU
WKHODVWKDVILQLVKHG
6LQJOH
5DQJH0HDV
$XWRPDWLFPRYHWR6:VWDQGE\
5DQJH0HDV
,QWHU0HDV
6WDQGE\
,QWHUPHDVXUHPHQW
SHULRGQRWFRPSOHWHG
&RQWLQXRXV7LPHG
+RVWLQLWLDWHV6723
DocID029104 Rev 1 11/40
VL53L0X Functional description
37
2.3 Customer manufacturing calibration flow
Figure 6 shows the recommended calibration flow that should be applied at customer level,
at factory, once only. This flow takes into account all parameters (cover glass, temperature &
voltage) from the application.
Figure 6. Customer manufacturing calibration flow
2.3.1 SPAD and temperature calibration
In order to optimize the dynamic of the system, the reference SPADs have to be calibrated.
Reference SPAD calibration needs to be done only once during the initial manufacturing
calibration, the calibration data should then be stored on the Host.
Temperature calibration is the calibration of two parameters (VHV and phase cal) which are
temperature dependent. These two parameters are used to set the device sensitivity.
Calibration should be performed during initial manufacturing calibration, it must be
performed again when temperature varies more than 8degC compared to the initial
dĞŵƉĞƌĂƚƵƌĞĐĂůŝďƌĂƚŝŽŶ;ΕϰϬŵƐΎͿ
ĞǀŝĐĞŝŶŝƚŝĂůŝnjĂƚŝŽŶĂŶĚƐĞƚƚŝŶŐƐ
;ΕϰϬŵƐΎͿ
^WƐĐĂůŝďƌĂƚŝŽŶ;ΕϭϬŵƐΎͿ
KĨĨƐĞƚĐĂůŝďƌĂƚŝŽŶ;ΕϯϬϬŵƐΎͿ
ƌŽƐƐdĂůŬĐĂůŝďƌĂƚŝŽŶ;ΕϭƐĞĐΎͿ
/ŶŝƚŝĂůĐĂůŝďƌĂƚŝŽŶͲƌĞƋƵŝƌĞĚŽŶůLJŽŶĐĞ
ŚŽƐƚƚŽƐƚŽƌĞǀĂůƵĞƐ
ĂůŝďƌĂƚŝŽŶƐƚĞƉƚŽďĞƌĞƉĞĂƚĞĚǁŝƚŚ
хϴĚĞŐƌĞĞƚĞŵƉĞƌĂƚƵƌĞĐŚĂŶŐĞ
/ŶŝƚŝĂůŝƐĂƚŝŽŶͲ
ƚŽďĞĐĂůůĞĚŽŶĐĞĂĨƚĞƌĚĞǀŝĐĞƌĞƐĞƚ
DĂŶƵĨĂĐƚƵƌŝŶŐ
ĐĂůŝďƌĂƚŝŽŶĨůŽǁ
ΎdŝŵŝŶŐƐĂƌĞŐŝǀĞŶĨŽƌŝŶĨŽƌŵĂƚŝŽŶŽŶůLJƚŚĞLJ
ĐĂŶǀĂƌLJĚĞƉĞŶĚŝŶŐŽŶƚŚĞ,ŽƐƚĐĂƉĂďŝůŝƚŝĞƐ
Functional description VL53L0X
12/40 DocID029104 Rev 1
calibration temperature.
For more details on SPAD and temperature calibration please refer to the VL53L0X API
User Manual.
2.3.2 Ranging offset calibration
Ranging offset can be characterized by the mean offset, which is the centering of the
measurement versus the real distance.
Offset calibration should be performed at factory for optimal performances (recommended
at 10cm). The offset calibration should take into account:
Supply voltage and temperature
Protective cover glass above VL53L0X module
Figure 7. Range offset
2.3.3 Cross-talk calibration
Cross-talk is defined as the signal return from the cover glass. The magnitude of the cross-
talk depends on the type of glass and air gap. Cross-talk results in a range error which is
proportional to the ratio of the cross-talk to the signal return from the target.
Figure 8. Cross-talk compensation
Full offset and cross-talk calibration procedure is described in the VL53L0X API User
Manual.
Actual Range
Measured range
p2p_offset
calibration
Actual Range
Measured range
cross-talk
compensation
DocID029104 Rev 1 13/40
VL53L0X Functional description
37
2.4 Ranging operating modes
There are 3 ranging modes available in the API:
1. Single ranging
Ranging is performed only once after the API function is called.
System returns to SW standby automatically.
2. Continuous ranging
Ranging is performed in a continuous way after the API function is called. As soon as
the measurement is finished, another one is started without delay.
User has to stop the ranging to return to SW standby. The last measurement is
completed before stopping.
3. Timed ranging
Ranging is performed in a continuous way after the API function is called. When a
measurement is finished, another one is started after a user defined delay.
This delay (inter-measurement period) can be defined through the API.
User has to stop the ranging to return to SW standby.
If the stop request comes during a range measurement, the measurement is completed
before stopping. If it happens during an inter-measurement period, the range measurement
stops immediately.
2.5 Ranging profiles
There are 4 different ranging profiles available via API example code. Customers can create
their own ranging profile dependent on their use case performance requirements.
For more details please refer to the VL53L0X API User Manual.
1. Default mode
2. High speed
3. High accuracy
4. Long range
2.6 Ranging profile phases
Each range profile consists of 3 consecutive phases:
Initialization and load calibration data
Ranging
Digital housekeeping
Functional description VL53L0X
14/40 DocID029104 Rev 1
Figure 9. Typical initialization / ranging / housekeeping phases
2.6.1 Initialization and load calibration data phase
Initialization and calibration phase is performed before the first ranging or after a device
reset, see Figure 9.
The user may then have to repeat the temperature calibration phase in a periodic way,
depending on the use case.
For more details on the calibration functions please refer to the VL53L0X API User Manual.
2.6.2 Ranging phase
The ranging phase consists of a range setup then range measurement.
During the ranging operation, several VCSEL infrared pulses are emitted, then reflected
back by the target object, and detected by the receiving array. The photo detector used
inside VL53L0X is using advanced ultra-fast SPAD technology (Single Photon Avalanche
Diodes), protected by several patents.
The typical timing budget for a range is 33ms (init/ranging/housekeeping), see Figure 12,
with the actual range measurement taking 23ms, see Figure 9. The minimum range
measurement period is 8ms.
DocID029104 Rev 1 15/40
VL53L0X Functional description
37
Note: The minimum range timing budget is 20ms. Maximum is 5 seconds. The longer the timing
budget, the higher the accuracy and the ranging distance capability.
2.6.3 Digital housekeeping
Digital processing (housekeeping) is the last operation inside the ranging sequence that
computes, validates or rejects a ranging measurement. Part of this processing is performed
internally while the other part is executed on the Host by the API.
At the end of the digital processing, the ranging distance is computed by VL53L0X itself. If
the distance could not be measured (weak signal, no target…), a corresponding error code
is provided.
The following functions are performed on the device itself:
Signal value check (weak signal)
Offset correction
Cross-talk correction (in case of cover glass)
Final ranging value computation
While the API performs the following:
Return Ignore Threshold RIT check (Signal check versus cross talk)
Sigma check (accuracy condition)
Final ranging state computation
If the user wants to enhance the ranging accuracy, some extra processing (not part of the
API) can be carried out by the host, for example, rolling average, hysteresis or any kind of
filtering.
2.7 Getting the data: interrupt or polling
User can get the final data using a polling or an interrupt mechanism.
Polling mode: user has to check the status of the ongoing measurement by polling an API
function.
Interrupt mode: An interrupt pin (GPIO1) sends an interrupt to the host when a new
measurement is available.
The description of these 2 modes is available in the VL53L0X API User Manual.
2.8 Device programming and control
Device physical control interface is I2C, described in Section 3: Control interface.
A software layer (API) is provided to control the device. The API is described in the
VL53L0X API User Manual.
Functional description VL53L0X
16/40 DocID029104 Rev 1
2.9 Power sequence
2.9.1 Power up and boot sequence
There are two options available for device power up/boot.
Option 1: XSHUT pin connected and controlled from host.
This option helps to optimize power consumption as the VL53L0X can be completely
powered off when not used, and then woken up through host GPIO (using XSHUT pin).
HW Standby mode is defined as the period when AVDD is present and XSHUT is low.
Figure 10. Power up and boot sequence
tBOOT is 1.2ms max.
Option 2: XSHUT pin not controlled by host, and tied to AVDD through pull-up resistor.
In case XSHUT pin is not controlled, the power up sequence is presented in Figure 11. In
this case, the device is going automatically in SW STANDBY after FW BOOT, without
entering HW STANDBY.
Figure 11. Power up and boot sequence with XSHUT not controlled
tBOOT is 1.2ms max.
DocID029104 Rev 1 17/40
VL53L0X Functional description
37
2.10 Ranging sequence
Figure 12. Ranging sequence
ttiming_budget is a parameter set by the user, using a dedicated API function.
Default value is 33ms.
Control interface VL53L0X
18/40 DocID029104 Rev 1
3 Control interface
This section specifies the control interface. The I2C interface uses two signals: serial data
line (SDA) and serial clock line (SCL). Each device connected to the bus is using a unique
address and a simple master / slave relationships exists.
Both SDA and SCL lines are connected to a positive supply voltage using pull-up resistors
located on the host. Lines are only actively driven low. A high condition occurs when lines
are floating and the pull-up resistors pull lines up. When no data is transmitted both lines are
high.
Clock signal (SCL) generation is performed by the master device. The master device
initiates data transfer. The I2C bus on the VL53L0X has a maximum speed of 400 kbits/s
and uses a device address of 0x52.
Figure 13. Data transfer protocol
Information is packed in 8-bit packets (bytes) always followed by an acknowledge bit, Ac for
VL53L0X acknowledge and Am for master acknowledge (host bus master). The internal
data is produced by sampling SDA at a rising edge of SCL. The external data must be stable
during the high period of SCL. The exceptions to this are start (S) or stop (P) conditions
when SDA falls or rises respectively, while SCL is high.
A message contains a series of bytes preceded by a start condition and followed by either a
stop or repeated start (another start condition but without a preceding stop condition)
followed by another message. The first byte contains the device address (0x52) and also
specifies the data direction. If the least significant bit is low (that is, 0x52) the message is a
master write to the slave. If the lsb is set (that is, 0x53) then the message is a master read
from the slave.
Figure 14. VL53L0X I2C device address: 0x52
All serial interface communications with the camera module must begin with a start
condition. The VL53L0X module acknowledges the receipt of a valid address by driving the
SDA wire low. The state of the read/write bit (lsb of the address byte) is stored and the next
byte of data, sampled from SDA, can be interpreted. During a write sequence the second
byte received provide a 8-bit index which points to one of the internal 8-bit registers.
12 78Ac/Am
Start condition
Stop condition
SDA
SCL
Acknowledge
P
S3 4 56
Address or data byte
MSB LSB
MSBit LSBit
0101001R/W
DocID029104 Rev 1 19/40
VL53L0X Control interface
37
Figure 15. VL53L0X data format (write)
As data is received by the slave it is written bit by bit to a serial/parallel register. After each
data byte has been received by the slave, an acknowledge is generated, the data is then
stored in the internal register addressed by the current index.
During a read message, the contents of the register addressed by the current index is read
out in the byte following the device address byte. The contents of this register are parallel
loaded into the serial/parallel register and clocked out of the device by the falling edge of
SCL.
Figure 16. VL53L0X data format (read)
At the end of each byte, in both read and write message sequences, an acknowledge is
issued by the receiving device (that is, the VL53L0X for a write and the host for a read).
A message can only be terminated by the bus master, either by issuing a stop condition or
by a negative acknowledge (that is, not pulling the SDA line low) after reading a complete
byte during a read operation.
The interface also supports auto-increment indexing. After the first data byte has been
transferred, the index is automatically incremented by 1. The master can therefore send
data bytes continuously to the slave until the slave fails to provide an acknowledge or the
master terminates the write communication with a stop condition. If the auto-increment
feature is used the master does not have to send address indexes to accompany the data
bytes.
Figure 17. VL53L0X data format (sequential write)
VL53L0X acknowledges Acknowledge from VL53L0X
SAcADDRESS[7:0]
INDEX[7:0]
Ac DATA[7:0] Ac
P
0x52 (write)
Start
Stop
valid address
SAc
ADDRESS[7:0] INDEX[7:0] Ac P
0x52 (write)
SAc
ADDRESS[7:0] Am
DATA[7:0] P
0x53 (read)
SAc
ADDRESS[7:0] INDEX[7:0] Ac
0x52 (write)
PAc
DATA[7:0] Ac
DATA[7:0] Ac
DATA[7:0]
Control interface VL53L0X
20/40 DocID029104 Rev 1
Figure 18. VL53L0X data format (sequential read)
3.1 I2C interface - timing characteristics
Timing characteristics are shown in Table 3. Please refer to Figure 19 for an explanation of
the parameters used.
Timings are given for all PVT conditions.
SAc
ADDRESS[7:0] INDEX[7:0] Ac P
0x52 (write)
SAc
ADDRESS[7:0] Am
DATA[7:0]
P
0x53 (read)
Am
DATA[7:0]
Am
DATA[7:0] Am
DATA[7:0] Am
DATA[7:0]
Table 3. I2C interface - timing characteristics
Symbol Parameter Minimum Typical Maximum Unit
FI2C
Operating frequency (Standard and
Fast mode) 0-400
(1)
1. The maximum bus speed is also limited by the combination of 400pF load capacitance and pull-up resistor.
Please refer to the I2C specification for further information.
kHz
tLOW Clock pulse width low 1.3 - - μs
tHIGH Clock pulse width high 0.6 - - μs
tSP
Pulse width of spikes which are
suppressed by the input filter - - 50 ns
tBUF Bus free time between transmissions 1.3 - - ms
tHD.STA Start hold time 0.26 - - μs
tSU.STA Start set-up time 0.26 - - μs
tHD.DAT Data in hold time 0 - 0.9 μs
tSU.DAT Data in set-up time 50 - - ns
tRSCL/SDA rise time - - 120 ns
tFSCL/SDA fall time - - 120 ns
tSU.STO Stop set-up time 0.6 - - μs
Ci/o Input/output capacitance (SDA) - - 10 pF
Cin Input capacitance (SCL) - - 4 pF
CLLoad capacitance - 125 400 pF
DocID029104 Rev 1 21/40
VL53L0X Control interface
37
Figure 19. I2C timing characteristics
All timings are measured from either VIL or VIH.
3.2 I2C interface - reference registers
The registers shown in the table below can be used to validate the user I2C interface.
Note: I2C read/writes can be 8,16 or 32-bit. Multi-byte reads/writes are always addressed in
ascending order with MSB first as shown in Table 5.
SDA
SCL
t
HD.STA
t
R
t
HIGH
t
F
t
SU.DAT
t
HD.DAT
t
SU.STA
t
SU.STO
...
...
t
HD.STA
t
LOW
t
BUF
stopstartstop start
V
IH
V
IL
V
IH
V
IL
Table 4. Reference registers
Address (after fresh reset,
without API loaded)
0xC0 0xEE
0xC1 0xAA
0xC2 0x10
0x51 0x0099
0x61 0x0000
Table 5. 32-bit register example
Register address Byte
Address MSB
Address + 1 ..
Address + 2 ..
Address + 3 LSB
Electrical characteristics VL53L0X
22/40 DocID029104 Rev 1
4 Electrical characteristics
4.1 Absolute maximum ratings
Note: Stresses above those listed in Table 6. may cause permanent damage to the device. This is
a stress rating only and functional operation of the device at these or any other conditions
above those indicated in the operational sections of the specification is not implied.
Exposure to absolute maximum rating conditions for extended periods may affect device
reliability.
4.2 Recommended operating conditions
4.3 ESD
VL53L0X is compliant with ESD values presented inTable 8
Table 6. Absolute maximum ratings
Parameter Min. Typ. Max. Unit
AVDD -0.5 - 3.6 V
SCL, SDA, XSHUT and GPIO1 -0.5 - 3.6 V
Table 7. Recommended operating conditions(1)
1. There are no power supply sequencing requirements. The I/Os may be high, low or floating when AVDD is
applied. The I/Os are internally failsafe with no diode connecting them to AVDD
Parameter Min. Typ. Max. Unit
Voltage (AVDD) 2.6 2.8 3.5 V
IO (IOVDD)(2)
2. XSHUT should be high level only when AVDD is on.
Standard mode 1.6 1.8 1.9 V
2V8 mode(3)(4)
3. SDA, SCL, XSHUT and GPIO1 high levels have to be equal to AVDD in 2V8 mode.
4. The default API mode is 1V8.
2V8 mode is programmable using device settings loaded by the API. For more details please refer to the
VL53L0X API User Manual.
2.6 2.8 3.5 V
Temperature (normal operating) -20 +70 °C
Table 8. ESD performances
Parameter Specification Conditions
Human Body Model JS-001-2012 +/- 2kV, 1500 Ohms, 100pF
Charged Device Model JZSD22-C101 +/- 500V
DocID029104 Rev 1 23/40
VL53L0X Electrical characteristics
37
4.4 Current consumption
Table 9. Consumption at ambient temperature(1)
1. All current consumption values include silicon process variations. Temperature and Voltage are at nominal
conditions (23degC and 2.8V).
All values include AVDD and AVDDVCSEL.
Parameter Min. Typ. Max. Unit
HW STANDBY 3 5 7 uA
SW STANDBY (2V8 mode)(2)
2. In standard mode (1V8), pull-ups have to be modified, then SW STANDBY consumption is increased by
+0.6uA.
469uA
Timed ranging Inter measurement 16 uA
Active Ranging average consumption
(including VCSEL) (3)(4)
3. Active ranging is an average value, measured using default API settings (33ms timing budget).
4. Peak current (including VCSEL) can reach 40mA.
19 mA
Average power consumption at 10Hz
with 33ms ranging sequence 20 mW
Electrical characteristics VL53L0X
24/40 DocID029104 Rev 1
4.5 Electrical characteristics
Table 10. Digital I/O electrical characteristics
Symbol Parameter Minimum Typical Maximum Unit
Interrupt pin (GPIO1)
VIL Low level input voltage - - 0.3 IOVDD V
VIH High level input voltage 0.7 IOVDD - - V
VOL
Low level output voltage
(IOUT = 4 mA) --0.4V
VOH
High level output voltage at
(IOUT = 4 mA)
IOVDD-
0.4 --V
FGPIO
Operating frequency
(CLOAD = 20 pF) 0 - 108 MHz
I2C interface (SDA/SCL)
VIL Low level input voltage -0.5 - 0.6 V
VIH High level input voltage 1.12 - IOVDD+0.5 V
VOL
Low level output voltage (IOUT = 4 mA
in Standard and Fast modes) --0.4V
IIL/IH
Leakage current(1)
1. AVDD = 0 V
--10µA
Leakage current(2)
2. AVDD = 2.85 V; I/O voltage = 1.8 V
- - 0.15 µA
DocID029104 Rev 1 25/40
VL53L0X Performance
37
5 Performance
5.1 Measurement conditions
In all measurement tables in the document, it is considered that the full Field Of View (FOV)
is covered.
VL53L0X system FOV is 25degrees.
Reflectance targets are standard ones (Grey 17% N4.74 and White 88% N9.5 Munsell
charts).
Unless mentioned, device is controlled through the API using the default settings (refer to
VL53L0X API User Manual for API settings description).
Figure 20. Typical ranging (default mode)
API_RangeValue (mm) vs. Actual Target Distance (mm)
Reflectance
grey17
white88
Actual Target Distance (mm)
0 100 200 300 400 500 600 700 800 900 1000 1100 1200
0
100
200
300
400
500
600
700
800
900
1000
1100
1200
Performance VL53L0X
26/40 DocID029104 Rev 1
Figure 21. Typical ranging - Long range mode
5.2 Max ranging distance
Table 11 presents the ranging specification for VL53L0X bare module, without cover glass,
at room temperature (23degreesC) and with nominal voltage (2.8Volts).
Note (1): using long range API profile
API_RangeValue (mm) vs. Actual Target Distance (mm)
Reflectance
grey17
white88
Actual Target Distance (mm)
0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400
0
200
400
600
800
1000
1200
1400
1600
1800
2000
2200
Table 11. Max ranging capabilities with 33ms timing budget
Target reflectance
level (Full FOV) Conditions Indoor
(2)
Outdoor overcast
(2)
White Target (88%) Typical 200cm+ (1) 80cm
Minimum 120cm 60cm
Grey Target (17%) Typical 80cm 50cm
Minimum 70cm 40cm
DocID029104 Rev 1 27/40
VL53L0X Performance
37
Note (2):
Indoor: no infrared
Outdoor overcast corresponds to a parasitic noise of 10kcps/SPAD for VL53L0X
module. For reference, this corresponds to a 1.2W/m² at 940nm, and is equivalent
to 5kLux daylight, while ranging on a grey 17% chart at 40cm
Measurement conditions:
Targets reflectance used : Grey (17%), White (88%)
Nominal Voltage (2.8V) and Temperature (23degreesC)
All distances are for a complete Field of View covered (FOV = 25degrees)
33ms timing budget
All distances mentioned in this table are guaranteed for a minimum detection rate of 94%
(up to 100%). Detection rate is the worst case percentage of measurements that will return a
valid measurement when target is detected.
5.3 Ranging accuracy
5.3.1 Standard deviation
Ranging accuracy can be characterized by standard deviation. It includes Measure-to-
Measure and Part-to-Part (silicon) dispersion.
Measurement conditions:
Targets reflectance used: Grey (17%), White (88%)
Offset correction done at 10cm from sensor.
Indoor: no Infrared / Outdoor: eq. 5kLux equivalent sunlight (10kcps/SPAD)
Nominal Voltage (2v8) and Temperature (23degreesC)
All distances are for a complete Field of View covered (FOV = 25degrees)
Detection rate is considered at 94% minimum
Table 12. Ranging accuracy
Indoor (no infrared) Outdoor
Target reflectance
level (Full FOV) Distance 33ms 66ms Distance 33ms 66ms
White Target (88%) at 120cm 4% 3% at 60cm 7% 6%
Grey Target (17%) at 70cm 7% 6% at 40cm 12% 9%
Performance VL53L0X
28/40 DocID029104 Rev 1
5.3.2 Range profile examples
Table 13 details typical performance for the four example ranging profiles, as per
measurement conditions in Section 5.3: Ranging accuracy.
5.3.3 Ranging offset error
The table below shows how range offset may drift over distance, voltage and temperature.
Assumes offset calibrated at 10cm. See VL53L0X API User Manual for details on offset
calibration.
Table 13. Range profiles
Range Profile Range timing budget Typical performance Typical application
Default mode 30ms 1.2m, accuracy as per
Table 12 standard
High accuracy 200ms 1.2m, accuracy < +/- 3% precise measurement
Long range 33ms 2m, accuracy as per
Table 12
long ranging, only for
dark conditions (no IR)
High speed 20ms 1.2m, accuracy +/- 5% high speed where
accuracy is not priority
Table 14. Ranging offset
Nominal
Conditions Measure point Typical offset
from nominal
Maximum offset
from nominal
Ranging
distance
Offset calibration
at 10cm (“zero”)
White 120cm (indoor)
Grey 70cm (indoor)
White 60cm (outdoor)
Grey 40cm (outdoor)
< 3%
Voltage drift 2.8V 2.6V to 3.5V +/- 10mm +/- 15mm
Temperature
drift 23°C -20°C to +70°C +/- 10mm +/- 30mm
DocID029104 Rev 1 29/40
VL53L0X Outline drawing
37
6 Outline drawing
Figure 22. Outline drawing (page 1/3)

















3,1




,1326















$5($5(6(59('
)250$5.,1*
127(6
',0(16,2166+2:1:,7+ $5(,163(&7,21',0(16,216

68%675$7(:,//$/:$<6%(,16,'(7+(02'8/(287/,1(',0(16,216

8163(&,),('5$',,

3:%62/'(53$77(51
&211(&7,217$%/(
3$'
1R
)81&7,21
$9''9&6(/
$9669&6(/
*1'
*1'
;6+87
*1'
*3,2
'1&
6'$

6&/

$9''

*1'
5(9,6,217$%/(
5(9
'(6&5,37,21
'$7(
,1,7,$/5(/($6(

'5$:,1*7,7/(83'$7(


$
%
&
'
(
)
$
%
&
'
(
)
678$5752%(57621
$
%
&
'
(
)
$
%
&
'
(
)
9//;/,1(502'8/(
287/,1('5$:,1*
2)
)(%
$
%
&
'
(
)
$
%
&
'
(
)
/LQHDU
3ODFH'HFLPDOV
3ODFH'HFLPDOV
3ODFH'HFLPDOV
$QJXODUGHJUHHV
'LDPHWHU

3RVLWLRQ

6XUIDFH)LQLVKPLFURQV
$
%
&
'
(
)
$
%
&
'
(
)
$
%
&
'
(
)
$
%
&
'
(
)
6FDOH
,QWHUSUHWGUDZLQJSHU%6
5'$QJOH3URMHFWLRQ
$
%
&
'
(
)
$
%
&
'
(
)
6KHHW
7LWOH
0DWHULDO
)LQLVK
7ROHUDQFHVXQOHVVRWKHUZLVHVWDWHG
'UDZQ
'DWH
3DUW1R
$OOGLPHQVLRQV
LQPP
'R1RW6FDOH
670LFURHOHFWURQLFV
,PDJLQJ'LYLVLRQ

'0
Outline drawing VL53L0X
30/40 DocID029104 Rev 1
Figure 23. Outline drawing (page 2/3)


2)&21(
$7'$780$
2)&21(
$7'$780$
(0,77(5
(;&/86,21&21(
&2//(&725
(;&/86,21&21(
(;&/86,21&21('$7$
7+(7:2&21(66+2:1217+,66+((75(35(6(17
92/80(6,172:+,&+7+(86(56(48,30(17
+286,1*6+28/'127(17(5
5(9
$
%
&
'
(
)
$
%
&
'
(
)
$
%
&
'
(
)
$
%
&
'
(
)
2)
$
%
&
'
(
)
$
%
&
'
(
)
/LQHDU
3ODFH'HFLPDOV
3ODFH'HFLPDOV
3ODFH'HFLPDOV
$QJXODUGHJUHHV
'LDPHWHU

3RVLWLRQ

6XUIDFH)LQLVKPLFURQV
$
%
&
'
(
)
$
%
&
'
(
)
$
%
&
'
(
)
$
%
&
'
(
)
6FDOH
,QWHUSUHWGUDZLQJSHU%6
5'$QJOH3URMHFWLRQ
$
%
&
'
(
)
$
%
&
'
(
)
6KHHW
7LWOH
0DWHULDO
)LQLVK
7ROHUDQFHVXQOHVVRWKHUZLVHVWDWHG
'UDZQ
'DWH
3DUW1R
$OOGLPHQVLRQV
LQPP
'R1RW6FDOH
670LFURHOHFWURQLFV
,PDJLQJ'LYLVLRQ

678$5752%(57621
9//;/,1(502'8/(
287/,1('5$:,1*
'0
)(%
DocID029104 Rev 1 31/40
VL53L0X Outline drawing
37
Figure 24. Outline drawing - with liner (page 3/3)
5
,1326




3527(&7,9(/,1(5
6&$/(


'(/,9(5('&21),*85$7,21
5(9
$
%
&
'
(
)
$
%
&
'
(
)
678$5752%(57621
$
%
&
'
(
)
$
%
&
'
(
)
2)
$
%
&
'
(
)
$
%
&
'
(
)
/LQHDU
3ODFH'HFLPDOV
3ODFH'HFLPDOV
3ODFH'HFLPDOV
$QJXODUGHJUHHV
'LDPHWHU

3RVLWLRQ

6XUIDFH)LQLVKPLFURQV
$
%
&
'
(
)
$
%
&
'
(
)
$
%
&
'
(
)
$
%
&
'
(
)
6FDOH
,QWHUSUHWGUDZLQJSHU%6
5'$QJOH3URMHFWLRQ
$
%
&
'
(
)
$
%
&
'
(
)
6KHHW
7LWOH
0DWHULDO
)LQLVK
7ROHUDQFHVXQOHVVRWKHUZLVHVWDWHG
'UDZQ
'DWH
3DUW1R
$OOGLPHQVLRQV
LQPP
'R1RW6FDOH
670LFURHOHFWURQLFV
,PDJLQJ'LYLVLRQ

9//;/,1(502'8/(
287/,1('5$:,1*
'0
)(%
Laser safety considerations VL53L0X
32/40 DocID029104 Rev 1
7 Laser safety considerations
The VL53L0X contains a laser emitter and corresponding drive circuitry. The laser output is
designed to remain within Class 1 laser safety limits under all reasonably foreseeable
conditions including single faults in compliance with IEC 60825-1:2014 (third edition).
The laser output will remain within Class 1 limits as long as the STMicroelectronics
recommended device settings (API settings) are used and the operating conditions
specified are respected.
The laser output power must not be increased by any means and no optics should be used
with the intention of focusing the laser beam.
Caution: Use of controls or adjustments or performance of procedures other than those specified
herein may result in hazardous radiation exposure.
Figure 25. Class 1 laser product label
DocID029104 Rev 1 33/40
VL53L0X Packaging and labeling
37
8 Packaging and labeling
8.1 Product marking
A 2-line product marking is applied on the backside of the module (i.e. on the substrate).
The first line is the silicon product code, and the second line, the internal tracking code.
Figure 26. Example of marking
8.2 Inner box labeling
The labeling follows the ST standard packing acceptance specification.
The following information will be on the inner box label:
assembly site
sales type
quantity
trace code
marking
bulk ID number
8.3 Packing
At customer / subcontractor level, it is recommended to mount theVL53L0X in a clean
environment to avoid foreign material deposition.
To help avoid any foreign material contamination at phone assembly level the modules will
be shipped in a tape and reel format with a protective liner. The packaging will be vacuum-
sealed and include a desiccant.
The liner is compliant with reflow at 260°C. It must be removed during assembly of the
customer device, just before mounting the cover glass.
Packaging and labeling VL53L0X
34/40 DocID029104 Rev 1
8.3.1 Tape outline drawings
Figure 27. Tape outline drawing
8.4 Pb-free solder reflow process
Figure 28 and Table 15 shows the recommended and maximum values for the solder
profile.
Customers will have to tune the reflow profile depending on the PCB, solder paste and
material used.
We expect customers to follow the “recommended” reflow profile, which is specifically tuned
for VL53L0X package.
For any reason if a customer must perform a reflow profile which is different from
“recommended” one (especially peak >240°C), this new profile must be qualified by the
customer at its own risk. In any case, the profile have to be within the “maximum” profile limit
described in Table 15.
Pin 1
DocID029104 Rev 1 35/40
VL53L0X Packaging and labeling
37
Table 15. Recommended solder profile
Figure 28. Solder profile
Note: Temperature mentioned in Table 15 is measured at the top of VL53L0X package.
Note: The component should be limited to a maximum of 3 passes through this solder profile.
8.5 Handling and storage precautions
8.5.1 Shock precaution
Proximity sensor modules house numerous internal components that are susceptible to
shock damage. If a unit is subject to excessive shock, is dropped onto the floor, or a
tray/reel of units is dropped onto the floor, it must be rejected, even if no apparent damage is
visible.
Parameters Recommended Maximum Units
Minimum temperature (TS min)
Maximum temperature (TS max)
Time ts (TS min to TS max)
130
200
90-110
150
200
60 - 120
°C
°C
seconds
Temperature (TL)
Time (tL)
Ramp up
217
55-65
+2
217
55 - 65
+3
°C
seconds
°C/second
Temperature (Tp-10)
Time (tp-10)
Ramp up
-
-
-
250
10
+3
°C
seconds
°C/second
Peak temperature (Tp) 240 260 max °C
Time to peak 300 300 seconds
Ramp down (peak to TL) -4 -6 °C/second
Packaging and labeling VL53L0X
36/40 DocID029104 Rev 1
8.5.2 Part handling
Handling must be done with non-marring ESD safe carbon, plastic, or Teflon tweezers.
Ranging module are susceptible to damage or contamination. A clean assembly process is
advised at customer after un-taping the parts, and until a protective cover glass is mounted.
8.5.3 Compression force
A maximum compressive load of 25N shall be applied on the module.
8.5.4 Moisture sensitivity level
Moisture sensitivity is level 3 (MSL) as described in IPC/JEDEC JSTD-020-C
8.6 Storage temperature conditions
Table 16. Recommended storage conditions
Parameter Min. Typ. Max. Unit
Temperature (storage) -40 +85 °C
DocID029104 Rev 1 37/40
VL53L0X Ordering information
37
9 Ordering information
10 Acronyms and abbreviations
Table 17. Ordering information
Sales type Package Packing
VL53L0CXV0DH/1 Optical LGA12 with liner Tape and reel
Table 18. Acronyms and abbreviations
Acronym/ abbreviation Definition
ESD Electrostatic discharge
I2C Inter-integrated circuit (serial bus)
NVM Non volatile memory
RIT Return Ignore Threshold
SPAD Single photon avalanche diode
VCSEL Vertical cavity surface emitting laser
ECOPACK®VL53L0X
38/40 DocID029104 Rev 1
11 ECOPACK®
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK® is an ST trademark.
DocID029104 Rev 1 39/40
VL53L0X Revision history
39
12 Revision history
Table 19. Document revision history
Date Revision Changes
30-May-2016 1.0 Initial release.
VL53L0X
40/40 DocID029104 Rev 1
IMPORTANT NOTICE – PLEASE READ CAREFULLY
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.
No license, express or implied, to any intellectual property right is granted by ST herein.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.
ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.
© 2016 STMicroelectronics – All rights reserved