Tactical Grade, Six Degrees of Freedom
Inertial Sensor
Data Sheet
ADIS16495
Rev. C
Document Feedback
Information furnished by Analog Devices is believed to be accurate and reliable. However, no
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other
rights of third parties that may result from its use. Specifications subject to change without notice.
No license is granted by implication or otherwise under any patent or patent rights of Analog
Devices. Trademarks and registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781.329.4700 ©2017-2020 Analog Devices, Inc. All rights reserved.
Technical Support www.analog.com
FEATURES
Triaxial, digital gyroscope
±125°/sec, ±450°/sec, ±2000°/sec range options
±0.05° axis to axis misalignment error
±0.25° (maximum) axis to package misalignment error
0.8°/hr in-run bias stability (ADIS16495-1)
0.09°/√hr angular random walk (ADIS16495-1)
Triaxial, digital accelerometer, ±8 g
3.2 μg in run bias stability
Triaxial, delta angle and delta velocity outputs
Factory calibrated sensitivity, bias, and axial alignment
Calibration temperature range: −40°C to +85°C
SPI compatible
Programmable operation and control
Automatic and manual bias correction controls
Configurable FIR filters
Digital I/O: data ready, external clock
Sample clock options: internal, external, or scaled
On demand self test of inertial sensors
Single-supply operation: 3.0 V to 3.6 V
1500 g mechanical shock survivability
Operating temperature range: −40°C to +105°C
APPLICATIONS
Precision instrumentation, stabilization
Guidance, navigation, control
Avionics, unmanned vehicles
Precision autonomous machines, robotics
GENERAL DESCRIPTION
The ADIS16495 is a complete inertial system that includes a
triaxis gyroscope and a triaxis accelerometer. Each inertial sensor
in the ADIS16495 combines industry leading iMEMS® technology
with signal conditioning that optimizes dynamic performance.
The factory calibration characterizes each sensor for sensitivity,
bias, alignment, and linear acceleration (gyroscope bias). As a
result, each sensor has its own dynamic compensation formulas that
provide accurate sensor measurements.
The ADIS16495 provides a simple, cost effective method for
integrating accurate, multiaxis inertial sensing into industrial
systems, especially when compared with the complexity and
investment associated with discrete designs. All necessary motion
testing and calibration are part of the production process at
the factory, greatly reducing system integration time. Tight
orthogonal alignment simplifies inertial frame alignment in
navigation systems. The serial peripheral interface (SPI) and
register structure provide a simple interface for data collection
and configuration control.
The footprint and connector system of the ADIS16495 enable a
simple upgrade from the ADIS16375, ADIS16480, ADIS16485,
ADIS16488A, and ADIS16490. The ADIS16495 is available in an
aluminum package that is approximately 47 mm × 44 mm ×
14 mm and includes a standard connector interface.
FUNCTIONAL BLOCK DIAGRAM
CONTROLLER
CLOCK
POWER
MANAGEMENT
CS
SCLK
DIN
DOUT
GND
VDD
DIO1 DIO2 DIO3 DIO4 RST
SPI
SELF T EST I/O
OUTPUT
DATA
REGISTERS
USER
CONTROL
REGISTERS
CALIBRATION
AND
FILTERS
ADIS16495
TRIAXIAL
GYROSCOPE
TEMPERATURE
SENSOR
TRIAXIAL
ACCELEROMETER
15062-001
Figure 1.
ADIS16495 Data Sheet
Rev. C | Page 2 of 42
TABLE OF CONTENTS
Features .............................................................................................. 1
Applications ...................................................................................... 1
General Description ......................................................................... 1
Functional Block Diagram .............................................................. 1
Revision History ............................................................................... 2
Specifications .................................................................................... 4
Timing Specifications .................................................................. 6
Absolute Maximum Ratings ........................................................... 8
Thermal Resistance ...................................................................... 8
ESD Caution.................................................................................. 8
Pin Configuration and Function Descriptions ............................ 9
Typical Performance Characteristics ........................................... 10
Theory of Operation ...................................................................... 12
Binertial Sensor Signal Chain ................................................... 12
Register Structure ....................................................................... 13
Serial Peripheral Interface ......................................................... 14
Data Ready .................................................................................. 14
Reading Sensor Data .................................................................. 15
Device Configuration ................................................................ 16
User Register Memory Map .......................................................... 17
User Register Defintions ............................................................... 20
Page Number (PAGE_ID) ........................................................ 20
Data/Sample Counter (DATA_CNT) ..................................... 20
Status/Error Flag Indicators (SYS_E_FLAG) ......................... 20
Self Test Error Flags (DIAG_STS) ........................................... 21
Internal Temperature (TEMP_OUT) ..................................... 21
Gyroscope Data .......................................................................... 21
Acceleration Data ....................................................................... 23
Time Stamp ................................................................................. 24
Cyclical Redundancy Check (CRC-32) ................................... 24
Delta Angles ................................................................................ 25
Delta Velocity ............................................................................. 26
User Bias/Scale Adjustment ...................................................... 29
Scratch Registers, USER_SCR_x .............................................. 31
Flash Memory Endurance Counter, FLSHCNT_LOW,
FLSHCNT_HIGH ...................................................................... 32
Global Commands, GLOB_CMD ........................................... 32
Auxiliary I/O Line Configuration, FNCTIO_CTRL ............. 33
General-Purpose I/O Control, GPIO_CTRL ......................... 34
Miscellaneous Configuration, CONFIG ................................. 34
Linear Acceleration on Effect on Gyroscope Bias ................. 35
Decimation Filter, DEC_RATE ............................................... 35
Continuous Bias Estimation (CBE), NULL_CNFG .............. 35
Scaling the Input Clock (PPS Mode), SYNC_SCALE........... 36
FIR Filters .................................................................................... 36
Firmware Revision, FIRM_REV .............................................. 38
Applications Information ............................................................. 40
Mounting Best Practices ........................................................... 40
Preventing Misinsertion ............................................................ 40
Evaluation Tools ......................................................................... 40
Power Supply Considerations .................................................. 40
CRC32 Coding Example ........................................................... 41
Outline Dimensions ....................................................................... 42
Ordering Guide .......................................................................... 42
REVISION HISTORY
7/2019—Rev. B to Rev. C
Changes to Table 1 ........................................................................... 5
Changes to tSTALL Parameter and Endnote 2, Table 2 .................. 6
Changes to Flash Memory Update Section and On Demand Self
Test (ODST) Section ...................................................................... 33
Changes to Data Ready Indicator Section .................................. 34
Changes to Scaling the Input Clock (PPS Mode),
SYNC_SCALE Section ................................................................... 36
5/2019—Rev. A to Rev. B
Changes to Features Section ........................................................... 1
Changes to Specifications Section and Table 1 ............................ 4
Changes to Figure 5 and Figure 6 ................................................... 7
Changes to Table 6 ............................................................................ 9
Changes to Figure 12 ..................................................................... 10
Added Figure 13 and Figure 14; Renumbered Sequentially ..... 10
Added Figure 15 and Figure 16 .................................................... 11
Changes to Burst Read Function Section, Table 10, and
Table 11 ............................................................................................ 15
Changes to Table 12 ....................................................................... 17
Changes to Model Column, Table 24 .......................................... 21
Changes to Cyclical Redundancy Check (CRC-32) Section .... 24
Changes to Delta Angle Measurement Range and Model
Column, Table 60 ........................................................................... 25
Data Sheet ADIS16495
Rev. C | Page 3 of 42
Changes to Delta Velocity Section ................................................ 26
Changes to Accelerometer Scale Adjustment, X_ACCL_SCALE
Section ............................................................................................... 29
Changes to Table 150 and Continuous Bias Estimation (CBE),
NULL_CNFG Section .................................................................... 35
Changes to Description Column, Table 156 ............................... 36
Added CRC32 Coding Example Section ..................................... 41
Updated Outline Dimensions ....................................................... 42
11/2017—Rev. 0 to Rev. A
Changes to Table 1 ............................................................................ 3
Added Endnote 2, Table 1; Renumbered Sequentially ................ 4
Changes to t2 Parameter, Table 2 ................................................... 5
Changes to Table 3 ............................................................................ 5
10/2017—Revision 0: Initial Version
ADIS16495 Data Sheet
Rev. C | Page 4 of 42
SPECIFICATIONS
TC = 25°C, VDD = 3.3 V, angular rate = 0°/sec, ADIS16495-1 model, ±1 g, unless otherwise noted.
Table 1.
Parameter Test Conditions/Comments Min Typ Max Unit
GYROSCOPES
Dynamic Range ADIS16495-1 ±125 °/sec
ADIS16495-2 ±450 ±480 °/sec
ADIS16495-3 ±2000 °/sec
Sensitivity ADIS16495-1, 32-bit 10485760 LSB/sec
ADIS16495-2, 32-bit 2621440 LSB/°/sec
ADIS16495-3, 32-bit 655360 LSB/°/sec
Error Over Temperature −40°C ≤ TC ≤ +85°C, 1 σ ±0.2 %
Repeatability1 −40°C ≤ TC+85°C, 1 σ ±0.2 %
Misalignment Axis to axis, −40°C ≤ TC ≤+85°C, 1 σ ±0.05 Degrees
Axis to package, −40°C ≤ TC ≤+85°C ±0.25 Degrees
Nonlinearity2 1 σ, ADIS16495-1, FS = 125°/sec 0.2 % FS
1 σ, ADIS16495-2, FS = 450°/sec 0.2 % FS
1 σ, ADIS16495-3, FS = 2000°/sec 0.25 % FS
Bias
Repeatability3 −40°C ≤ TC ≤+85°C, 1 σ 0.07 °/sec
In Run Bas Stability 1 σ, ADIS16495-1 0.8 °/hr
1 σ, ADIS16495-2 1.6 °/hr
1 σ, ADIS16495-3 3.3 °/hr
Angular Random Walk 1 σ, ADIS16495-1 0.09 °/√hr
1 σ, ADIS16495-2 0.1 °/√hr
1 σ, ADIS16495-3 0.18 °/√hr
Error over Temperature −40°C ≤ TC ≤ +85°C, 1 σ ±0.1 °/sec
Linear Acceleration Effect Any axis, 1 σ (CONFIG register, Bit 7 = 1) 0.006 °/sec/g
Any axis, 1 σ (CONFIG register, Bit 7 = 0) 0.015 °/sec/g
Vibration Rectification Error 1 σ, ADIS16495-1 0.0003 °/sec/g2
Noise
Output Noise No filtering, ADIS16495-1 0.051 °/sec rms
No filtering, ADIS16495-2 0.058 °/sec rms
No filtering, ADIS16495-3 0.112 °/sec rms
Rate Noise Density4
1 σ, ADIS16495-1 0.002 °/sec/√Hz rms
1 σ, ADIS16495-2 0.0022 °/sec/√Hz rms
1 σ, ADIS16495-3 0.0042 °/sec/√Hz rms
3 dB Bandwidth ADIS16495-1 480 Hz
ADIS16495-2, ADIS16495-3 550 Hz
Sensor Resonant Frequency 65 kHz
ACCELEROMETERS5 Each axis
Dynamic Range ±8 g
Sensitivity x_ACCL_OUT and x_ACCL_LOW (32-bit) 262144000 LSB/g
Error Over Temperature −40°C ≤ TC ≤ +85°C, 1 σ ±0.01 %
Repeatability −40°C ≤ TC ≤ +85°C, 1 σ 0.05 %
Misalignment Axis to axis, −40°C ≤ TC ≤+85°C, 1 σ ±0.035 Degrees
Axis to package, −40°C ≤ TC ≤+85°C ±0.25 Degrees
Nonlinearity Best fit straight line, ±2 g, FS = 8 g 0.25 % FS
Best fit straight line, ±4 g, FS = 8 g 0.5 % FS
Best fit straight line, ±8 g, FS = 8 g 1.5 % FS
Bias
In Run Stability 1 σ 3.2 μg
Velocity Random Walk 1 σ 0.008 m/sec/√hr
Data Sheet ADIS16495
Rev. C | Page 5 of 42
Parameter Test Conditions/Comments Min Typ Max Unit
Error over Temperature −40°C ≤ TC ≤ +85°C, 1 σ ±0.5 mg
Repeatability −40°C ≤ TC ≤ +85°C, 1 σ 1 mg
Noise
Output Noise No filtering 0.5 mg rms
Noise Density 10 Hz to 40 Hz, no filtering 17 μg/√Hz rms
3 dB Bandwidth 750 Hz
Sensor Resonant Frequency 2.5 kHz
TEMPERATURE SENSOR
Scale Factor Output = 0x0000 at 25°C (±5°C) 0.0125 °C/LSB
LOGIC INPUTS6
Input Voltage
High, VIH 2.0 V
Low, VIL 0.8 V
RST Pulse Width 1 µs
CS Wake-Up Pulse Width 20 µs
Input Current
Logic 1, IIH VIH = 3.3 V 10 µA
Logic 0, IIL VIL = 0 V
All Pins Except RST, CS 10 µA
RST, CS Pins7
0.33 mA
Input Capacitance, CIN 10 pF
DIGITAL OUTPUTS6
Output Voltage
High, VOH ISOURCE = 0.5 mA 2.4 V
Low, VOL ISINK = 2.0 mA 0.4 V
FLASH MEMORY Endurance8 100,000 Cycles
Data Retention9 TJ = 85°C 20 Years
FUNCTIONAL TIMES10 Time until data is available, −40°C ≤ TC ≤ +85°C, 1 σ
Power-On Start-Up Time 265 ms
Reset Recovery Time11 GLOB_CMD register, Bit 7 = 1 (see Table 142) 225 ms
RST pulled low, then restored to high 265 ms
Flash Memory
Update Time GLOB_CMD register, Bit 3 = 1 (see Table 142) 1300 ms
Clear User Calibration GLOB_CMD register, Bit 6 = 1 (see Table 142) 350 µs
Self Test Time12 GLOB_CMD register, Bit 1 = 1 (see Table 142) 30 ms
CONVERSION RATE 4.25 kSPS
Initial Clock Accuracy 0.02 %
Temperature Coefficient 40 ppm/°C
Sync Input Clock 3.0 4.5 kHz
Pulse Per Second (PPS) Mode 1 128 Hz
POWER SUPPLY, VDD Operating voltage range 3.0 3.6 V
Power Supply Current13 Normal mode, VDD = 3.3 V, µ + σ 89 mA
1 Bias repeatability provides an estimate for long-term drift in the bias, as observed during 500 hours of High-Temperature Operating Life (HTOL) at +105°C.
2 FS means full scale, FS = 125°/sec (ADIS16495-1), FS = 450°/sec (ADIS16495-2), FS = 2000°/sec (ADIS16495-3).
3 Bias repeatability provides an estimate for long-term drift in the bias, as observed during 500 hours of High-Temperature Operating Life (HTOL) at +105°C.
4 Magnitude between 10 Hz and 40 Hz, sample rate is 4250 SPS (nominal), no digital filtering.
5 All specifications associated with the accelerometers relate to the full-scale range of ±8 g.
6 The digital I/O signals use a 3.3 V system.
7 RST and CS pins are connected to the VDD pin through 10kΩ pull-up resistors.
8 Endurance is qualified as per JEDEC Standard 22, Method A117, measured at −40°C, +25°C, +85°C, and +125°C.
9 The data retention specification assumes a junction temperature (TJ) of 8C per JEDEC Standard 22, Method A117. Data retention lifetime decreases with TJ.
10 These times do not include thermal settling and internal filter response times, which can affect overall accuracy.
11 The RST line must be in a low state for at least 10 μs to ensure a proper reset initiation and recovery.
12 Self test time can extend when using external clock rates that are lower than 4000 Hz.
13 Supply current transients can reach 250 mA during initial startup or reset recovery.
ADIS16495 Data Sheet
Rev. C | Page 6 of 42
TIMING SPECIFICATIONS
TC = 25°C, VDD = 3.3 V, unless otherwise noted.
Table 2.
Normal Mode Burst Read Function
Parameter Description Min1 Typ Max1 Min Typ Max1 Unit
fSCLK SCLK frequency 0.01 15 6.5 MHz
tSTALL2 Stall period between data 5 N/A µs
tCLS SCLK low period 31 31 ns
tCHS SCLK high period 31 31 ns
tCS CS to SCLK edge 32 32 ns
tDAV DOUT valid after SCLK edge 10 10 ns
tDSU DIN setup time before SCLK rising edge 2 2 ns
tDHD DIN hold time after SCLK rising edge 2 2 ns
tDR, tDF DOUT rise/fall times, ≤100 pF loading 3 8 3 8 ns
tDSOE CS assertion to DOUT active 0 11 0 11 ns
tHD SCLK edge to DOUT invalid 0 0 ns
tSFS Last SCLK edge to CS deassertion 32 32 ns
tDSHI CS deassertion to DOUT high impedance 0 9 0 9 ns
tNV Data invalid time 20 20 µs
t1 Input sync pulse width 5 5 µs
t2 Input sync to data invalid 306 306 µs
t3 Input sync period3 222.2 222.2 µs
1 Guaranteed by design and characterization, but not tested in production.
2 See Table 3 for exceptions to the stall time rating. An insufficient stall time results in reading all 0s for the register attempting to be read.
3 This measurement represents the inverse of the maximum frequency for the input sample clock: 4500 Hz.
Register Specific Stall Times
Table 3.
Parameter Description Min1 Typ Max Unit
STALL TIME
FNCTIO_CTRL Configure the DIOx functions 340 μs
FILTR_BNK_0 Enable/select finite impulse response (FIR) filter banks 65 μs
FILTR_BNK_1 Enable/select FIR filter banks 65 μs
NULL_CNFG Configure autonull bias function 71 μs
SYNC_SCALE Configure input clock scale factor 340 μs
DEC_RATE Configure decimation rate 340 μs
GPIO_CTRL Configure general-purpose input/output (I/O) lines 45 μs
CONFIG Configure miscellaneous functions 45 μs
GLOB_CMD, Bit 1 On demand self test 20 ms
GLOB_CMD, Bit 3 Flash memory update 1120 ms
GLOB_CMD, Bit 6 Factory calibration restore 350 μs
GLOB_CMD, Bit 7 Software reset 210 ms
1 Monitoring the data ready signal (see Table 144 for FNCTIO_CTRL configuration) for the return of regular pulsing can help minimize system wait times.
Data Sheet ADIS16495
Rev. C | Page 7 of 42
Timing Diagrams
CS
SCLK
DOUT
DIN
1 2 3 4 5 6 15 16
R/W A5A6 A4 A3 A2 D2
MSB DB14
D1 LSB
DB13 DB12 DB10DB11 DB2 LSBDB1
t
CS
t
DSHI
t
DR
t
SFS
t
DF
t
DAV
t
HD
t
CHS
t
CLS
t
DSOE
t
DHD
t
DSU
15062-002
Figure 2. SPI Timing and Sequence
CS
SCLK
t
STALL
15062-003
Figure 3. Stall Time and Data Rate
Figure 4. Input Clock Timing Diagram, FNCTIO_CTRL, Bits[7:4] = 0xFD
7C00
0000 BURST_ID X_GYRO_LOW CRC_UPR
0123 19
CS
SCLK
DIN
DOUT
15062-006
Figure 5. Burst Read Function Sequence Diagram, 19 Segments
7C00
0000 BURST_ID BURST_ID X_GYRO_LOW CRC_UPR
1 2 3 4 20
CS
SCLK
DIN
DOUT
15062-106
Figure 6. Burst Read Function Sequence Diagram, 20 Segments
ADIS16495 Data Sheet
Rev. C | Page 8 of 42
ABSOLUTE MAXIMUM RATINGS
Table 4.
Parameter Rating
Mechanical Shock Survivability
Any Axis, Unpowered 1500 g
Any Axis, Powered 1500 g
VDD to GND −0.3 V to +3.6 V
Digital Input Voltage to GND −0.3 V to VDD + 0.2 V
Digital Output Voltage to GND −0.3 V to VDD + 0.2 V
Operating Temperature Range −40°C to +105°C
Storage Temperature Range1 −55°C to +150°C
Barometric Pressure 2 bar
1 Extended exposure to temperatures that are lower than −40°C or higher
than +105°C can adversely affect the accuracy of the factory calibration.
Stresses at or above those listed under Absolute Maximum
Ratings may cause permanent damage to the product. This is a
stress rating only; functional operation of the product at these
or any other conditions above those indicated in the
operational section of this specification is not implied.
Operation beyond the maximum operating conditions for
extended periods may affect product reliability.
THERMAL RESISTANCE
Thermal performance is directly linked to printed circuit board
(PCB) design and operating environment. Pay careful attention
to PCB thermal design.
θJA is the natural convection junction to ambient thermal
resistance measured in a one cubic foot sealed enclosure.
θJC is the junction to case thermal resistance.
The ADIS16495 is a multichip module, which includes many
active components. The values in Table 5 identify the thermal
response of the hottest component inside of the ADIS16495,
with respect to the overall power dissipation of the module.
This approach enables a simple method for predicting the
temperature of the hottest junction, based on either ambient or
case temperature.
For example, when the TA = 70°C, the hottest junction inside of
the ADIS16495 is 76.7°C.
TJ = θJA × VDD × IDD + 70°C
TJ = 22.8°C/W × 3.3 V × 0.089 A + 70°C
TJ = 76.7°C
Table 5. Package Characteristics
Package Type θJA θJC Device Weight
ML-24-91 30.7°C/W 20.9°C/W 42 g
1 Thermal impedance simulated values come from a case when 4 M2 × 0.4 mm
machine screws (torque = 20 inch ounces) secure the ADIS16495 to the PCB.
ESD CAUTION
Data Sheet ADIS16495
Rev. C | Page 9 of 42
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS
1
DIO3
SCLK
DIN
DIO1
DIO2
VDD
GND
NO PIN
DNC
DNC
DNC
DNC
DIO4
DOUT
CS
RST
VDD
NO PIN
GND
DNC
DNC
DNC
DNC
DNC
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
ADIS16495
TOP VIEW
(No t t o Scal e)
NOTES
1. THIS REPRESENTATION DISPLAYS THE TOP VI EW PI NOUT
FO R THE M ATI NG SOCKET CONNECTO R.
2. T HE ACTUAL CONNECTO R P INS ARE NOT V ISIBLE FRO M
THE TOP VIEW .
3. MATI NG CO NNE CTO R: S AM TEC CL M - 112- 02 OR EQUI V ALENT.
4. DNC = DO NO T CO NNE CT.
5. PIN 12 AND PIN 15 ARE NOT P HY S I CALL Y P RE S E NT.
15062-007
Figure 7. Pin Configuration
PI N 1
PI N 23
PI N 1 PI N 2
15062-008
Figure 8. Axial Orientation (Top Side Facing Up)
Table 6. Pin Function Descriptions
Pin No. Mnemonic Type Description
1 DIO3 Input/output Configurable Digital Input/Output 3.
2 DIO4 Input/output Configurable Digital Input/Output 4.
3 SCLK Input SPI Serial Clock.
4 DOUT Output SPI Data Output. Clocks output on the SCLK falling edge.
5 DIN Input SPI Data Input. Clocks input on the SCLK rising edge.
6 CS Input SPI Chip Select.
7 DIO1 Input/output Configurable Digital Input/Output 1.
8 RST Input Reset.
9 DIO2 Input/output Configurable Digital Input/Output 2.
10, 11 VDD Supply Power Supply.
12, 15 NO PIN Not applicable No Pin. These pins are not physically present.
13, 14 GND Supply Power Ground.
16 to 22, 24 DNC Not applicable Do Not Connect. Do not connect to these pins.
23 DNC Not applicable Do Not Connect. Do not connect to this pin. This pin can tolerate connection to 3.3 V.
ADIS16495 Data Sheet
Rev. C | Page 10 of 42
TYPICAL PERFORMANCE CHARACTERISTICS
0.001 0.01 0.1 110 100 1000 10000 100000
INTEGRATION PERIOD (Seconds)
0.1
1
10
100
1000
ALLAN DEVIATI ON (Degrees/ ho ur)
X-AXIS
Y-AXIS
Z-AXIS
15062-009
Figure 9. Gyroscope Allan Deviation, ADIS16495-1
0.001 0.01 0.1 110 100 1000 10000 100000
INTEGRATION PERIOD (Seconds)
0.1
1
10
100
1000
ALLAN DEVIATI ON (Degrees/ ho ur)
X-AXIS
Y-AXIS
Z-AXIS
15062-010
Figure 10. Gyroscope Allan Deviation, ADIS16495-2
0.001 0.01 0.1 110 100 1000 10000 100000
INTEGRATION PERIOD (Seconds)
0.1
1
10
100
1000
ALLAN DEVIATI ON (Degrees/ ho ur)
X-AXIS
Y-AXIS
Z-AXIS
15062-011
Figure 11. Gyroscope Allan Deviation, ADIS16495-3
0.001 0.01 0.1 110 100 1000 10000 100000
INTEGRATION PERIOD (Seconds)
ALLAN DEVIATION (µg)
X-AXIS
Y-AXIS
Z-AXIS
15062-012
Figure 12. Accelerometer Allan Deviation
–40 –20 020 40 60 80
TEMPERATURE (°C)
–0.12
–0.10
–0.08
–0.06
–0.04
–0.02
0
GYROSCOPE SENSITIVI T Y ERROR (%)
MEAN
MEAN + 1σ
MEAN – 1σ
15062-113
Figure 13. Gyroscope Sensitivity Error vs. Temperature, Cold to Hot,
ADIS16495-1
–40 –20 020 40 60 80
TEMPERATURE (°C)
–0.12
–0.10
–0.08
–0.06
–0.04
–0.02
0
GYROSCOPE SENSITIVI T Y ERROR (%)
15062-114
MEAN
MEAN + 1σ
MEAN – 1σ
Figure 14. Gyroscope Sensitivity Error vs. Temperature, Hot to Cold,
ADIS16495-1
Data Sheet ADIS16495
Rev. C | Page 11 of 42
–40 –20 020 40 60 80
TEMPERATURE (°C)
15062-115
–0.010
–0.008
–0.006
–0.004
–0.002
0
0.002
0.004
0.006
0.008
0.010
MEAN
MEAN + 1σ
MEAN – 1σ
Figure 15. Accelerometer Sensitivity Error vs. Temperature, Cold to Hot,
ADIS16495-1
–40 –20 020 40 60 80
TEMPERATURE (°C)
15062-116
–0.010
–0.008
–0.006
–0.004
–0.002
0
0.002
0.004
0.006
0.008
0.010
MEAN
MEAN + 1σ
MEAN – 1σ
Figure 16. Accelerometer Sensitivity Error vs. Temperature, Hot to Cold,
ADIS16495-1
ADIS16495 Data Sheet
Rev. C | Page 12 of 42
THEORY OF OPERATION
The ADIS16495 is an autonomous sensor system that starts up
on its own when it has a valid power supply. After running
through its initialization process, it begins sampling, processing,
and loading calibrated sensor data into the output registers,
which are accessible using the SPI port.
BINERTIAL SENSOR SIGNAL CHAIN
Figure 17 shows the basic signal chain for the inertial sensors in
the ADIS16495, which processes data at a rate of 4250 SPS
when using the internal sample clock. Using one of the external
clock options in FNCTIO_CTRL, Bits[7:4] (see Table 144) can
provide some flexibility in selecting this rate.
MEMS
SENSORS CALIBRATION FILTERING OUTPUT
DATA
REGISTERS
15062-013
Figure 17. Signal Processing Diagram, Inertial Sensors
Gyroscope Data Sampling
The ADIS16495 produces angular rate measurements around
three orthogonal axes (x, y, and z). Figure 18 shows the basic
signal flow for the production of x-axis gyroscope data (same as
y-axis and z-axis). This signal chain contains two digital MEMS
gyroscopes (XG1 and XG2), which have their own ADC and sample
clocks (fSGX1 and fSGX2 = 4100 Hz) that produce data independently
from each other. The sensor to sensor tolerance on this sample rate
is ±200 samples per second (SPS). Processing this data starts with
combining (summation and rescale) the most recent sample from
each gyroscope together by using an independent sample master
frequency (fSM) clock (fSM = 4250 Hz, see Figure 18), which drives
the rest of the digital signal processing (calibration, alignment, and
filtering) for the gyroscopes and accelerometers.
MEMS
GYROSCOPE
X
G1
MEMS
GYROSCOPE
X
G2
X-AXIS
RATE DATA
SAMPLE 1
X-AXIS
ANGUL AR RATE
DATA PROCES S ING
fSM
= 4250Hz
X-AXIS
RATE DATA
SAMPLE 2
fSGX2
= 4100Hz
fSGX1
= 4100Hz
ADC
ADC
15062-014
Figure 18. Gyroscope Data Sampling
Accelerometer Data Sampling
The ADIS16495 produces linear acceleration measurements
along the same orthogonal axes (x, y, and z) as the gyroscopes,
using the same clock (fSM, see Figure 18 and Figure 19) that
triggers data acquisition and subsequent processing of the
gyroscope data.
ACCELEROMETER
X-AXIS
MEMS X-AXIS
ACCELERATION
DATA PROCES S ING
f
SM
= 4250SPS
ADC
15062-015
Figure 19. Accelerometer Data Sampling
External Clock Options
The ADIS16495 offers two modes of operation to control data
production with an external clock: sync mode and PPS mode.
In sync mode, the external clock directly controls the data
sampling and production clock (fSM in Figure 18 and Figure 19).
In PPS mode the user can provide a lower input clock rate (1 Hz
to 128 Hz) and use a scale factor (SYNC_SCALE register, see
Table 154) to establish a data collection and processing rate that
is between 3000 Hz and 4250 Hz for best performance.
Inertial Sensor Calibration
The calibration function for the gyroscopes and the
accelerometers has two components: factory calibration and
user calibration (see Figure 20).
FROM
SENSORS TO
FILTERING
FACTORY
CALIBRATION USER
CALIBRATION
15062-016
Figure 20. Gyroscope Calibration Processing
Gyroscope Factory Calibration
Gyroscope factory calibration applies the following correction
formula to the data of each gyroscope:
×
+
+
×
=
Z
Y
X
33
3231
232221
131211
Z
Y
X
Z
Y
X
333231
2322
21
13
1211
ZC
YC
XC
a
a
a
g
gg
ggg
ggg
b
b
b
ω
ω
ω
m
mm
mmm
mmm
ω
ω
ω
'
'
'
(1)
where:
ωXC, ωYC, and ωZC are the postcalibration gyroscope data.
m11, m12, m13, m21, m22, m23, m31, m32, and m33 are the scale and
alignment correction factors.
ωX, ωY, and ωZ are the precalibration gyroscope data.
bX, bY, and bZ are the bias correction factors.
g11, g12, g13, g21, g22, g23, g31, g32, and g33 are the linear g correction
factors.
a'X, a'Y, and a'Z are the postcalibration accelerometer data.
All the correction factors in each matrix/array are derived from
direct observation of the response of each gyroscope to a variety
of rotation rates at multiple temperatures across the calibration
temperature range (−40°C ≤ TC ≤ +85°C). These correction
factors are stored in the flash memory bank, but they are not
available for observation. Bit 7 in the CONFIG register provides an
on/off control for the linear g compensation (see Table 148). See
Figure 41 for more details on the user calibration options that
are available for the gyroscopes.
Data Sheet ADIS16495
Rev. C | Page 13 of 42
Accelerometer Factory Calibration
The accelerometer factory calibration applies the following
correction formulas to the data of each accelerometer:
ω
ω
ω
×
+
+
×
=
2
2
2
0
0
0
'
'
'
ZC
YC
XC
3231
2321
1312
Z
Y
X
Z
Y
X
333231
232221
131211
Z
Y
X
pp
pp
pp
b
b
b
a
a
a
mmm
mmm
mmm
a
a
a
(2)
where:
a'X, a'Y, and a'Z are the postcalibration accelerometer data.
m11, m12, m13, m21, m22, m23, m31, m32, and m33 are the scale and
alignment correction factors.
aX, aY, and aZ are the precalibration accelerometer data.
bX, bY, and bZ are the bias correction factors.
0, p12, p13, p21, p23, p31, and p32 are the point of percussion
correction factors
ω2XC, ω2YC, and ω2ZC are the postcalibration gyroscope data
(squared).
All the correction factors in each matrix/array are derived from
direct observation of the response of each accelerometer to a
variety of inertial test conditions at multiple temperatures
across the calibration temperature range (−40°C ≤ TC ≤ +85°C).
These correction factors are stored in the flash memory bank,
but they are not available for observation. Bit 6 in the CONFIG
register provides an on/off control for the point of percussion
alignment (see Table 148). See Figure 42 for more details on the
user calibration options that are available for the
accelerometers.
Filtering
After calibration, the data of each inertial sensor passes through
two digital filters, both of which have user configurable
attributes: FIR and decimation (see Figure 21).
FROM
CALIBRATION TO
DATA
REGISTERS
FIR
FILTER DECIMATION
FILTER
15062-017
Figure 21. Inertial Sensor Filtering
The FIR filter includes four banks of coefficients that have
120 taps each. Register FILTR_BNK_0 (see Table 158) and
Register FILTR_BNK_1 (see Table 160) provide the
configuration options for the use of the FIR filters of each inertial
sensor. Each FIR filter bank includes a preconfigured filter, but
the user can design their own filters and write over these values
using the register of each coefficient. For example, Table 163
provides the details for the FIR_COEF_A071 register, which
contains Coefficient 71 in FIR Bank A. Refer to Figure 45 for
the frequency response of the factory default filters. These
filters do not represent any specific application environment;
they are only examples.
The decimation filter averages multiple samples together to
produce each register update. In this type of filter structure, the
number of samples in the average is equal to the reduction in the
update rate for the output data registers. See the DEC_RATE
register for the user controls for this filter (see Table 150).
REGISTER STRUCTURE
All communication with the ADIS16495 involves accessing its
user registers. The register structure contains both output data
and control registers. The output data registers include the
latest sensor data, error flags, and identification data. The
control registers include sample rate, filtering, I/O, calibration,
and diagnostic configuration options. All com-munication
between the ADIS16495 and an external processor involves
either reading or writing to one of the user registers.
DSPADC OUTPUT
REGISTERS
CONTROL
REGISTERS
CONTROLLER
SPI
TRIAXIAL
GYROSCOPE
TEMPERATURE
SENSOR
TRIAXIAL
ACCELEROMETER
15062-018
Figure 22. Basic Operation
The register structure uses a paged addressing scheme that
contains 13 pages, with each page containing 64 register
locations. Each register is 16 bits wide, with each byte having its
own unique address within the memory map of that page. The SPI
port has access to one page at a time, using the bit sequence in
Figure 23. Select the page to activate for SPI access by writing its
code to the PAGE_ID register. Read the PAGE_ID register to
determine which page is currently active. Table 7 displays the
PAGE_ID contents for each page and their basic functions. The
PAGE_ID register is located at Address 0x00 on every page.
Table 7. User Register Page Assignments
Page PAGE_ID Function
0 0x00 Output data, clock, identification
1 0x01 Reserved
2 0x02 Calibration
3 0x03 Control: sample rate, filtering, I/O
4 0x04 Serial number, cyclic redundancy check (CRC)
values
5 0x05 FIR Filter Bank A, Coefficient 0 to Coefficient 59
6 0x06 FIR Filter Bank A, Coefficient 60 to Coefficient 119
7 0x07 FIR Filter Bank B, Coefficient 0 to Coefficient 59
8 0x08 FIR Filter Bank B, Coefficient 60 to Coefficient 119
9 0x09 FIR Filter Bank C, Coefficient 0 to Coefficient 59
10 0x0A FIR Filter Bank C, Coefficient 60 to Coefficient 119
11 0x0B FIR Filter Bank D, Coefficient 0 to Coefficient 59
12 0x0C FIR Filter Bank D, Coefficient 60 to Coefficient 119
ADIS16495 Data Sheet
Rev. C | Page 14 of 42
R/W R/W
A6 A5 A4 A3 A2 A1 A0 DC7 DC6 DC5 DC4 DC3 DC2 DC1 DC0
D0D1
D2
D3D4D5D6D7D8
D9D10
D11
D12D13
D14D15
CS
SCLK
DIN
DOUT
A6 A5
D13
D14D15
NOTES
1. DOUT BITS ARE P RODUCED ONL Y WHEN T HE P RE V IO US 16- BIT DIN SE QUENCE S TART S WI TH R/ W = 0.
2. WHEN CS IS HIGH, DOUT IS IN A THREE-STATE, HIGH IMPEDANCE MODE, WHICH ALLOWS MULTIFUNCTIONAL USE OF THE LINE
FOR OTHER DE V ICES .
15062-019
Figure 23. SPI Communication Bit Sequence
SERIAL PERIPHERAL INTERFACE
The SPI provides access to all of the user accessible registers
(see Table 8) and typically connects to a compatible port on an
embedded processor platform. See Figure 24 for a diagram that
provides the most common connections between the
ADIS16495 and an embedded processor.
SYSTEM
PROCESSOR
SPI MASTER SCLK
CS
DIN
DOUT
SCLK
SS
MOSI
MISO
3.3V
IRQ DIO2
VDD
I/O LINES ARE COMPATIBLE WITH
3.3V LOGIC LEVELS
10
6
3
5
4
9
11
13 14
ADIS16495
15062-020
Figure 24. Electrical Connection Diagram
Table 8. Generic Master Processor Pin Names and Functions
Mnemonic Function
SS Slave select
IRQ Interrupt request
MOSI Master output, slave input
MISO Master input, slave output
SCLK Serial clock
Embedded processors typically use control registers to
configure their serial ports for communicating with SPI slave
devices such as the ADIS16495. Table 9 provides a list of settings
that describe the SPI protocol of the ADIS16495. The
initialization routine of the master processor typically
establishes these settings using firmware commands to write
them into its serial control registers.
Table 9. Generic Master Processor SPI Settings
Processor Setting Description
Master ADIS16495 operates as slave
SCLK ≤ 15 MHz Maximum serial clock rate
SPI Mode 3 CPOL = 1 (polarity), CPHA = 1 (phase)
MSB First Mode Bit sequence, see Figure 23 for coding
16-Bit Mode Shift register/data length
DATA READY
The factory default configuration provides users with a data ready
(DR) signal on the DIO2 pin, which pulses low when the output
data registers are updating (see Figure 25). In this configuration,
connect DIO2 to an interrupt service pin on the embedded
processor, which triggers data collection, when this signal pulses
high. Register FNCTIO_CTRL, Bits[3:0] (see Table 144) provide
some user configuration options for this function.
DIO2 ACTIVE INACTIVE
15062-021
Figure 25. Data Ready, when FNCTIO_CTRL, Bits[3:0] = 1101 (Default)
During the start-up and reset recovery processes, the DR signal
can exhibit some transient behavior before data production
begins. Figure 26 provides an example of the DR behavior
during startup, and Figure 27 and Figure 28 provide examples
of the DR behavior during recovery from reset commands.
VDD
DR
START-UP TIME
TIME THAT V DD > 3V
PUL S I NG I NDICAT E S
DATA P RODUCTIO N
15062-022
Figure 26. Data Ready Response During Startup
DR
RESET RECOVERY TIME
SOFTW ARE RESET COMMAND
GL OB_CMD[ 7] = 1
DR PULS ING
RESUMES
15062-023
Figure 27. Data Ready Response During Reset
(Register GLOB_CMD, Bit 7 = 1) Recovery
DR
RST
RESET RECOVERY TIME
RST PIN
RELEASED
DR PUL S ING
RESUMES
15062-024
Figure 28. Data Ready Response During Reset (RST = 0) Recovery
Data Sheet ADIS16495
Rev. C | Page 15 of 42
READING SENSOR DATA
Reading a single register requires two 16-bit cycles on the SPI:
one to request the contents of a register and another to receive
those contents. The 16-bit command code (see Figure 23) for a
read request on the SPI has three parts: the read bit (R/W = 0),
the 7-bit address code for either address (upper or lower) of the
register, Bits[A6:A0], and eight don’t care bits, Bits[DC7:DC0].
Figure 29 provides an example that includes two register reads
in succession. This example starts with DIN = 0x1A00, to
request the contents of the Z_GYRO_OUT register, and follows
with 0x1800, to request the contents of the Z_GYRO_LOW
register (assuming PAGE_ID already equals 0x0000). The
sequence in Figure 29 also shows full duplex mode of
operation, which means that the ADIS16495 can receive
requests on DIN while also transmitting data out on DOUT
within the same 16-bit SPI cycle.
DIN
DOUT
0x1A00 0x1800 NEXT
ADDRESS
Z_GYRO_OUT Z_GYRO_LOW
15062-025
Figure 29. SPI Read Example
Figure 30 provides an example of the four SPI signals when
reading the PROD_ID register (see Table 92) in a repeating
pattern. This pattern can be helpful when troubleshooting the
SPI interface setup and communications.
SCLK
CS
DIN
DOUT
DOUT = 0100 0000 0110 1111 =0x406F = 16495 (PROD_ID)
DIN = 0111 1110 0000 0000 = 0x7E 00
15062-026
Figure 30. SPI Read Example, Second 16-Bit Sequence
Burst Read Function
The burst read function (BRF) provides a method for reading a
batch of data (status, temperature, gyroscopes, accelerometers,
time stamp/data counter, and CRC code), which does not require a
stall time between each 16-bit segment and only requires one
command on the DIN line to initiate. System processors can
execute the BRF by reading the BURST_CMD register (DIN =
0x7C00) and then reading each segment of data in the response,
while holding the CS line in a low state, until after reading the
last 16-bit segment of data. If the CS line goes high before the
completion of all data acquisition, the data from that read request
is lost.
The BRF response on the DOUT line contains either 19 or 20 data
segments (16-bits each) after the BRF request (DIN = 0x7C00),
depending on the SCLK rate. Figure 5 and Table 10 illustrate
the 19-segment case, while Figure 6 and Table 11 illustrate the
20-segment case.
To manage that variation, use the transition from the
BURST_ID code (0xA5A5 in Table 10 and Table 11) to the
SYS_E_FLAG register, which will not be equal to 0xA5A5, as
an identifier for when the ADIS16495 BRF response is starting.
Table 10. BRF Data Format (fSCLK < 3 MHz)1
Segment DIN DOUT
0 0x7C00 N/A
1 N/A 0x0000
2 N/A 0xA5A5 (BURST_ID)
3 N/A SYS_E_FLAG
4 N/A TEMP_OUT
5 N/A X_GYRO_LOW
6 N/A X_GYRO_OUT
7 N/A Y_GYRO_LOW
8 N/A Y_GYRO_OUT
9 N/A Z_GYRO_LOW
10 N/A Z_GYRO_OUT
11 N/A X_ACCL_LOW
12 N/A X_ACCL_OUT
13 N/A Y_ACCL_LOW
14 N/A Y_ACCL_OUT
15 N/A Z_ACCL_LOW
16 N/A Z_ACCL_OUT
17 N/A DATA_CNT (FNCTIO_CTRL, Bits[8:7] ≠ 11)
TIME_STAMP (FNCTIO_CTRL, Bits[8:7] = 11)
18 N/A CRC_LWR
19 N/A CRC_UPR
1 N/A means not applicable.
Table 11. BRF Data Format (fSCLK > 3.6 MHz)1
Segment DIN DOUT
0 0x7C00 N/A
1 N/A 0x0000
2 N/A 0xA5A5 (BURST_ID)
3 N/A 0xA5A5 (BURST_ID)
4 N/A SYS_E_FLAG
5 N/A TEMP_OUT
6 N/A X_GYRO_LOW
7 N/A X_GYRO_OUT
8 N/A Y_GYRO_LOW
9 N/A Y_GYRO_OUT
10 N/A Z_GYRO_LOW
11 N/A Z_GYRO_OUT
12 N/A X_ACCL_LOW
13 N/A X_ACCL_OUT
14 N/A Y_ACCL_LOW
15 N/A Y_ACCL_OUT
16 N/A Z_ACCL_LOW
17 N/A Z_ACCL_OUT
18 N/A DATA_CNT (FNCTIO_CTRL, Bits[8:7] ≠ 11)
TIME_STAMP (FNCTIO_CTRL, Bits[8:7] = 11)
19 N/A CRC_LWR
20 N/A CRC_UPR
1 N/A means not applicable.
ADIS16495 Data Sheet
Rev. C | Page 16 of 42
DEVICE CONFIGURATION
Each register contains 16 bits (two bytes); Bits[7:0] contain the
low byte and Bits[15:8] contain the high byte. Each byte has its
own unique address in the user register map (see Table 12).
Updating the contents of a register requires writing to its low
byte first and its high byte second. There are three parts to coding
a SPI command (see Figure 23), which writes a new byte of data
to a register: the write bit (R/W = 1), the 7-bit address code for
the byte that this command is updating, and the new data for
that location, Bits[DC7:DC0]. Figure 31 provides a coding
example for writing 0xFEDC to the XG_BIAS_LOW register
(see Table 106), assuming that PAGE_ID already equals 0x0002.
SCLK
CS
DIN 0x90DC 0x91FE
15062-027
Figure 31. SPI Sequence for Writing 0xFEDC to XG_BIAS_LOW
Dual Memory Structure
The ADIS16495 uses a dual memory structure (see Figure 32),
with static random access memory (SRAM) supporting real-
time operation and flash memory storing operational code,
calibration coefficients, and user configurable register settings.
The manual flash update command (GLOB_CMD, Bit 3, see
Table 142) provides a single-command method for storing user
configuration settings into flash memory, for automatic recall
during the next power-on or reset recovery process.
This portion of the flash memory bank has two independent banks
that operate in a ping pong manner, alternating with every flash
update. During power-on or reset recovery, the ADIS16495
performs a CRC on the SRAM and compares it to a CRC
computation from the same memory locations in flash memory.
If this memory test fails, the ADIS16495 resets and boots up
from the other flash memory location. SYS_E_FLAG, Bit 2 (see
Table 18) provides an error flag for detecting when the backup
flash memory supported the last power-on or reset recovery.
Table 12 provides a memory map for the user registers in the
ADIS16495, which includes flash backup support (indicated by
yes or no in the flash column).
NONVOLATILE
FLASH MEMORY
(NO SPI ACCESS)
MANUAL
FLASH
BACKUP
START-UP
RESET
VOLATILE
SRAM
SPI ACCESS
15062-028
Figure 32. SRAM and Flash Memory Diagram
Data Sheet ADIS16495
Rev. C | Page 17 of 42
USER REGISTER MEMORY MAP
Table 12. User Register Memory Map1
Register Name R/W
Flash
Backup PAGE_ID Address Default Register Description
PAGE_ID R/W No 0x00 0x00, 0x01 0x0000 Page identifier
Reserved N/A N/A 0x00 0x02, 0x03 N/A Reserved
DATA_CNT R No 0x00 0x04, 0x05 N/A Data counter
Reserved N/A N/A 0x00 0x06, 0x07 N/A Reserved
SYS_E_FLAG R No 0x00 0x08, 0x09 N/A Output, system error flags (0x0000 if no errors)
DIAG_STS R No 0x00 0x0A, 0x0B N/A Output, self test error flags (0x0000 if no errors)
Reserved N/A N/A 0x00 0x0C, 0x0D N/A Reserved
TEMP_OUT R No 0x00 0x0E, 0x0F N/A Output, temperature
X_GYRO_LOW R No 0x00 0x10, 0x11 N/A Output, x-axis gyroscope, low word
X_GYRO_OUT R No 0x00 0x12, 0x13 N/A Output, x-axis gyroscope, high word
Y_GYRO_LOW R No 0x00 0x14, 0x15 N/A Output, y-axis gyroscope, low word
Y_GYRO_OUT R No 0x00 0x16, 0x17 N/A Output, y-axis gyroscope, high word
Z_GYRO_LOW R No 0x00 0x18, 0x19 N/A Output, z-axis gyroscope, low word
Z_GYRO_OUT R No 0x00 0x1A, 0x1B N/A Output, z-axis gyroscope, high word
X_ACCL_LOW R No 0x00 0x1C, 0x1D N/A Output, x-axis accelerometer, low word
X_ACCL_OUT R No 0x00 0x1E, 0x1F N/A Output, x-axis accelerometer, high word
Y_ACCL_LOW R No 0x00 0x20, 0x21 N/A Output, y-axis accelerometer, low word
Y_ACCL_OUT R No 0x00 0x22, 0x23 N/A Output, y-axis accelerometer, high word
Z_ACCL_LOW R No 0x00 0x24, 0x25 N/A Output, z-axis accelerometer, low word
Z_ACCL_OUT R No 0x00 0x26, 0x27 N/A Output, z-axis accelerometer, high word
TIME_STAMP R No 0x00 0x28, 0x29 N/A Output, time stamp
CRC_LWR R No 0x00 0x2A, 0x2B N/A Output, CRC-32 (32 bits), lower word
CRC_UPR R No 0x00 0x2C, 0x2D N/A Output, CRC-32, upper word
Reserved N/A N/A 0x00 0x2E to 0x3F N/A Reserved
X_DELTANG_LOW R No 0x00 0x40, 0x41 N/A Output, x-axis delta angle, low word
X_DELTANG_OUT R No 0x00 0x42, 0x43 N/A Output, x-axis delta angle, high word
Y_DELTANG_LOW R No 0x00 0x44, 0x45 N/A Output, y-axis delta angle, low word
Y_DELTANG_OUT R No 0x00 0x46, 0x47 N/A Output, y-axis delta angle, high word
Z_DELTANG_LOW R No 0x00 0x48, 0x49 N/A Output, z-axis delta angle, low word
Z_DELTANG_OUT R No 0x00 0x4A, 0x4B N/A Output, z-axis delta angle, high word
X_DELTVEL_LOW R No 0x00 0x4C, 0x4D N/A Output, x-axis delta velocity, low word
X_DELTVEL_OUT R No 0x00 0x4E, 0x4F N/A Output, x-axis delta velocity, high word
Y_DELTVEL_LOW R No 0x00 0x50, 0x51 N/A Output, y-axis delta velocity, low word
Y_DELTVEL_OUT R No 0x00 0x52, 0x53 N/A Output, y-axis delta velocity, high word
Z_DELTVEL_LOW R No 0x00 0x54, 0x55 N/A Output, z-axis delta velocity, low word
Z_DELTVEL_OUT R No 0x00 0x56, 0x57 N/A Output, z-axis delta velocity, high word
Reserved N/A N/A 0x00 0x58 to 0x7B N/A Reserved
BURST_CMD R No 0x00 0x7C, 0x7D N/A Burst read command
PROD_ID R Yes 0x00 0x7E, 0x7F 0x4071 Output, product identification (16495d)
Reserved N/A N/A 0x01 0x00 to 0x7F N/A Reserved
PAGE_ID R/W No 0x02 0x00, 0x01 0x0000 Page identifier
Reserved N/A N/A 0x02 0x02, 0x03 N/A Reserved
X_GYRO_SCALE R/W Yes 0x02 0x04, 0x05 0x0000 Calibration, scale, x-axis gyroscope
Y_GYRO_SCALE R/W Yes 0x02 0x06, 0x07 0x0000 Calibration, scale, y-axis gyroscope
Z_GYRO_SCALE R/W Yes 0x02 0x08, 0x09 0x0000 Calibration, scale, z-axis gyroscope
X_ACCL_SCALE R/W Yes 0x02 0x0A, 0x0B 0x0000 Calibration, scale, x-axis accelerometer
Y_ACCL_SCALE R/W Yes 0x02 0x0C, 0x0D 0x0000 Calibration, scale, y-axis accelerometer
Z_ACCL_SCALE R/W Yes 0x02 0x0E, 0x0F 0x0000 Calibration, scale, z-axis accelerometer
XG_BIAS_LOW R/W Yes 0x02 0x10, 0x11 0x0000 Calibration, bias, gyroscope, x-axis, low word
ADIS16495 Data Sheet
Rev. C | Page 18 of 42
Register Name R/W
Flash
Backup PAGE_ID Address Default Register Description
XG_BIAS_HIGH R/W Yes 0x02 0x12, 0x13 0x0000 Calibration, bias, gyroscope, x-axis, high word
YG_BIAS_LOW R/W Yes 0x02 0x14, 0x15 0x0000 Calibration, bias, gyroscope, y-axis, low word
YG_BIAS_HIGH R/W Yes 0x02 0x16, 0x17 0x0000 Calibration, bias, gyroscope, y-axis, high word
ZG_BIAS_LOW R/W Yes 0x02 0x18, 0x19 0x0000 Calibration, bias, gyroscope, z-axis, low word
ZG_BIAS_HIGH R/W Yes 0x02 0x1A, 0x1B 0x0000 Calibration, bias, gyroscope, z-axis, high word
XA_BIAS_LOW R/W Yes 0x02 0x1C, 0x1D 0x0000 Calibration, bias, accelerometer, x-axis, low word
XA_BIAS_HIGH R/W Yes 0x02 0x1E, 0x1F 0x0000 Calibration, bias, accelerometer, x-axis, high word
YA_BIAS_LOW R/W Yes 0x02 0x20, 0x21 0x0000 Calibration, bias, accelerometer, y-axis, low word
YA_BIAS_HIGH R/W Yes 0x02 0x22, 0x23 0x0000 Calibration, bias, accelerometer, y-axis, high word
ZA_BIAS_LOW R/W Yes 0x02 0x24, 0x25 0x0000 Calibration, bias, accelerometer, z-axis, low word
ZA_BIAS_HIGH R/W Yes 0x02 0x26, 0x27 0x0000 Calibration, bias, accelerometer, z-axis, high word
Reserved N/A N/A 0x02 0x28 to 0x73 0x0000 Reserved
USER_SCR_1 R/W Yes 0x02 0x74, 0x75 0x0000 User Scratch Register 1
USER_SCR_2 R/W Yes 0x02 0x76, 0x77 0x0000 User Scratch Register 2
USER_SCR_3 R/W Yes 0x02 0x78, 0x79 0x0000 User Scratch Register 3
USER_SCR_4 R/W Yes 0x02 0x7A, 0x7B 0x0000 User Scratch Register 4
FLSHCNT_LOW R Yes 0x02 0x7C, 0x7D N/A Diagnostic, flash memory count, low word
FLSHCNT_HIGH R Yes 0x02 0x7E, 07F N/A Diagnostic, flash memory count, high word
PAGE_ID R/W No 0x03 0x00, 0x01 0x0000 Page identifier
GLOB_CMD W No 0x03 0x02, 0x03 N/A Control, global commands
Reserved N/A N/A 0x03 0x04, 0x05 N/A Reserved
FNCTIO_CTRL R/W Yes 0x03 0x06, 0x07 0x000D Control, I/O pins, functional definitions
GPIO_CTRL R/W Yes 0x03 0x08, 0x09 0x00X02 Control, I/O pins, general-purpose
CONFIG R/W Yes 0x03 0x0A, 0x0B 0x00C0 Control, clock, and miscellaneous correction
DEC_RATE R/W Yes 0x03 0x0C, 0x0D 0x0000 Control, output sample rate decimation
NULL_CNFG R/W Yes 0x03 0x0E, 0x0F 0x070A Control, automatic bias correction configuration
SYNC_SCALE R/W Yes 0x03 0x10, 0x11 0x109A Control, input clock scaling (PPS mode)
RANG_MDL R N/A 0x03 0x12, 0x13 N/A Measurement range (model-specific) Identifier
Reserved N/A N/A 0x03 0x14, 0x15 N/A Reserved
FILTR_BNK_0 R/W Yes 0x03 0x16, 0x17 0x0000 Filter selection
FILTR_BNK_1 R/W Yes 0x03 0x18, 0x19 0x0000 Filter selection
Reserved N/A N/A 0x03 0x1A to 0x77 N/A Reserved
FIRM_REV R Yes 0x03 0x78, 0x79 N/A Firmware revision
FIRM_DM R Yes 0x03 0x7A, 0x7B N/A Firmware programming date (day/month)
FIRM_Y R Yes 0x03 0x7C, 0x7D N/A Firmware programming date (year)
BOOT_REV R Yes 0x03 0x7E, 0x7F N/A Boot loader revision
PAGE_ID R/W No 0x04 0x00, 0x01 0x0000 Page identifier
Reserved N/A N/A 0x04 0x02, 0x03 N/A Reserved
CAL_SIGTR_LWR R Yes 0x04 0x04, 0x05 N/A Signature CRC, calibration coefficients, low word
CAL_SIGTR_UPR R Yes 0x04 0x06, 0x07 N/A Signature CRC, calibration coefficients, high word
CAL_DRVTN_LWR R No 0x04 0x08, 0x09 N/A Real-time CRC, calibration coefficients, low word
CAL_DRVTN_UPR R No 0x04 0x0A, 0x0B N/A Real-time CRC, calibration coefficients, high word
CODE_SIGTR_LWR R Yes 0x04 0x0C, 0x0D N/A Signature CRC, program code, low word
CODE_SIGTR_UPR R Yes 0x04 0x0E, 0x0F N/A Signature CRC, program code, high word
CODE_DRVTN_LWR R No 0x04 0x10, 0x11 N/A Real-time CRC, program code, low word
CODE_DRVTN_UPR R No 0x04 0x12, 0x13 N/A Real-time CRC, program code, high word
Reserved
N/A
N/A
0x04
0x1C to 0x1F
N/A
Reserved
SERIAL_NUM R Yes 0x04 0x20, 0x21 N/A Serial number
Reserved N/A N/A 0x04 0x22 to 0x7F N/A Reserved
PAGE_ID R/W No 0x05 0x00, 0x01 0x0000 Page identifier
Reserved N/A N/A 0x05 0x02 to 0x07 N/A Reserved
FIR_COEF_Axxx3 R/W Yes 0x05 0x08 to 0x7F N/A FIR Filter Bank A: Coefficient 0 through Coefficient 59
Data Sheet ADIS16495
Rev. C | Page 19 of 42
Register Name R/W
Flash
Backup PAGE_ID Address Default Register Description
PAGE_ID R/W No 0x06 0x00, 0x01 0x0000 Page identifier
Reserved N/A N/A 0x06 0x02 to 0x07 N/A Reserved
FIR_COEF_Axxx3 R/W Yes 0x06 0x08 to 0x7F N/A FIR Filter Bank A: Coefficient 60 through Coefficient 119
PAGE_ID R/W No 0x07 0x00, 0x01 0x0000 Page identifier
Reserved N/A N/A 0x07 0x02 to 0x07 N/A Reserved
FIR_COEF_Bxxx4 R/W Yes 0x07 0x08 to 0x7F N/A FIR Filter Bank B: Coefficient 0 through Coefficient 59
PAGE_ID R/W No 0x08 0x00, 0x01 0x0000 Page identifier
Reserved N/A N/A 0x08 0x02 to 0x07 N/A Reserved
FIR_COEF_Bxxx4 R/W Yes 0x08 0x08 to 0x7F N/A FIR Filter Bank B: Coefficient 60 through Coefficient 119
PAGE_ID R/W No 0x09 0x00, 0x01 0x0000 Page identifier
Reserved N/A N/A 0x09 0x02 to 0x07 N/A Reserved
FIR_COEF_Cxxx5 R/W Yes 0x09 0x08 to 0x7F N/A FIR Filter Bank C: Coefficient 0 through Coefficient 59
PAGE_ID R/W No 0x0A 0x00, 0x01 0x0000 Page identifier
Reserved N/A N/A 0x0A 0x02 to 0x07 N/A Reserved
FIR_COEF_Cxxx5 R/W Yes 0x0A 0x08 to 0x7F N/A FIR Filter Bank C: Coefficient 60 through Coefficient 119
PAGE_ID R/W No 0x0B 0x00, 0x01 0x0000 Page identifier
Reserved N/A N/A 0x0B 0x02 to 0x07 N/A Reserved
FIR_COEF_Dxxx6 R/W Yes 0x0B 0x08 to 0x7F N/A FIR Filter Bank D: Coefficient 0 through Coefficient 59
PAGE_ID R/W No 0x0C 0x00, 0x01 0x0000 Page identifier
Reserved N/A N/A 0x0C 0x02 to 0x07 N/A Reserved
FIR_COEF_Dxxx6 R/W Yes 0x0C 0x08 to 0x7F N/A FIR Filter Bank D: Coefficient 60 through Coefficient 119
1 N/A means not applicable.
2 The GPIO_CTRL[7:4] bits reflect the logic levels on the DIOx lines and do not have a default setting.
3 See the FIR Filter Bank A, FIR_COEF_A000 to FIR_COEF_A119 section for additional information.
4 See the FIR Filter Bank B, FIR_COEF_B000 to FIR_COEF_B119 section for additional information.
5 See the FIR Filter Bank C, FIR_COEF_C000 to FIR_COEF_C119 section for additional information.
6 See the FIR Filter Bank D, FIR_COEF_D000 to FIR_COEF_D119 section for additional information.
ADIS16495 Data Sheet
Rev. C | Page 20 of 42
USER REGISTER DEFINTIONS
PAGE NUMBER (PAGE_ID)
The contents in the PAGE_ID register (see Table 13 and Table 14)
contain the current page setting, and provide a control for selecting
another page for SPI access. For example, set DIN = 0x8002 to
select Page 2 for SPI-based user access. See Table 12 for the
page assignments associated with each user accessible register.
Table 13. PAGE_ID Register Definition
Page Addresses Default Access Flash Backup
0x00 0x00, 0x01 0x0000 R/W No
Table 14. PAGE_ID Bit Descriptions
Bits Description
[15:0] Page number, binary numerical format
DATA/SAMPLE COUNTER (DATA_CNT)
The DATA_CNT register (see Table 15 and Table 16) is a
continuous, real-time, sample counter. It starts at 0x0000,
increments every time the output data registers update, and
wraps around from 0xFFFF (65,535 decimal) to 0x0000
(0 decimal).
Table 15. DATA_CNT Register Definition
Page Addresses Default Access Flash Backup
0x00 0x04, 0x05 Not applicable R No
Table 16. DATA_CNT Bit Descriptions
Bits Description
[15:0] Data counter, binary format
STATUS/ERROR FLAG INDICATORS (SYS_E_FLAG)
The SYS_E_FLAG register (see Table 17 and Table 18) provides
various error flags. Reading this register causes all of its bits to
return to 0, with the exception of Bit 7. If an error condition
persists, its flag (bit) automatically returns to an alarm value of 1.
Table 17. SYS_E_FLAG Register Definition
Page Addresses Default Access Flash Backup
0x00 0x08, 0x09 0x0000 R No
Table 18. SYS_E_FLAG Bit Descriptions
Bits Description
15 Watchdog timer flag. A 1 indicates the ADIS16495
automatically resets itself to clear an issue.
[14:9] Not used.
8 Sync error. A 1 indicates the sample timing is not scaling
correctly, when operating in PPS mode (FNCTIO_CTRL,
Bit 8 = 1, see Table 144). When this error occurs, verify
that the input sync frequency is correct and that
SYNC_SCALE (see Table 154) has the correct value.
7 Processing overrun. A 1 indicates the occurrence of a
processing overrun. Initiate a reset to recover. Replace
the ADIS16495 if this error persists.
6 Flash memory update failure. A 1 indicates that the most
recent flash memory update failed (GLOB_CMD, Bit 3, see
Table 142). Repeat the test and replace the ADIS16495 if
this error persists.
5
Sensor failure. A 1 indicates failure in at least one of the
inertial sensors. Read the DIAG_STS register (see Table 20)
to determine which sensor is failing. Replace the
ADIS16495 if the error persists, when it is operating in
static inertial conditions.
4 Not used.
3 SPI communication error. A 1 indicates that the total
number of SCLK cycles is not equal to an integer multiple
of 16. Repeat the previous communication sequence to
recover. Persistence in this error can indicate a weakness in
the SPI service from the master processor.
2 SRAM error condition. A 1 indicates a failure in the CRC
(period = 20 ms) between the SRAM and flash memory.
Initiate a reset to recover. Replace the ADIS16495 if this
error persists.
1 Boot memory failure. A 1 indicates that the device
booted up using code from the backup memory bank.
Replace the ADIS16495 if this error occurs.
0 Not used.
Data Sheet ADIS16495
Rev. C | Page 21 of 42
SELF TEST ERROR FLAGS (DIAG_STS)
SYS_E_FLAG, Bit 5 (see Table 18) contains the pass/fail result
(0 = pass) for the on demand self test (ODST) operations,
whereas the DIAG_STS register (see Table 19 and Table 20)
contains pass/fail flags (0 = pass) for each inertial sensor. Reading
the DIAG_STS register causes all of its bits to restore to 0. The
bits in DIAG_STS return to 1 if the error conditions persists.
Table 19. DIAG_STS Register Definition
Page Addresses Default Access Flash Backup
0x00 0x0A, 0x0B 0x0000 R No
Table 20. DIAG_STS Bit Descriptions
Bits Description (Default = 0x0000)
[15:6] Not used
5 Self test failure, z-axis accelerometer (1 means failure)
4 Self test failure, y-axis accelerometer (1 means failure)
3 Self test failure, x-axis accelerometer (1 means failure)
2 Self test failure, z-axis gyroscope (1 means failure)
1
Self test failure, y-axis gyroscope (1 means failure)
0 Self test failure, x-axis gyroscope (1 means failure)
INTERNAL TEMPERATURE (TEMP_OUT)
The TEMP_OUT register (see Table 21 and Table 22) provides
a coarse measurement of the temperature inside of the ADIS16495.
This data is useful for monitoring relative changes in the
thermal environment. Table 23 provides several examples of
the data format for the TEMP_OUT register.
Table 21. TEMP_OUT Register Definition
Page Addresses Default Access Flash Backup
0x00 0x0E, 0x0F Not applicable R No
Table 22. TEMP_OUT Bit Descriptions
Bits
Description
[15:0] Temperature data; twos complement, 1°C per 80 LSB,
25°C = 0x0000
Table 23. TEMP_OUT Data Format Examples
Temperature (°C) Decimal Hex Binary
+85 +4800 0x12C0 0001 0010 1100 0000
+25 + 2/80 +2 0x0002 0000 0000 0000 0010
+25 + 1/80 +1 0x0001 0000 0000 0000 0001
+25 0 0x0000 0000 0000 0000 0000
+25 – 1/80 −1 0xFFFF 1111 1111 1111 1111
+25 – 2/80 −2 0xFFFE 1111 1111 1111 1110
−40 −5200 0xEBB0 1110 1011 1011 0000
GYROSCOPE DATA
The gyroscopes in the ADIS16495 measure the angular rate of
rotation around three orthogonal axes (x, y, and z). Figure 34
shows the orientation of each gyroscope axis, which defines the
direction of rotation that produces a positive response in each
of the angular rate measurements.
Each gyroscope has two output data registers. Figure 33 shows
how these two registers combine to support a 32-bit, twos
complement data format for the x-axis gyroscope measurements.
This format also applies to the y-axis and z-axis as well.
X-AXIS GYROSCOPE DATA
X_GYRO_OUT X_GYRO_LOW
15062-030
BIT 0 BIT 15BIT 15 BIT 0
Figure 33. Gyroscope Output Data Structure
Gyroscope Measurement Range/Scale Factor
Table 24 provides the range and scale factor (KG) for the
angular rate (gyroscope) measurements in each ADIS16495
model.
Table 24. Gyroscope Measurement Range and Scale Factors
Model
Range
Scale Factor, K
G
ADIS16495-1 ±125°/sec 0.00625°/sec/LSB
ADIS16495-2 ±450°/sec 0.025°/sec/LSB
ADIS16495-3 ±2000°/sec 0.1°/sec/LSB
PIN 1
PIN 23
ωY
Y-AXIS
ωX
X-AXIS
Z-AXIS
ωZ
15062-029
Figure 34. Gyroscope Axis and Polarity Assignments
ADIS16495 Data Sheet
Rev. C | Page 22 of 42
Gyroscope Data Formatting
Table 25 and Table 26 offer various numerical examples that
demonstrate the format of the rotation rate data in both 16-bit
and 32-bit formats. See Table 24 for the scale factor (KG)
associated with each ADIS16495 model.
Table 25. 16-Bit Gyroscope Data Format Examples
Rotation Rate
(°/sec) Decimal Hex Binary
+10000 KG +10,000 0x2710 0010 0111 0001 0000
+2 KG +2 0x0002 0000 0000 0000 0010
+KG +1 0x0001 0000 0000 0000 0001
0°/sec 0 0x0000 0000 0000 0000 0000
−KG −1 0xFFFF 1111 1111 1111 1111
2 KG −2 0xFFFE 1111 1111 1111 1110
10000 KG −10,000 0xD8F0 1101 1000 1111 0000
Table 26. 32-Bit Gyroscope Data Format Examples
Rotation Rate (°/sec) Decimal Hexadecimal
+10000 KG +655,360,000 0x27100000
+KG/215 +2 0x00000002
+KG/216 +1 0x00000001
0 0 0x0000000
−KG /216 −1 0xFFFFFFFF
−KG /215 −2 0xFFFFFFFE
10000 KG −655,360,000 0xD8F00000
X-Axis Gyroscope (X_GYRO_LOW, X_GRYO_OUT)
The X_GYRO_LOW (see Table 27 and Table 28) and X_GRYO_
OUT (see Table 29 and Table 30) registers contain the gyroscope
data for the x-axis.
Table 27. X_GYRO_LOW Register Definition
Page Addresses Default Access Flash Backup
0x00 0x10, 0x11 Not applicable R No
Table 28. X_GYRO_LOW Bit Descriptions
Bits Description
[15:0] X-axis gyroscope data; low word
Table 29. X_GYRO_OUT Register Definition
Page Addresses Default Access Flash Backup
0x00 0x12, 0x13 Not applicable R No
Table 30. X_GYRO_OUT Bit Descriptions
Bits Description
[15:0] X-axis gyroscope data; high word; twos complement,
0°/sec = 0x0000, see Table 24 for scale factor
Y-Axis Gyroscope (Y_GYRO_LOW, Y_GYRO_OUT)
The Y_GYRO_LOW (see Table 31 and Table 32) and
Y_GRYO_OUT (see Table 33 and Table 34) registers contain
the gyroscope data for the y-axis.
Table 31. Y_GYRO_LOW Register Definition
Page Addresses Default Access Flash Backup
0x00 0x14, 0x15 Not applicable R No
Table 32. Y_GYRO_LOW Bit Descriptions
Bits Description
[15:0] Y-axis gyroscope data; low word
Table 33. Y_GYRO_OUT Register Definition
Page Addresses Default Access Flash Backup
0x00 0x16, 0x17 Not applicable R No
Table 34. Y_GYRO_OUT Bit Descriptions
Bits Description
[15:0]
Y-axis gyroscope data; high word; twos complement,
0°/sec = 0x0000, see Table 24 for scale factor
Z-Axis Gyroscope (Z_GYRO_LOW, Z_GYRO_OUT)
The Z_GYRO_LOW (see Table 35 and Table 36) and
Z_GRYO_
OUT (see Table 37 and Table 38) registers contain the gyroscope
data for the z-axis.
Table 35. Z_GYRO_LOW Register Definition
Page Addresses Default Access Flash Backup
0x00 0x18, 0x19 Not applicable R No
Table 36. Z_GYRO_LOW Bit Descriptions
Bits Description
[15:0] Z-axis gyroscope data; additional resolution bits
Table 37. Z_GYRO_OUT Register Definition
Page Addresses Default Access Flash Backup
0x00 0x1A, 0x1B Not applicable R No
Table 38. Z_GYRO_OUT Bit Descriptions
Bits Description
[15:0] Z-axis gyroscope data; high word; twos complement,
0°/sec = 0x0000, see Table 24 for scale factor
Data Sheet ADIS16495
Rev. C | Page 23 of 42
PIN 1
PIN 23
a
Y
Y-AXIS
X-AXIS
a
X
Z-AXIS
a
Z
15062-031
Figure 35. Accelerometer Axis and Polarity Assignments
ACCELERATION DATA
The accelerometers in the ADIS16495 measure both dynamic
and static (response to gravity) acceleration along three orthogonal
axes (x, y, and z). Figure 35 shows the orientation of each
accelerometer axis, which defines the direction of linear
acceleration that produces a positive response in each of the
angular rate measurements.
Each accelerometer has two output data registers. Figure 36
shows how these two registers combine to support a 32-bit,
twos complement data format for the x-axis accelerometer
measurements. This format also applies to the y-axis and z-axis.
X-AXIS ACCELE ROME TER DATA
X_ACCL_OUT X_ACCL_LOW
15062-032
BIT 0 BIT 15BIT 15 BIT 0
Figure 36. Accelerometer Output Data Structure
X-Axis Accelerometer (X_ACCL_LOW, X_ACCL_OUT)
The X_ACCL_LOW (see Table 39 and Table 40) and
X_ACCL_
OUT (see Table 41 and Table 42) registers contain the
accelerometer data for the x-axis.
Table 39. X_ACCL_LOW Register Definition
Page Addresses Default Access Flash Backup
0x00 0x1C, 0x1D Not applicable R No
Table 40. X_ACCL_LOW Bit Descriptions
Bits Description
[15:0] X-axis accelerometer data; low word
Table 41. X_ACCL_OUT Register Definition
Page Addresses Default Access Flash Backup
0x00 0x1E, 0x1F Not applicable R No
Table 42. X_ACCL_OUT Descriptions
Bits Description
[15:0] X-axis accelerometer data, high word; twos
complement, ±8 g range; 0 g = 0x0000, 1 LSB = 0.25 mg
Y-Axis Accelerometer (Y_ACCL_LOW, Y_ACCL_OUT)
The Y_ACCL_LOW (see Table 43 and Table 44) and
Y_ACCL_OUT (see Table 45 and Table 46) registers contain
the accelerometer data for the y-axis.
Table 43. Y_ACCL_LOW Register Definition
Page Addresses Default Access Flash Backup
0x00 0x20, 0x21 Not applicable R No
Table 44. Y_ACCL_LOW Bit Descriptions
Bits Description
[15:0] Y-axis accelerometer data; low word
Table 45. Y_ACCL_OUT Register Definition
Page Addresses Default Access Flash Backup
0x00 0x22, 0x23 Not applicable R No
Table 46. Y_ACCL_OUT Bit Descriptions
Bits Description
[15:0] Y-axis accelerometer data, high word; twos
complement, ±8 g range, 0 g = 0x0000, 1 LSB = 0.25 mg
Z-Axis Accelerometer (Z_ACCL_LOW, Z_ACCL_OUT)
The Z_ACCL_LOW (see Table 47 and Table 48) and Z_ACCL_
OUT (see Table 49 and Table 50) registers contain the accelerome-
ter data for the z-axis.
Table 47. Z_ACCL_LOW Register Definition
Page Addresses Default Access Flash Backup
0x00 0x24, 0x25 Not applicable R No
Table 48. Z_ACCL_LOW Bit Descriptions
Bits Description
[15:0] Z-axis accelerometer data; low word
Table 49. Z_ACCL_OUT Register Definition
Page Addresses Default Access Flash Backup
0x00 0x26, 0x27 Not applicable R No
ADIS16495 Data Sheet
Rev. C | Page 24 of 42
Table 50. Z_ACCL_OUT Bit Descriptions
Bits Description
[15:0] Z-axis accelerometer data, high word; twos
complement, ±8 g range, 0 g = 0x0000, 1 LSB = 0.25 mg
Accelerometer Resolution
Table 51 and Table 52 offer various numerical examples that
demonstrate the format of the linear acceleration data in both
16-bit and 32-bit formats.
Table 51. 16-Bit Accelerometer Data Format Examples
Acceleration Decimal Hex Binary
+8 g +32,000 0x7D00 0111 1101 0000 0000
+0.5 mg +2 0x0002 0000 0000 0000 0010
+0.25 mg +1 0x0001 0000 0000 0000 0001
0 mg 0 0x0000 0000 0000 0000 0000
−0.25 mg −1 0xFFFF 1111 1111 1111 1111
−0.5 mg −2 0xFFFE 1111 1111 1111 1110
−8 g −32,000 0x8300 1000 0011 0000 0000
Table 52. 32-Bit Accelerometer Data Format Examples
Acceleration Decimal Hexadecimal
+8 g +2,097,152,000 0x7D000000
+0.25/215 mg +2 0x00000002
+0.25/216 mg +1 0x00000001
0 mg 0 0x00000000
−0.25/216 mg −1 0xFFFFFFFF
−0.25/215 mg −2 0xFFFFFFFE
−8 g −2,097,152,000 0x83000000
TIME STAMP
When using PPS mode (FNCTIO_CTRL, Bits[8:7] = 11 (binary),
see Table 144), the TIME_STAMP register (see Table 53 and
Table 54) provides the time between the most recent pulse on
the input clock signal and the most recent data update.
Table 53. TIME_STAMP Register Definition
Page Addresses Default Access Flash Backup
0x00 0x28, 0x29 Not applicable R No
Table 54. TIME_STAMP Bit Descriptions
Bits Description
[15:0] Time stamp, binary format.
1 LSB = 1/fSM (see Figure 18, Figure 19, and Table 154).
The leading edge of the input clock pulse resets the
value in this register to 0x0000.
When using the decimation filter (DEC_RATE > 0x0000), the
value in the TIME_STAMP register represents the time of the first
sample (taken at the rate of fSM, per Figure 18 and Figure 19).
For example, when DEC_RATE = 0x0003, the decimation filter
reduces the update by a factor of four and the TIME_STAMP
register updates to 1 (decimal) during the first data update, then
to 5 on the second update, 9 on the third update, for example,
until the next clock signal pulse.
CYCLICAL REDUNDANCY CHECK (CRC-32)
The ADIS16495 performs a CRC-32 computation, using the
output data registers (see Table 55).
Table 55. CRC-32 Source Data and Example Values
Register Example Value
SYS_E_FLAG 0x0000
TEMP_OUT 0x083A
X_GYRO_LOW 0x0000
X_GYRO_OUT 0xFFF7
Y_GYRO_LOW 0x0000
Y_GYRO_OUT 0xFFFE
Z_GYRO_LOW 0x0000
Z_GYRO_OUT
0x0001
X_ACCL_LOW 0x5001
X_ACCL_OUT 0x0003
Y_ACCL_LOW 0xE00A
Y_ACCL_OUT 0x0015
Z_ACCL_LOW 0xC009
Z_ACCL_OUT 0x0320
TIME_STAMP 0x8A54
The CRC_LWR (see Table 56 and Table 57) and CRC_UPR
(see Table 58 and Table 59) registers contain the result of the
CRC-32 computation. For the example, the register values from
Table 55 are,
CRC_LWR = 0x15B4
CRC_UPR = 0xB6C8
Table 56. CRC_LWR Register Definition
Page Addresses Default Access Flash Backup
0x00 0x2A, 0x2B Not applicable R No
Table 57. CRC_LWR Bit Definitions
Bits Description
[15:0] CRC-32 code from most recent BRF, lower word
Table 58. CRC_UPR Register Definition
Page Addresses Default Access Flash Backup
0x00 0x2C, 0x2D Not applicable R No
Table 59. CRC_UPR Bit Definitions
Bits Description
[15:0] CRC-32 code from most recent BRF, upper word
Data Sheet ADIS16495
Rev. C | Page 25 of 42
PIN 1
PIN 23
Δθ
Y
Y-AXIS
Δθ
X
X-AXIS
Z-AXIS
Δθ
Z
15062-033
Figure 37. Delta Angle Axis and Polarity Assignments
DELTA ANGLES
In addition to the angular rate of rotation (gyroscope) measure-
ments around each axis (x, y, and z), the ADIS16495 also provides
delta angle measurements that represent a computation of angular
displacement between each sample update. Figure 37 shows the
orientation of each delta angle output, which defines the
direction of rotation that produces a positive response in each
of the angular displacement (delta angle) measurements.
The delta angle outputs represent an integration of the gyro-
scope measurements and use the following formula for all three
axes (x-axis displayed):
()
1
, , ,1
0
1
2
D
x nD x nD d x nD d
d
S
f
θ ωω
+ +−
=
∆=× +
where:
Δθx is the delta angle measurement for the x-axis.
D is the decimation rate = DEC_RATE + 1 (see Table 150).
fS is the sample rate.
d is the incremental variable in the summation formula.
ωx is the x-axis rate of rotation (gyroscope).
n is the sample time, prior to the decimation filter.
When using the internal sample clock, fS is equal to 4250 SPS.
When using the external clock option, fS is equal to the frequency
of the external clock. The range in the delta angle registers
accommodates the maximum rate of rotation (100°/sec), the
nominal sample rate (4250 SPS), and an update rate of 1 Hz
(DEC_RATE = 0x1099; divide by 4249 plus 1, see Table 150),
all at the same time. When using an external clock that is higher
than 4250 SPS, reduce the DEC_RATE setting to avoid over-
ranging the delta angle registers.
Each axis of the delta angle measurements has two output data
registers. Figure 38 shows how these two registers combine to
support a 32-bit, twos complement data format for the x-axis
delta angle measurements. This format also applies to the y-axis
and z-axis.
X-AXIS DE LTA ANGL E DATA
X_DELTANG_OUT X_DELTANG_LOW
15062-034
BIT 0 BIT 15BIT 15 BIT 0
Figure 38. Delta Angle Output Data Structure
Delta Angle Measurement Range
Table 60 offers the measurement range and scale factor for each
ADIS16495 model.
Table 60. Delta Angle Measurement Range and Scale Factor
Model Measurement Range, ±ΔθMAX
ADIS16495-1 ±360
°
ADIS16495-2 ±720
°
ADIS16495-3 ±2160
°
X-Axis Delta Angle (X_DELTANG_LOW,
X_DELTANG_OUT)
The X_DELTANG_LOW (see Table 61 and Table 62) and
X_DELTANG_OUT (see Table 63 and Table 64) registers
contain the delta angle data for the x-axis.
Table 61. X_DELTANG_LOW Register Definitions
Page Addresses Default Access Flash Backup
0x00 0x40, 0x41 Not applicable R No
Table 62. X_DELTANG_LOW Bit Descriptions
Bits Description
[15:0] X-axis delta angle data; low word
Table 63. X_DELTANG_OUT Register Definitions
Page Addresses Default Access Flash Backup
0x00 0x42, 0x43 Not applicable R No
Table 64. X_DELTANG_OUT Bit Descriptions
Bits Description
[15:0] X-axis delta angle data; twos complement, 0° = 0x0000,
1 LSB = ΔθMAX/215 (see Table 60 for ΔθMAX)
ADIS16495 Data Sheet
Rev. C | Page 26 of 42
Y-Axis Delta Angle (Y_DELTANG_LOW, Y_DELTANG_OUT)
The Y_DELTANG_LOW (see Table 65 and Table 66) and
Y_DELTANG_OUT (see Table 67 and Table 68) registers
contain the delta angle data for the y-axis.
Table 65. Y_DELTANG_LOW Register Definitions
Page Addresses Default Access Flash Backup
0x00 0x44, 0x45 Not applicable R No
Table 66. Y_DELTANG_LOW Bit Descriptions
Bits Description
[15:0]
Y-axis delta angle data; low word
Table 67. Y_DELTANG_OUT Register Definitions
Page Addresses Default Access Flash Backup
0x00 0x46, 0x47 Not applicable R No
Table 68. Y_DELTANG_OUT Bit Descriptions
Bits Description
[15:0]
Y-axis delta angle data; twos complement, 0° = 0x0000,
1 LSB = ΔθMAX/215 (see Table 60 for ΔθMAX)
Z-Axis Delta Angle (Z_DELTANG_LOW,
Z_DELTANG_OUT)
The Z_DELTANG_LOW (see Table 69 and Table 70) and
Z_DELTANG_OUT (see Table 71 and Table 72) registers
contain the delta angle data for the z-axis.
Table 69. Z_DELTANG_LOW Register Definitions
Page Addresses Default Access Flash Backup
0x00 0x48, 0x49 Not applicable R No
Table 70. Z_DELTANG_LOW Bit Descriptions
Bits Description
[15:0] Z-axis delta angle data; low word
Table 71. Z_DELTANG_OUT Register Definitions
Page Addresses Default Access Flash Backup
0x00 0x4A, 0x4B Not applicable R No
Table 72. Z_DELTANG_OUT Bit Descriptions
Bits Description
[15:0] Z-axis delta angle data; twos complement, 0° = 0x0000,
1 LSB = ΔθMAX/215 (see Table 60 for ΔθMAX)
Delta Angle Resolution
Table 73 and Table 74 shows various numerical examples that
demonstrate the format of the delta angle data in both 16-bit
and 32-bit formats.
Table 73. 16-Bit Delta Angle Data Format Examples
Delta Angle (°) Decimal Hex Binary
ΔθMAX × (2151)/215 +32,767 0x7FFF 0111 1111 1110 1111
+ΔθMAX/214 +2 0x0002 0000 0000 0000 0010
+ΔθMAX/215 +1 0x0001 0000 0000 0000 0001
0 0 0x0000 0000 0000 0000 0000
−ΔθMAX/215 −1 0xFFFF 1111 1111 1111 1111
−ΔθMAX/214 −2 0xFFFE 1111 1111 1111 1110
−ΔθMAX −32,768 0x8000 1000 0000 0000 0000
Table 74. 32-Bit Delta Angle Data Format Examples
Delta Angle (°) Decimal Hex
+ΔθMAX × (231 − 1)/231 +2,147,483,647 0x7FFFFFFF
+ΔθMAX/230 +2 0x00000002
+ΔθMAX2000/231 +1 0x00000001
0 0 0x00000000
−ΔθMAX/231 −1 0xFFFFFFFF
−ΔθMAX/230 −2 0xFFFFFFFE
−ΔθMAX −2,147,483,648 0x80000000
DELTA VELOCITY
In addition to the linear acceleration measurements along each
axis (x, y, and z), the ADIS16495 also provides delta velocity
measurements that represent a computation of linear velocity
change between each sample update. Figure 40 shows the
orientation of each delta-velocity measurement, which defines
the direction of linear velocity increase that produces a positive
response in each of the delta velocity rate measurements.
The delta velocity outputs represent an integration of the accelera-
tion measurements and use the following formula for all three
axes (x-axis displayed):
( )
=++
+×=
1
0
1,,
,
2
1
D
d
dDnxdDnx
S
Dnx
aa
f
V
where:
ΔVX is the delta velocity measurement for the x-axis.
D is the decimation rate = DEC_RATE + 1 (see Table 150).
fS is the sample rate.
d is the incremental variable in the summation formula.
ax is the x-axis rate of acceleration (accelerometer).
n is the sample time, prior to the decimation filter.
Data Sheet ADIS16495
Rev. C | Page 27 of 42
When using the internal sample clock, fS is equal to 4250 SPS.
When using the external clock option, fS is equal to the frequency
of the external clock. The range in the delta velocity registers
accommodates the maximum linear acceleration (8 g), the
nominal sample rate (4250 SPS), and an update rate of 1 Hz
(DEC_RATE = 0x1099; divide by 4249 plus 1, see Table 150),
all at the same time. When using an external clock that is higher
than 4250 SPS, reduce the DEC_RATE setting to avoid
overranging the delta velocity registers.
Each axis of the delta velocity measurements has two output
data registers. Figure 39 shows how these two registers combine
to support 32-bit, twos complement data format for the delta
velocity measurements along the x-axis. This format also
applies to the y-axis and x-axis.
X-AXIS DE LTA ANGL E DATA
X_DELTVEL_OUT X_DELTVEL_LOW
15062-036
BIT 0 BIT 15
BIT 15BIT 0
Figure 39. Delta Angle Output Data Structure
X-Axis Delta Velocity (X_DELTVEL_LOW,
X_DELTVEL_OUT)
The X_DELTVEL_LOW (see Table 75 and Table 76) and
X_DELTVEL_OUT (see Table 77 and Table 78) registers
contain the delta velocity data for the x-axis.
Table 75. X_DELTVEL_LOW Register Definitions
Page Addresses Default Access Flash Backup
0x00 0x4C, 0x4D Not applicable R No
Table 76. X_DELTVEL_LOW Bit Definitions
Bits Description
[15:0] X-axis delta angle data; low word
Table 77. X_DELTVEL_OUT Register Definitions
Page Addresses Default Access Flash Backup
0x00 0x4E, 0x4F Not applicable R No
Table 78. X_DELTVEL_OUT Bit Definitions
Bits Description
[15:0] X-axis delta velocity data, high word; twos complement,
±100 m/sec range, 0 m/sec = 0x0000;
1 LSB = 100 m/sec ÷ 215 = ~3.052 mm/sec
Y-Axis Delta Velocity (Y_DELTVEL_LOW,
Y_DELTVEL_OUT)
The Y_DELTVEL_LOW (see Table 79 and Table 80) and
Y_DELTVEL_OUT (see Table 81 and Table 82) registers contain
the delta velocity data for the y-axis.
Table 79. Y_DELTVEL_LOW Register Definitions
Page Addresses Default Access Flash Backup
0x00 0x50, 0x51 Not applicable R No
Table 80. Y_DELTVEL_LOW Bit Definitions
Bits Description
[15:0] Y-axis delta angle data; low word
Table 81. Y_DELTVEL_OUT Register Definitions
Page Addresses Default Access Flash Backup
0x00
0x52, 0x53
Not applicable
R
No
Table 82. Y_DELTVEL_OUT Bit Definitions
Bits Description
[15:0] Y-axis delta velocity data, high word; twos complement,
±100 m/sec range, 0 m/sec = 0x0000;
1 LSB = 100 m/sec ÷ 215 = ~3.052 mm/sec
Z-Axis Delta Velocity (Z_DELTVEL_LOW,
Z_DELTVEL_OUT)
The Z_DELTVEL_LOW (see Table 83 and Table 84) and
Z_DELTVEL_OUT (see Table 85 and Table 86) registers
contain the delta velocity data for the z-axis.
Table 83. Z_DELTVEL_LOW Register Definitions
Page Addresses Default Access Flash Backup
0x00 0x54, 0x55 Not applicable R No
Table 84. Z_DELTVEL_LOW Bit Definitions
Bits Description
[15:0] Z-axis delta angle data; low word
Table 85. Z_DELTVEL_OUT Register Definitions
Page Addresses Default Access Flash Backup
0x00 0x56, 0x57 Not applicable R No
Table 86. Z_DELTVEL_OUT Bit Definitions
Bits Description
[15:0] Z-axis delta velocity data, high word; twos complement,
±100 m/sec range, 0 m/sec = 0x0000;
1 LSB = 100 m/sec ÷ 215 = ~3.052 mm/sec
ADIS16495 Data Sheet
Rev. C | Page 28 of 42
PIN 1
PIN 23
ΔVY
Y-AXIS
X-AXIS
ΔVX
Z-AXIS
ΔVZ
15062-035
Figure 40. Delta Velocity Axis and Polarity Assignments
Delta Velocity Resolution
Table 87 and Table 88 offer various numerical examples that
demonstrate the format of the delta angle data in both 16-bit
and 32-bit formats.
Table 87. 16-Bit Delta Velocity Data Format Examples
Velocity (m/sec) Decimal Hex Binary
+100 × (215 − 1)/215 +32,767 0x7FFF 0111 1111 1110 1111
+100/214 +2 0x0002 0000 0000 0000 0010
+100/215 +1 0x0001 0000 0000 0000 0001
0 0 0x0000 0000 0000 0000 0000
−100/215 −1 0xFFFF 1111 1111 1111 1111
−100/214 −2 0xFFFE 1111 1111 1111 1110
−100 −32,768 0x8000 1000 0000 0000 0000
Table 88. 32-Bit Delta Angle Data Format Examples
Velocity (m/sec) Decimal Hex
+100 × (231 − 1)/231 +2,147,483,647 0x7FFFFFFF
+100/230 +2 0x00000002
+100/231 +1 0x00000001
0 0 0x00000000
−100/231 −1 0xFFFFFFFF
−100/230 −2 0xFFFFFFFE
−100 −2,147,483,648 0x80000000
Burst Read Command, BURST_CMD
Reading the BURST_CMD register (see Table 89 and Table 90)
starts the BRF. See Table 10, Table 11, Figure 5, and Figure 6
for more information on the BRF function.
Table 89. BURST_CMD Register Definitions
Page Addresses Default Access Flash Backup
0x00 0x7C, 0x7D Not Applicable R No
Table 90. BURST_CMD Bit Definitions
Bits Description
[15:0] Burst read command register
Product Identification, PROD_ID
The PROD_ID register (see Table 91 and Table 92) contains
the numerical portion of the device number (16,495). See
Figure 30 for an example of how to use a looping read of this
register to validate the integrity of the communication.
Table 91. PROD_ID Register Definitions
Page Addresses Default Access Flash Backup
0x00 0x7E, 0x7F 0x406F R Yes
Table 92. PROD_ID Bit Definitions
Bits Description
[15:0] Product identification = 0x406F
Data Sheet ADIS16495
Rev. C | Page 29 of 42
USER BIAS/SCALE ADJUSTMENT
The signal chain of each inertial sensor (accelerometers, gyro-
scopes) includes application of unique correction formulas that
come from extensive characterization of bias, sensitivity, align-
ment, and response to linear acceleration (gyroscopes) over a
temperature range of −40°C to +85°C for the ADIS16495. These
correction formulas are not accessible, but the user does have the
opportunity to adjust the bias and the scale factor, for each sensor
individually, through user accessible registers. These correction
factors follow immediately after the factory derived correction
formulas in the signal chain, which processes at a rate of 4250
Hz when using the internal sample clock (see fSM in Figure 18
and Figure 19).
Gyroscope Scale Adjustment, X_GYRO_SCALE
The X_GYRO_SCALE register (see Table 93 and Table 94)
provides the user with the opportunity to adjust the scale factor
for the x-axis gyroscopes. See Figure 41 for an illustration of
how this scale factor influences the x-axis gyroscope data.
Table 93. X_GYRO_SCALE Register Definitions
Page
Addresses
Default
Access
Flash Backup
0x02 0x04, 0x05 0x0000 R/W Yes
Table 94. X_GYRO_SCALE Bit Definitions
Bits Description
[15:0] X-axis gyroscope scale correction; twos complement,
0x0000 = unity gain, 1 LSB = 1 ÷ 215 = ~0.003052%
X-AXIS
GYRO
FACTORY
CALIBRATION
AND
FILTERING X_GYRO_OUT X_GYRO_LOW
XG_BIAS_HIGH XG_BIAS_LOW
1 + X_G Y RO_SCALE
15062-037
Figure 41. User Bias/Scale Adjustment Registers in Gyroscope Signal Path
Gyroscope Scale Adjustment, Y_GYRO_SCALE
The Y_GYRO_SCALE register (see Table 95 and Table 96) allows
the user to adjust the scale factor for the y-axis gyroscopes. This
register influences the y-axis gyroscope measurements in the
same manner that X_GYRO_SCALE influences the x-axis
gyroscope measurements (see Figure 41).
Table 95. Y_GYRO_SCALE Register Definitions
Page Addresses Default Access Flash Backup
0x02 0x06, 0x07 0x0000 R/W Yes
Table 96. Y_GYRO_SCALE Bit Definitions
Bits Description
[15:0] Y-axis gyroscope scale correction; twos complement,
0x0000 = unity gain, 1 LSB = 1 ÷ 215 = ~0.003052%
Gyroscope Scale Adjustment, Z_GYRO_SCALE
The Z_GYRO_SCALE register (see Table 97 and Table 98)
allows the user to adjust the scale factor for the z-axis
gyroscopes. This register influences the z-axis gyroscope
measurements in the same manner that X_GYRO_SCALE
influences the x-axis gyroscope measurements (see Figure 41).
Table 97. Z_GYRO_SCALE Register Definitions
Page Addresses Default Access Flash Backup
0x02 0x08, 0x09 0x0000 R/W Yes
Table 98. Z_GYRO_SCALE Bit Definitions
Bits Description
[15:0] Z-axis gyroscope scale correction; twos complement,
0x0000 = unity gain, 1 LSB = 1 ÷ 215 = ~0.003052%
Accelerometer Scale Adjustment, X_ACCL_SCALE
The X_ACCL_SCALE register (see Table 99 and Table 100)
allows users to adjust the scale factor for the x-axis
accelerometers. See Figure 42 for an illustration of how this
scale factor influences the x-axis accelerometer data.
Table 99. X_ACCL_SCALE Register Definitions
Page Addresses Default Access Flash Backup
0x02 0x0A, 0x0B 0x0000 R/W Yes
Table 100. X_ACCL_SCALE Bit Definitions
Bits Description
[15:0] X-axis accelerometer scale correction; twos complement,
0x0000 = unity gain, 1 LSB = 1 ÷ 215 = ~0.003052%
X-AXIS
ACCL
FACTORY
CALIBRATION
AND
FILTERING X_ACCL_OUT X_ACCL_LOW
XA_BIAS_HIGH XA_BIAS_LOW
1 + X_ACCL _S CALE
15062-038
Figure 42. User Bias/Scale Adjustment Registers in Accelerometer Signal Path
Accelerometer Scale Adjustment, Y_ACCL_SCALE
The Y_ACCL_SCALE register (see Table 101 and Table 102)
allows the user to adjust the scale factor for the y-axis
accelerometers. This register influences the y-axis accelerometer
measurements in the same manner that X_ACCL_SCALE
influences the x-axis accelerometer measurements (see Figure 42).
Table 101. Y_ACCL_SCALE Register Definitions
Page Addresses Default Access Flash Backup
0x02 0x0C, 0x0D 0x0000 R/W Yes
Table 102. Y_ACCL_SCALE Bit Definitions
Bits Description
[15:0] Y-axis accelerometer scale correction; twos complement,
0x0000 = unity gain, 1 LSB = 1 ÷ 215 = ~0.003052%
ADIS16495 Data Sheet
Rev. C | Page 30 of 42
Accelerometer Scale Adjustment, Z_ACCL_SCALE
The Z_ACCL_SCALE register (see Table 103 and Table 104)
allows the user to adjust the scale factor for the z-axis
accelerometers. This register influences the z-axis accelerometer
measurements in the same manner that X_ACCL_SCALE
influences the x-axis accelerometer measurements (see Figure 42).
Table 103. Z_ACCL_SCALE Register Definitions
Page Addresses Default Access Flash Backup
0x02 0x0E, 0x0F 0x0000 R/W Yes
Table 104. Z_ACCL_SCALE Bit Definitions
Bits Description
[15:0] Z-axis accelerometer scale correction; twos complement,
0x0000 = unity gain, 1 LSB = 1 ÷ 215 = ~0.003052%
Gyroscope Bias Adjustment, XG_BIAS_LOW,
XG_BIAS_HIGH
The XG_BIAS_LOW (see Table 105 and Table 106) and XG_
BIAS_HIGH (see Table 107 and Table 108) registers combine
to allow the user to adjust the bias of the x-axis gyroscopes. The
digital format examples in Table 25 also apply to the XG_BIAS_
HIGH register, and the digital format examples in Table 26 apply
to the number that comes from combining the XG_BIAS_LOW
and XG_BIAS_HIGH registers. See Figure 41 for an illustration
of how these two registers combine and influence the x-axis
gyroscope measurements.
Table 105. XG_BIAS_LOW Register Definitions
Page Addresses Default Access Flash Backup
0x02
0x10, 0x11
0x0000
R/W
Yes
Table 106. XG_BIAS_LOW Bit Definitions
Bits Description
[15:0] X-axis gyroscope offset correction, low word;
twos complement, 0°/sec = 0x0000, 1 LSB = KG ÷ 216
(see Table 24)
Table 107. XG_BIAS_HIGH Register Definitions
Page Addresses Default Access Flash Backup
0x02 0x12, 0x13 0x0000 R/W Yes
Table 108. XG_BIAS_HIGH Bit Definitions
Bits Description
[15:0]
X-axis gyroscope offset correction, high word twos
complement, 0°/sec = 0x0000, 1 LSB = KG (see Table 24)
Gyroscope Bias Adjustment, YG_BIAS_LOW,
YG_BIAS_HIGH
The YG_BIAS_LOW (see Table 109 and Table 110) and YG_
BIAS_HIGH (see Table 111 and Table 112) registers combine
to allow users to adjust the bias of the y-axis gyroscopes. The
digital format examples in Table 25 also apply to the
YG_BIAS_HIGH register, and the digital format examples in
Table 26 apply to the number that comes from combining the
YG_BIAS_LOW and YG_BIAS_HIGH registers. These registers
influence the y-axis gyroscope measurements in the same manner
that the XG_BIAS_ LOW and XG_BIAS_HIGH registers
influence the x-axis gyroscope measurements (see Figure 41).
Table 109. YG_BIAS_LOW Register Definitions
Page Addresses Default Access Flash Backup
0x02 0x14, 0x15 0x0000 R/W Yes
Table 110. YG_BIAS_LOW Bit Definitions
Bits Description
[15:0] Y-axis gyroscope offset correction, low word; twos comp-
lement, 0°/sec = 0x0000, 1 LSB = KG ÷ 216 (see Table 24)
Table 111. YG_BIAS_HIGH Register Definitions
Page Addresses Default Access Flash Backup
0x02 0x16, 0x17 0x0000 R/W Yes
Table 112. YG_BIAS_HIGH Bit Definitions
Bits Description
[15:0] Y-axis gyroscope offset correction, high word twos
complement, 0°/sec = 0x0000, 1 LSB = KG (See Table 24)
Gyroscope Bias Adjustment, ZG_BIAS_LOW,
ZG_BIAS_HIGH
The ZG_BIAS_LOW (see Table 113 and Table 114) and ZG_
BIAS_HIGH (see Table 115 and Table 116) registers combine
to allow users to adjust the bias of the z-axis gyroscopes. The
digital format examples in Table 25 also apply to the ZG_BIAS_
HIGH register, and the digital format examples in Table 26 apply
to the number that comes from combining the ZG_BIAS_LOW
and ZG_BIAS_HIGH registers. These registers influence the
z-axis gyroscope measurements in the same manner that the
XG_BIAS_ LOW and XG_BIAS_HIGH registers influence the x-
axis gyroscope measurements (see Figure 41).
Table 113. ZG_BIAS_LOW Register Definitions
Page Addresses Default Access Flash Backup
0x02 0x18, 0x19 0x0000 R/W Yes
Table 114. ZG_BIAS_LOW Bit Definitions
Bits Description
[15:0] Z-axis gyroscope offset correction, low word; twos comp-
lement, 0°/sec = 0x0000, 1 LSB = KG ÷ 216 (see Table 24)
Table 115. ZG_BIAS_HIGH Register Definitions
Page Addresses Default Access Flash Backup
0x02 0x1A, 0x1B 0x0000 R/W Yes
Data Sheet ADIS16495
Rev. C | Page 31 of 42
Table 116. ZG_BIAS_HIGH Bit Definitions
Bits Description
[15:0] Z-axis gyroscope offset correction, high word twos
complement, 0°/sec = 0x0000, 1 LSB = KG (See Table 24)
Accelerometer Bias Adjustment, XA_BIAS_LOW,
XA_BIAS_HIGH
The XA_BIAS_LOW (see Table 117 and Table 118) and XA_
BIAS_HIGH (see Table 119 and Table 120) registers combine
to allow the user to adjust the bias of the x-axis accelerometers.
The digital format examples in Table 51 also apply to the
XA_BIAS_ HIGH register and the digital format examples in
Table 52 apply to the number that comes from combining the
XA_BIAS_LOW and XA_BIAS_HIGH registers. See Figure 42
for an illustration of how these two registers combine and
influence the x-axis gyroscope measurements.
Table 117. XA_BIAS_LOW Register Definitions
Page Addresses Default Access Flash Backup
0x02 0x1C, 0x1D 0x0000 R/W Yes
Table 118. XA_BIAS_LOW Bit Definitions
Bits Description
[15:0] X-axis accelerometer offset correction, low word, twos
complement, 0 g = 0x0000, 1 LSB = 0.25 mg ÷ 216
Table 119. XA_BIAS_HIGH Register Definitions
Page Addresses Default Access Flash Backup
0x02 0x1E, 0x1F 0x0000 R/W Yes
Table 120. XA_BIAS_HIGH Bit Definitions
Bits Description
[15:0] X-axis accelerometer offset correction, high word,
twos complement, 0 g = 0x0000, 1 LSB = 0.25 mg
Accelerometer Bias Adjustment, YA_BIAS_LOW,
YA_BIAS_HIGH
The YA_BIAS_LOW (see Table 121 and Table 122) and YA_
BIAS_HIGH (see Table 123 and Table 124) registers combine
to allow the user to adjust the bias of the y-axis accelerometers.
The digital format examples in Table 51 also apply to the
YA_BIAS_ HIGH register, and the digital format examples in
Table 52 apply to the number that comes from combining the
YA_BIAS_LOW and YA_BIAS_HIGH registers. These registers
influence the y-axis accelerometer measurements in the same
manner that the XA_BIAS_LOW and XA_BIAS_HIGH registers
influence the x-axis accelerometer measurements (see Figure 42).
Table 121. YA_BIAS_LOW Register Definitions
Page Addresses Default Access Flash Backup
0x02 0x20, 0x21 0x0000 R/W Yes
Table 122. YA_BIAS_LOW Bit Definitions
Bits Description
[15:0] Y-axis accelerometer offset correction, low word, twos
complement, 0 g = 0x0000, 1 LSB = 0.25 mg ÷ 216
Table 123. YA_BIAS_HIGH Register Definitions
Page Addresses Default Access Flash Backup
0x02 0x22, 0x23 0x0000 R/W Yes
Table 124. YA_BIAS_HIGH Bit Definitions
Bits Description
[15:0] Y-axis accelerometer offset correction, high word, twos
complement, 0 g = 0x0000, 1 LSB = 0.25 mg
Accelerometer Bias Adjustment, ZA_BIAS_LOW,
ZA_BIAS_HIGH
The ZA_BIAS_LOW (see Table 125 and Table 126) and ZA_
BIAS_HIGH (see Table 127 and Table 128) registers combine
to allow users to adjust the bias of the z-axis accelerometers.
The digital format examples in Table 51 also apply to the
ZA_BIAS_HIGH register and the digital format examples in
Table 52 apply to the number that comes from combining the
ZA_BIAS_LOW and ZA_BIAS_HIGH registers. These registers
influence the z-axis accelerometer measurements in the same
manner that the XA_BIAS_LOW and XA_BIAS_HIGH
registers influence the x-axis accelerometer measurements (see
Figure 42).
Table 125. ZA_BIAS_LOW Register Definitions
Page Addresses Default Access Flash Backup
0x02 0x24, 0x25 0x0000 R/W Yes
Table 126. ZA_BIAS_LOW Bit Definitions
Bits Description
[15:0] Z-axis accelerometer offset correction, low word,
twos complement, 0 g = 0x0000, 1 LSB = 0.25 mg ÷ 216
Table 127. ZA_BIAS_HIGH Register Definitions
Page Addresses Default Access Flash Backup
0x02 0x26, 0x27 0x0000 R/W Yes
Table 128. ZA_BIAS_HIGH Bit Definitions
Bits Description
[15:0] Z-axis accelerometer offset correction, high word,
twos complement, 0 g = 0x0000, 1 LSB = 0.25 mg
SCRATCH REGISTERS, USER_SCR_X
The USER_SCR_1 (see Table 129 and Table 130), USER_SCR_2
(see Table 131 and Table 132), USER_SCR_3 (see Table 133
and Table 134), and USER_SCR_4 (see Table 135 and Table 136)
registers provide four locations for the user to store information.
ADIS16495 Data Sheet
Rev. C | Page 32 of 42
Table 129. USER_SCR_1 Register Definitions
Page Addresses Default Access Flash Backup
0x02 0x74, 0x75 0x0000 R/W Yes
Table 130. USER_SCR_1 Bit Definitions
Bits Description
[15:0] User defined
Table 131. USER_SCR_2 Register Definitions
Page Addresses Default Access Flash Backup
0x02 0x76, 0x77 0x0000 R/W Yes
Table 132. USER_SCR_2 Bit Definitions
Bits Description
[15:0] User defined
Table 133. USER_SCR_3 Register Definitions
Page Addresses Default Access Flash Backup
0x02 0x78, 0x79 0x0000 R/W Yes
Table 134. USER_SCR_3 Bit Definitions
Bits Description
[15:0] User defined
Table 135. USER_SCR_4 Register Definitions
Page Addresses Default Access Flash Backup
0x02 0x7A, 0x7B 0x0000 R/W Yes
Table 136. USER_SCR_4 Bit Definitions
Bits Description
[15:0] User defined
FLASH MEMORY ENDURANCE COUNTER,
FLSHCNT_LOW, FLSHCNT_HIGH
The FLSHCNT_LOW (see Table 137 and Table 138) and
FLSHCNT_HIGH (see Table 139 and Table 140) registers
combine to provide a 32-bit, binary counter that tracks the
number of flash memory write cycles. In addition to the
number of write cycles, the flash memory has a finite service
lifetime, which depends on the junction temperature. Figure 43
provides guidance for estimating the retention life for the flash
memory at specific junction temperatures. The junction
temperature is approximately 7°C above the case temperature.
Table 137. FLSHCNT_LOW Register Definitions
Page Addresses Default Access Flash Backup
0x02 0x7C, 0x7D Not applicable R Yes
Table 138. FLSHCNT_LOW Bit Definitions
Bits Description
[15:0] Flash memory write counter, low word
Table 139. FLSHCNT_HIGH Register Definitions
Page Addresses Default Access Flash Backup
0x02 0x7E, 0x7F Not applicable R Yes
Table 140. FLSHCNT_HIGH Bit Definitions
Bits Description
[15:0] Flash memory write counter, high word
600
450
300
150
030 40
RET E NTION (Y ears)
JUNCTION TEM P E RATURE ( °C)
55 70 85 100 125 135 150
15062-039
Figure 43. Flash Memory Retention
GLOBAL COMMANDS, GLOB_CMD
The GLOB_CMD register (see Table 141 and Table 142) provides
trigger bits for several operations. Write a 1 to the appropriate bit
in GLOB_CMD to start a particular function.
Table 141. GLOB_CMD Register Definitions
Page Addresses Default Access Flash Backup
0x03 0x02, 0x03 Not applicable W No
Table 142. GLOB_CMD Bit Definitions
Bits Description
[15:8] Not used
7 Software reset
6 Clear user calibration
[5:4] Not used
3 Flash memory update
2 Not used
1 Self test
0 Bias correction update
Software Reset
Turn to Page 3 (DIN = 0x8003) and then set GLOB_CMD, Bit 7 =
1 (DIN = 0x8280, then DIN = 0x8300) to initiate a reset in the
operation of the ADIS16495. This reset removes all data, initializes
all registers from their flash settings, and restarts data sampling
and processing. This function provides a firmware alternative
to providing a low pulse on the RST pin (see Table 6, Pin 8).
Data Sheet ADIS16495
Rev. C | Page 33 of 42
Clear User Calibration
Turn to Page 3 (DIN = 0x8003) and then set GLOB_CMD, Bit 6 =
1 (DIN = 0x8240, then DIN = 0x8300) to clear all user bias/scale
adjustments for each accelerometer and gyroscope. This command
writes 0x0000 to the following registers: X_GYRO_SCALE,
Y_GYRO_ SCALE, Z_GYRO_SCALE, X_ACCL_SCALE, Y_
ACCL_SCALE, Z_ACCL_SCALE, XG_BIAS_LOW,
XG_BIAS_HIGH, YG_BIAS_ LOW, YG_BIAS_HIGH,
ZG_BIAS_LOW, ZG_BIAS_HIGH, XA_BIAS_LOW,
XA_BIAS_HIGH, YA_BIAS_LOW, YA_BIAS_ HIGH,
ZA_BIAS_LOW, and ZA_BIAS_HIGH.
Flash Memory Update
Turn to Page 3 (DIN = 0x8003) and then set GLOB_CMD, Bit 3 =
1 (DIN = 0x8208, then DIN = 0x8300) to initiate a manual flash
update. SYS_E_FLAG, Bit 6 (see Table 18) identifies success (0)
or failure (1) in completing this process.
The user must not poll the status registers while waiting for the
update to complete because the serial port is disabled during
the update. Rather, the user must either wait the prescribed
amount of time found in Table 3 or wait for the data ready
indicator pin to begin toggling.
On Demand Self Test (ODST)
Turn to Page 3 (DIN = 0x8003) and then set GLOB_CMD, Bit 1 =
1 (DIN = 0x8202, then DIN = 0x8300) to run the ODST
routine, which executes the following steps:
1. Measure the output on each sensor.
2. Activate an internal force on the mechanical elements of
each sensor, which simulates the force associated with
actual inertial motion.
3. Measure the output response on each sensor.
4. Deactivate the internal force on each sensor.
5. Calculate the difference between the force on and normal
operating conditions (force off).
6. Compare the difference with internal pass/fail criteria.
7. Report the pass/fail results for each sensor in DIAG_STS
(see Table 20) and the overall pass/fail flag in SYS_E_FLAG,
Bit 5 (see Table 18).
False positive results are possible when the executing the ODST
while the device is in motion. The user must not poll the status
registers while waiting for the test to complete. Rather, the user
must either wait the prescribed amount of time found in Table 3 or
wait for the data ready indicator pin to begin toggling.
Bias Correction Update
Turn to Page 3 (DIN = 0x8003) and set GLOB_CMD, Bit 0 = 1
(DIN = 0x8201, then DIN = 0x8300) to update the user offset
registers with the correction factors of the continuous bias
estimation (CBE) (see Table 152). Ensure that the inertial platform
is stable during the entire average time for optimal bias estimates.
AUXILIARY I/O LINE CONFIGURATION,
FNCTIO_CTRL
The FNCTIO_CTRL register (see Table 143 and Table 144)
provides configuration control for each I/O pin (DIO1, DIO2,
DIO3, and DIO4). Each DIOx pin supports only one function at
a time. When a single pin has two assignments, the enable bit for
the lower priority function automatically resets to zero (disabling
the lower priority function). The order of priority is as follows,
from highest priority to lowest priority: data ready, sync clock
input, and general-purpose. The ADIS16495 can take up to 20 ms
to execute a write command to the FNCTIO_CTRL register.
During this time, the operational state and the contents of the
register remain unchanged, but the SPI interface supports normal
communication (for accessing other registers).
Table 143. FNCTIO_CTRL Register Definitions
Page Addresses Default Access Flash Backup
0x03 0x06, 0x07 0x000D R/W Yes
Table 144. FNCTIO_CTRL Bit Definitions
Bits
Description
[15:9] Not used
8 Sync clock mode:
1 = PPS
0 = sync
7 Sync clock input enable
1 = enabled
0 = disabled
6 Sync clock input polarity
1 = rising edge
0 = falling edge
[5:4] Sync clock input line selection
00 = DIO1
01 = DIO2
10 = DIO3
11 = DIO4
3 Data ready enable
1 = enabled
0 = disabled
2 Data ready polarity
1 = positive
0 = negative
[1:0] Data ready line selection
00 = DIO1
01 = DIO2
10 = DIO3
11 = DIO4
ADIS16495 Data Sheet
Rev. C | Page 34 of 42
Data Ready Indicator
The FNCTIO_CTRL, Bits[3:0] provide three configuration
options for the data ready function: on/off, polarity, and DIOx line.
The primary purpose this signal is to drive the interrupt control
line of an embedded processor, which can synchronize data
collection and minimize latency. The data ready indicator is useful
to determine if the controller inside the ADIS16495 is busy with a
task (for example, a flash memory update) because data ready stops
togging while these tasks are performed and resumes upon
completion. The factory default assigns DIO2 as a positive
polarity, data ready signal, which means the data in the output
registers is valid when the DIO2 line is high (see Figure 25).
This configuration works well when DIO2 drives an interrupt
service pin that activates on a low to high pulse.
Use the following sequence to change this assignment to DIO3
with negative polarity:
1. Turn to Page 3 (DIN = 0x8003).
2. Set FNCTIO_CTRL, Bits[3:0] = 1000 (DIN = 0x860A, then
DIN = 0x8700).
The timing jitter on the data ready signal is typically within
±1.4 µs. When using DIO1 to support the data ready function,
this signal can experience some premature pulses, which do not
indicate the start of data production, during its start-up process. If
it is necessary to use DIO1 for this function, use it in conjunction
with a delay or other control mechanism to prevent premature
data acquisition activity during the start-up process.
Input Sync/Clock Control
The FNCTIO_CTRL, Bits[8:4] provide several configuration
options for using one of the DIOx lines as an external clock signal
and for controlling inertial sensor data collection and processing.
For example, use the following sequence to establish DIO4 as a
positive polarity, input clock pin that operates in sync mode and
preserves the factory default setting for the data ready function:
1. Turn to Page 3 (DIN = 0x8003).
2. Set FNCTIO_CTRL, Bits[7:0] = 0xFD (DIN = 0x86FD).
3. Set FNCTIO_CTRL, Bits[15:8] = 0x00 (DIN = 0x8700).
In sync mode, the ADIS16495 disables its internal sample clock,
and the frequency of the external clock signal establishes the rate of
data collection and processing (fSM in Figure 18 and Figure 19).
When using the PPS mode (FNCTIO_CTRL, Bit 8 = 1), the rate of
data collection and production (fSM) is equal to the product of the
external clock frequency and scale factor (KECSF) in the
SYNC_SCALE register (see Table 154).
GENERAL-PURPOSE I/O CONTROL, GPIO_CTRL
When FNCTIO_CTRL does not configure a DIOx pin, the
GPIO_CTRL register (see Table 145 and Table 146) provides
user controls for general-purpose use of the DIOx pins.
GPIO_CTRL, Bits[3:0] provide I/O assignment controls for
each line. When the DIOx lines are inputs, monitor their level
by reading GPIO_CTRL, Bits[7:4]. When the DIOx lines are
used as outputs, set their level by writing to GPIO_CTRL, Bits[7:4].
For example, use the following sequence to set DIO1 and DIO3
as high and low output lines, respectively, and set DIO2 and DIO4
as input lines:
1. Turn to Page 3 (DIN = 0x8003).
2. Set GPIO_CTRL, Bits[7:0] = 0x15 (DIN = 0x8815, then
DIN = 0x8900).
Table 145. GPIO_CTRL Register Definitions1
Page Addresses Default Access Flash Backup
0x03 0x08, 0x09 0x00X0 R/W Yes
1 GPIO_CTRL, Bits[7:4] reflect the logic levels on the DIOx lines and do not
have a default setting.
Table 146. GPIO_CTRL Bit Definitions1
Bits Description
[15:8] Don’t care
7 General-Purpose I/O Line 4 (DIO4) data level
6 General-Purpose I/O Line 3 (DIO3) data level
5 General-Purpose I/O Line 2 (DIO2) data level
4 General-Purpose I/O Line 1 (DIO1) data level
3 General-Purpose I/O Line 4 (DIO4) direction control
(1 = output, 0 = input)
2
General-Purpose I/O Line 3 (DIO3) direction control
(1 = output, 0 = input)
1 General-Purpose I/O Line 2 (DIO2) direction control
(1 = output, 0 = input)
0 General-Purpose I/O Line 1 (DIO1) direction control
(1 = output, 0 = input)
1 GPIO_CTRL, Bits[7:4] reflect the logic levels on the DIOx lines and do not
have a default setting.
MISCELLANEOUS CONFIGURATION, CONFIG
The CONFIG register (see Table 147 and Table 148) provides
configuration options for the linear g compensation in the
gyroscopes (on/off) and the point of percussion alignment for
the accelerometers (on/off).
Table 147. CONFIG Register Definitions
Page Addresses Default Access Flash Backup
0x03 0x0A, 0x0B 0x00C0 R/W Yes
Table 148. CONFIG Bit Definitions
Bits Description
[15:8] Not used
7 Linear g compensation for gyroscopes (1 = enabled)
6 Point of percussion alignment (1 = enabled)
[5:0]
Not used
Point of Percussion
CONFIG, Bit 6 offers a point of percussion alignment function
that maps the accelerometer sensors to the corner of the
package identified in Figure 44. To activate this feature, turn to
Data Sheet ADIS16495
Rev. C | Page 35 of 42
Page 3 (DIN = 0x8003), then set CONFIG, Bit 6 = 1 (DIN =
0x8A40, then DIN = 0x8B00).
POINT OF PERCUSSION
ALIGNM E NT REFERE NCE P OI NT.
SEE CONFIG[6].
PI N 1
PI N 23
15062-040
Figure 44. Point of Percussion Reference Point
LINEAR ACCELERATION ON EFFECT ON
GYROSCOPE BIAS
The ADIS16495 includes first-order compensation for the linear g
effect in the gyroscopes, which uses the following model:
+
×
=
ω
ω
ω
A
A
A
LGLGLG
LGLGLG
LGLGLG
ω
ω
ω
ZPC
YPC
XPC
Z
Y
X
333231
232221
131211
ZC
YC
XC
The linear g correction factors, LGXY, apply correction for linear
acceleration in all three directions to the data path of each gyro-
scope (ωXPC, ωYPC, and ωZPC) at the rate of the data samples
(4250 SPS when using the internal clock). CONFIG, Bit 7 provides
an on/off control for this compensation. The factory default value
for this bit activates this compensation. To turn it off, turn to Page
3 (DIN = 0x8003) and set CONFIG, Bit 7 = 0 (DIN = 0x8A40, then
DIN = 0x8B00). This command sequence also preserves the
default setting for the point of percussion alignment function (on).
DECIMATION FILTER, DEC_RATE
The DEC_RATE register (see Table 149 and Table 150)
provides user control for the final filter stage (see Figure 21),
which averages and decimates the accelerometers and
gyroscopes data, and extends the time that the delta angle and
delta velocity track between each update. The output sample
rate is equal to 4250/(DEC_RATE + 1). For example, turn to
Page 3 (DIN = 0x8003), and set DEC_RATE = 0x2A (DIN =
0x8C2A, then DIN = 0x8D00) to reduce the output sample rate to
~98.8 SPS (4250 ÷ 43).
Table 149. DEC_RATE Register Definitions
Page Addresses Default Access Flash Backup
0x03 0x0C, 0x0D 0x0000 R/W Yes
Table 150. DEC_RATE Bit Definitions
Bits Description
[15:0] Decimation rate, binary format
CONTINUOUS BIAS ESTIMATION (CBE),
NULL_CNFG
The NULL_CNFG register (see Table 151 and Table 152) provides
the configuration controls for the CBE, which associates with the
bias correction update command in GLOB_CMD, Bit 0 (see
Table 142). NULL_CNFG, Bits[3:0] establishes the total average
time (tA) for the bias estimates and NULL_CNFG, Bits[13:8]
provide on/off controls for each sensor. The factory default
configuration for NULL_CNFG enables the bias null command
for the gyroscopes, disables the bias null command for the
accelerometers, and sets the average time to ~15.42 seconds.
tB = 2TBC/4250 = 210/4250 = ~0.241 seconds
tA = 64 × tB = 64 × 0.241 = 15.42 seconds
where:
tB is the time base.
tA is the averaging time.
When a sensor bit in NULL_CNFG is active (equal to 1),
setting GLOB_CMD, Bit 0 = 1 (DIN sequence: 0x8003, 0x8201,
0x8300) causes its bias correction register to automatically
update with a value that corrects for its present bias error (from
the CBE).
For example, setting NULL_CNFG, Bit 8 equal to 1 causes an
update in the XG_BIAS_LOW (see Table 106) and
XG_BIAS_HIGH (see Table 108) registers.
Table 151. NULL_CNFG Register Definitions
Page Addresses Default Access Flash Backup
0x03 0x0E, 0x0F 0x070A R/W Yes
Table 152. NULL_CNFG Bit Definitions
Bits Description
[15:14] Not used
13 Z-axis acceleration bias correction enable (1 = enabled)
12 Y-axis acceleration bias correction enable (1 = enabled)
11 X-axis acceleration bias correction enable (1 = enabled)
10 Z-axis gyroscope bias correction enable (1 = enabled)
9 Y-axis gyroscope bias correction enable (1 = enabled)
8 X-axis gyroscope bias correction enable (1 = enabled)
[7:4] Not used
[3:0] Time base control (TBC), range: 0 to 13 (default = 10);
tB = 2TBC/4250, time base; tA = 64 × tB, average time
ADIS16495 Data Sheet
Rev. C | Page 36 of 42
SCALING THE INPUT CLOCK (PPS MODE),
SYNC_SCALE
The PPS mode (FNCTIO_CTRL, Bit 8 = 1, see Table 144) supports
the use of an input sync frequency that is slower than the data
sample rates of the inertial sensors. This mode supports a
frequency range of 1 Hz to 128 Hz for the input sync mode. In
this mode, the data sample rate is equal to the product of the
value in the SYNC_SCALE register (see Table 153 and Table 154)
and the input sync frequency.
For example, the following command sequence sets the data
collection and processing rate (fSM in Figure 18 and Figure 19)
to 4000 Hz (SYNC_SCALE = 0x0FA0) when using a 1 Hz
signal on the DIO3 line as the external clock input, and
preserves the factory default configuration for the data ready
signal:
1. Turn to Page 3 (DIN = 0x8003).
2. Set SYNC_SCALE, Bits[7:0] = 0xA0 (DIN = 0x90A0).
3. Set SYNC_SCALE, Bits[15:8] = 0x0F (DIN = 0x910F).
4. Set FNCTIO_CTRL, Bits[7:0] = 0xFD (DIN = 0x86ED).
5. Set FNCTIO_CTRL, Bits[15:8] = 0x00 (DIN = 0x8701).
The data ready indicator pin does not begin to toggle until at
least two external clock edges (with valid time period between
them) are detected by the ADIS16495.
Table 153. SYNC_SCALE Register Definitions
Page Addresses Default Access Flash Backup
0x03 0x10, 0x11 0x109A R/W Yes
Table 154. SYNC_SCALE Bit Definitions
Bits Description
[15:0] External clock scale factor (KECSF), binary format
Measurement Range Identifier, RANG_MDL
The RANG_MDL register (see Table 155 and Table 156)
provides a convenient method for identifying the model (and
gyroscope measurement range) of the ADIS16495.
Table 155. RANG_MDL Register Definitions1
Page
Addresses
Default
Access
Flash Backup
0x03
0x12, 0x13
N/A
R
N/A
1 N/A means not applicable.
Table 156. RANG_MDL Bit Definitions
Bits
Description
[15:3]
Not used
[3:0]
0011 = ADIS16495-1 (±125
°
/sec)
0111 = ADIS16495-2 (±450
°
/sec)
1111 = ADIS16495-3 (±2000
°
/sec)
FIR FILTERS
FIR Filters Control, FILTR_BNK_0, FILTR_BNK_1
The FILTR_BNK_0 (see Table 157 and Table 158) and
FILTR_BNK_1 (see Table 159 and Table 160) registers provide
the configuration controls for the FIR filter bank in the signal
chain of each sensor (see Figure 21). These registers provide
on/off control for the FIR bank for each inertial sensor, along
with the FIR bank (A, B, C, or D) that each sensor uses.
Table 157. FILTR_BNK_0 Register Definitions
Page
Addresses
Default
Access
Flash Backup
0x03
0x16, 0x17
0x0000
R/W
Yes
Table 158. FILTR_BNK_0 Bit Definitions
Bits
Description (Default = 0x0000)
15
Don’t care
14
Y-axis accelerometer filter enable (1 = enabled)
[13:12]
Y-axis accelerometer filter bank selection
00 = Bank A
01 = Bank B
10 = Bank C
11 = Bank D
11
X-axis accelerometer filter enable (1 = enabled)
[10:9]
X-axis accelerometer filter bank selection:
00 = Bank A
01 = Bank B
10 = Bank C
11 = Bank D
8
Z-axis gyroscope filter enable (1 = enabled)
[7:6]
Z-axis gyroscope filter bank selection:
00 = Bank A
01 = Bank B
10 = Bank C
11 = Bank D
5
Y-axis gyroscope filter enable (1 = enabled)
[4:3] Y-axis gyroscope filter bank selection:
00 = Bank A
01 = Bank B
10 = Bank C
11 = Bank D
2 X-axis gyroscope filter enable (1 = enabled)
[1:0] X-axis gyroscope filter bank selection:
00 = Bank A
01 = Bank B
10 = Bank C
11 = Bank D
Table 159. FILTR_BNK_1 Register Definitions
Page Addresses Default Access Flash Backup
0x03 0x18, 0x19 0x0000 R/W Yes
Table 160. FILTR_BNK_1 Bit Definitions
Bits Description
[15:3] Don’t care
2 Z-axis accelerometer filter enable (1 = enabled)
[1:0] Z-axis accelerometer filter bank selection:
00 = Bank A
01 = Bank B
10 = Bank C
11 = Bank D
Data Sheet ADIS16495
Rev. C | Page 37 of 42
FIR Filter Bank Memory Maps
The ADIS16495 provides four FIR filter banks to configure and
select for each individual inertial sensor using the FILTR_BNK_0
(see Table 158) and FILTR_BNK_1 (see Table 160) registers.
Each FIR filter bank (A, B, C, and D) has 120 taps that consume
two pages of memory. The coefficient associated with each tap,
in each filter bank, has its own dedicated register that uses a 16-
bit, twos complement format. The FIR filter has unity gain when
the sum of all of the coefficients is equal to 32,768. For filter
designs that require less than 120 taps, write 0x0000 to all unused
registers to eliminate the latency associated with that particular tap.
FIR Filter Bank A, FIR_COEF_A000 to FIR_COEF_A119
Table 161. FIR Filter Bank A Memory Map
Page PAGE_ID Addresses Register
5 0x05 0x00, 0x01 PAGE_ID
5 0x05 0x02 to 0x07 Not used
5 0x05 0x08, 0x09 FIR_COEF_A000
5 0x05 0x0A, 0x0B FIR_COEF_A001
5 0x05 0x0C to 0x7D FIR_COEF_A002 to
FIR_COEF_A058
5 0x05 0x7E, 0x07F FIR_COEF_A059
6 0x06 0x00, 0x01 PAGE_ID
6 0x06 0x02 to 0x07 Not used
6 0x06 0x08, 0x09 FIR_COEF_A060
6 0x06 0x0A, 0x0B FIR_COEF_A061
6 0x06 0x0C to 0x7D FIR_COEF_A062 to
FIR_COEF_A118
6 0x06 0x7E, 0x7F FIR_COEF_A119
Table 162 and Table 163 provide detailed register and bit
definitions for one of the FIR coefficient registers in Bank A,
FIR_COEF_A071. Table 164 provides a configuration example,
which sets this register to a decimal value of −169 (0xFF57).
Table 162. FIR_COEF_A071 Register Definitions
Page Addresses Default Access Flash Backup
0x06 0x1E, 0x1F Not applicable R/W Yes
Table 163. FIR_COEF_A071 Bit Definitions
Bits Description
[15:0] FIR Bank A, Coefficient 71, twos complement
Table 164. Configuration Example, FIR Coefficient
DIN Command Description
0x8006 Turn to Page 6
0x9E57 FIR_COEF_A071, Bits[7:0] = 0x57
0x9FFF FIR_COEF_A071, Bits[15:8] = 0xFF
FIR Filter Bank B, FIR_COEF_B000 to FIR_COEF_B119
Table 165. Filter Bank B Memory Map
Page PAGE_ID Addresses Register
7 0x07 0x00, 0x01 PAGE_ID
7 0x07 0x02 to 0x07 Not used
7 0x07 0x08, 0x09 FIR_COEF_B000
7 0x07 0x0A, 0x0B FIR_COEF_B001
7 0x07 0x0C to 0x7D FIR_COEF_B002 to
FIR_COEF_B058
7 0x07 0x7E, 0x07F FIR_COEF_B059
8 0x08 0x00, 0x01 PAGE_ID
8 0x08 0x02 to 0x07 Not used
8 0x08 0x08, 0x09 FIR_COEF_B060
8 0x08 0x0A, 0x0B FIR_COEF_B061
8 0x08 0x0C to 0x7D FIR_COEF_B062 to
FIR_COEF_B118
8 0x08 0x7E, 0x7F FIR_COEF_B119
FIR Filter Bank C, FIR_COEF_C000 to FIR_COEF_C119
Table 166. Filter Bank C Memory Map
Page PAGE_ID Addresses Register
9 0x09 0x00, 0x01 PAGE_ID
9 0x09 0x02 to 0x07 Not used
9 0x09 0x08, 0x09 FIR_COEF_C000
9 0x09 0x0A, 0x0B FIR_COEF_C001
9 0x09 0x0C to 0x7D FIR_COEF_C002 to
FIR_COEF_C058
9 0x09 0x7E, 0x07F FIR_COEF_C059
10 0x0A 0x00, 0x01 PAGE_ID
10 0x0A 0x02 to 0x07 Not used
10 0x0A 0x08, 0x09 FIR_COEF_C060
10 0x0A 0x0A, 0x0B FIR_COEF_C061
10 0x0A 0x0C to 0x7D FIR_COEF_C062 to
FIR_COEF_C118
10 0x0A 0x7E, 0x7F FIR_COEF_C119
FIR Filter Bank D, FIR_COEF_D000 to FIR_COEF_D119
Table 167. Filter Bank D Memory Map
Page PAGE_ID Addresses Register
11 0x0B 0x00, 0x01 PAGE_ID
11 0x0B 0x02 to 0x07 Not used
11 0x0B 0x08, 0x09 FIR_COEF_D000
11 0x0B 0x0A, 0x0B FIR_COEF_D001
11 0x0B 0x0C to 0x7D FIR_COEF_D002 to
FIR_COEF_D058
11 0x0B 0x7E, 0x07F FIR_COEF_D059
12 0x0C 0x00, 0x01 PAGE_ID
12 0x0C 0x02 to 0x07 Not used
12 0x0C 0x08, 0x09 FIR_COEF_D060
12 0x0C 0x0A, 0x0B FIR_COEF_D061
12 0x0C 0x0C to 0x7D
FIR_COEF_D062 to
FIR_COEF_D118
12 0x0C 0x7E, 0x7F FIR_COEF_D119
ADIS16495 Data Sheet
Rev. C | Page 38 of 42
Default Filter Performance
The FIR filter banks have factory programmed filter designs that
are all low-pass filters that have unity dc gain. Table 168 provides a
summary of each filter design, and Figure 45 shows the frequency
response characteristics. The phase delay is equal to ½ of the total
number of taps.
Table 168. FIR Filter Descriptions, Default Configuration
FIR Filter Bank Taps −3 dB Frequency (Hz)
A 120 300
B 120 100
C
32
300
D 32 100
NO FIR
FILTERING
0
–10
–20
MAGNIT UDE ( dB)
–30
–40
–50
–60
–70
–80
–90
–100 0200 400 600 800 1000 1200
FREQUENCY (Hz)
AD CB
15062-041
Figure 45. FIR Filter Frequency Response Curves
FIRMWARE REVISION, FIRM_REV
The FIRM_DM register (see Table 169 and Table 170) contains
the month and day of the factory configuration date. FIRM_DM,
Bits[15:12] and FIRM_DM, Bits[11:8] contain digits that represent
the month of the factory configuration in a binary coded decimal
(BCD) format. For example, November is the 11th month in a year
and is represented by FIRM_DM, Bits[15:8] = 0x11. FIRM_DM,
Bits[7:4], and FIRM_DM, Bits[3:0], contain digits that represent
the day of factory configuration in a BCD format. For example,
the 27th day of the month is represented by FIRM_DM, Bits[7:0] =
0x27.
Table 169. FIRM_REV Register Definitions
Page Addresses Default Access Flash Backup
0x03 0x78, 0x79 Not applicable R Yes
Table 170. FIRM_REV Bit Definitions
Bits Description
[15:12] Firmware revision BCD code, tens digit, numerical
format = 4-bit binary, range = 0 to 9
[11:8] Firmware revision BCD code, ones digit, numerical
format = 4-bit binary, range = 0 to 9
[7:4] Firmware revision BCD code, tenths digit, numerical
format = 4-bit binary, range = 0 to 9
[3:0] Firmware revision BCD code, hundredths digit,
numerical format = 4-bit binary, range = 0 to 9
Table 171. FIRM_DM Register Definitions
Page Addresses Default Access Flash Backup
0x03 0x7A, 0x7B Not applicable R Yes
Table 172. FIRM_DM Bit Definitions
Bits Description
[15:12] Factory configuration month BCD code, tens digit,
numerical format = 4-bit binary, range = 0 to 2
[11:8] Factory configuration month BCD code, ones digit,
numerical format = 4-bit binary, range = 0 to 9
[7:4] Factory configuration day BCD code, tens digit,
numerical format = 4-bit binary, range = 0 to 3
[3:0] Factory configuration day BCD code, ones digit,
numerical format = 4-bit binary, range = 0 to 9
Firmware Revision Year, FIRM_Y
The FIRM_Y register (see Table 173 and Table 174) contains
the year of the factory configuration date. For example, the year
2013 is represented by FIRM_Y = 0x2013.
Table 173. FIRM_Y Register Definitions
Page Addresses Default Access Flash Backup
0x03 0x7C, 0x7D Not applicable R Yes
Table 174. FIRM_Y Bit Definitions
Bits Description
[15:12] Factory configuration year BCD code, thousands digit,
numerical format = 4-bit binary, range = 0 to 9
[11:8] Factory configuration year BCD code, hundreds digit,
numerical format = 4-bit binary, range = 0 to 9
[7:4]
Factory configuration year BCD code, tens digit,
numerical format = 4-bit binary, range = 0 to 3
[3:0] Factory configuration year BCD code, ones digit,
numerical format = 4-bit binary, range = 0 to 9
Boot Revision Number, BOOT_REV
The BOOT_REV register (see Table 175 and Table 176) contains
the revision of the boot code in the ADIS16495 processor core.
Table 175. BOOT_REV Register Definitions
Page
Addresses
Default
Access
Flash Backup
0x03 0x7E, 0x7F Not applicable R Yes
Table 176. BOOT_REV Bit Definitions
Bits Description
[15:8] Binary, major revision number
[7:0] Binary, minor revision number
Continuous SRAM Testing
This device employs a CRC function on the SRAM memory blocks
that contain the program code (CODE_SIGTR_xxx) and the
calibration coefficients (CAL_DRVTN_xxx). This process operates
in the background and generates real-time, 32-bit CRC values
for the program code and calibration coefficients, respectively. At
the conclusion of each cycle, the processor writes these calculated
Data Sheet ADIS16495
Rev. C | Page 39 of 42
values in the CAL_DRVTN_xxx and CODE_DRVTN_xxx
registers (see Table 182, Table 184, Table 190, and Table 192) and
compares them with the signature values, which reflect the state
of these memory locations at the time of factory configuration.
When the calculation results do not match the signature values,
SYS_E_FLAG, Bit 2 increases to a 1. The respective signature
values are available for user access through the CAL_SIGTR_xxx
and CODE_SIGTR_xxx registers (see Table 178, Table 180,
Table 186, and Table 188). The following conditions must be
met for SYS_E_FLAG, Bit 2 to remain at the zero level:
CAL_SIGTR_LWR = CAL_DRVTN_LWR
CAL_SIGTR_UPR = CAL_DRVTN_UPR
CODE_SIGTR_LWR = CODE_DRVTN_LWR
CODE_SIGTR_UPR = CODE_DRVTN_UPR
Signature CRC, Calibration Values, CAL_SIGTR_LWR
Table 177. CAL_SIGTR_LWR Register Definitions
Page Addresses Default Access Flash Backup
0x04 0x04, 0x05 Not applicable R Yes
Table 178. CAL_SIGTR_LWR Bit Definitions
Bits Description
[15:0] Factory programmed CRC value for the program code,
low word
Signature CRC, Calibration Values, CAL_SIGTR_UPR
Table 179. CAL_SIGTR_UPR Register Definitions
Page Addresses Default Access Flash Backup
0x04 0x06, 0x07 Not applicable R Yes
Table 180. CAL_SIGTR_UPR Bit Definitions
Bits Description
[15:0] Factory programmed CRC value for the program code,
high word
Derived CRC, Calibration Values, CAL_DRVTN_LWR
Table 181. CAL_DRVTN_LWR Register Definitions
Page Addresses Default Access Flash Backup
0x04 0x08, 0x09 Not applicable R No
Table 182. CAL_DRVTN_LWR Bit Definitions
Bits Description
[15:0] Calculated CRC value for the program code, low word
Derived CRC, Calibration Values, CAL_DRVTN_UPR
Table 183. CAL_DRVTN_UPR Register Definitions
Page Addresses Default Access Flash Backup
0x04 0x0A, 0x0B Not applicable R No
Table 184. CAL_DRVTN_UPR Bit Definitions
Bits Description
[15:0] Calculated CRC value for the program code, high word
Signature CRC, Program Code, CODE_SIGTR_LWR
Table 185. CODE_SIGTR_LWR Register Definitions
Page Addresses Default Access Flash Backup
0x04
0x0C, 0x0D
Not applicable
R
Yes
Table 186. CODE_SIGTR_LWR Bit Definitions
Bits Description
[15:0] Factory programmed CRC value for the calibration
coefficients, low word
Signature CRC, Program Code, CODE_SIGTR_UPR
Table 187. CODE_SIGTR_UPR Register Definitions
Page Addresses Default Access Flash Backup
0x04 0x0E, 0x0F Not applicable R Yes
Table 188. CODE_SIGTR_UPR Bit Definitions
Bits Description
[15:0] Factory programmed CRC value for the calibration
coefficients, high word
Derived CRC, Program Code, CODE_DRVTN_LWR
Table 189. CODE_DRVTN_LWR Register Definitions
Page Addresses Default Access Flash Backup
0x04 0x10, 0x11 Not applicable R No
Table 190. CODE_DRVTN_LWR Bit Definitions
Bits Description
[15:0] Calculated CRC value for the calibration coefficients, low
word
Derived CRC, Program Code, CODE_DRVTN_UPR
Table 191. CODE_DRVTN_LWR Register Definitions
Page Addresses Default Access Flash Backup
0x04 0x12, 0x13 Not applicable R No
Table 192. CODE_DRVTN_UPR Bit Definitions
Bits Description
[15:0] Calculated CRC value for the calibration coefficients,
high word
Lot Specific Serial Number, SERIAL_NUM
Table 193. SERIAL_NUM Register Definitions
Page Addresses Default Access Flash Backup
0x04 0x20, 0x21 Not applicable R Yes
Table 194. SERIAL_NUM Bit Definitions
Bits Description
[15:0] Lot specific serial number
ADIS16495 Data Sheet
Rev. C | Page 40 of 42
APPLICATIONS INFORMATION
MOUNTING BEST PRACTICES
For the best performance, follow these guidelines when
installing the ADIS16495 into a system:
Eliminate opportunity for translational force (x- and y-axis
direction, per Figure 35) application on the electrical
connector.
Use uniform mounting forces on all four corners. The
suggested torque setting is 40 inch ounces (0.285 Nm).
When the ADIS16495 rests on the PCB, which contains
the mating connector (see Figure 46), use a diameter of at
least 2.85 mm for the passthrough holes.
These guidelines help prevent irregular force profiles, which
can warp the package and introduce bias errors in the sensors.
Figure 46 and Figure 47 provide details for mounting hole and
connector alignment pin drill locations.
DEVICE
OUTLINE
19.800 BSC
39.600 BSC
42.600
21.300 BSC
5 BSC5 BSC
1.642 BSC
NOTES
1. ALL DIMENSIONS IN UNITS OF MILLIMETERS (mm).
2. IN THIS CONFIGURATION, THE CONNECTOR IS FACING DOW N AND
ITS PINSARE NOT VISIBLE.
0.560 BSC 2×
ALIGNMENT HOLES
PASS THRO UGH HOLE
FOR MOUNTING SCREWS
DIAMETER OFTHE HOLE
MUST ACCOMODATE
DIMENSIONAL TOLERANCE
BETWEEN THE CONNECTOR
AND HOLES
FOR MATING SOCKET
15062-042
Figure 46. Suggested PCB Layout Pattern, Connector Down
0.4334 [ 11.0]
0.0240 [ 0.610]
0.019685
[0.5000]
(TYP)
0.054 [ 1.37]
0.0394 [ 1.00]
0.0394 [ 1.00] 0.1800
[4.57]
NONPLATED
THROUGH HOL E
0.022± DIA (TYP ) 0.022 DI A THRO UGH HO LE (TYP )
NONPLAT E D THRO UGH HO LE
15062-043
Figure 47. Suggested Layout and Mechanical Design when Using Samtec
CLM-112-02-G-D-A for the Mating Connector
PREVENTING MISINSERTION
The ADIS16495 connector uses the same pattern as the
ADIS16485, but with Pin 12 and Pin 15 missing. This pin
configuration enables a mating connector to plug these holes,
which helps prevent misconnection of the ADIS16495. Samtec
has a custom part number that provides this type of mating
socket: ASP-193371-04.
EVALUATION TOOLS
Breakout Board, ADIS16IMU1/PCBZ
The ADIS16IMU1/PCBZ (sold separately) provides a breakout
board function for the ADIS16495, which means that it provides
access to the ADIS16495 through larger connectors that support
standard 1 mm ribbon cabling. It also provides four mounting
holes for attachment of the ADIS16495 to the breakout board.
PC-Based Evaluation, EVAL-ADIS2
Use the EVAL-ADIS2 and ADIS16IMU1/PCBZ to evaluate the
ADIS16495 on a PC-based platform.
POWER SUPPLY CONSIDERATIONS
The VDD power supply must charge 46 µF of capacitance (inside
of the ADIS16495, across the VDD and GND pins) during its
initial ramp and settling process. When VDD reaches 2.85 V,
the ADIS16495 begins its internal start-up process, which gener-
ates additional transient current demand. See Figure 48 for a
typical current profile during the start-up process. The first
peak in Figure 48 relates to charging the 46 µF capacitor bank,
whereas the other transient activity relates to numerous
functions turning on during the initialization process of the
ADIS16495.
CH2 2.0V
BW
CH3 2.0V
BW
CH4 100mA
BW
M40.0ms A CH3 3.00V
T 20.10% 12.5MS/s 5M pts
4
3
2
DR
VDD
CURRENT
a b
Ta
b1.608ms
159.8ms 92.00mA
152.0mA
Δ158.2ms Δ60.00mA
15062-044
Figure 48. Transient Current Demand, Startup (DR Means Data Ready)
Data Sheet ADIS16495
Rev. C | Page 41 of 42
CRC32 CODING EXAMPLE
This section contains sample code and values for computing
the cyclic redundancy check (CRC) for the ADIS16495 register
readback values.
In this coding example, the 32-bit CRC is first initialized with
0xFFFFFFFF. Next, each 16-bit word passes through the CRC
computation in ascending order. Finally, the CRC is XOR’ed
with 0xFFFFFFFF.
The ADIS16495 updates the CRC value for each data ready
cycle. The registers listed in Table 195 are used as inputs for
computing the CRC32 checksum. The registers can either be
read individually in normal SPI mode or in burst mode,
provided that all registers are all read during the same data
ready cycle.
Table 195. Sample Input Data for CRC Computation1
Register Number Register Input Value
1 STATUS 0x0000
2 TEMP_OUT 0x083A
3 X_GYRO_LOW 0x0000
4 X_GYRO_OUT 0xFFF7
5 Y_GYRO_LOW 0x0000
6 Y_GYRO_OUT 0xFFFE
7 Z_GYRO_LOW 0x0000
8 Z_GYRO_OUT 0x0001
9 X_ACCL_LOW 0x5001
10 X_ACCL_OUT 0x0003
11 Y_ACCL_LOW 0xE00A
12 Y_ACCL_OUT 0x0015
13 Z_ACCL_LOW 0xC009
14 Z_ACCL_OUT 0x0320
15 TIME_STAMP 0x8A54
1 This information is contained in the array data in the coding example.
Table 196. Output Results for CRC Sample Computation1
Register Number Register Output Value
1 CRC_LWR 0x15B4
2 CRC_UPR 0xB6C8
1 Based on the input shown in Table 195.
The following is the CRC initialization code:
/* Initialize CRC */
crc = 0xFFFFFFFFU;
/* Compute CRC in the order of bytes low-high
starting at 0-14, BurstID, STATUS - TIME_STAMP */
crc = crc32_block(crc, DATA, 15);
/* Final operation per IEEE-802.3 */
crc ^= 0xFFFFFFFFU;
The crc32_block function accepts an array of 16-bit numbers
and computes the CRC byte-by-byte:
unsigned long crc32_block( unsigned long crc,
const unsigned short data[], int n )
{
unsigned long long_c;
int i;
/* cycle through memory */
for ( i=0; i<n; i++ )
{
/* Get lower byte */
long_c = 0x000000ff &
(unsigned long)data[i];
/* Process with CRC */
crc = ((crc>>8) & 0x00ffffff) ^
crc_tab32[(crc^long_c)&0xff];
/* Get upper byte */
long_c = (0x000000ff &
((unsigned long)data[i]>>8);
/* Process with CRC */
crc = ((crc>>8) & 0x00ffffff) ^
crc_tab32[(crc^long_c)&0xff];
}
return crc;
}
The CRC table (crc_tab32) is computed with the following
function:
void init_crc32_table( void )
{
unsigned long P_32;
int i, j;
unsigned long crc;
/* CRC32 polynomial defined by IEEE-802.3 */
P_32 = 0xEDB88320
/* 8 bits require 256 entries in Table */
for (i=0; i<256; i++)
{
/* start with table entry number */
crc = (unsigned long) i;
/* cycle through all bits in entry number */
for (j=0; j<8; j++)
{
/* LSBit set? */
if ((crc&(unsigned
long)0x00000001)!=(unsigned long)0)
{
/* process for bit set */
crc = (crc>>1) ^ P_32;
}
else
{
/* process for bit clear */
crc = (crc>>1);
}
}
/* Store calculated value into table */
crc_tab32[i] = crc;
}
}
ADIS16495 Data Sheet
Rev. C | Page 42 of 42
OUTLINE DIMENSIONS
05-31-2018-A
BOTTOM VIEW
FRONT VIEW
TOP VIEW
44.254
44.000
43.746 34.600
34.575
34.550
39.800
39.600
39.400 20.00
19.80
19.60
47.254
47.000
46.746
37.598
37.573
37.548
42.800
42.600
42.400
2.20 BSC
Ø 2. 40
BSC
2.20 BSC
14.200
14.000
13.800 3.454
3.200
2.946
0.250 BSC
13.750 REF 0.250 BSC
5.50
BSC
5.50
BSC
DETAIL A
DETAIL A
1.00 BSC
PITCH 0.30 S Q BSC
1.142 BSC
Ø2.065
2.040
2.015
2.065
2.040
2.015
47.479
°
47.379
47.279
3.70
3.50
3.30
7.350
7.225
7.100
2.325
2.200
2.075
2.84 BSC
Figure 49. 24-Lead Module with Connector Interface [MODULE]
(ML-24-9)
Dimensions shown in millimeters
ORDERING GUIDE
Model1 Temperature Range Description Package Option
ADIS16495-1BMLZ −40°C to +105°C 24-Lead Module with Connector Interface [MODULE] ML-24-9
ADIS16495-2BMLZ −40°C to +105°C 24-Lead Module with Connector Interface [MODULE] ML-24-9
ADIS16495-3BMLZ −40°C to +105°C 24-Lead Module with Connector Interface [MODULE] ML-24-9
1 Z = RoHS Compliant Part.
©2017-2020 Analog Devices, Inc. All rights reserved. Trademarks and
registered trademarks are the property of their respective owners.
D15062-7/20(C)