052-6283 Rev A 3-2006
APT50GF120JRDQ3
TYPICAL PERFORMANCE CURVES
MAXIMUM RATINGS All Ratings: TC = 25°C unless otherwise specified.
STATIC ELECTRICAL CHARACTERISTICS
Characteristic / Test Conditions
Collector-Emitter Breakdown Voltage (VGE = 0V, IC = 750µA)
Gate Threshold Voltage (VCE = VGE, IC = 700µA, Tj = 25°C)
Collector-Emitter On Voltage (VGE = 15V, IC = 75A, Tj = 25°C)
Collector-Emitter On Voltage (VGE = 15V, IC = 75A, Tj = 125°C)
Collector Cut-off Current (VCE = 1200V, VGE = 0V, Tj = 25°C) 2
Collector Cut-off Current (VCE = 1200V, VGE = 0V, Tj = 125°C) 2
Gate-Emitter Leakage Current (VGE = ±20V)
Symbol
V(BR)CES
VGE(TH)
VCE(ON)
ICES
IGES
Units
Volts
mA
nA
Symbol
VCES
VGE
IC1
IC2
ICM
SSOA
PD
TJ,TSTG
TL
APT50GF120JRDQ3
1200
±30
120
64
225
225A @ 1200V
521
-55 to 150
300
UNIT
Volts
Amps
Watts
°C
Parameter
Collector-Emitter Voltage
Gate-Emitter Voltage
Continuous Collector Current @ TC = 25°C
Continuous Collector Current @ TC = 100°C
Pulsed Collector Current 1
Switching Safe Operating Area @ TJ = 150°C
Total Power Dissipation
Operating and Storage Junction Temperature Range
Max. Lead Temp. for Soldering: 0.063" from Case for 10 Sec.
APT Website - http://www.advancedpower.com
CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed.
MIN TYP MAX
1200
4.5 5.5 6.5
2.5 3.0
3.1
0.75
5.5
±100
The Fast IGBT is a new generation of high voltage power IGBTs. Using Non-Punch through
technology, the Fast IGBT combined with an APT free wheeling Ultra Fast Recovery Epi-
taxial Diode (FRED) offers superior ruggedness and fast switching speed.
Low Forward Voltage Drop • High Freq. Switching to 20KHz
RBSOA and SCSOA Rated Ultra Low Leakage Current
Ultrafast Soft Recovery Anti-parallel Diode
FAST IGBT & FRED
®
SOT-227
ISOTOP
®file # E145592
"UL Recognized"
GE
E
C
C
E
G
1200V
APT50GF120JRDQ3
052-6283 Rev A 3-2006
APT50GF120JRDQ3
DYNAMIC CHARACTERISTICS
Symbol
Cies
Coes
Cres
VGEP
Qg
Qge
Qgc
SSOA
td(on)
tr
td(off)
tf
Eon1
Eon2
Eoff
td(on)
tr
td(off)
tf
Eon1
Eon2
Eoff
Test Conditions
Capacitance
VGE = 0V, VCE = 25V
f = 1 MHz
Gate Charge
VGE = 15V
VCE = 600V
IC = 75A
TJ = 150°C, RG = 1.0Ω, VGE =
15V, L = 100µH,VCE = 1200V
Inductive Switching (25°C)
VCC = 800V
VGE = 15V
IC = 75A
RG = 1.0
TJ = +25°C
Inductive Switching (125°C)
VCC = 800V
VGE = 15V
IC = 75A
RG = 1.0
TJ = +125°C
Characteristic
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Gate-to-Emitter Plateau Voltage
Total Gate Charge 3
Gate-Emitter Charge
Gate-Collector ("Miller ") Charge
Switching Safe Operating Area
Turn-on Delay Time
Current Rise Time
Turn-off Delay Time
Current Fall Time
Turn-on Switching Energy 4
Turn-on Switching Energy (Diode) 5
Turn-off Switching Energy 6
Turn-on Delay Time
Current Rise Time
Turn-off Delay Time
Current Fall Time
Turn-on Switching Energy 4 4
Turn-on Switching Energy (Diode) 55
Turn-off Switching Energy 6
MIN TYP MAX
5320
555
300
10.0
495
50
290
225
36
70
355
65
7965
9895
4340
36
70
410
110
7890
14110
6040
UNIT
pF
V
nC
A
ns
µJ
ns
µJ
THERMAL AND MECHANICAL CHARACTERISTICS
UNIT
°C/W
gm
Volts
MIN TYP MAX
.24
.56
29.2
2500
Characteristic
Junction to Case (IGBT)
Junction to Case (DIODE)
Package Weight
RMS Voltage (50-60hHz Sinusoidal Wavefomr Ffrom Terminals to Mounting Base for 1 Min.)
Symbol
RθJC
RθJC
WT
VIsolation
1 Repetitive Rating: Pulse width limited by maximum junction temperature.
2 For Combi devices, Ices includes both IGBT and FRED leakages
3 See MIL-STD-750 Method 3471.
4 Eon1 is the clamped inductive turn-on energy of the IGBT only, without the effect of a commutating diode reverse recovery current
adding to the IGBT turn-on loss. Tested in inductive switching test circuit shown in figure 21, but with a Silicon Carbide diode.
5 Eon2 is the clamped inductive turn-on energy that includes a commutating diode reverse recovery current in the IGBT turn-on switching
loss. (See Figures 21, 22.)
6 Eoff is the clamped inductive turn-off energy measured in accordance with JEDEC standard JESD24-1. (See Figures 21, 23.)
APT Reserves the right to change, without notice, the specifications and information contained herein.
052-6283 Rev A 3-2006
APT50GF120JRDQ3
TYPICAL PERFORMANCE CURVES
VGS(TH), THRESHOLD VOLTAGE VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) IC, COLLECTOR CURRENT (A) IC, COLLECTOR CURRENT (A)
(NORMALIZED)
IC, DC COLLECTOR CURRENT(A) VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) VGE, GATE-TO-EMITTER VOLTAGE (V) IC, COLLECTOR CURRENT (A)
250µs PULSE
TEST<0.5 % DUTY
CYCLE
160
140
120
100
80
60
40
20
0
160
140
120
100
80
60
40
20
0
5
4
3
2
1
0
1.15
1.10
1.05
1.00
0.95
0.90
0.85
0.80
0.75
0.70
0 1 2 3 4 5 0 5 10 15 20 25 30
0 2 4 6 8 10 12 14 0 100 200 300 400 500 600
8 10 12 14 16 0 25 50 75 100 125 150
-50 -25 0 25 50 75 100 125 150 -50 -25 0 25 50 75 100 125 150
350
300
250
200
150
100
50
0
16
14
12
10
8
6
4
2
0
5
4
3
2
1
0
180
160
140
120
100
80
60
40
20
0
VCE, COLLECTER-TO-EMITTER VOLTAGE (V) VCE, COLLECTER-TO-EMITTER VOLTAGE (V)
FIGURE 1, Output Characteristics(TJ = 25°C) FIGURE 2, Output Characteristics (TJ = 125°C)
VGE, GATE-TO-EMITTER VOLTAGE (V) GATE CHARGE (nC)
FIGURE 3, Transfer Characteristics FIGURE 4, Gate Charge
VGE, GATE-TO-EMITTER VOLTAGE (V) TJ, Junction Temperature (°C)
FIGURE 5, On State Voltage vs Gate-to- Emitter Voltage FIGURE 6, On State Voltage vs Junction Temperature
TJ, JUNCTION TEMPERATURE (°C) TC, CASE TEMPERATURE (°C)
FIGURE 7, Threshold Voltage vs. Junction Temperature FIGURE 8, DC Collector Current vs Case Temperature
15V
12V
11V
9V
13V
8V
VGE = 15V.
250µs PULSE TEST
<0.5 % DUTY CYCLE
TJ = 125°C
TJ = 25°C
TJ = -55°C
TJ = 125°C
TJ = 25°C
TJ = -55°C
VGE = 15V
VCE = 960V
VCE = 600V
VCE = 240V
IC = 75A
TJ = 25°C
TJ = 25°C.
250µs PULSE TEST
<0.5 % DUTY CYCLE
10V
IC = 150A
IC = 75A
IC = 37.5A
IC = 150A
IC = 75A
IC = 37.5A
052-6283 Rev A 3-2006
APT50GF120JRDQ3
VGE =15V,TJ=125°C
VGE =15V,TJ=25°C
VCE = 800V
RG = 1.0
L = 100µH
SWITCHING ENERGY LOSSES (mJ) EON2, TURN ON ENERGY LOSS (mJ) tr, RISE TIME (ns) td(ON), TURN-ON DELAY TIME (ns)
SWITCHING ENERGY LOSSES (mJ) EOFF, TURN OFF ENERGY LOSS (mJ) tf, FALL TIME (ns) td (OFF), TURN-OFF DELAY TIME (ns)
ICE, COLLECTOR TO EMITTER CURRENT (A) ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 9, Turn-On Delay Time vs Collector Current FIGURE 10, Turn-Off Delay Time vs Collector Current
ICE, COLLECTOR TO EMITTER CURRENT (A) ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 11, Current Rise Time vs Collector Current FIGURE 12, Current Fall Time vs Collector Current
ICE, COLLECTOR TO EMITTER CURRENT (A) ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 13, Turn-On Energy Loss vs Collector Current FIGURE 14, Turn Off Energy Loss vs Collector Current
RG, GATE RESISTANCE (OHMS) TJ, JUNCTION TEMPERATURE (°C)
FIGURE 15, Switching Energy Losses vs. Gate Resistance FIGURE 16, Switching Energy Losses vs Junction Temperature
RG = 1.0, L = 100µH, VCE = 800V
VCE = 800V
TJ = 25°C or 125°C
RG = 1.0
L = 100µH
VGE = 15V
TJ = 25 or 125°C,VGE = 15V
10 30 50 70 90 110 130 150 170 10 30 50 70 90 110 130 150 170
10 30 50 70 90 110 130 150 170 10 30 50 70 90 110 130 150 170
10 30 50 70 90 110 130 150 170 10 30 50 70 90 110 130 150 170
0 5 10 15 20 0 25 50 75 100 125
RG = 1.0, L = 100µH, VCE = 800V
45
40
35
30
25
20
15
10
5
0
250
200
150
100
50
0
50
40
30
20
10
0
80
70
60
50
40
30
20
10
0
TJ = 125°C, VGE = 15V
TJ = 25°C, VGE = 15V
500
400
300
200
100
0
140
120
100
80
60
40
20
0
14
12
10
8
6
4
2
0
50
40
30
20
10
0
VCE = 800V
VGE = +15V
RG = 1.0
TJ = 125°C
TJ = 25°C
VCE = 800V
VGE = +15V
RG = 1.0
TJ = 125°C
TJ = 25°C
Eon2,150A
Eoff,150A
Eon2,75A
Eoff,75A
Eon2,37.5A
Eoff,37.5A
VCE = 800V
VGE = +15V
TJ = 125°C
VCE = 800V
VGE = +15V
RG = 1.0
Eon2,150A
Eoff,150A
Eon2,75A
Eoff,75A
Eon2,37.5A Eoff,37.5A
052-6283 Rev A 3-2006
APT50GF120JRDQ3
TYPICAL PERFORMANCE CURVES
0.25
0.20
0.15
0.10
0.05
0
ZθJC, THERMAL IMPEDANCE (°C/W)
0.3
SINGLE PULSE
RECTANGULAR PULSE DURATION (SECONDS)
Figure 19a, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration
10-5 10-4 10-3 10-2 10-1 1.0 10
1,000
500
100
50
10
250
200
150
100
50
0
C, CAPACITANCE (PF)
IC, COLLECTOR CURRENT (A)
VCE, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS) VCE, COLLECTOR TO EMITTER VOLTAGE
Figure 17, Capacitance vs Collector-To-Emitter Voltage Figure 18,Minimim Switching Safe Operating Area
0 10 20 30 40 50 0 200 400 600 800 1000 1200 1400
FIGURE 19b, TRANSIENT THERMAL IMPEDANCE MODEL
10 20 30 40 50 60 70 80
FMAX, OPERATING FREQUENCY (kHz)
IC, COLLECTOR CURRENT (A)
Figure 20, Operating Frequency vs Collector Current
TJ = 125°C
D = 50 %
VCE = 800V
RG = 1.0
50
10
5
1
0.5
0.1
0.05
Fmax = min (fmax, fmax2)
0.05
fmax1 =
td(on) + tr + td(off) + tf
Pdiss - Pcond
Eon2 + Eoff
fmax2 =
Pdiss = TJ - TC
RθJC
Cres
Cies
Coes
D = 0.9
0.7
Peak TJ = PDM x ZθJC + TC
Duty Factor D = t1/t2
t2
t1
PDM
Note:
0.655 0.175
0.0307 0.595
Dissipated Power
(Watts)
TJ (°C) TC (°C)
ZEXT are the external thermal
impedances: Case to sink,
sink to ambient, etc. Set to
zero when modeling only
the case to junction.
ZEXT
TC = 75°C
TC = 100°C
052-6283 Rev A 3-2006
APT50GF120JRDQ3
Figure 22, Turn-on Switching Waveforms and Definitions
Figure 23, Turn-off Switching Waveforms and Definitions
TJ = 125°C
Switching Energy
5%
10%
td(on)
90%
10%
tr
TJ = 125°C
Switching Energy
0
90%
td(off)
10%
tf
90%
APT60DQ120
Collector Current
Collector Voltage
Gate Voltage
Collector Voltage
Collector Current
Gate Voltage
I
C
A
D.U.T.
V
CE
Figure 21, Inductive Switching Test Circuit
V
CC
052-6283 Rev A 3-2006
APT50GF120JRDQ3
TYPICAL PERFORMANCE CURVES
Characteristic / Test Conditions
Maximum Average Forward Current (TC = 85°C, Duty Cycle = 0.5)
RMS Forward Current (Square wave, 50% duty)
Non-Repetitive Forward Surge Current (TJ = 45°C, 8.3ms)
Symbol
IF(AV)
IF(RMS)
IFSM
Symbol
VF
Characteristic / Test Conditions
IF = 75A
Forward Voltage IF = 150A
IF = 75A, TJ = 125°C
STATIC ELECTRICAL CHARACTERISTICS
UNIT
Amps
UNIT
Volts
MIN TYP MAX
2.8
3.48
2.17
APT50GF120JRDQ3
60
73
540
DYNAMIC CHARACTERISTICS
MAXIMUM RATINGS All Ratings: TC = 25°C unless otherwise specified.
ULTRAFAST SOFT RECOVERY ANTI-PARALLEL DIODE
MIN TYP MAX-
- 60
- 265
- 560
- 5 -
- 350
- 2890
- 13 -
- 150
- 4720 -
- 40
UNIT
ns
nC
Amps
ns
nC
Amps
ns
nC
Amps
Characteristic
Reverse Recovery Time
Reverse Recovery Time
Reverse Recovery Charge
Maximum Reverse Recovery Current
Reverse Recovery Time
Reverse Recovery Charge
Maximum Reverse Recovery Current
Reverse Recovery Time
Reverse Recovery Charge
Maximum Reverse Recovery Current
Symbol
trr
trr
Qrr
IRRM
trr
Qrr
IRRM
trr
Qrr
IRRM
Test Conditions
IF = 60A, diF/dt = -200A/µs
VR = 800V, TC = 25°C
IF = 60A, diF/dt = -200A/µs
VR = 800V, TC = 125°C
IF = 60A, diF/dt = -1000A/µs
VR = 800V, TC = 125°C
IF = 1A, diF/dt = -100A/µs, VR = 30V, TJ = 25°C
FIGURE 24b, TRANSIENT THERMAL IMPEDANCE MODEL
ZθJC, THERMAL IMPEDANCE (°C/W)
10-5 10-4 10-3 10-2 10-1 1.0
RECTANGULAR PULSE DURATION (seconds)
FIGURE 24a. MAXIMUM EFFECTIVE TRANSIENT THERMAL IMPEDANCE, JUNCTION-TO-CASE vs. PULSE DURATION
0.60
0.50
0.40
0.30
0.20
0.10
0
0.5
SINGLE PULSE
0.1
0.3
0.7
D = 0.9
0.05
Peak TJ = PDM x ZθJC + TC
Duty Factor D = t1/t2
t2
t1
PDM
Note:
0.149 0.238 0.174
0.006 0.091 0.524
Dissipated Power
(Watts)
TJ (°C) TC (°C)
ZEXT are the external thermal
impedances: Case to sink,
sink to ambient, etc. Set to
zero when modeling only
the case to junction.
ZEXT
052-6283 Rev A 3-2006
APT50GF120JRDQ3
400
350
300
250
200
150
100
50
0
50
45
40
35
30
25
20
15
10
5
0
Duty cycle = 0.5
TJ = 175°C
90
80
70
60
50
40
30
20
10
0
TJ, JUNCTION TEMPERATURE (°C) Case Temperature (°C)
Figure 29. Dynamic Parameters vs. Junction Temperature Figure 30. Maximum Average Forward Current vs. CaseTemperature
VR, REVERSE VOLTAGE (V)
Figure 31. Junction Capacitance vs. Reverse Voltage
200
180
160
140
120
100
80
60
40
20
0
7000
6000
5000
4000
3000
2000
1000
0
Qrr, REVERSE RECOVERY CHARGE IF, FORWARD CURRENT
(nC) (A)
IRRM, REVERSE RECOVERY CURRENT trr, REVERSE RECOVERY TIME
(A) (ns)
TJ = 125°C
VR = 800V
TJ = 125°C
VR = 800V
TJ = 125°C
VR = 800V
TJ = 175°C
TJ = -55°C
TJ = 25°C
TJ = 125°C
0 1 2 3 4 0 200 400 600 800 1000 1200
0 200 400 600 800 1000 1200 0 200 400 600 800 1000 1200
30A
60A
120A
120A
30A
60A
trr
Qrr
Qrr
trr
IRRM
1.2
1.0
0.8
0.6
0.4
0.2
0.0
350
300
250
200
150
100
50
0
CJ, JUNCTION CAPACITANCE Kf, DYNAMIC PARAMETERS
(pF) (Normalized to 1000A/µs)
IF(AV) (A)
0 25 50 75 100 125 150 25 50 75 100 125 150 175
1 10 100 200
120A
60A
30A
VF, ANODE-TO-CATHODE VOLTAGE (V) -diF/dt, CURRENT RATE OF CHANGE(A/µs)
Figure 25. Forward Current vs. Forward Voltage Figure 26. Reverse Recovery Time vs. Current Rate of Change
-diF/dt, CURRENT RATE OF CHANGE (A/µs) -diF/dt, CURRENT RATE OF CHANGE (A/µs)
Figure 27. Reverse Recovery Charge vs. Current Rate of Change Figure 28. Reverse Recovery Current vs. Current Rate of Change
052-6283 Rev A 3-2006
APT50GF120JRDQ3
TYPICAL PERFORMANCE CURVES
4
3
1
2
5
5
Zero
1
2
3
4
diF/dt - Rate of Diode Current Change Through Zero Crossing.
IF - Forward Conduction Current
IRRM - Maximum Reverse Recovery Current.
trr - Reverse Recovery Time, measured from zero crossing where diode
Qrr - Area Under the Curve Defined by IRRM and trr.
current goes from positive to negative, to the point at which the straight
line through IRRM and 0.25 IRRM passes through zero.
Figure 32. Diode Test Circuit
Figure 33, Diode Reverse Recovery Waveform and Definitions
0.25 IRRM
PEARSON 2878
CURRENT
TRANSFORMER
diF/dt Adjust
30µH
D.U.T.
+18V
0V
Vr
trr/Qrr
Waveform
APT10035LLL
SOT-227 (ISOTOP®) Package Outline
APT’s products are covered by one or more of U.S.patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522
5,262,336 6,503,786 5,256,583 4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 and foreign patents. US and Foreign patents pending. All Rights Reserved.
ISOTOP®
is a Registered Trademark of SGS Thomson.
31.5 (1.240)
31.7 (1.248)
Dimensions in Millimeters and (Inches)
7.8 (.307)
8.2 (.322)
30.1 (1.185)
30.3 (1.193)
38.0 (1.496)
38.2 (1.504)
14.9 (.587)
15.1 (.594)
11.8 (.463)
12.2 (.480)
8.9 (.350)
9.6 (.378)
Hex Nut M4
(4 places)
0.75 (.030)
0.85 (.033)
12.6 (.496)
12.8 (.504)
25.2 (0.992)
25.4 (1.000)
1.95 (.077)
2.14 (.084)
* Emitter/Anode Collector/Cathode
Gate
*
r = 4.0 (.157)
(2 places) 4.0 (.157)
4.2 (.165)
(2 places)
W=4.1 (.161)
W=4.3 (.169)
H=4.8 (.187)
H=4.9 (.193)
(4 places)
3.3 (.129)
3.6 (.143)
* Emitter/Anode
Emitter/Anode terminals are
shorted internally. Current
handling capability is equal
for either Emitter/Anode terminal.