INSULATED GATE BIPOLAR TRANSISTOR WITH
ULTRAFAST SOFT RECOVERY DIODE
IRGB4062DPbF
IRGP4062DPbF
1www.irf.com
04/02/09
E
G
n-channel
C
VCES = 600V
IC = 24A, TC = 100°C
tSC 5µs, TJ(max) = 175°C
VCE(on) typ. = 1.65V
Features
Low VCE (ON) Trench IGBT Technology
Low switching losses
Maximum Junction temperature 175 °C
5 µS short circuit SOA
Square RBSOA
100% of the parts tested for ILM
Positive VCE (ON) Temperature co-efficient
Ultra fast soft Recovery Co-Pak Diode
Tight parameter distribution
Lead Free Package
Benefits
High Efficiency in a wide range of applications
Suitable for a wide range of switching frequencies due to
Low VCE (ON) and Low Switching losses
Rugged transient Performance for increased reliability
Excellent Current sharing in parallel operation
Low EMI
GC E
Gate Collector Emitter
GCE
TO-247AC
TO-220AB
GCE
CC
Absolute Maximum Ratings
Parameter Max. Units
VCES Collector-to-Emitter Voltage 600 V
IC @ TC = 25°C Continuous Collector Current 48
IC @ TC = 100°C Continuous Collector Current 24
ICM Pulse Collector Current, VGE = 15V 72
ILM Clamped Inductive Load Current, VGE = 20V
c
96 A
IF @ TC = 25°C Diode Continous Forward Current 48
IF @ TC = 100°C Diode Continous Forward Current 24
IFM Diode Maximum Forward Current
e
96
VGE Continuous Gate-to-Emitter Voltage ±20 V
Transient Gate-to-Emitter Voltage ±30
PD @ TC = 25°C Maximum Power Dissipation 250 W
PD @ TC = 100°C Maximum Power Dissipation 125
TJOperating Junction and -55 to +175
TSTG Storage Temperature Range °C
Soldering Temperature, for 10 sec. 300 (0.063 in. (1.6mm) from case)
Mounting Torque, 6-32 or M3 Screw 10 lbf·in (1.1 N·m)
Thermal Resistance
Parameter Min. Typ. Max. Units
RθJC (IGBT) Thermal Resistance Junction-to-Case-(each IGBT) TO-220AB ––– ––– 0.60
RθJC (Diode) Thermal Resistance Junction-to-Case-(each Diode) TO-220AB ––– ––– 1.53
RθJC (IGBT) Thermal Resistance Junction-to-Case-(each IGBT) TO-247AC ––– ––– 0.65 °C/W
RθJC (Diode) Thermal Resistance Junction-to-Case-(each Diode) TO-247AC ––– ––– 1.62
RθCS Thermal Resistance, Case-to-Sink (flat, greased surface) ––– 0.50 –––
RθJA Thermal Resistance, Junction-to-Ambient (typical socket mount) ––– 80 –––
PD - 97190D
IRGB/P4062DPbF
2www.irf.com
Notes:
VCC = 80% (VCES), VGE = 20V, L = 100µH, RG = 10
This is only applied to TO-220AB package.
Pulse width limited by max. junction temperature.
Refer to AN-1086 for guidelines for measuring V(BR)CES safely.
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter Min. Typ. Max. Units Conditions Ref.Fig
V(BR)CES Collector-to-Emitter Breakdown Voltage 600——V
VGE = 0V, IC = 100µA
f
CT6
V(BR)CES/TJTemperature Coeff. of Breakdown Voltage —0.30—V/°C
VGE = 0V, IC = 1mA (2C-17C) CT6
—1.601.95 IC = 24A, VGE = 15V, TJ = 25°C 5,6,7
VCE(on) Collector-to-Emitter Saturation Voltage 2.03 V IC = 24A, VGE = 15V, TJ = 150°C 9,10,11
—2.04— IC = 24A, VGE = 15V, TJ = 175°C
VGE(th) Gate Threshold Voltage 4.0 6.5 V VCE = VGE, IC = 700µA 9, 10,
VGE(th)/TJ Threshold Voltage temp. coefficient -18 mV/°C VCE = VGE, IC = 1.0mA (25°C - 175°C) 11, 12
gfe Forward Transconductance 17 S VCE = 50V, IC = 24A, PW = 80µs
ICES Collector-to-Emitter Leakage Current 2.0 25 µA VGE = 0V, VCE = 600V
—775— VGE = 0V, VCE = 600V, TJ = 175°C
VFM Diode Forward Voltage Drop 1.80 2.6 V IF = 24A 8
—1.28— IF = 24A, TJ = 17C
IGES Gate-to-Emitter Leakage Current ±100 nA VGE = ±20V
Switching Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter Min. Typ. Max. Units Ref.Fig
QgTotal Gate Charge (turn-on) 50 75 IC = 24A 24
Qge Gate-to-Emitter Charge (turn-on) 13 20 nC VGE = 15V CT1
Qgc Gate-to-Collector Charge (turn-on) 21 31 VCC = 400V
Eon Turn-On Switching Loss 115 201 IC = 24A, VCC = 400V, VGE = 15V CT4
Eoff Turn-Off Switching Loss 600 700 µJ RG = 10, L = 200µH, LS = 150nH, TJ = 25°C
Etotal Total Switching Loss 715 901 Energy losses include tail & diode reverse recovery
td(on) Turn-On delay time 41 53 IC = 24A, VCC = 400V, VGE = 15V CT4
trRise time 22 31 ns RG = 10, L = 20H, LS = 150nH, TJ = 25°C
td(off) Turn-Off delay time 104 115
tfFall time 29 41
Eon Turn-On Switching Loss 420 IC = 24A, VCC = 400V, VGE=15V 13, 15
Eoff Turn-Off Switching Loss 840 µJ RG=10, L= 200µH, LS=150nH, TJ = 17C
f
CT4
Etotal Total Switching Loss 1260 Energy losses include tail & diode reverse recovery WF1, WF2
td(on) Turn-On delay time 40 IC = 24A, VCC = 400V, VGE = 15V 14, 16
trRise time 24 ns RG = 10, L = 20H, LS = 150nH CT4
td(off) Turn-Off delay time 125 TJ = 175°C WF1
tfFall time 39 WF2
Cies Input Capacitance 1490 pF VGE = 0V 23
Coes Output Capacitance 129 VCC = 30V
Cres Reverse Transfer Capacitance 45 f = 1.0Mhz
TJ = 175°C, IC = 96A 4
RBSOA Reverse Bias Safe Operating Area FULL SQUARE VCC = 480V, Vp =600V CT2
Rg = 10, VGE = +20V to 0V
SCSOA Short Circuit Safe Operating Area 5 µs VCC = 400V, Vp =600V 22, CT3
Rg = 10, VGE = +15V to 0V WF4
Erec Reverse Recovery Energy of the Diode 621 µJ TJ = 17C 17, 18, 19
trr Diode Reverse Recovery Time 89 ns VCC = 400V, IF = 24A 20, 21
Irr Peak Reverse Recovery Current 37 A VGE = 15V, Rg = 10, L =200µH, Ls = 150nH WF3
Conditions
IRGB/P4062DPbF
www.irf.com 3
Fig. 1 - Maximum DC Collector Current vs.
Case Temperature
Fig. 2 - Power Dissipation vs. Case
Temperature
Fig. 3 - Forward SOA
TC = 25°C, TJ 175°C; VGE =15V
Fig. 4 - Reverse Bias SOA
TJ = 175°C; VGE =20V
Fig. 5 - Typ. IGBT Output Characteristics
TJ = -40°C; tp = 80µs
Fig. 6 - Typ. IGBT Output Characteristics
TJ = 25°C; tp = 80µs
020 40 60 80 100 120 140 160 180
TC (°C)
0
5
10
15
20
25
30
35
40
45
50
IC (A)
0 20 40 60 80 100 120 140 160 180
TC (°C)
0
50
100
150
200
250
300
Ptot (W)
10 100 1000
VCE (V)
1
10
100
1000
IC (A)
0 1 2 3 4 5 6 7 8
VCE (V)
0
10
20
30
40
50
60
70
80
90
ICE (A)
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
0 1 2 3 4 5 6 7 8
VCE (V)
0
10
20
30
40
50
60
70
80
90
ICE (A)
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
1 10 100 1000 10000
VCE (V)
0.1
1
10
100
1000
IC (A)
1msec
10µsec
100µsec
Tc = 25°C
Tj = 175°C
Single Pulse
DC
IRGB/P4062DPbF
4www.irf.com
Fig. 7 - Typ. IGBT Output Characteristics
TJ = 175°C; tp = 80µs
Fig. 8 - Typ. Diode Forward Characteristics
tp = 80µs
Fig. 10 - Typical VCE vs. VGE
TJ = 25°C
Fig. 11 - Typical VCE vs. VGE
TJ = 175°C
Fig. 12 - Typ. Transfer Characteristics
VCE = 50V; tp = 10µs
Fig. 9 - Typical VCE vs. VGE
TJ = -40°C
012345678
VCE (V)
0
10
20
30
40
50
60
70
80
90
ICE (A)
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
0.0 1.0 2.0 3.0
VF (V)
0
20
40
60
80
100
120
IF (A)
-40°c
25°C
175°C
5 101520
VGE (V)
0
2
4
6
8
10
12
14
16
18
20
VCE (V)
ICE = 12A
ICE = 24A
ICE = 48A
0 5 10 15
VGE (V)
0
20
40
60
80
100
120
ICE (A)
TJ = 25°C
TJ = 175°C
5 101520
VGE (V)
0
2
4
6
8
10
12
14
16
18
20
VCE (V)
ICE = 12A
ICE = 24A
ICE = 48A
5 101520
VGE (V)
0
2
4
6
8
10
12
14
16
18
20
VCE (V)
ICE = 12A
ICE = 24A
ICE = 48A
IRGB/P4062DPbF
www.irf.com 5
Fig. 13 - Typ. Energy Loss vs. IC
TJ = 175°C; L = 200µH; VCE = 400V, RG = 10; VGE = 15V
Fig. 14 - Typ. Switching Time vs. IC
TJ = 175°C; L = 200µH; VCE = 400V, RG = 10; VGE = 15V
Fig. 15 - Typ. Energy Loss vs. RG
TJ = 175°C; L = 200µH; VCE = 400V, ICE = 24A; VGE = 15V
Fig. 16 - Typ. Switching Time vs. RG
TJ = 175°C; L = 200µH; VCE = 400V, ICE = 24A; VGE = 15V
Fig. 17 - Typ. Diode IRR vs. IF
TJ = 175°C
Fig. 18 - Typ. Diode IRR vs. RG
TJ = 175°C
0 102030405060
IC (A)
0
200
400
600
800
1000
1200
1400
1600
1800
Energy (µJ)
EOFF
EON
10 20 30 40 50
IC (A)
1
10
100
1000
Swiching Time (ns)
tR
tdOFF
tF
tdON
025 50 75 100 125
RG ()
10
100
1000
Swiching Time (ns)
tR
tdOFF
tF
tdON
010 20 30 40 50 60
IF (A)
10
15
20
25
30
35
40
IRR (A)
RG = 10
RG = 22
RG = 47
RG = 100
025 50 75 100 125
RG (Ω)
5
10
15
20
25
30
35
40
45
IRR (A)
0 25 50 75 100 125
Rg ()
0
200
400
600
800
1000
1200
1400
1600
Energy (µJ)
E
OFF
EON
IRGB/P4062DPbF
6www.irf.com
Fig. 19 - Typ. Diode IRR vs. diF/dt
VCC = 400V; VGE = 15V; IF = 24A; TJ = 175°C
Fig. 20 - Typ. Diode QRR vs. diF/dt
VCC = 400V; VGE = 15V; TJ = 175°C
Fig. 23 - Typ. Capacitance vs. VCE
VGE= 0V; f = 1MHz
Fig. 24 - Typical Gate Charge vs. VGE
ICE = 24A; L = 600µH
Fig. 21 - Typ. Diode ERR vs. IF
TJ = 175°C
Fig. 22 - VGE vs. Short Circuit Time
VCC = 400V; TC = 25°C
0500 1000 1500
diF /dt ( A/µs)
5
10
15
20
25
30
35
40
45
IRR (A)
010 20 30 40 50 60
IF (A)
0
200
400
600
800
1000
Energy (µJ)
RG = 10
RG = 22
RG = 47
RG = 100
8 1012141618
VGE (V)
4
6
8
10
12
14
16
Time (µs)
40
80
120
160
200
240
280
Current (A)
020 40 60 80 100
VCE (V)
10
100
1000
10000
Capacitance (pF)
Cies
Coes
Cres
0 5 10 15 20 25 30 35 40 45 50 55
Q G, Total Gate Charge (nC)
0
2
4
6
8
10
12
14
16
VGE, Gate-to-Emitter Voltage (V)
VCES
= 300V
VCES
= 400V
0 500 1000 1500
diF /dt (A/µs)
500
1000
1500
2000
2500
3000
3500
4000
QRR (µC)
10
22
100
47
24A
48A
12A
IRGB/P4062DPbF
www.irf.com 7
Fig. 26. Maximum Transient Thermal Impedance, Junction-to-Case (DIODE) TO-220AB
Fig 25. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT) TO-220AB
1E-006 1E-005 0.0001 0.001 0.01 0.1
t1 , Rectangular Pulse Duration (sec)
0.0001
0.001
0.01
0.1
1
Thermal Response ( Z thJC )
0.20
0.10
D = 0.50
0.02
0.01
0.05
SINGLE PULSE
( THERMAL RESPONSE )
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
Ri (°C/W) τi (sec)
0.2329 0.000234
0.3631 0.007009
τJ
τJ
τ1
τ1
τ2
τ2
R1
R1R2
R2
τ
τC
Ci i/Ri
Ci= τi/Ri
1E-006 1E-005 0.0001 0.001 0.01 0.1 1
t1 , Rectangular Pulse Duration (sec)
0.0001
0.001
0.01
0.1
1
10
Thermal Response ( Z thJC )
0.20
0.10
D = 0.50
0.02
0.01
0.05
SINGLE PULSE
( THERMAL RESPONSE ) Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
Ri (°C/W) τi (sec)
0.476 0.000763
0.647 0.003028
0.406 0.023686
τJ
τJ
τ1
τ1
τ2
τ2τ3
τ3
R1
R1R2
R2R3
R3
τ
τC
Ci i/Ri
Ci= τi/Ri
IRGB/P4062DPbF
8www.irf.com
Fig. 28. Maximum Transient Thermal Impedance, Junction-to-Case (DIODE) TO-247AC
Fig 27. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT) TO-247AC
1E-006 1E-005 0.0001 0.001 0.01 0.1
t1 , Rectangular Pulse Duration (sec)
0.001
0.01
0.1
1
Thermal Response ( Z thJC )
0.20
0.10
D = 0.50
0.02
0.01
0.05
SINGLE PULSE
( THERMAL RESPONSE )
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
Ri (°C/W) τi (sec)
0.2782 0.000311
0.3715 0.006347
τJ
τJ
τ1
τ1
τ2
τ2
R1
R1R2
R2
τ
τC
Ci i/Ri
Ci= τi/Ri
1E-006 1E-005 0.0001 0.001 0.01 0.1 1
t1 , Rectangular Pulse Duration (sec)
0.0001
0.001
0.01
0.1
1
10
Thermal Response ( Z thJC )
0.20
0.10
D = 0.50
0.02
0.01
0.05
SINGLE PULSE
( THERMAL RESPONSE ) Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
Ri (°C/W) τi (sec)
0.693 0.001222
0.621 0.005254
0.307 0.038140
τJ
τJ
τ1
τ1
τ2
τ2τ3
τ3
R1
R1R2
R2R3
R3
τ
τC
Ci i/Ri
Ci= τi/Ri
IRGB/P4062DPbF
www.irf.com 9
1K
VC C
DUT
0
L
L
Rg
80 V DUT
480V
L
Rg
VCC
diode clamp /
DUT
DUT /
DRIVER
- 5V
Rg
VCC
DUT
R =
V
CC
I
CM
Fig.C.T.1 - Gate Charge Circuit (turn-off) Fig.C.T.2 - RBSOA Circuit
Fig.C.T.3 - S.C. SOA Circuit Fig.C.T.4 - Switching Loss Circuit
Fig.C.T.5 - Resistive Load Circuit Fig.C.T.6 - BVCES Filter Circuit
DC
4x
DUT
360V
VCC
IRGB/P4062DPbF
10 www.irf.com
Fig. WF3 - Typ. Diode Recovery Waveform
@ TJ = 175°C using Fig. CT.4
Fig. WF1 - Typ. Turn-off Loss Waveform
@ TJ = 175°C using Fig. CT.4
Fig. WF2 - Typ. Turn-on Loss Waveform
@ TJ = 175°C using Fig. CT.4
Fig. WF4 - Typ. S.C. Waveform
@ TJ = 25°C using Fig. CT.3
-50
-40
-30
-20
-10
0
10
20
30
-0.15 -0.05 0.05 0.15 0.25
time (µS)
I
RR
(A)
Peak
I
RR
Q
RR
t
RR
10%
Pe a k
I
RR
-100
0
100
200
300
400
500
600
-5.00 0.00 5.00 10.00
time (µS)
V
CE
(V)
-50
0
50
100
150
200
250
300
I
CE
(A)
V
CE
I
CE
-100
0
100
200
300
400
500
600
-0.40 0.10 0.60
Time(µs)
V
CE
(V)
-5
0
5
1
0
1
5
2
0
2
5
3
0
EOFF Loss
5% VCE
5% ICE
90% ICE
tf
VCE
C
ICE
-100
0
100
200
300
400
500
600
11.70 11.90 12.10 12.30
Time (µs)
V
CE
(V)
-10
0
10
20
30
40
50
60
EON
ICE
C
90% test
10% ICE
5% VCE
tr
VCE
C
IRGB/P4062DPbF
www.irf.com 11
TO-220AB Part Marking Information
TO-220AB Package Outline
Dimensions are shown in millimeters (inches)
/27&2'(
(;$03/( 7+,6,6$1,5)
1RWH3LQDVVHPEO\OLQHSRVLWLRQ
LQGLFDWHV/HDG)UHH
,17+($66(0%/</,1(&
$66(0%/('21:: ,17(51$7,21$/ 3$57180%(5
5(&7,),(5
/27&2'(
$66(0%/<
/2*2
< ($5
'$7(&2'(
:((.
/,1(&
TO-220AB package is not recommended for Surface Mount Application.
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/
IRGB/P4062DPbF
12 www.irf.com
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information. 04/2009
Data and specifications subject to change without notice.
This product has been designed and qualified for Industrial market.
Qualification Standards can be found on IR’s Web site.
TO-247AC Part Marking Information
TO-247AC Package Outline
Dimensions are shown in millimeters (inches)
<($5 
'$7(&2'(
3$57180%(5
,17(51$7,21$/
/2*2
5(&7,),(5
$66(0%/<

,5)3(
+
/,1(+
LQGLFDWHV/HDG)UHH :((./27&2'(
,17+($66(0%/</,1(+
$66(0%/('21::
1RWH3LQDVVHPEO\OLQHSRVLWLRQ
(;$03/( :,7+$66(0%/<
7+,6,6$1,5)3(
/27&2'(
TO-247AC package is not recommended for Surface Mount Application.
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/