Copyright © Cirrus Logic, Inc. 2008
(All Rights Reserved)
http://www.cirrus.com MAY '08
DS680F1
Low-power, Stereo CODEC w/ Headphone & Speaker Amps
Stereo CODEC
High Performance Stereo ADC & DAC
99 dB (ADC), 98 dB (DAC) Dyn. Range (A-wtd)
-88 dB THD+N
Flexible Stereo Analog Input Architecture
4:1 Analog Input MUX
Analog Input Mixing
Analog Passthrough with Volume Control
Analog Programmable Gain Amplifier (PGA)
Programmable Automatic Level Control (ALC)
Noise Gate for Noise Suppression
Programmable Threshold & Attack/Release
Rates
Dual MIC Inputs
Differential or Single-ended
+16 dB to +32 dB w/ 1dB step MIC Pre-
Amplifiers
Programmable, Lo w-noise MIC Bias Levels
Digital Signal Processing Engine
Bass & Treble Tone Control, De-emphasis
Master Vol. and Independent PCM SDIN + ADC
SDOUT Mix Volume Control
Soft-ramp & Zero-Cross Transitions
Programmable Peak-detect and Limiter
Beep Generator w/Full Tone Control
Class D Stereo/Mono Speaker Amplifier
No External Filter Required
High-power Stereo Output at 10% THD+N
2 x 1.00 W into 8 @ 5.0 V
2 x 550 mW into 8 @ 3.7 V
2 x 230 mW into 8 @ 2.5 V
High-power Mono Output at 10% THD+N
1 x 1.90 W into 4 @ 5.0 V
1 x 1.00 W into 4 @ 3.7 V
1 x 350 mW into 4 @ 2.5 V
Direct Battery-powered Operation
Battery Level Monitoring & Compensation
81% Efficiency at 800 mW
Phase-aligned PWM Output Reduces Idle
Channel Current
Spread Spectrum Modulation
Low Quiescent Current
Stereo Headphone Amplifier
Ground-centered Outputs
No DC-Blocking Capacitor s Required
Integrated Negative Voltage Regulator
High-power Output at -75 dB THD+N
2 x 23 mW Into 16 @ 1.8 V
2 x 44 mW Into 16 @ 2.5 V
(Features continued on page 2)
Serial Audio
Input/Output
I2C Control
+1.65 V to +3.47 V
Interface Supply
Control Port Serial Audio Port
Level Shifter
Multi-bit
∆Σ ADC
Beep
+1.65 V to +2.63 V
Analog Supply
Multi-bit
∆Σ ADC
ALC
Left HP/Line
Output
Ground-Centered
Amps
Mono mix,
Limiter , Bass,
Treble Adjust
Volume, Mono
Swap, Mix
Right HP/Line
Output
Left
Inputs
Right
Inputs
+1.65 V to +2.63 V
Headphone Supply
Speaker/HP
Switch
+1.60 V to +5.25 V
Battery
Charge Pump
+VHP
-VHP
+1.65 V to +2.63 V
Digital Supply
+1.65 V to +2.63 V
Analog Supply
Pulse-Width
Modulator
(PWM)
Stereo/Mono
Full-Bridge
Speaker
Outputs
Battery Level Moni toring & Compensation
Multi-bit
∆Σ DAC
MIC Bias
HPF
Selectable
Bias Voltage
Σ
ΣALC
Summing
Programmable
Gain Amps
+16 to +32 dB Diff./
S.E. MIC Pre-Amps
Class D Amps
1
2
3
4
1
2
3
4
+
-
+
-
Reset
CS42L52
DRAFTv1
5/13/08
2DS680F1
CS42L52
5/13/08
System Features
12, 24, and 27 MHz Master Clock Support in
Addition to Typical Audio Clock Rates
High-performance 24-bit Converters
Multi-bit Delta-Sigma Architecture
Very Low 64Fs Oversampling Clock Reduces
Power Consumption
Low-power Operation
Stereo Analog Passth rough: 10 mW @ 1.8 V
Stereo Playback: 14 mW @ 1.8 V
Stereo Rec. and Playback: 23 mW @ 1.8 V
Variable Power Supplies
1.8 V to 2.5 V Digital & Analog
1.6 V to 5 V Class D Amplifier
1.8 V to 2.5 V Headphone Amplifier
1.8 V to 3.3 V Interface Logic
Power-down Management
ADC, DAC, CODEC, MIC Pre-Amplifier, PGA,
Headphone Amplifier, Speaker Amplifier
Analog & Digital Routing/Mixes:
Line/Headphone Out = Analog In (ADC
Bypassed)
Line/Headphone/Speaker
Out = ADC + Digital In
Digital Out = ADC + Digital In
Internal Digital Loopback
Mono Mixes
Flexible Clocking Options
Master or Slave Operation
High-impedance Digital Output Option (for easy
MUXing between CODEC & other data
sources)
Quarter-speed Mode - (i.e. allows 8 kHz Fs
while maintaining a flat noise floor up to 16 kHz)
4 kHz to 96 kHz Sample Rates
I²C® Control Port Operation
Headphone/Speaker Detection Input
Pop and Click Suppression
Applications
Digital Voice Recorders, Digital Cameras, &
Camcorders
PDA’s
Personal Media Players
Portable Game Consoles
General Description
The CS42L52 is a highly integrated, low-power stereo CO-
DEC with headphone and Class D speaker amplifiers. The
CS42L52 offers many features suitable for low-powe r, porta-
ble system applications.
The ADC input path allows independent channel control of a
number of features. Input summing amplifiers mix and select
line-level and/or microphone-level inputs for each channel.
The microphone input path includes a selectable programma-
ble-gain pre-amplifier stage and a low-noise MIC bias voltage
supply. A PGA is availab le for line or microphone inputs and
provides analog gain with soft-ramp and zero-cross transi-
tions. The ADC also features a digital volume control with soft
ramp transitions. A programmable ALC and Noise Gate mon-
itor the input signals and adjust the volume levels
appropriately. To conserve power, the ADC may be bypassed
while still allowing full analog volume control.
The DAC output path includes a digital signal processing en-
gine with various fixed-function controls. Tone Control
provides bass and treble adjustment of four selectable corner
frequencies. The Digital Mixer provides independent volume
control for both the ADC output and PCM input signal paths,
as well as a master volume control. Digital Volume controls
may be configured to change on soft-ramp transitions while
the analog controls can be configured to occur on every zero
crossing. The DAC also includes de-emphasis, limiting func-
tions and a BEEP generator, delivering tones selectable
across a range of two full octaves.
The stere o headphone ampl ifier is powered from a separate
positive supply and the integrated charge pump provides a
negative supply. This allows a ground-centered, analog output
with a wide signa l swin g and e limina tes external DC-bl ocking
capacitors.
The Class D stereo speaker amplifier does not require an
external filter and provides the high-efficiency amplification re-
quired by power-sensitive por table applications. The speaker
amplifier may be powered directly from a battery while the in-
ternal DC supply monitoring and compensation provides a
constant gain level as the battery’s voltage decays.
In addition to its many features, the CS42L52 operates from a
low-voltage analog and digital core making it ideal for portable
systems that require extremely low power consumption in a
minimal amount of space.
The CS42L52 is available in a 40-pin QFN package in both
Commercial (-40 to + 85 °C) and Automotive (-40 to +105 °C)
grades. The CS42L52 Customer Demonstration board is also
available for device evaluation and implementation sugges-
tions. Please refer to “Ordering Information” on page 81 for
complete ordering information.
DS680F1 3
CS42L52
5/13/08
TABLE OF CONTENTS
1. PIN DESCRIPTIONS .............................................................................................................................. 8
1.1 I/O Pin Characteristics ................. ... ... ................ ... .... ... ... ... .... ... ... ................ ... .... ... ... ... ..................... 9
2. TYPICAL CONNECTION DIAGRAM ................................................................................................... 10
3. CHARACTERISTIC AND SPECIFICATIONS ...................................................................................... 11
RECOMMENDED OPERATING CONDITIONS ................................................................................... 11
ABSOLUTE MAXIMUM RATINGS .......................................................................................................11
ANALOG INPUT CHARACTERISTICS (COMMERCIAL - CNZ) .......................................................... 12
ANALOG INPUT CHARACTERISTICS (AUTOMOTIVE - DNZ) .......................................................... 13
ADC DIGITAL FILTER CHAR ACTERI S TI CS ................. ... ... ................ ... .... ... ... ... .... ................ ... ... ... ... 14
ANALOG OUTPUT CHARACTERISTICS (COMMERCIAL - CNZ) ...................................................... 15
ANALOG OUTPUT CHARACTERISTICS (AUTOMOTIVE - DNZ) ...... ... .... ... ... ... ................ .... ... ... ... ... 16
ANALOG PASSTHROUGH CHARACTERISTICS ............................................................................... 17
PWM OUTPUT CHA RACTERI STICS ........ ... .... ... ... ... ................. ... ... ... ... .... ... ................ ... ... .... ... ... ... ... 17
HEADPHONE OUTP UT POWER CHARA CTERISTI CS ............................. ... ... ... .... ... ... ... ... .... ... ... ... ... 19
LINE OUTPUT VOLTAGE LEVEL CHARACTERISTICS ..................................................................... 20
COMBINED DAC INTERPOLATION & ON-CHIP ANALOG FILTER RESPONSE .............................. 20
SWITCHING SPECIFICATIONS - SERIAL PORT ............................................................................... 21
SWITCHING SPECIFICATIONS - I²C CONTROL PORT ..................................................................... 22
DC ELECTRICAL CHARACTERISTICS .............................................................................................. 23
DIGITAL INTERFACE SPECIFICATIONS & CHARACTERISTICS ..................................................... 23
POWER CONSUMPTION .................................................................................................................... 24
4. APPLICATIONS ................................................................................................................................... 25
4.1 Overview ......................................................................................................................................... 25
4.1.1 Basic Architecture ................................................................................................................. 25
4.1.2 Line & MIC Inputs .................................................................................................................. 25
4.1.3 Line & Headphone Outputs ................................................................................................... 25
4.1.4 Speaker Driver Outputs ......................................................................................................... 25
4.1.5 Fixed Function DSP Engine .................................................................................................. 25
4.1.6 Beep Generator ..................................................................................................................... 25
4.1.7 Power Management .............................................................................................................. 25
4.2 Analog Inputs ................................................................................................................................. 26
4.2.1 MIC Inputs ............................................................................................................................. 27
4.2.2 Automatic Level Control (ALC) .............................................................................................. 27
4.2.3 Noise Gate ............................................................................................................................ 28
4.3 Analog Outputs .............................................................................................................................. 29
4.3.1 Beep Generator ..................................................................................................................... 30
4.3.2 Limiter .................................................................................................................................... 31
4.4 Analog In to Analog Out Passthrough ............................................................................................ 32
4.4.1 Overriding the ADC Power Down ............................. .... ... ... ... ... .... ... ... ... .... ... ... ... ... .... ... ......... 32
4.4.2 Overriding the PGA Power Down ............................. .... ... ... ... ... .... ... ... ... .... ... ... ... ... .... ... ... ... ... 33
4.5 PWM Outputs ................................................................................................................................. 33
4.5.1 Mono Speaker Output Configuration ..................................................................................... 33
4.5.2 VP Battery Compensation .............. .... ... ... ... .... ... ... ... .... ... ... ... ... .... ... ... ................ ... .... ... ... ...... 33
4.5.2.1 Maintaining a Desired Output Level ........................................................................... 34
4.6 Serial Port Clocking ........................................................................................................................ 34
4.7 Digital Interface Formats ................................................................................................................ 36
4.7.1 DSP Mode ............................................................................................................................. 36
4.8 Initialization ..................................................................................................................................... 37
4.9 Recommended Power-up Sequence ..............................................................................................37
4.10 Recommended Power-down Sequence ....................................................................................... 37
4.11 Required Initialization Settings ..................................................................................................... 37
4.12 Control Port Operation ........ ... .... ... ... ... ... ....................................................................................... 38
4DS680F1
CS42L52
5/13/08
4.12.1 I²C Control ........................................................................................................................... 38
4.12.2 Memory Address Pointer (MAP) .......................................................................................... 39
4.12.2.1 Map Increment (INCR) ............................................................................................. 39
5. REGISTER QUICK REFERENCE ........................................................................................................ 40
6. REGISTER DESCRIPTION .................................................................................................................. 42
6.1 Chip I.D. and Revision Register (Address 01h) (Read Only) ......................................................... 42
6.1.1 Chip I.D. (Read Only) ............................................................................................................ 42
6.1.2 Chip Revision (Read Only) .................................................................................................... 42
6.2 Power Control 1 (Address 02h) ...................................................................................................... 42
6.2.1 Power Down ADC Charge Pump .......................................................................................... 42
6.2.2 Power Down PGAx ................................................................................................................ 42
6.2.3 Power Down ADCx ................................................................................................................ 43
6.2.4 Power Down .......... ... ... ... .... ... ... ... ... ................. ... ... ... .... ................ ... ... ... .... ............................ 43
6.3 Power Control 2 (Address 03h) ...................................................................................................... 43
6.3.1 Power Down ADC Override ................................................................................................... 43
6.3.2 Power Down MICx ................................................................................................................. 43
6.3.3 Power Down MIC Bias .......................................................................................................... 43
6.4 Power Control 3 (Address 04h) ...................................................................................................... 44
6.4.1 Headphone Power Control .......... ................ .... ... ... ... .... ... ... ... ... ................. ... ... ... ... .... ... ... ... ... 44
6.4.2 Speaker Power Control ...................... ... ... ... ................. ... ... ... ... .... ... ................ ... ... .... ... ... ...... 44
6.5 Clocking Control (Address 05h) ...................................................................................................... 44
6.5.1 Auto-Detect . ... ... .... ... ... ................ ... .... ... ... ................ .... ... ... ... ................ .... ... ... ... ................... 44
6.5.2 Speed Mode .......... ... ... ... .... ... ... ... ... ................. ... ... ... .... ................ ... ... ... .... ............................ 45
6.5.3 32kHz Sample Rate Group ................................................................................................... 45
6.5.4 27 MHz Video Clock .............................................................................................................. 45
6.5.5 Internal MCLK/LRCK Ratio ................................................................................................... 45
6.5.6 MCLK Divide By 2 .............. ... ... ... ... .... ... ... ... ................. ... ... ... ... ................. ... ... ... ... ................ 46
6.6 Interface Control 1 (Address 06h) .................................................................................................. 46
6.6.1 Master/Slave Mode ..... ... .... ... ... ... ... .... ... ... ............................................................................. 46
6.6.2 SCLK Polarity ........... ... ... .... ... ... ... ... .... ................ ... ... .... ... ................ ... ... .... ... ......................... 46
6.6.3 ADC Interface Format .... .... ... ... ... ... .... ... ................ ... .... ... ... ... ... .... ... ................ ... ... .... ... ......... 46
6.6.4 DSP Mode ............. ... ... ... .... ... ... ... ... ................. ... ... ... .... ................ ... ... ... .... ............................ 46
6.6.5 DAC Interface Format .... .... ... ... ... ... .... ... ................ ... .... ... ... ... ... .... ... ................ ... ... .... ... ......... 47
6.6.6 Audio Word Length ................................................................................................................ 47
6.7 Interface Control 2 (Address 07h) .................................................................................................. 47
6.7.1 SCLK equals MCLK .............................................................................................................. 47
6.7.2 SDOUT to SDIN Digital Loopback ......................................................................................... 47
6.7.3 Tri-State Serial Port Int erface ................... ... ................. ... ... ... ... .... ... ................ ... ... .... ... ......... 48
6.7.4 Speaker/Headphone Switch Invert ..................... ... ... ................ .... ... ... ... .... ... ... ... ... .... ... ... ... ... 48
6.7.5 MIC Bias Level ...................... ................ ... ... .... ... ... ................ ... .... ... ... ................ ... ................ 48
6.8 Input x Select: ADCA and PGAA (Address 08h), ADCB and PGAB (Address 09h) ....................... 48
6.8.1 ADC Input Select ............................ .... ... ................................................................................ 48
6.8.2 PGA Input Mapping ........................ .... ... ... ... .... ... ................ ... ... .... ... ... ... ................ .... ... ......... 49
6.9 Analog & HPF Control (Address 0Ah) ............................................................................................ 49
6.9.1 ADCx High-Pass Filter .......................................................................................................... 49
6.9.2 ADCx High-Pass Filter Freeze .............................................................................................. 49
6.9.3 Ch. x Analog Soft Ramp ........................... ... ................. ... ... ... ... .... ... ................ ... ... .... ... ......... 49
6.9.4 Ch. x Analog Zero Cross .......................... ... .... ... ... ... .... ................ ... ... ... .... ... ... ...................... 49
6.10 ADC HPF Corner Frequency (Address 0Bh) ................................................................................ 50
6.10.1 HPF x Corner Frequency .................................................................................................... 50
6.11 Misc. ADC Control (Address 0Ch) ................................................................................................ 50
6.11.1 Analog Front-End Volume Setting B=A ............................................................................... 50
6.11.2 Digital MUX ......................................................................................................................... 50
6.11.3 Digital Sum .......................................................................................................................... 50
DS680F1 5
CS42L52
5/13/08
6.11.4 Invert ADC Signal Polarity ................ ... ... ... .... ... ... ... .... ................ ... ... ... .... ... ... ... ... .... ... ......... 51
6.11.5 ADC Mute ............... ... ... .... ................ ... ... ... .... ... ... ................ ... .... ... ... ... .... ............................ 51
6.12 Playback Control 1 (Address 0Dh) ............................................................................................... 51
6.12.1 Headphone Analog Gain ..................................................................................................... 51
6.12.2 Playback Volume Setting B=A ............................................................................................ 51
6.12.3 Invert PCM Signal Polarity ............... ................................................................................... 52
6.12.4 Master Playback Mute ......................................................................................................... 52
6.13 Miscellaneous Controls (Address 0Eh) .................. ... ... ... .... ... ... ... ... .... ... ... ... .... ... ... ... ... .... ... ... ... ... 52
6.13.1 Passthrough Analog .................. ................ .... ... ... ... .... ... ... ... ... .... ... ... ... ................ .... ... ......... 52
6.13.2 Passthrough Mute .. ... ... .... ... ... ... ... .... ... ... ................ .... ... ... ... ... .... ... ... ... .... ... ... ... ................... 52
6.13.3 Freeze Registers ....... ... .... ................ ... ... ... .... ... ... ... .... ... ................ ... ... .... ... ... ... ... .... ............ 52
6.13.4 HP/Speaker De-emphasis ......... ... .... ... ... ............................................................................. 53
6.13.5 Digital Soft Ramp ................................................................................................................ 53
6.13.6 Digital Zero Cross ............. ... ... ... ................ .... ... ... ... .... ... ... ... ................ .... ... ... ... ... .... ............ 53
6.14 Playback Control 2 (Address 0Fh) ... ... ... .... ................................................................................... 54
6.14.1 Headphone Mute ................. ... ... ... .... ... ... ... .... ... ................ ... ... .... ... ... ... .... ... ... ... ... .... ... ......... 54
6.14.2 Speaker Mute .. .... ... ... ... .... ... ... ... ... ................. ... ... ... .... ... ... ... ... .... ................ ... ... ... .... ............ 54
6.14.3 Speaker Volume Setting B=A ..............................................................................................54
6.14.4 Speaker Channel Swap ....................................................................................................... 54
6.14.5 Speaker MONO Control ...................................................................................................... 54
6.14.6 Speaker Mute 50/50 Control ............................................................................................... 54
6.15 MICx Amp Control:MIC A (Address 10h) & MIC B (Address 11h) ................................................ 55
6.15.1 MIC x Select ........................................................................................................................ 55
6.15.2 MICx Configuration ....... .... ... ... ... ................ .... ... ... ... .... ... ... ... ................ .... ... ... ... ... .... ............ 55
6.15.3 MICx Gain ........... ... ... ... .... ................ ... ... ... .... ... ... ................ ... .... ... ... ... .... ............................ 55
6.16 PGAx Vol. & ALCx Transition Ctl.:
ALC, PGA A (Address 12h) & ALC, PGA B (Address 13h) .................................................................. 55
6.16.1 ALCx Soft Ramp Disable ..................................................................................................... 55
6.16.2 ALCx Zero Cross Disable .................................................................................................... 56
6.16.3 PGAx Volume ............ ... .... ... ... ... ... .... ... ... ... .... ... ... ................ ... .... ... ... ... .... ... ... ...................... 56
6.17 Passthrough x Volume: PASSAVOL (Address 14h) & PASSBVOL (Address 15h) .................... 57
6.17.1 Passthrough x Volume ........................................................................................................ 57
6.18 ADCx Volume Control: ADCAVOL (Address 16h) & ADCBVOL (Address 17h) .......................... 57
6.18.1 ADCx Volume ............... .... ... ... ... ................ .... ... ... ... .... ... ... ... ................ .... ... ... ... ... .... ............ 57
6.19 ADCx Mixer Volume: ADCA (Address 18h) & ADCB (Address 19h) ................... ................... ...... 58
6.19.1 ADC Mixer Channel x Mute ................................................................................................. 58
6.19.2 ADC Mixer Channel x Volume ............................................................................................. 58
6.20 PCMx Mixer Volume: PCMA (Address 1Ah) & PCMB (Address 1Bh) ....... ... .... ... ... ... ... ................ 58
6.20.1 PCM Mixer Channel x Mute ................................................................................................58
6.20.2 PCM Mixer Channel x Volume ............................................................................................ 58
6.21 Beep Frequency & On Time (Address 1Ch) ................................................................................. 59
6.21.1 Beep Frequency ............... ... ... ... ... .... ... ... ... .... ... ... ... ................ .... ... ... ... .... ... ... ... ... ................ 59
6.21.2 Beep On Time .................. ... ... ... ... .... ... ... ... ................. ... ... ... ... .... ... ... ... .... ................ ............ 60
6.22 Beep Volume & Off Time (Address 1Dh) ......................................................................................60
6.22.1 Beep Off Time . .... ... ... ... .... ... ... ... ... ................. ... ... ... .... ... ... ... ... .... ................ ... ... ... .... ............ 60
6.22.2 Beep Volume .................... ... ... ... ... .... ... ... ... .... ................ ... ... ... .... ... ... ... .... ... ... ... ... .... ............ 61
6.23 Beep & Tone Configuration (Address 1Eh) .................................................................................. 61
6.23.1 Beep Configuration ................. ... ... .... ... ... ... .... ... ... ... .... ... ... ... ... .... ... ................ ... ... .... ............ 61
6.23.2 Beep Mix Disable ................................................................................................................ 61
6.23.3 Treble Corner Frequency ....................... ... .... ... ... ... .... ... ... ... ... .... ... ... ... .... ... ... ................ ...... 62
6.23.4 Bass Corner Frequency ... ... ... ................ ... .... ... ... ... .... ... ... ................ ... .... ... ... ... ... .... ... ... ...... 62
6.23.5 Tone Control Enable ........ ... ... ... ... .... ... ................ ... .... ... ... ... ... .... ... ... ................ ... .... ... ......... 62
6.24 Tone Control (Address 1Fh) ...... ... ... ... ... .... ... ... ... .... ... ... ... .... ... ... ... ... ................. ... ... ... ... .... ............ 62
6.24.1 Treble Gain ............. ... ... .... ... ... ... ... .... ................ ... ... .... ... ... ... ... .... ... ................ ... ... ................ 62
6DS680F1
CS42L52
5/13/08
6.24.2 Bass Gain ............................................................................................................................ 63
6.25 Master Volume Control: MSTA (Address 20h) & MSTB (Address 21h) ....................................... 63
6.25.1 Master Volume Control ........................................................................................................ 63
6.26 Headphone Volume Control: HPA (Address 22h) & HPB (Address 23h) ..................................... 63
6.26.1 Headphone Volume Control ................................................................................................63
6.27 Speaker Volume Control: SPKA (Address 24h) & SPKB (Address 25h) ...................................... 64
6.27.1 Speaker Volume Control ..................................................................................................... 64
6.28 ADC & PCM Channel Mixer (Address 26h) .................................................................................. 64
6.28.1 PCM Mix Channel Swap ..................................................................................................... 64
6.28.2 ADC Mix Channel Swap ...................................................................................................... 64
6.29 Limiter Control 1, Min/Max Thresholds (Address 27h) ................................................................. 65
6.29.1 Limiter Maximum Threshold ................................................................................................ 65
6.29.2 Limiter Cushion Threshold .................................................................................................. 65
6.29.3 Limiter Soft Ramp Disable ... ...... ....... ...... ....... ...... ....... ...... ...... ....... ...... .... ...... ...... ....... ......... 65
6.29.4 Limiter Zero Cross Disable .................................................................................................. 66
6.30 Limiter Control 2, Release Rate (Address 28h) ............................................................................ 66
6.30.1 Peak Detect and Limiter ...................................................................................................... 66
6.30.2 Peak Signal Limit All Channels ........................................................................................... 66
6.30.3 Limiter Release Rate ........................................................................................................... 66
6.31 Limiter Attack Rate (Address 29h) ................................................................................................ 67
6.31.1 Limiter Attack Rate .............................................................................................................. 67
6.32 ALC Enable & Attack Rate (Address 2Ah) ................................................................................... 67
6.32.1 ALCx Enable ....................................................................................................................... 67
6.32.2 ALC Attack Rate .................................................................................................................. 67
6.33 ALC Release Rate (Address 2Bh) ................................................................................................ 68
6.33.1 ALC Release Rate ............................................................................................................... 68
6.34 ALC Threshold (Address 2Ch) ..................................................................................................... 68
6.34.1 ALC Maximum Threshold .................................................................................................... 68
6.34.2 ALC Minimum Threshold ..................................................................................................... 69
6.35 Noise Gate Control (Address 2Dh) ......................... ... ... ... ................ .... ... ... ................ ... .... ... ......... 69
6.35.1 Noise Gate All Channels ..................................................................................................... 69
6.35.2 Noise Gate Enable .............................................................................................................. 69
6.35.3 Noise Gate Threshold and Boost ........................................................................................ 70
6.35.4 Noise Gate Delay Timing .................................................................................................... 70
6.36 Status (Address 2Eh) (Read Only) ........ .... ................ ... ... .... ... ... ... ... .... ... ... ... .... ... ................ ... ...... 70
6.36.1 Serial Port Clock Error (Read Only) .................................................................................... 70
6.36.2 DSP Engine Overflow (Read Only) ..................................................................................... 71
6.36.3 PCMx Overflow (Read Only) ...............................................................................................71
6.36.4 ADCx Overflow (Read Only) ...............................................................................................71
6.37 Battery Compensation (Address 2Fh) .......................................................................................... 71
6.37.1 Battery Compensation ......................................................................................................... 71
6.37.2 VP Monitor .............. ... ... .... ................ ... ... ... .... ... ... ................ ... .... ... ... ... .... ............................ 71
6.37.3 VP Reference ...................................................................................................................... 72
6.38 VP Battery Level (Address 30h) (Read Only) ...............................................................................72
6.38.1 VP Voltage Level (Read Only) ............................................................................................72
6.39 Speaker Status (Address 31h) (R ead Only) .............. ................ ... ... .... ... ... ... ................ .... ... ... ... ... 72
6.39.1 Speaker Current Load Status (Read Only) ......................................................................... 72
6.39.2 SPKR/HP Pin Status (Read Only) ....................................................................................... 73
6.40 Charge Pump Frequency (Address 34h) ...................................................................................... 73
6.40.1 Charge Pump Frequency .................................................................................................... 73
7. ANALOG PERFORMANCE PLOTS ....... ... ... .... ... ... ... ................. ... ... ... ... .... ... ... ... .... ... ... ... ... ................74
7.1 Headphone THD+N versus Output Power Plots ............................................................................ 74
8. EXAMPLE SYSTEM CLOCK FREQUENCIES .................................................................................... 76
8.1 Auto Detect Enabled ....................................................................................................................... 76
DS680F1 7
CS42L52
5/13/08
8.2 Auto Detect Disabled ...................................................................................................................... 76
9. PCB LAYOUT CONSIDERATIONS ..................................................................................................... 77
9.1 Power Supply, Grounding ............................................................................................................... 77
9.2 QFN Thermal Pad .......................................................................................................................... 77
10. ADC & DAC DIGITAL FILTERS ........................................................................................................ 78
11. PARAMETER DEFINITIONS ....... ................ .... ... ... ... .... ... ... ... ................ .... ... ... ... .... ... ... ... ... ................ 79
12. PACKAGE DIMENSIONS ........ ... .... ... ... ... ... .... ................ ... ... .... ... ... ... ................ .... ... ... ... ... .... ............ 80
THERMAL CHARACTERISTICS ................... .... ................ ... ... .... ... ... ... ... .... ... ... ... .... ... ................ ... ...... 80
13. ORDERING INFORMATIO N ....... .... ... ... ... ... .... ... ... ... .... ................ ... ... ... .... ... ... ... .... ... ................ ......... 81
14. REFERENCES ... .... ... ... ... .... ... ................ ... ... .... ... ... ... ................. ... ... ... ... .... ... ................ ...................... 81
15. REVISION HISTORY ............. ... ... .... ... ................ ... ... .... ... ... ... ................ .... ... ... ... .... ... ......................... 81
LIST OF FIGURES
Figure 1. Typical Connection Diagram ...................................................................................................... 10
Figure 2. Headphone Output Test Load .................................................................................................... 19
Figure 3. Serial Audio Interface Timing ..................................................................................................... 21
Figure 4. Control Port Timing - I²C ............................................................................................................ 22
Figure 5. Analog Input Signal Flow ........................................................................................................... 26
Figure 6. Single-Ended MIC Configuration ............................................................................................... 27
Figure 7. Differential MIC Configuration .................................................................................................... 27
Figure 8. ALC ............................................................................................................................................ 28
Figure 9. Noise Gate Attenuation .............................................................................................................. 28
Figure 10. DSP Engine Signal Flow .......................................................................................................... 29
Figure 11. PWM Output Stage .................................................................................................................. 30
Figure 12. Analog Output Stage ................................................................................................................ 30
Figure 13. Beep Configuration Options ..................................................................................................... 31
Figure 14. Peak Detect & Limiter .............................................................................................................. 32
Figure 15. Battery Compensation ............................................................................................................. 34
Figure 16. I²S Format ................................................................................................................................ 36
Figure 17. Left-Justified Format ................................................................................................................ 36
Figure 18. Right-Justified Format (DAC only) ........................................................................................... 36
Figure 19. DSP Mode Format) .................................................................................................................. 36
Figure 20. Control Port Timing, I²C Write .................................................................................................. 38
Figure 21. Control Port Timing, I²C Read .................................................................................................. 38
Figure 22. THD+N vs. Output Power per Channel at 1.8 V (16 load) .......... ................ ... ... ... .... ... ... ...... 74
Figure 23. THD+N vs. Output Power per Channel at 2.5 V (16 load) .......... ................ ... ... ... .... ... ... ...... 74
Figure 24. THD+N vs. Output Power per Channel at 1.8 V (32 load) .......... ................ ... ... ... .... ... ... ...... 75
Figure 25. THD+N vs. Output Power per Channel at 2.5 V (32 load) .......... ................ ... ... ... .... ... ... ...... 75
Figure 26. ADC Passband Ripple ............................................................................................................. 78
Figure 27. ADC Stopband Rejection ......................................................................................................... 78
Figure 28. ADC Transition Band ............................................................................................................... 78
Figure 29. ADC Transition Band (Detail) ................................................................................................... 78
Figure 30. DAC Passband Ripple ............................................................................................................. 78
Figure 31. DAC Stopband ......................................................................................................................... 78
Figure 32. DAC Transition Band ............................................................................................................... 78
Figure 33. DAC Transition Band (Detail) ................................................................................................... 78
8DS680F1
CS42L52
5/13/08
1. PIN DESCRIPTIONS
Pin Name # Pin Description
SDA 1 Serial Control Data (Input/Output) - SDA is a data I/O in I²C Mode.
SCL 2 Serial Control Port Clock (Input) - Serial clock for the serial control port.
AD0 3 Address Bit 0 (Input) - Chip address bit 0.
SPKR_OUTA+
SPKR_OUTA-
SPKR_OUTB+
SPKR_OUTB-
4
6
7
9
PWM Speaker Output (Output) - Full-bridge amplified PWM speaker outputs.
VP 5
8Power for PWM Drivers (Input) - Power supply for the PWM output driver stages.
-VHPFILT 10 Inverting Charge Pump Filter Connection (Output) - Power supply from the inverting charge
pump that provides the negative rail for the headpho ne /l i ne amplifie rs.
FLYN 11 Charge Pump Cap Negative Node (Output) - Negative node for the inverting charge pump’s fly-
ing capacitor.
FLYP 12 Charge Pump Cap Positive Node (Output) - Positive node for the inverting charge pump’s flying
capacitor.
+VHP 13 Positive Analog Power fo r Headphone (Input) - Positive voltage rail and power for the internal
headphone amplifiers and inverting charge pump.
HP/LINE_OUTB, A 14,15 Headphone/Line Audio Output (Output) - Stereo headphone or line level analog outputs.
VA 16 Analog Power (Input) - Positive power for the internal analog section.
12
11
13
14
15
16
17
18
19
20
29
30
28
27
26
25
24
23
22
21
39
40
38
37
36
35
34
33
32
31
2
1
3
4
5
6
7
8
9
10
GND/Therma l Pad
SDOUT
MCLK
SCLK
SDIN
SDA
LRCK
FLYN
+VHP
HP/LINE_OUTB
HP/LINE_OUTA
VQ
MICBIAS
AIN4A/MIC1+/MIC2A
AIN2A
AD0
SPKR_OUTA+
VP
VP
VD
SPKR_OUTB-
-VHPFILT AIN4B/MIC2+/MIC2B
AIN1B
AIN2B
AFILTB
AIN3B/MIC2-/MIC1B
AFILTA
AIN1A
AIN3A/MIC1-/MIC1A
SPKR_OUTB+
SCL
DGND
SPKR_OUTA-
FLYP
VA
AGND
FILT+
RESET
VL
SPKR/HP
Top-Down (Through-Package) View
40-Pin QFN Package
DS680F1 9
CS42L52
5/13/08
1.1 I/O Pin Characteristics
Input and output levels and associated power supply voltage are shown in the table below. Logic levels
should not exceed the corresponding power supply voltage.
AGND 17 Analog Ground (Input) - Ground reference for the internal analog section.
FILT+ 18 Positive Voltage Reference (Output) - Positive reference voltage for the internal sampling cir-
cuits.
VQ 19 Quiescent Voltage (Output) - Filter connection for the internal quiescent voltage.
MICBIAS 20 Microphone Bias (Output) - Low noise bias supply for an external microphone. Electrical charac-
teristics are specified in the DC Electrical Characteristics table.
AIN4A,B
AIN3A,B 21,22
23,24 Line-Level Analog Inputs (Input) - Single-ended stereo line-level analog inputs.
MIC1+,-
MIC2+,- 21,23
22,24 Differential Microphone Inputs (Input) - Differential stereo microphone inputs.
MIC2A,B
MIC1A,B 21,22
23,24 Single-Ended Microphone Inputs (Input) - Single-ended stereo microphone inputs.
AIN2A,B
AIN1A,B 25,26
29,30 Line-Level Analog Inputs (Input) - Single-ended stereo line-level analog inputs.
AFILTA,B 27,28 Anti-alias Filter Connection (Output) - Anti-alias filter connection for the ADC inputs.
SPKR/HP 31 Speaker/Headphone Switch (Input) - Powers down the left and/or right channel of the speaker
and/or headphone outputs.
RESET 32 Reset (Input) - The device enters a low power mode when this pin is driven low.
VL 33 Dig ital Interface Power (Input) - Determines the required signal level for the serial audio inter-
face and host control po rt .
VD 34 Digital Power (Input) - Positive power for the internal digital section.
DGND 35 Digital Ground (Input) - Ground reference for the internal digital section.
SDOUT 36 Serial Audio Data Output (Output) - Output for two’s complement serial audio data.
MCLK 37 Master Clock (Input) - Clock source for the delta-sigma modulator s.
SCLK 38 Serial Clock (Input/Output) - Serial cloc k for the serial audio interface.
SDIN 39 Serial Audio Data Input (Input) - Input for two’s complement serial audio data.
LRCK 40 Left Right Clock (Input/Output) - Determines which channel, Left or Right, is currently active on
the serial audio data line.
GND/Thermal Pad - Ground reference for PWM power FETs and charge pump; thermal relief pad for optimized heat
dissipation.
Power
Supply Pin Name I/O Internal
Connections Driver Receiver
VL
RESET Input - - 1 .65 V - 3.47 V, with Hysteresis
SCL Input - - 1.65 V - 3.47 V, with Hysteresis
SDA Input/
Output - 1.65 V - 3.47 V, CMOS/Open
Drain 1.65 V - 3.47 V, with Hystere s is
MCLK Input - - 1.65 V - 3.47 V
LRCK Input/
Output Weak Pullup
(~1 M)1.65 V - 3.47 V, CMOS 1.65 V - 3.47 V
SCLK Input/
Output Weak Pullup
(~1 M)1.65 V - 3.47 V, CMOS 1.65 V - 3.47 V
SDOUT Output Weak Pullup
(~1 M)1.65 V - 3.47 V, CMOS
SDIN Input - - 1.65 V - 3.47 V
VA SPKR/HP Input - - 1.65 V - 2.63 V
VP
SPKR_OUTA+ Output - 1.6 V - 5.25 V Power MOSFET -
SPKR_OUTA- Output - 1.6 V - 5.25 V Power MOSFET -
SPKR_OUTB+ Output - 1.6 V - 5.25 V Power MOSFET -
SPKR_OUTB- Output - 1.6 V - 5.25 V Power MOSFET -
10 DS680F1
CS42L52
5/13/08
2. TYPICAL CONNECTION DIAGRAM
Note 4
Note 3
Note 2
Note 1
1 µF
+1.8 V to +2.5 V 0.1 µF
1 µF
DGND
VL
0.1 µF
+1. 8 V to + 3 .3 V
SCL
SDA
RESET
2 k
LRCK
Digital Audio
Processor
MCLK
SCLK
VD
MIC1-
AIN3A/MIC1A
Microphone 1
SDIN
SDOUT
CS42L52
2 k
MICBIAS
+1.8 V to +2 .5 V
HP/LINE_OUTB
HP/LINE_OUTA
AIN1A Left 1
1800 pF
1800 pF
100 k
100
AIN1B Right 1
*
*
RL
0.1 µF
VA
Headphone Out
Left & Right
Line Level Out
Left & Right
FLYP
FLYN
-VHPFILT
0.1 µF
51.1
0.022 µF
100 k
100
SPKR_OUTA+
SPKR_OUTA-
SPKR/HP
51.1
0.022 µF
MIC1+
AIN4A/MIC2A
MIC2+
AIN4B/MIC2B
Microphone 2
MIC2-
AIN3B/MIC1B
100 k
RL
100 k
1 µF
1 µF
0.1 µF
+VHP
1 µF
10 µF
VQ
AGND
* Capacitors must be C 0G or equivalent
150 pF
AFILTA
AFILTB
150 pF 1 µF
**
FILT+
1 µF
1 µF
1 µF
1 µF
* *Use low E SR ceram ic capacitors.
**
**
See Note 5
SPKR_OUTB+
SPKR_OUTB-
1 µF VP
VP
+1.6 V to
+5 V Stereo Speakers
AIN2A Left 2
1800 pF
1800 pF
100 k
100
AIN2B Right 2
*
*
100 k
100
1 µF
1 µF
0.1 µF
0.1 µF
Analog
Inp u t 1
Analog
Inp u t 2
10 µF
Mic-Level
Inputs
47 k
Notes:
1. Recomme nded values for the default charge pump switching
frequency. The required capacitance follows an inverse
relationship with the charge pump’s switching frequency . When
increasing the switching frequency, the capacitance may
decrease; when lowe ring the switching frequency, the
capacitance must increase .
2. Larger capacitance reduces the ripple on the internal
amplifier’s supply. This may reduce the distortion at higher
output power levels.
3. Additional bulk capacitance may be added to improve P S R R
at low frequencies.
4. These capacitors serve as a charge reservoir for the internal
switched capacitor ADC mod ulators. They are on ly needed
when the PGA (Programmab le Gain Am plifier) is bypassed.
5. Series resistance in the path of the power supplies must be
avoided. Any voltage drop on VH P w ill directly impact the
negative charge pump supply (-VH P FILT) and clip the audio
output.
6. The value of RL, a current-limiting resistor used with electret
condenser microphones , is dictated by the microphone
cartridge.
7. The negative terminal of the MICx inputs connects to the
ground pin of the microphone cartridge. Gain is applied only to
the p o s itiv e te rminal.
Note 6
Note 7
Note 7
Figure 1. Typical Connection Diagram
DS680F1 11
CS42L52
5/13/08
3. CHARACTERISTIC AND SPECIFICATIONS
RECOMMENDED OPERATING CONDITIONS
AGND=DGND=0 V, All voltages with respect to gr ound.
ABSOLUTE MAXIMUM RATINGS
AGND = DGND = 0 V; All voltages with respect to ground.
WARNING:Operation at or beyo nd these limits may result in permanent damage to the device. Normal operation
is not guaranteed at these extremes.
Notes: 1. Any pin except supplies. Transient currents of up to ±100 mA on the analog input pins will not cause
SCR latch-up.
2. The maximum over/unde r voltage is limited by the input current.
Parameters Symbol Min Max Units
DC Power Supply
Analog VA 1.65 2.63 V
Headphone Amplifier +VHP 1.65 2.63 V
Speaker Amplifier VP 1.60 5 .25 V
Digital VD 1.65 2.63 V
Serial/Control Port Interface VL 1.65 3.47 V
Ambient Temperature Commercial - CNZ
Automotive - DNZ TA-40
-40 +85
+105 °C
°C
Parameters Symbol Min Max Units
DC Power Supply Analog
Speaker
Digital
Serial/Control Port Interface
VA, VHP
VP
VD
VL
-0.3
-0.3
-0.3
-0.3
3.0
6.0
3.0
4.0
V
V
V
V
Input Current (Note 1) Iin 10mA
External Voltage Applied to Analog Input (Note 2) VIN AGND-0.3 VA+0.3 V
External Voltage Applied to Analog Output VIN -VHP - 0.3 +VHP + 0.3 V
External Voltage Applied to Digital Input (Note 2) VIND -0.3 VL+ 0.3 V
Ambient Operating Temperature (power applied) TA-50 +115 °C
Storage Temperature Tstg -65 +150 °C
12 DS680F1
CS42L52
5/13/08
ANALOG INPUT CHARACTERISTICS (COMMERCIAL - CNZ)
Test Conditions (unless otherwise specified): Input sine wave (relative to digital full scale): 1 kHz through passive input filter; All
Supplies = VA; TA = +25°C; Sample Frequency = 48 kHz; Measurement Bandwidth is 20 Hz to 20 kHz unless otherwise speci-
fied; “Required Initialization Settings” on page 37 written on power up.
3. Measured with DAC delivering full-scale output into specified load.
4. Measured between analog input and AGND.
VA = 2.5V VA = 1.8V
Parameters Min Typ Max Min Typ Max Unit
Analog In to ADC (PGA bypassed)
Dynamic Range A-weighted
unweighted 93
90 99
96 -
-90
87 96
93 -
-dB
dB
Total Harmonic Distortion + Noise -1 dBFS
-20 dBFS
-60 dBFS
-
-
-
-86
-76
-36
-80
-
-30
-
-
-
-84
-73
-33
-78
-
-27
dB
dB
dB
Analog In to PGA to ADC
Dynamic Range
PGA Setting: 0 dB A-weighted
unweighted 92
89 96
93 -
-89
86 95
92 -
-dB
dB
PGA Setting: +12 dB A-weighted
unweighted 85
82 91
88 -
-82
79 88
85 -
-dB
dB
Total Harmonic Distortion + Noise
PGA Setting: 0 dB -1 dBFS
-60 dBFS -
--88
-33 -82
-27 -
--86
-32 -80
-26 dB
dB
PGA Setting: +12 dB -1 dBFS - -85 -79 - -83 -77 dB
Analog In to MIC Pre-Amp (+16 dB) to PGA to ADC
Dynamic Range
PGA Setting: 0 dB A-weighted
unweighted -
-86
83 -
--
-83
80 -
-dB
dB
Total Harmonic Distortion + Noise
PGA Setting: 0 dB -1 dBFS - -76 - - -74 - dB
Analog In to MIC Pre-Amp (+32 dB) to PGA to ADC
Dynamic Range
PGA Setting: 0 dB A-weighted
unweighted -
-76
73 -
--
-74
71 -
-dB
dB
Total Harmonic Distortion + Noise
PGA Setting: 0 dB -2 dBFS - -74 - - -71 - dB
Other Characteristics
DC Accuracy
Interchannel Gain Misma tch - 0.2 - - 0.2 - dB
Gain Drift - ±100 - - ±100 - ppm/°C
Offset Error SDOUT Code with HPF On - 352 - - 352 - LSB
Input
Interchannel Isolation - 90 - - 90 - dB
HP Amp to Analog Input Isolation RL = 10 k
(Note 3) RL = 16
-
-100
70 -
--
-100
70 -
-dB
dB
Sp eaker Amp to Analog Input Iso lation - 60 - - 60 - dB
Full-scale Input Voltage ADC
PGA (0 dB)
PGA (+12 dB)
MIC (+16 dB)
MIC (+32 dB)
0.73•VA
0.73•VA 0.769•VA
0.770•VA
0.194•VA
0.115•VA
0.019•VA
0.83•VA
0.83•VA 0.73•VA
0.73•VA 0.769•VA
0.770•VA
0.194•VA
0.115•VA
0.019•VA
0.83•VA
0.83•VA Vpp
Vpp
Vpp
Vpp
Vpp
Input Impedance (Note 4) ADC
PGA
MIC
-
-
-
20
39
50
-
-
-
-
-
-
20
39
50
-
-
-
k
k
k
DS680F1 13
CS42L52
5/13/08
ANALOG INPUT CHARACTERISTICS (AUTOMOTIVE - DNZ) Test Conditions (unless
otherwise specified): Input sine wave (relative to full-scale ): 1 kHz through passive input filter; All Supplies = VA; TA = -40 to
+85°C; Sample Frequency = 48 kHz; Measurement Bandwidth is 20 Hz to 20 kHz unless otherwise specified; “Required Initial-
ization Settings” on page 37 written on power up. VA = 2.37 - 2.63 V VA = 1.65 - 1.89 V
Parameters Min Typ Max Min Typ Max Unit
Analog In to ADC
Dynamic Range A-weighted
unweighted 91
88 99
96 -
-88
85 96
93 -
-dB
dB
Total Harmonic Distortion + Noise -1 dBFS
-20 dBFS
-60 dBFS
-
-
-
-86
-76
-36
-78
-
-28
-
-
-
-84
-73
-33
-76
-
-25
dB
dB
dB
Analog In to PGA to ADC
Dynamic Range
PGA Setting: 0 dB A-weighted
unweighted 90
87 96
93 -
-87
84 95
92 -
-dB
dB
PGA Setting: +12 dB A-weighted
unweighted 83
80 91
88 -
-80
77 88
85 -
-dB
dB
Total Harmonic Distortion + Noise
PGA Setting: 0 dB -1 dBFS
-60 dBFS -
--88
-33 -80
-25 -
--86
-32 -78
-24 dB
dB
PGA Setting: +12 dB -1 dBFS - -85 -77 - -83 -75 dB
Analog In to MIC Pre-Amp (+16 dB) to PGA to ADC
Dynamic Range
PGA Setting: 0 dB A-weighted
unweighted -
-86
83 -
--
-83
80 -
-dB
dB
Total Harmonic Distortion + Noise
PGA Setting: 0 dB -1 dBFS - -76 - - -74 - dB
Analog In to MIC Pre-Amp (+32 dB) to PGA to ADC
Dynamic Range
PGA Setting: 0 dB A-weighted
unweighted -
-76
73 -
--
-74
71 -
-dB
dB
Total Harmonic Distortion + Noise
PGA Setting: 0 dB -2 dBFS - -74 - - -71 - dB
Other Characteristics
DC Accuracy
Interchannel Gain Mismatch - 0.1 - - 0.1 - dB
Gain Drift - ±100 - - ±100 - ppm/°C
Offset Error SDOUT Code with HPF On - 352 - - 352 - LSB
Input
Interchannel Isolation - 90 - - 9 0 - dB
HP Amp to Analog Input Isolation RL = 10 k
(Note 3) RL = 16
-
-100
70 -
--
-100
70 -
-dB
dB
Speaker Amp to Analog Input Isolation - 60 - - 60 - dB
Full-scale Input Vol tage ADC
PGA (0 dB)
PGA (+12 dB)
MIC (+16 dB)
MIC (+32 dB)
0.73•VA
0.73•VA
-
-
-
0.769•VA
0.770•VA
0.194•VA
0.115•VA
0.019•VA
0.83•VA
0.83•VA
-
-
-
0.73•VA
0.73•VA
-
-
-
0.769•VA
0.770•VA
0.194•VA
0.115•VA
0.019•VA
0.83•VA
0.83•VA
-
-
-
Vpp
Vpp
Vpp
Vpp
Vpp
Input Impedance (Note 4) ADC
PGA
MIC
18
40
50
-
-
-
-
-
-
18
40
50
-
-
-
-
-
-
k
k
k
14 DS680F1
CS42L52
5/13/08
ADC DIGITAL FILTER CHARACTERISTICS
5. Response is clock-dependent and will scale with F s. Note that the response plots (Figures 26 to 29 on
page 78) have been normalized to Fs and can be de-normalized by multiplying the X-axis scale by Fs.
HPF parameters are for Fs = 48 kHz.
Parameters (Note 5) Min Typ Max Unit
Passband (Frequency Response) to -0.1 dB corner 0 - 0.4948 Fs
Passband Ripple -0.09 - 0.17 dB
Stopband 0.6 - - Fs
Stopband Attenuation 33 - - dB
Total Group Delay -7.6/Fs- s
High-Pass Filter Characteristics (48 kHz Fs)
Frequency Response -3.0 dB
-0.13 dB -
-3.6
24.2 -
-Hz
Hz
Phase Deviation @ 20 Hz - 10 - Deg
Passband Ripple - - 0.17 dB
Filter Settling Time -10
5/Fs 0 s
DS680F1 15
CS42L52
5/13/08
ANALOG OUTPUT CHARACTERISTICS (COMMERCIAL - CNZ)
Test conditions (unless otherwise specified): Input test signal is a full-scale 997 Hz sine wave; All Supplies = VA; TA = +25°C;
Sample Frequency = 48 kHz; Measurement bandwidth is 20 Hz to 20 kHz; Test load RL = 10 kΩ, CL = 10 pF for the line output
(see Figure 2); Test load RL = 16 Ω, CL = 10 pF (see Figure 2) for the headphone output; HP_GAIN[2:0] = 011; “Required Initial-
ization Settings” on page 37 written on power up.
6. One-half LSB of trian gular PDF dither is added to data.
7. Full-scale output voltage and power is determined by the gain setting, G, in register “Headphone Analog
Gain” on pa ge 51. High gain settings at certain VA and VHP supply levels may cause clipping when the
audio signal approaches full-scale, maximum power output, as shown in Figures 22 - 25 on page 75.
VA = 2.5 V VA = 1.8 V
Parameters (Note 6) Min Typ Max Min Typ Max Unit
RL = 10 k
Dynamic Range
18- to 24-Bit A-weighted
unweighted
16-Bit A-weighted
unweighted
92
89
-
-
98
95
96
93
-
-
-
-
89
86
-
-
95
92
93
90
-
-
-
-
dB
dB
dB
dB
Total Harmonic Distortion + Noise
18- to 24-Bit 0 dB
-20 dB
-60 dB
16-Bit 0 dB
-20 dB
-60 dB
-
-
-
-
-
-
-86
-75
-35
-86
-73
-33
-80
-
-29
-
-
-
-
-
-
-
-
-
-88
-72
-32
-88
-70
-30
-82
-
-26
-
-
-
dB
dB
dB
dB
dB
dB
RL = 16
Dynamic Range
18- to 24-Bit A-weighted
unweighted
16-Bit A-weighted
unweighted
92
89
-
-
98
95
96
93
-
-
-
-
89
86
-
-
95
92
93
90
-
-
-
-
dB
dB
dB
dB
Total Harmonic Distortion + Noise
18- to 24-Bit 0 dB
-20 dB
-60 dB
16-Bit 0 dB
-20 dB
-60 dB
-
-
-
-
-
-
-75
-75
-35
-75
-73
-33
-69
-
-29
-
-
-
-
-
-
-
-
-
-75
-72
-32
-75
-70
-30
-69
-
-26
-
-
-
dB
dB
dB
dB
dB
dB
Other Characteristics for RL = 16
or 10 k
Output Parameters Modulation Index (MI)
(Note 7) Analog Gain Multiplier (G) -
-0.6787
0.6047 -
--
-0.6787
0.6047 -
-
Full-scale Output Voltage (2•G•MI•VA) (Note 7) Refer to Table “Line Output Voltage Level Characteris-
tics” on page 20 Vpp
Full-scale Output Power (Note 7) Refer to Table “Headphone Output Power Characteristics” on
page 19
Interchannel Isolation (1 kHz) 16
10 k
-
-80
95 -
--
-80
93 -
-dB
dB
Speaker Amp to HP Amp Isolation - 80 - - 80 - dB
Interchannel Gain Mismatch - 0.1 0.25 - 0.1 0.25 dB
Gain Drift - ±100 - - ±100 - ppm/°C
AC Load Resistance (RL)(Note 8) 16 - - 16 - -
Load Capacitance (CL)(Note 8) - - 150 - - 150 pF
16 DS680F1
CS42L52
5/13/08
ANALOG OUTPUT CHARACTERISTICS (AUTOMOTIVE - DNZ)
Test conditions (unless otherwise specified): Input test signal is a full-scale 997 Hz sine wave; All Supplies = VA; TA = -40 to
+85°C; Sample Frequency = 48 kHz and 96 kHz; Measurement bandwidth is 20 Hz to 20 kHz; Test load RL = 10 kΩ, CL = 10 pF
for the line output (see Figure 2); Test load RL = 16 Ω, CL =10pF (see Figure 2) for the headphone ou tput;
HPGAIN[2:0] = 011. “Required Initialization Settings” on page 37 written on power up.
8. See Figure 2. RL and CL reflect the recommended minimum resistance and maximum capacitance re-
quired for the internal op-amp's stability and signal integrity. In this circuit topology, CL will effectively
move the band-limiting pole of the amp in the output stage. Increasing this value beyond the recom-
mended 150 pF can cause the internal op-amp to become unstable.
VA = 2.37 - 2.63 V VA = 1.65 - 1.89 V
Parameters (Note 6) Min Typ Max Min Typ Max Unit
RL = 10 k
Dynamic Range
18- to 24-Bit A-weighted
unweighted
16-Bit A-weighted
unweighted
90
87
-
-
98
95
96
93
-
-
-
-
87
84
-
-
95
92
93
90
-
-
-
-
dB
dB
dB
dB
Total Harmonic Distortion + Noise
18- to 24-Bit 0 dB
-20 dB
-60 dB
16-Bit 0 dB
-20 dB
-60 dB
-
-
-
-
-
-
-86
-75
-35
-86
-73
-33
-78
-
-27
-
-
-
-
-
-
-
-
-
-88
-72
-32
-88
-70
-30
-80
-
-24
-
-
-
dB
dB
dB
dB
dB
dB
RL = 16
Dynamic Range
18- to 24-Bit A-weighted
unweighted
16-Bit A-weighted
unweighted
90
87
-
-
98
95
96
93
-
-
-
-
87
84
-
-
95
92
93
90
-
-
-
-
dB
dB
dB
dB
Total Harmonic Distortion + Noise
18- to 24-Bit 0 dB
-20 dB
-60 dB
16-Bit 0 dB
-20 dB
-60 dB
-
-
-
-
-
-
-75
-75
-35
-75
-73
-33
-67
-
-27
-
-
-
-
-
-
-
-
-
-75
-72
-32
-75
-70
-30
-67
-
-24
-
-
-
dB
dB
dB
dB
dB
dB
Other Characteristics for RL = 16
or 10 k
Output Parameters Modulation Index (MI)
(Note 7) Analog Gain Multiplier (G) -
-0.6787
0.6047 -
--
-0.6787
0.6047 -
-
Full-scale Output Voltage (2•G•MI•VA) (Note 7) Refer to the table in “Line Output Voltage Level Charac-
teristics” on page 20 Vpp
Full-scale Output Power (Note 7) Refer to the table in “Headphone Output Power Characteristics” on
page 19
Interchannel Isolation (1 kHz) 16
10 k
-
-80
95 -
--
-80
93 -
-dB
dB
Speaker Amp to HP Amp Isolation - 80 - - 80 - dB
Interchannel Gain Mismatch - 0.1 0.25 - 0.1 0.25 dB
Gain Drift - ±100 - - ±100 - ppm/°C
AC Load Resistance (RL)(Note 8) 16 - - 16 - -
Load Capacitance (CL)(Note 8) - - 150 - - 150 pF
DS680F1 17
CS42L52
5/13/08
ANALOG PASSTHROUGH CHARACTERISTICS
Test Conditions (unless otherwise specified): Input sine wave (relative to full-scale): 1 kHz through passive input filter; PGA and
HP/Line Gain = 0 dB; All Supplies = VA; T A = +25°C; Sample Frequency = 48 kHz; Measurement Bandwidth is 20 Hz to 20 kHz;
“Required Initialization Settings” on page 37 written on power up.
PWM OUTPUT CHARACTERISTICS
Test conditions (unless otherwise specified): Input test signal is a full scale 997 Hz signal; MCLK = 12.2880 MHz; Measurement
Bandwidth is 20 Hz to 20 kHz; Sample Frequency = 48 kHz; Test load RL = 8 for stereo full-bridge, RL = 4 for mono parallel
full-bridge; VD = VL = VA = VHP = 1.8V; PWM Modulation Index of 0.85; PWM Switch Rate = 384 kHz; “Required Initialization
Settings” on page 37 written on power up. (Note 9)
VA = 2.5 V VA = 1.8 V
Parameters Min Typ Max Min Typ Max Unit
Analog In to HP/Line Amp (ADC is powered down)
RL = 10 k
Dynamic Range A-weighted
unweighted -
--96
-93 -
--
--94
-91 -
-dB
dB
Total Harmonic Distortion + Noise -1 dBFS
-20 dBFS
-60 dBFS
-
-
-
-70
-73
-33
-
-
-
-
-
-
-70
-71
-31
-
-
-
dB
dB
dB
Full-scale Input Voltage - 0.91•VA - - 0.91•VA - Vpp
Full-scale Output Voltage - 0.84•VA - - 0.84•VA - Vpp
Passband Ripple - 0/-0.3 - - 0/-0.3 - dB
RL = 16
Dynamic Range A-weighted
unweighted -
--96
-93 -
--
--94
-91 -
-dB
dB
Total Harmonic Distortion + Noise -1 dBFS
-20 dBFS
-60 dBFS
-
-
-
-70
-73
-33
-
-
-
-
-
-
-70
-71
-31
-
-
-
dB
dB
dB
Full-scale Input Voltage - 0.91•VA - - 0.91•VA - Vpp
Full-scale Output Voltage - 0.84•VA - - 0.84•VA - Vpp
Output Power - 32 - - 17 - mW
Passband Ripple - 0/-0.3 - - 0/-0.3 - dB
Parameters (Note 10) Symbol Conditions Min Typ Max Units
VP = 5.0 V
Power Output per Channel PO
Stereo Full-Bridge THD+N < 10%
THD+N < 1% -
-1.00
0.80 -
-Wrms
Wrms
Mono Parallel Full-Bridge THD+N < 10%
THD+N < 1% -
-1.90
1.50 -
-Wrms
Wrms
Total Harmonic Distortion + Noise THD+N
Stereo Full-Bridge PO = 0 dBFS = 0.8W - 0.52 - %
Mono Parallel Full-Bridge PO = -3 dBFS = 0.75 W
PO = 0 dBFS = 1.5 W -
-0.10
0.50 -
-%
%
Dynamic Range DR
Stereo Full-Bridge PO = -60 dBFS, A-Weighted
PO = -60 dBFS, Unweighted -
-91
88 -
-dB
dB
Mono Parallel Full-Bridge PO = -60 dBFS, A-Weighted
PO = -60 dBFS, Unweighted -
-91
88 -
-dB
dB
18 DS680F1
CS42L52
5/13/08
9. The PWM driver should be used in captive speaker systems only.
10. Optimal PWM performance is achieved when MCLK > 12 MHz.
VP = 3.7 V
Power Output per Channel PO
Stereo Full-Bridge THD+N < 10%
THD+N < 1% -
-0.55
0.45 -
-Wrms
Wrms
Mono Parallel Full-Bridge THD+N < 10%
THD+N < 1% -
-1.00
0.84 -
-Wrms
Wrms
Total Harmonic Distortion + Noise THD+N
Stereo Full-Bridge PO = 0 dBFS = 0.43 W - 0.54 - %
Mono Parallel Full-Bridge PO = -3 dBFS = 0.41 W
PO = 0 d BFS = 0.81 W -
-0.09
0.45 -
-%
%
Dynamic Range DR
Stereo Full-Bridge PO = -60 dBFS, A-Weighted
PO = -60 dBFS, Unweighted -
-91
88 -
-dB
dB
Mono Parallel Full-Bridge PO = -60 dBFS, A-Weighted
PO = -60 dBFS, Unweighted -
-95
92 -
-dB
dB
VP =2.5 V
Power Output per Channel PO
Stereo Full-Bridge THD+N < 10%
THD+N < 1% -
-0.23
0.19 -
-Wrms
Wrms
Mono Parallel Full-Bridge THD+N < 10%
THD+N < 1% -
-0.44
0.35 -
-Wrms
Wrms
Total Harmonic Distortion + Noise THD+N
Stereo Full-Bridge PO = 0 dBFS = 0.18 W - 0.50 - %
Mono Parallel Full-Bridge PO = -3 dBFS = 0.17 W
PO = 0 d BFS = 0.35 W -
-0.08
0.43 -
-%
%
Dynamic Range DR
Stereo Full-Bridge PO = -60 dBFS, A-Weighted
PO = -60 dBFS, Unweighted -
-91
88 -
-dB
dB
Mono Parallel Full-Bridge PO = -60 dBFS, A-Weighted
PO = -60 dBFS, Unweighted -
-94
91 -
-dB
dB
MOSFET On Resistance RDS(ON) VP = 5.0V, Id = 0.5 A - 600 - m
MOSFET On Resistance RDS(ON) VP = 3.7V, Id = 0.5 A - 640 - m
MOSFET On Resistance RDS(ON) VP = 2.5V, Id = 0.5 A - 760 - m
Efficiency ηVP = 5.0 V, PO = 2 x 0.8 W, RL = 8 -81-%
Output Operating Peak Current IPC --1.5A
VP Input Current During Reset IVP RESET, pin 32, is held low -0.85.0µA
Parameters (Note 10) Symbol Conditions Min Typ Max Units
DS680F1 19
CS42L52
5/13/08
HEADPHONE OUTPUT POWER CHARACTERISTICS
Test conditions (unless otherwise specified): Input test signal is a full-scale 997 Hz sine wave; Sample Fr equency = 48 kHz;
Measurement Bandwidth is 20 Hz to 20 kHz; Test load RL = 16 Ω, CL = 10 pF (see Figure 2); “Required Initi alization Settings”
on page 37 written on power up.
11. VHP settings lower than VA reduces the headroom of the headphone amplifier. As a result, the DAC
may not achieve the full THD+N performance at full-scale output voltage and power.
Parameters VA = 2.5V
Min Typ Max VA = 1.8V
Min Typ Max Unit
AOUTx Power Into RL = 16
HP_GAIN[2:0] Analog
Gain (G) VHP
000 0.3959 1.8 V - 14 - - 7 - mWrms
2.5 V - 14 - - 7 - mWrms
001 0.4571 1.8 V - 19 - - 10 - mWrms
2.5 V - 19 - - 10 - mWrms
010 0.5111 1.8 V - 23 - - 12 - mWrms
2.5 V - 23 - - 12 - mWrms
011 (default) 0.6047 1.8 V (Note 11) -17 -mW
rms
2.5 V - 32 - - 17 - mWrms
100 0.7099 1.8 V (Note 11) -23 -mW
rms
2.5 V - 44 - - 23 - mWrms
101 0.8399 1.8 V (Note 7), Figure 22 on page 74 mWrms
2.5 V -32 -mW
rms
110 1.0000 1.8 V (Note 7, 11) See Figures 22 and 23 on page 74 mWrms
2.5 V mWrms
111 1.1430 1.8 V mWrms
2.5 V mWrms
AOUTx
AGND
RL
CL
0.022 µF
51
Figure 2. Headphone Output Test Load
20 DS680F1
CS42L52
5/13/08
LINE OUTPUT VOLTAGE LEVEL CHARACTERISTICS
Test conditions (unless otherwise specified): Input test signal is a full-scale 997 Hz sine wave; measurement bandwidth is 20 Hz
to 20 kHz; Sample Frequency = 48 kHz; Test load RL = 10 kΩ, CL = 10 pF (see Figure 2); “Required Initialization Setting s” on
page 37 written on power up.
COMBINED DAC INTERPOLATION & ON-CHIP ANALOG FILTER RESPONSE
12. Response is clock dependent and will scale with Fs. Note th at the r esponse plots (Figures 30 and 33 on
page 78) have been normalized to Fs and can be de-nor malized by multiplying the X-axis scale by Fs.
13. Measurement Bandwidth is from Stopband to 3 Fs.
Parameters VA = 2.5V
Min Typ Max VA = 1.8V
Min Typ Max Unit
AOUTx Voltage Into RL = 10 k
HP_GAIN[2:0] Analog
Gain (G) VHP
000 0.3959 1.8 V - 1.34 - - 0.97 - Vpp
2.5 V - 1.34 - - 0.97 - Vpp
001 0.4571 1.8 V - 1.55 - - 1.12 - Vpp
2.5 V - 1.55 - - 1.12 - Vpp
010 0.5111 1.8 V - 1.73 - - 1.25 - Vpp
2.5 V - 1.73 - - 1.25 - Vpp
011 (default) 0.6047 1.8 V - 2.05 - 1.41 1.48 1.55 Vpp
2.5 V 1.95 2.05 2.15 - 1.48 - Vpp
100 0.7099 1.8 V - 2.41 - - 1.73 - Vpp
2.5 V - 2.41 - - 1.73 - Vpp
101 0.8399 1.8 V - 2.85 - 2.05 Vpp
2.5 V - 2.85 - - 2.05 - Vpp
110 1.0000 1.8 V - 3.39 - - 2.44 - Vpp
2.5 V - 3.39 - - 2.44 - Vpp
111 1.1430 1.8 V (See (Note 11) -2.79-V
pp
2.5 V - 3.88 - - 2.79 - Vpp
Parameters (Note 12) Min Typ Max Unit
Frequency Response 10 Hz to 20 kHz -0.01 - +0.08 dB
Passband to -0.05 dB corner
to -3 dB corner 0
0-
-0.4780
0.4996 Fs
Fs
StopBand 0.5465 - - Fs
St opBand Attenuation (Note 13) 50 - - dB
Group Delay - 9/Fs - s
De-emphasis Error Fs = 32 kHz
Fs = 44.1 kHz
Fs = 48 kHz
-
-
-
-
-
-
+1.5/+0
+0.05/-0.25
-0.2/-0.4
dB
dB
dB
DS680F1 21
CS42L52
5/13/08
SWITCHING SPECIFICATIONS - SERIAL PORT
Inputs: Logic 0 = DGND, Logic 1 = VL, SDOUT CLOAD = 15 pF.
14. After powering up the CS42L52, RESET should be held low after the power supplies and clocks are
settled.
15. See “Example System Clock Frequen cies” on page 76 for typical MCLK frequencies.
Parameters Symbol Min Max Units
RESET pin Low Pulse Width (Note 14) 1-ms
MCLK Frequency (Note 15) (See “Serial Port Clock-
ing” on page 34)MHz
MCLK Duty Cycle 45 55 %
Slave Mode
Input Sample Rate (LRCK) Fs(See “Serial Port Clock-
ing” on page 34)kHz
LRCK Duty Cycle 45 55 %
SCLK Frequency 1/tP- 64•FsHz
SCLK Duty Cycle 45 55 %
LRCK Setup Time Before SCLK Rising Edge ts(LK-SK) 40 - ns
LRCK Edge to SDOUT MSB Output Delay td(MSB) -52ns
SDOUT Setup Time Before SCLK Rising Edge ts(SDO-SK) 20 - ns
SDOUT Hold Time After SCLK Rising Edge th(SK-SDO) 30 - ns
SDIN Setup Time Before SCLK Rising Edge ts(SD-SK) 20 - ns
SDIN Hold Time After SCLK Rising Edge th20 - ns
Master Mode
Output Sample Rate (LRCK) All Sp eed Modes Fs(See “Serial Port Clock-
ing” on page 34)Hz
LRCK Duty Cycle 45 55 %
SCLK Frequency SCLK=MCLK mode 1/tP- 12.0000 MHz
MCLK=12.0000 MHz 1/tP- 68•FsHz
all other modes 1/tP- 64•FsHz
SCLK Duty Cycle 45 55 %
LRCK Edge to SDOUT MSB Output Delay td(MSB) -52ns
SDOUT Setup Time Before SCLK Rising Edge ts(SDO-SK) 20 - ns
SDOUT Hold Time After SCLK Rising Edge th(SK-SDO) 30 - ns
SDIN Setup Time Before SCLK Rising Edge ts(SD-SK) 20 - ns
SDIN Hold Time After SCLK Rising Edge th20 - ns
th(SK-SDO)
//
//
//
//
//
//
//
//
ts(SD-SK)
MSB
MSB
MSB-1
MSB-1
LRCK
SCLK
SDOUT
SDIN
td(MSB)
ts(LK-SK) tP
th
ts(SDO-SK)
Figure 3. Serial Audio Interface Timing
22 DS680F1
CS42L52
5/13/08
SWITCHING SPECIFICATIONS - I²C CONTROL PORT
Inputs: Logic 0 = DGND, Logic 1 = VL, SDA CL=30pF.
16. Data must be held for sufficient time to bridge the transition time, tfc, of SCL.
Parameters Symbol Min Max Unit
SCL Clock Frequency fscl - 100 kHz
RESET Rising Edge to Start tirs 550 - ns
Bus Free Time Between Transmissions tbuf 4.7 - µs
Start Condition Hold Time (prior to first clock pulse) thdst 4.0 - µs
Clock Low time tlow 4.7 - µs
Clock High Time thigh 4.0 - µs
Setup Time for Repeated Start Condition tsust 4.7 - µs
SDA Hold Time from SCL Falling (Note 16) thdd 0-µs
SDA Setup time to SCL Rising tsud 250 - ns
Rise Time of SCL and SDA trc -1µs
Fall T ime SCL and SDA tfc - 300 ns
Setup Time for Stop Condition tsusp 4.7 - µs
Acknowledge Delay from SCL Fallin g tack 300 1000 ns
tbuf thdst thdst
tlow tr
tf
thdd
thigh
tsud tsust
tsusp
Stop Start Start Stop
Repeated
SDA
SCL
tirs
RST
Figure 4. Control Port Timing - I²C
DS680F1 23
CS42L52
5/13/08
DC ELECTRICAL CHARACTERISTICS
AGND = 0 V; All voltages with respect to ground.
17. Valid with the recommended capacitor values on FILT+ and VQ. Increasing the c apacitance will also
increase the PSRR.
18. The PGA is biased with VQ, created from a resistor divider from the VA supply. Increasing the capaci-
tance on VQ will also increase the PSRR at low frequencies. A 10 µF capacitor on VQ improves the
PSRR to 42 dB.
DIGITAL INTERFACE SPECIFICATIONS & CHARACTERISTICS
19. See “I/O Pin Character istic s” on pa ge 9 for serial and control port power rails.
Parameters Min Typ Max Units
VQ Characteristics
Nominal Voltage
Output Impedance
DC Current Source/Sink
-
-
-
0.5•VA
23
-
-
-
1
V
k
µA
MIC BIAS Characteristics
Nominal Voltage BIASLVL[2:0] = 000
BIASLVL[2:0] = 001
BIASLVL[2:0] = 010
BIASLVL[2:0] = 011
BIASLVL[2:0] = 100
BIASLVL[2:0] = 101
DC Output Current
Power Supply Rejection Ratio (PSRR) 1 kHz
-
-
-
-
-
-
-
-
0.5•VA
0.6•VA
0.7•VA
0.8•VA
0.83•VA
0.91•VA
-
50
-
-
-
-
-
-
1
-
V
V
V
V
V
V
mA
dB
Power Supply Rejection Ratio Characteristics
PSRR @1 kHz (Note 17) PGA to ADC
ADC
DAC (HP & Line Amps)
-
-
-
44
60
60
-
-
-
dB
dB
dB
PSRR @60 Hz (Note 17) PGA to ADC(Note 18)
ADC
DAC (HP & Line Amps)
-
-
-
22
42
60
-
-
-
dB
dB
dB
PSRR @217 Hz Full-Bridge PWM Outputs - 56 - dB
Parameters (Note 19) Symbol Min Max Units
Input Leakage Current Iin 10µA
Input Capacitance -10pF
1.8 V - 3.3 V Logic
High-Level Output Voltage (IOH = -100 µA) VOH VL - 0.2 - V
Low-Level Output Voltage (IOL = 100 µA) VOL -0.2V
High-Level Input Voltage VL = 1.65 V
VL = 1.8 V
VL = 2.0 V
VL > 2.0 V
VIH
0.85•VL
0.76•VL
0.68•VL
0.65•VL
-
-
-
-
V
V
V
V
Low-Level Input Voltage VIL -0.30VLV
24 DS680F1
CS42L52
5/13/08
POWER CONSUMPTION See (Note 20).
20. Unless otherwise noted, test conditions are as follows: All zeros input, slave mode, sample
rate = 48 kHz; No load. Digital (VD) and logic (VL) supply current w ill vary depending on speed mode
and master/slave operation. “Required Initialization Settings” on page 37 written on power up.
21. RESET pin 25 held LO, all clocks and data lines are held LO.
22. RESET pin 25 held HI, all clocks and data lines are held HI.
23. VL current will slightly increase in master mode.
Power Ctl. Registers Typical Current (mA)
Operation 02h 03h 04h
PDN_PGAB
PDN_PGAA
PDN_ADCB
PDN_ADCA
PDN
PDN_MICB
PDN_MICA
PDN_MICBIAS
PDN_HPB[1:0]
PDN_HPA[1:0]
PDN_SPKB[1:0]
PDN_SPKA[1:0]
V
iVHP iVA iVD iVL
VL=3.3V
(Note 23)
iVP
VP=3.7V Total
Power
(mWrms)
1Off (Note 21) xxxxxxxxx x x x 1.8 0.00 0.00 0.00 0.00 0.00 0.00
2.5 0.00 0.00 0.00 0.00
2Standby (Note 22) xxxx1xxxx x x x 1.8 0.00 0.00 0.01 0.00 0.00 0.02
2.5 0.00 0.00 0.02 0.05
3Mono Record ADC11100111111111111.8 0.00 1.67 2.32 0.03 0.00 7.24
2.5 0.00 1.87 3.72 14.05
PGA to ADC10100111111111111.8 0.00 2.1 2.31 0.03 0.00 7.99
2.5 0.00 2.3 3.72 15.13
MIC to PGA to ADC
(with Bias) 10100100111111111.8 0.00 3.48 2.32 0.03 0.00 10.49
2.5 0.00 3.71 3.72 18.65
MIC to PGA to ADC
(no Bias) 10100101111111111.8 0.00 3.15 2.32 0.03 0.00 9.90
2.5 0.00 3.37 3.73 17.83
4Stereo Record ADC11000111111111111.8 0.00 2.31 2.37 0.03 0.00 8.48
2.5 0.00 2.53 3.82 15.95
PGA to ADC00000111111111111.8 0.00 3.18 2.37 0.03 0.00 10.04
2.5 0.00 3.42 3.81 18.15
MIC to PGA to ADC
(no Bias) 00000001111111111.8 0.00 5.32 2.37 0.03 0.00 13.90
2.5 0.00 5.57 3.81 23.53
5Mono Playback to Headphone 11110111101111111.8 1.59 1.99 2.72 0.01 0.00 11.36
2.5 2.07 2.62 4.27 22.43
6 Mono Playback to Speaker 11110111111110101.8 0.00 0.20 4.42 0.01 1.00 12.05
2.5 0.00 0.22 6.77 21.21
7 Stereo Playback to Headphone 11110111101011111.8 2.77 2.00 2.91 0.01 0.00 13.84
2.5 3.27 2.63 4.28 25.48
8Stereo Playback to Speaker 11110111111110101.8 0.00 0.20 4.38 0.01 1.00 11.98
2.5 0.00 0.22 6.80 21.28
9Stereo Passthrough to Head-
phone 11110111101011111.8 2.79 1.91 1.06 0.01 0.00 10.39
2.5 3.18 2.14 1.81 17.85
10 Mono Record & Playback
PGA in (no MIC) to Mono HP 10100111111011111.8 1.77 3.95 4.28 0.03 0.00 18.05
2.5 2.13 4.77 6.63 33.90
11 Phone Monitor
MIC (w/bias) in to Mono Out 10100100111011111.8 1.76 5.33 4.28 0.03 0.00 20.52
2.5 2.15 6.19 6.69 37.65
12 Stereo Record & Playback
PGA in (no MIC) to St. HP Out 00000111101011111.8 2.76 5.05 4.64 0.03 0.00 22.46
2.5 3.21 5.90 7.17 40.78
13 Stereo Rec. & Full Playback
PGA (no MIC) to St. HP & SPK 00000111101010101.8 3.49 5.24 7.20 0.03 1.00 32.47
2.5 3.95 6.10 10.46 55.07
DS680F1 25
CS42L52
5/13/08
4. APPLICATIONS
4.1 Overview
4.1.1 Basic Architecture
The CS42L52 is a highly integrated, low-power, 24-bit audio CODEC comprised of a stereo analog-to-
digital converte r (ADC), a stereo digital-to-analog converter ( DAC), a digital PWM modulator and two full-
bridge power back-ends. The ADC and DAC are designed using multi-bit delta-sigma techniques - the
DAC operates at an oversampling ratio of 128Fs and the ADC operates at 64Fs, where Fs is e qual to the
system sample rate.
The different clock rates maximize power savings while maintaining high performance. The PWM modu-
lator operates at a fixed frequency of 384 kHz. The power FETs are configured for either ster eo full-bridge
or mono parallel full-brid ge output. The CODEC oper ates in one of four sample r ate speed modes: Quar-
ter, Half, Single, and Doub le. It accepts and is capabl e of generatin g serial port clocks (SCLK, LRCK) de-
rived from an input Master Clo ck (M CLK).
4.1.2 Line & MIC Inputs
The analog input portion of the CODEC allows selection from and configuration of multiple combinations
of stereo and microphone (MIC) sources. Eight line inputs with an option for two balanced MIC inputs, a
MIC bias output, and a Programmable Gain Amplifier (PGA) comprise the analog front-end.
4.1.3 Line & Headphone Outputs
The analog output portion of the CODEC includes a headphone amplifier capable of driving headphone
and line-level loads. An on-chip charge pump creates a negative headphone supply allowing a full-scale
output swing centered around ground. This eliminates the need for large DC-Blocking capacitors and al-
lows the amplifier to deliver more power to headphone loads at lower supply voltages.
4.1.4 Speaker Driver Outputs
The Class D power amp lifiers drive 8 ohm (stere o) and 4 ohm ( mono) speakers dir ectly, without the need
for an external filter. The power MOSFETS are powered directly from a battery eliminating the efficiency
loss associated with an external regulator. Batter y level monitoring and compensation mainta ins a steady
output as battery levels fall. NOTE: The CS42L52 should only be used in captive speaker systems where
the outputs are permanently tied to the speaker terminals.
4.1.5 Fixed Function DSP Engine
The fixed-function digital signal processing engine processes both the PCM serial input data and ADC
output data, allowing a mix between the two. Independent vol ume control, left/right channel swaps, mono
mixes, tone control, and limiting functions also comprise the DSP engine.
4.1.6 Beep Generator
The beep generator delivers tones at select frequencies across approxim ately two o ctave major scales.
With independent volume control, beeps may be configure d to occur con tinuou sly, per iodi cally, or at sin-
gle time intervals.
4.1.7 Power Management
Three control registers provide independent power-down control of the ADC, DAC, PGA, MIC pre-amp,
MIC bias, Headphone, a nd Speaker outputs, allowing op eration in select applications with minimal power
consumption.
26 DS680F1
CS42L52
5/13/08
4.2 Analog Inputs
Referenced Control Register Location
Analog Front End
PDN_PGAx .........................
PGAxVOL[5:0].....................
ADCB=A..............................
ANLGSFTx..........................
ANLGZCx............................
ADCxSEL[2:0].....................
PGAxSEL5,4,3,2,1..............
BIASLVL[2:0].......................
PDN_BIAS...........................
PDN_ADCx .........................
PDN_CHRG........................
INV_ADCx...........................
HPFRZx...............................
HPFx ...................................
HPFx_CF[1:0]......................
ADCxOVFL..........................
Digital Volume
ADCxMUTE.........................
ADCxVOL............................
ALCx....................................
ALCxSRDIS.........................
ALCxZCDIS.........................
ALCARATE[5:0]...................
ALCRRATE[5:0] ..................
MAX[2:0]..............................
MIN[2:0]...............................
NGALL.................................
NG.......................................
THRESH[3:0].......................
NGDELAY[1:0] ....................
Miscellaneous
DIGSUM[1:0].......................
DIGMUX..............................
“Power Down PGAx” on page 42
“PGAx Volume” on page 56
“Analog Front-End Volume Setting B=A” on page 50
“Ch. x Analog Soft Ramp” on page 49
“Ch. x Analog Zero Cross” on page 49
“ADC Input Select” on page 48
“PGA Input Mapping” on page 49
“MIC Bias Level” on page 48
“Power Down MIC Bias” on page 43
“Power Down ADCx” on page 43
“Power Down ADC Charge Pump” on page 42
“Invert ADC Signal Polarity” on page 51
“ADCx High-Pass Filter Freeze” on page 49
“ADCx High-Pass Filter” on page 49
“HPF x Corner Frequency” on page 50
“ADCx Overflow (Read Only)” on page 71
“ADC Mute” on page 51
“ADCx Volume” on page 57
“ALCx Enable” on page 67
“ALCx Soft Ramp Disable” on page 55
“ALCx Zero Cross Disable” on page 56
“ALC Attack Rate” on page 67
“ALC Release Rate” on page 68
“ALC Maximum Threshold” on page 68
“ALC Minimum Threshold” on page 69
“Noise Gate All Channels” on page 69
“Noise Gate Enable” on page 69
“Noise Gate Threshold and Boost” on page 70
“Noise Gate Delay Timing” on page 70
“Digital Sum” on page 50
“Digital MUX” on page 50
`
AIN4A/ MIC1+/
MIC2A
G ain A d jus t
ALC
PDN_PGAA
PGAAVOL[5:0]
ADCB=A
ANLGSFTA
ANLGZCA
HPFRZA
HPFA
HPFA_CF[1:0]
PDN_ADCA
INV_ADCA
PDN_CHRG
ALCB
ALCBSRDIS
ALCBZCDIS
MICBIAS
BIASLVL[2:0]
PDN_BIAS
PCM Serial Interface
TO D SP Engine
ALCARATE[5:0]
ALCRRATE[5:0]
MAX[2:0]
MIN[2:0]
ALCA
ALCASRDIS
ALCAZCDIS
AIN1A
AIN2A
= PGAASEL [5:1]
ADC
PDN_PGAB
PGABVOL[5:0]
ADCB=A
ANLGSFTB
ANLGZCB
ADCBMUTE
DIGSFT
DIGZC
ADCBVOL[7:0]
+24/-96dB
1dB steps
HPFRZB
HPB
HPFB_CF[1:0]
PDN_ADCB
INV_ADCB
PDN_CHRG
Noise Gate NGALL
NG
THRESH[3:0]
NGDELAY[1:0]
Gain Adjust
FROM DSP ENGINE
DIGMIX
AIN3A/MIC1-/
MIC1A
AIN4B/ MIC2+/
MIC2B
AIN1B
AIN2B
AIN3B/MIC2-/
MIC1B
ANALOG P ASS THRU TO
HEADPH ON E AM PLIFIER MUX
Swap/
Mix
DIGSUM[1:0]
ADCAMUTE
DIGSFT
DIGZC
ADCAVOL[7:0]
+24/-96dB
1dB steps
Re fe r to
“M IC Inp u ts
ADC
Σ
ADCASEL[2:0]
ADCBSEL[2:0]
= PGABSEL [5:1]
Re fe r to
“M IC Inp u ts
Σ
Figure 5. Analog Input Signal Flow
DS680F1 27
CS42L52
5/13/08
4.2.1 MIC Inputs
The input pins 21, 22, 23, and 24 accept stereo line-level or microphone signals. For microphone inputs,
either single-ended or differential configuration is allowed, providing programmable pre-amplification of
low-level signals. In the single-ended configur ation, an interna l MUX chooses one of two stereo sets (se-
lection is made independently on channels A and B). In the differential configuration, an internal voltage
follower cascaded with the pre-amplifier maintains high input impedance and provides noise rejection
above the MICxGAIN setting. The pre-amps are biased to VQ in both configurations.
4.2.2 Automatic Level Control (ALC)
When enabled, the ALC monitors the analog input signal after the digital attenuator, detects when peak
levels exceed the maximum (MAX) threshold settings, and responds by applying attenuation as neces-
sary to maintain the resulting level below the MAX threshold. To apply this attenuation, the ALC first low-
ers the PGA gain settings and then incr ease s the dig ita l attenuation levels. All attenuation is applied at a
programmable attack rate.
When input signal levels fall below the mini mum (M IN) threshold, the ALC responds by removing any at-
tenuation that it has previously applied until all ALC-applied attenuation has been removed or until the
MAX threshold is again crossed. To remove this attenuation, the ALC first decreases the digital attenua-
tion levels and then increases the PGA gain. All attenuation is removed at a programmable release rate.
It should be noted that the ALC is applied independently to channels A and B with one exception: the input
signals on both channels A and B must be below the MIN threshold in order for the ALC attenuation to be
released on channel B.
Attack and release rates are affected by the ADC soft -ramp/zero-cross settings and sample rate, Fs. ALC
soft-ramp and zero-cross dependency may be independently enabled/disabled.
Recommended settings: Best level control may be realized with the fastest attack and slowest release
setting with soft ramp enabled in the control registers.
Notes:
1. When ALC x is enabled and the PGAxVOL[5:0] is set above 12 dB, the ADCxVOL[7:0] should not be
set below 0 dB.
2. The maximum realized gain must be set in the PGAxVOL register. The ALC will only apply the gain
set in the PGAxVOL.
3. The ALC maintains the output signal between the MIN and MAX thresh olds. As the input signal leve l
Referenced Control Register Location
MICxCFG............................
PDN_MICx..........................
MICxGAIN...........................
“MICx Configuration” on page 55
“Power Down MICx” on page 43
“MICx Gain” on page 55
MIC1- -
+-
+
MIC1+
MIC2- -
+-
+
MIC2+
23
21
24
22
MICACFG=’1'b
MICBCFG=’1'b
MICAGAIN[4:0]
MICBGAIN[4:0]
16..32 dB/
1 dB steps
16..32 dB/
1 dB steps
PDN_MICA=’0'b
PDN_MICB=’0'b
to summ ing
PGA A
Note: Outp ut to P G A = (M I C + - MI C-)*gain + MIC -
to summ ing
PGA B
MIC1A -
+
MIC2A
MIC1B -
+
MIC2B
23
21
24
22
MICACFG=’0'b
MICBCFG=’0'b
MICAGAIN[4:0]
MICBGAIN[4:0]
16..32 dB/
1 dB steps
16..32 dB/
1 dB steps
PDN_MICA=’0'b
PDN_MICB=’0'b
MICASEL
MICBSEL
to summing
PGA A
to summing
PGA B
VQ
VQ
Figure 6. Single-Ended MIC Configuration Figure 7. Differential MIC Configuration
28 DS680F1
CS42L52
5/13/08
changes, the level-controlled output may not always be the same but will always fall within the
thresholds.
4.2.3 Noise Gate
The noise gate may be used to mute signal levels that fall below a programmable threshold. This prevents
the ALC from applying gain to noise. A programmable delay may be used to set the minimum time before
the noise gate attacks the signal.
Note: Maximum noise gate attenuation levels will depend on the gain applied in either the PGA or MIC
pre-amplifier. For example: If both +32 dB pre-amplification and +12 dB prog rammable gain is applied,
the maximum attenuation that the noise gate achieves will be 52 dB (-96 + 32 + 12) below full-scale.
Referenced Control Register Location
PGAxVOL[5:0
MAX[2:0], MIN[2:0] “PGAx Vol. & ALCx Transition Ctl.: ALC, PGA A (Address 12h) & ALC, PGA B (Address 13h)” on page 55
“ALC Threshold (Address 2Ch)” on page 68
Referenced Con t rol Register Location
Noise Gate Controls............ “Noise Gate Control (Address 2Dh)” on page 69
Output
(afte r A L C)
Input (before ALC )
RRATE[5:0]
PG A G ain and/or
Attenuator
ALC
Response
MAX[2:0]
ARATE[5:0
]
be lo w full s c a le
MIN[2:0]
below full scale
MIN[2:0]
b e lo w fu ll s c ale
MAX[2:0]
b e lo w fu ll s c ale
Figure 8. ALC
-96 -40
THRESH[2:0]
Maximum Attenuation*
-52 dB
Output
(dB)
Input (dB)
NGEN=1
NGEN=0
-80 dB
-64 dB
Figure 9. Noise Gate Attenuation
DS680F1 29
CS42L52
5/13/08
4.3 Analog Outputs
Referenced Control Register Location
DSP
DEEMPH.............................
PMIXxMUTE........................
PMIXxVOL[6:0]....................
INV_PCMx...........................
PCMxSWAP[1:0].................
AMIXxMUTE........................
AMIXxVOL[6:0]....................
ADCxSWAP[1:0]..................
MSTxVOL[7:0].....................
MSTxMUTE.........................
DIGSFT...............................
DIGZC.................................
PLYBCKB=A........................
TC_EN.................................
BASS_CF[1:0].....................
TREB_CF[1:0].....................
BASS[3:0]............................
TREB[3:0]............................
LIMIT...................................
LIMSRDIS ...........................
LIMZCDIS............................
LMAX[2:0]............................
CUSH[2:0]...........................
LIMARATE[7:0]....................
LIMRRATE[7:0] ...................
“HP/Speaker De-emphasis” on page 53
“PCM Mixer Channel x Mute” on page 58
“PCM Mixer Channel x Volume” on page 58
“Invert PCM Signal Polarity” on page 52
“PCM Mix Channel Swap” on page 64
“ADC Mixer Channel x Mute” on page 58
“ADC Mixer Channel x Volume” on page 58
“ADC Mix Channel Swap” on page 64
“Master Volume Control” on page 63
“Master Playback Mute” on page 52
“Digital Soft Ramp” on page 53
“Digital Zero Cross” on page 53
“Playback Volume Setting B=A” on page 51
“Tone Control Enable” on page 62
“Bass Corner Frequency” on page 62
“Treble Corner Frequency” on page 62
“Bass Gain” on page 63
“Treble Gain” on page 62
“Peak Detect and Limiter” on page 66
“Limiter Soft Ramp Disable” on page 65
“Limiter Zero Cross Disable” on page 66
“Limiter Maximum Threshold” on page 65
“Limiter Cushion Threshold” on page 65
“Limiter Attack Rate” on page 67
“Limiter Release Rate” on page 66
Beep
Generator
VOL
ΣBass/
Treble/
Control
ΣVOL
Peak
Detect
Limiter
Chnl Vol.
Settings
Channel
Swap
Demph VOL
VOL
+12dB/-102dB
0.5dB steps
MSTAVOL[7:0]
MSTBVOL[7:0]
+12dB/-51.5dB
0.5dB steps
AMIXAMUTE
AMIXBMUTE
AMIXAVOL[6:0]
AMIXBVOL[6:0]
+12dB/-51.5dB
0.5dB steps
PMIXAMUTE
PMIXBMUTE
PMIXAVOL[6:0]
PMIXBVOL[6:0]
0dB/-50dB
2.0dB steps
BPVOL[4:0]
DEEMPH TC_EN
BASS_CF[1:0]
TREB_CF[1:0]
BASS[3:0]
TREB[3:0]
+12.0dB/-10.5dB
1.5dB steps
Fixed Function DSP
MSTAMUTE
MSTBMUTE
DIGSFT
DIGZC
PLYBCKB=A
LIMARATE[7:0]
LIMRRATE[7:0]
LMAX[2:0]
CUSH[2:0]
LIMSRDIS
LIMZCDIS
LIMIT
PCMASWAP[1:0]
PCMBSWAP[1:0]
PCM Serial Interface
INPUTS FROM ADCA
and ADCB
OFFTIME[2:0]
ONTIME[3:0]
FREQ[3:0]
BEEP[1:0]
BEEPMIXDIS
Digital Mix to ADC
Serial Interface
Channel
Swap
INV_PCMA
INV_PCMB
ADCASWAP[1:0]
ADCBSWAP[1:0]
PWM
Modulator
DAC
Figure 10. DSP Engine Signal Flow
30 DS680F1
CS42L52
5/13/08
4.3.1 Beep Generator
The Beep Generato r generates audio frequencie s across approximately two octave major scales. It offers
three modes of operation: Continuous, multiple, and single (one-shot) beeps. Sixteen on and eight off
times are available.
Note: The Beep is generated before the limiter and may affect desired limiting performance. If the lim-
iter function is used, it may be re quired to set the b eep volume sufficiently b elow the thr eshold to prevent
the peak detect from triggering. Since the master volume control, MSTxVOL[7:0], will affect the beep vol-
ume, DAC volume may alternatively be controlled using the PMIXxVOL[6:0] bits.
Referenced Control Register Location
PWM Control
SPKxMUTE.........................
MUTE50/50.........................
SPKMONO..........................
SPKxVOL[7:0].....................
SPKSWAP...........................
SPKB=A ..............................
BATTCMP ...........................
VPREF[3:0] .........................
VPLVL[7:0] ..........................
PDN_SPKx[1:0]...................
SPKxSHRT..........................
“Speaker Mute” on page 54
“Speaker Mute 50/50 Control” on page 54
“Speaker MONO Control” on page 54
“Speaker Volume Control” on page 64
“Speaker Channel Swap” on page 54
“Speaker Volume Setting B=A” on page 54
“Battery Compensation” on page 71
“VP Reference” on page 72
“VP Voltage Level (Read Only)” on page 72
“Speaker Power Control” on page 44
“Speaker Current Load Status (Read Only)” on page 72
Referenced Control Register Location
Analog Output
HPxMUTE ...........................
HPxVOL[7:0] .......................
PDN_HPx[1:0].....................
HPGAIN[2:0]........................
PASSTHRUx .......................
PASSxMUTE.......................
PASSxVOL[7:0]...................
CHGFREQ ..........................
“Headphone Mute” on page 54
“Headphone Volume Control” on page 63
“Headphone Power Control” on page 44
“Headphone Analog Gain” on page 51
“Passthrough Analog” on page 52
“Passthrough Mute” on page 52
“Passthrough x Volume” on page 57
“Charge Pump Frequency” on page 73
Charge
Pump
DAC
CHGFREQ[3:0]
HPGAIN[2:0]
VOL
VOL
Analog Passthru
from PGA
HPAMUTE
HPBMUTE
HPA_VOL[7:0]
HPB_VOL[7:0]
+0dB/-102dB
0.5dB steps
PASSAMUTE
PASSBMUTE
PASSAVOL[7:0]
PASSBVOL[70]
+12dB/-60dB
0.5dB steps
(uses PGA)
PASSTHRUA
PASSTHRUB
PDN_HPA[1:0]
PDN_HPB[1:0]
A
B
from D S P
Engine HP/Line
Outputs
VOL PWM
Modulator
A
SPKAMUTE
SPKBMUTE
MUTE50/50
SPKMONO
SPKSWAP
SPKB=A
SPKAVOL[7:0]
SPKBVOL[7:0]
+0dB/-102dB
0.5dB steps
PDN_SPKA[1:0]
PDN_SPKB[1:0]
Short
Circuit
SPKASHRT
Battery
Compensation
BATTCMP
VPREF[3:0]
VPLVL[7:0]
SPKBSHRT
+
-
+
-
Gate
Drive
from DSP
Engine
Speaker
Outputs
B
Figure 11. PWM Output Stage Figure 12. Analog Output Stage
DS680F1 31
CS42L52
5/13/08
4.3.2 Limiter
When enabled, the limiter monitors the digita l input signal before the DAC and PWM modula tors, detects
when levels exceed the maximum threshold settings, and lowers the master volume at a programmable
attack rate below the m aximum threshold. When the input signal level falls below the maximum threshold,
the AOUT volume re turns to its original level set in th e Master Volume Control register at a progr ammable
release rate. Attack and release rate s are affected by the DAC soft-ramp/zer o-cross settings and sample
rate, Fs. Limiter soft-ramp and zero-cross dependency may be independently enabled/disabled.
Notes:
1. Recommended settings: Best limiting performance may be realized with the fastest attack and
slowest release setting with soft ramp enabled in the control registers. The MIN bits allow the user to
set a threshold slightly below the maximum threshold for hysteresis control - this cush ions the sound
as the limiter attacks and releases.
2. The Limiter maintains the output signal between the MIN and MAX thresholds. As the digi tal inpu t
signal level changes, the level-controlled output may not always be the same but will always fall within
the thresholds.
Referenced Control Register Location
MSTxVOL[7:0].....................
PMIXxVOL[6:0] ...................
OFFTIME[2:0] .....................
ONTIME[3:0].......................
FREQ[3:0]...........................
BEEP[1:0]............................
BEEPMIXDIS......................
BPVOL[4:0].........................
“Master Volume Control: MSTA (Address 20h) & MSTB (Address 21h)” on page 63
“PCMx Mixer Volume: PCMA (Address 1Ah) & PCMB (Address 1Bh)” on page 58
“Beep Off Time” on page 60
“Beep On Time” on page 60
“Beep Frequency” on page 59
“Beep Configuration” on page 61
“Beep Mix Disable” on page 61
“Beep Volume” on page 61
Referenced Control Register Location
Limiter Controls........ ...........
Master Volume Control........ “Limiter Control 2, Release Rate (Address 28h)” on page 66, “Limiter Attack Rate (Address 29h)” on page 67
“Master Volume Control: MSTA (Address 20h) & MSTB (Address 21h)” on page 63
FREQ[3:0]
...
BPVOL[4:0]
ONTIME[3:0] OFFTIME[2:0]
BEE P [1:0] =
'01'
BEE P [1:0] =
'10'
BEE P [1:0] =
'11'
SINGLE-BEEP: Beep turns on at a
configurable frequency (FREQ) and
volume (BPVOL) for the duration of
ONTIME. BEEP must be cleared
and set for additional beeps.
MULTI-BEEP: Beep turns on at a configurable frequency (FREQ)
and volume (BPVOL) for the duration of ONTIME and turns off for
the duration of OFFTIME. On and off cycles are repeated until
BEEP is cleared.
CONTINUOUS BEEP: Beep turns on at a configurable frequency (FRE Q) and volume (BPVOL) and remains on
until BEEP is cleared.
Figure 13. Beep Configuration Options
32 DS680F1
CS42L52
5/13/08
4.4 Analog In to Analog Out Passthrough
The CS42L52 accommodates analog routing of the analog input signal directly to the headphone amplifiers.
This feature is useful in applications that utilize an FM tuner where audio recovered over-the-air must be
transmitted to the headphone amplifier without digital conversion in the ADC and DAC. This analog
passthrough path reduces power consumption and is immune to modulator switching noise that could
interfere with some tuners.
4.4.1 Overriding the ADC Power Down
To accommodate automatic activation of the speaker amplifier when the SPK/HP_SW switch pin chang-
es, the CS42L52 provides the option to automatically power up the ADC whenever th e analog signal must
route to the digital PWM modulator, regardless of the PDN_ADC bit. Refer to the table below for details
on how this ADC power- down override functions in accordance with the state of the speaker channels.
The shaded cells represent norma l ADC operation when passthro ug h is disa ble d .
When PASSTHRU and PDN_OVRD are enabled, turning the speaker channel ON (by writing ‘11’b to
SPKx_PDN[1:0] or by automatic activation of the headphone detect switch, SPK/HP_SW) will automati-
cally disable the ADCx_PDN in order to convert the analog input to a digital signal for the PWM modulator.
This allows automatic analog input routing to the speaker amplifiers.
PDN_ADC PASSTHR U PDN_OVRD Speaker Channel ADC Status
0 x x x Powered UP
1
0 x x Powe red DOWN
10 x Powered DOWN
1OFF Powered DOWN
ON Powered UP
MAX[2:0]
Output
(after Lim iter)
Input
RRATE[5:0]ARATE[5:0]
Volume
Limiter
CUSH[2:0]
ATTACK/RELEASE SOUND
C U SHION
MAX[2:0]
Fi
g
ure 14. Peak Detect & Limite r
DS680F1 33
CS42L52
5/13/08
4.4.2 Overriding the PGA Power Down
To accommodate automatic activation of the headphone amplifier when the SPK/HP_SW switch pin
changes, the CS42L52 will automatically power up th e PGA whenever passthrough is enabled, regard-
less of the PDN_PGA setting. Refer to the table below for details on how this PGA power-down override
functions in accordance with the state of the headphone channels. The shaded cells represent normal
PGA operation when passthrough is disabled.
When passthrough is enabled, turning the headphone channel ON (by writing ‘11’b to HPx_PDN[1:0] or
by automatic activation of the headphone detect switch, SPK/HP_SW) will automatically disable the
PGAx_PDN in order to transmit the analog signal to the headphone.
4.5 PWM Outputs
4.5.1 Mono Speaker Output Configuration
The CS42L52 accommodates a stereo as well as a mono speaker output configuration. In mono mode
the output d rivers of each cha nnel are conne cted in parallel to deliver maximum power to a 4 ohm speak-
er. Refer to the table below for pin mapping in mono configuration.
4.5.2 VP Battery Compensation
The CS42L52 provides the op tion to maintain a desired power output le vel, independent of the VP supply.
When enabled, this feature works by monitoring the voltage on the VP supply and reducing the at tenu a-
tion on the speaker outputs when VP voltage levels fall.
Note: The internal ADC that monitors the VP supply operates from the VA supply. Calculations are
based on typical VA levels of 1.8 V and 2.5 V using the VPREF bits.
Referenced Control Register Location
PDN_ADCx.........................
PASSTHRU.........................
PDN_OVRD........................
SPKx_PDN[1:0]...................
“Power Down ADCx” on page 43
“Passthrough Analog” on page 52
“Power Down ADC Override” on page 43
“Speaker Power Control” on page 44
PDN_PGA PASSTHRU HP Channel PGA Status
0 x x Powered UP
10 x Powered DOWN
1OFF Powered DOWN
ON Powered UP
Referenced Control Register Location
PDN_PGAx.........................
PASSTHRU.........................
HPx_PDN[1:0].....................
“Power Down PGAx” on page 42
“Passthrough Analog” on page 52
“Headphone Power Control” on page 44
Pin Speaker Output
SPKMONO=0 SPKMONO=1
SPKSWAP=0 SPKSWAP=1 SPKSWAP=0 SPKSWAP=1
4 SPKOUTA+ SPKOUTB+ SPKOUTA+ SPKOUTB+
6 SPKOUTA- SPKOUTB- SPKOUTA+ SPKOUTB+
7 SPKOUTB+ SPKOUTA+ SPKOUTA- SPKOUTB-
9 SPKOUTB- SPKOUTA- SPKOUTA- SPKOUTB-
Referenced Control Register Location
SPKMONO..........................
SPKSWAP........................... “Speaker MONO Control” on page 54
“Speaker Channel Swap” on page 54
34 DS680F1
CS42L52
5/13/08
4.5.2.1 Maintaining a Desired Output Level
Using SPKxVOL, the speaker output level must first be attenuated by the decibel equivalent of the expect-
ed VP supply range (MAX relative to MIN). The CS42L52 then gradually reduces the attenuation as the
VP supply drops from its maximum level, maintaining a nearly constant power output.
Compensation Example 1 (VP Battery supply ranges from 4.5 V to 3.0 V)
1. Set speaker attenuation (SPKxVOL) to -3.5 dB. The VP supply changes ~3.5 dB.
2. Set the refe re nc e VP sup ply (VPR EF ) to 4. 5 V.
3. Enable battery compensation (BATTCMP).
The CS42L52 automatically adjusts the output level as the battery discharges.
Compensation Example 2 (VP Battery supply ranges from 5.0 V to 1.6 V)
1. Set speaker attenuation (SPKxVOL) to -10 dB. The VP supply changes ~9.9 dB.
2. Set the refe re nc e VP sup ply (VPR EF ) to 5. 0 V.
3. Enable battery compensation (BATTCMP).
The CS42L52 automatically ad justs the output level as the battery discharges. Refer to Figure 15 on page
34. In this example, the VP supply changes over a wide range, illustrating the accuracy of the CS42L52’s
battery compensation.
4.6 Serial Port Clocking
The CODEC serial audio interface port operates either as a slave or master, determined by the M/S bit. It
accepts externally generated clocks in Slave Mode and w ill generate synchronous clocks deriv ed from an
input master clock (MCLK) in Master Mode. Refer to the tables below for the required setting in register 05h
and 06h associated with a given MCLK and sample rate.
Referenced Cont ro l Register Location
VPREF................................
SPKxVOL............................ “VP Reference” on page 72
“Speaker Volume Contro l” on page 64
Referenced Control Register Location
M/S
Register 05h
Register 06h
“Master/Slave Mode” on page 46
“Clocking Control (Address 05h)” on page 44
“Interface Control 1 (Address 06h)” on page 46
-24
-22
-20
-18
-16
-14
-12
-10
-8
-6
1.61.92.22.52.83.13.43.744.34.64.9
Uncompensated
PWM Output
Level
Battery Compensated
PWM Output Level
VP Supply (V)
PWM Output Level (dB)
Figure 15. Battery Compen s at ion
DS680F1 35
CS42L52
5/13/08
MCLK
(MHz) Sample Rate,
Fs (kHz) SPEED[1:0]
(AUTO=’0’b)32kGROUP VIDEOCLK RATIO[1:0] MCLKDIV2
12.2880
8.0000 11 1 0 00 0
12.0000 11 0 0 00 0
16.0000 10 1 0 00 0
24.0000 10 0 0 00 0
32.0000 01 1 0 00 0
48.0000 01 0 0 00 0
96.0000 00 0 0 00 0
11.2896
11.0250 11 0 0 00 0
22.0500 10 0 0 00 0
44.1000 01 0 0 00 0
88.2000 00 0 0 00 0
18.4320
(Slave
Mode
ONLY)
8.0000 11 1 0 00 0
12.0000 11 0 0 00 0
16.0000 10 1 0 00 0
24.0000 10 0 0 00 0
32.0000 01 1 0 00 0
48.0000 01 0 0 00 0
96.0000 00 0 0 00 0
16.9344
(Slave
Mode
ONLY)
8.0182 11 0 0 10 0
11.0250 11 0 0 00 0
22.0500 10 0 0 00 0
44.1000 01 0 0 00 0
88.2000 00 0 0 00 0
12.0000
8.0000 11 1 0 01 0
11.029411 0 0110
12.0000 11 0 0 01 0
16.0000 10 1 0 01 0
22.058810 0 0110
24.0000 10 0 0 01 0
32.0000 01 1 0 01 0
44.117601 0 0110
48.0000 01 0 0 01 0
88.235300 0 0110
96.0000 00 0 0 01 0
24.0000
8.0000 11 1 0 01 1
11.029411 0 0111
12.0000 11 0 0 01 1
16.0000 10 1 0 01 1
22.058810 0 0111
24.0000 10 0 0 01 1
32.0000 01 1 0 01 1
44.117601 0 0111
48.0000 01 0 0 01 1
88.235300 0 0111
96.0000 00 0 0 01 1
27.0000
8.0000 11 1 1 01 0
12.0000 11 0 1 01 0
24.0000 10 0 1 01 0
32.0000 01 1 1 01 0
44.117601 0 1110
48.0000 01 0 1 01 0
11.029411 0 1110
22.058810 0 1110
16.0000 10 1 1 01 0
Table 1. MCLK, LRCK Quick Decode
36 DS680F1
CS42L52
5/13/08
4.7 Digital Interface Formats
The serial port oper ates in sta ndard I²S, Le ft-justified, Right- justified (DAC only), or DSP Mode digital inter-
face formats with varying bit depths from 16 to 24. Data is clocked out of the ADC or into the DAC on the
rising edge of SCLK.
4.7.1 D SP Mode
In DSP Mode, the LRCK acts as a frame sync for 2 data-packed words (left and right channel) input on
SDIN and output on SDOUT. The MSB is input/output on the first SCLK rising edg e af te r th e fr am e sync
rising edge. The right channel immediately follows the left channel.
LRCK
SCLK
MSB LSB MSB LSB
AOUTA / AINxA
Left Channel Right Channel
SDOUT
SDIN
AOUTB / AINxB
MSB
Figure 16. I²S Format
LRCK
SCLK
MSB LSB MSB LSB
Left Channel Right Channel
SDOUT
SDIN MSB
AOUTA / AINxA AOUTB / AINxB
Figure 17. Left-Justified Format
LRCK
SCLK
MSB LSB MSB LSB
Left Channel Right Channel
SDIN
AOUTL AOUTR
Audio W ord Length (AWL)
Figure 18. Right-Justified Format (DAC only)
LRCK
SCLK
MSB LSB
SDIN
HP/LINE OUTB
LSB Le ft Channe l Right Channel
MSB LSB MSB
Audio Word Lengt h (AWL)
1/fs
HP/LINE OUTA
Figure 19. DSP Mode Format)
DS680F1 37
CS42L52
5/13/08
4.8 Initialization
The CODEC enters a Po wer-down state upon initial power-up. The interpolation and d ecimation filters, del-
ta-sigma and PWM modulators, and control port registers are reset. The internal voltage reference, and
switched-capacitor low-pass filters are po we re d down .
The device will remain in the Power-down state until the RESET pin is brought high. The control port is ac-
cessible once RESET is high and the desi red reg ister se ttings can be loaded per the inter face descriptio ns
in the “Register Description” on page 42.
Once MCLK is valid, the quiescent voltage, VQ, and the internal voltage referenc e, FILT+, will begin power-
ing up to no rma l ope ratio n. Th e cha rge pum p s lowly po wers up and ch arge s t he capa cit ors. Power is then
applied to the headphone amplifiers and switched-capacitor filters, and the analog/digital outputs enter a mut-
ed state. Once LRCK is valid, MCLK occurrences are counted over one LRCK period to determine the
MCLK/LRCK frequency ratio and normal operation begins.
4.9 Recommended Power-up Sequence
1. Hold RESET low until the power supplies are stable.
2. Bring RESET high.
3. The default state of the PDN bit is ‘1’b. Loa d the de sired register settings while keeping the PDN bit set
to ‘1’b.
4. Load the required initialization settings listed in Section 4.11.
5. Start MCLK to the appropr iate frequency, as discussed in Section 4.6.
6. Set the PDN bit to ‘0’b.
7. Apply LRCK, SCLK, and SDIN for normal operation to begin.
8. Bring RESET low if the analog or digital supplies drop below the recommended operating condition to
prevent power glitch related issues.
4.10 Recommended Power-down Sequence
To minimize audible pops when turning off or placing the CODEC in standby:
1. Mute the DAC’s and ADC’s.
2. Set the PDN bit in the power control register to ‘1’b. The CODEC will not power down until it reaches a
fully muted sate. Do not remove MCLK until after the part ha s fully muted. Note that it may be necessa ry
to disable the soft-ramp and/or zero-cross volume transitions to achieve faster muting/power down.
3. Bring RESET low.
4.11 Required Initialization Settings
The current and thresholds required for various sections in the CODEC must be adjusted by implementing
the initialization settings shown below after power-up sequence step 3. All performance and power con-
sumption measurements were taken with the following settings:
1. Write 0x99 to register 0x00.
2. Write 0xBA to register 0x3E.
3. Write 0x80 to register 0x47.
4. Write ‘1’b to bit 7 in register 0x32.
5. Write ‘0’b to bit 7 in register 0x32.
6. Write 0x00 to register 0x00.
38 DS680F1
CS42L52
5/13/08
4.12 Control Port Operation
The control port is used to access the register s, allowing the CODEC to be configured fo r the desired oper -
ational modes and for mats. The operation of the control p ort may be completely a synchronous with respect
to the audio sample rates. However, to avoid potential interference problems, the control port pins should
remain static if no operation is required.
The control port operates using an I²C interface with the CODEC acting as a slave device.
4.12.1 I²C Control
SDA is a bidirectional data line. Data is clocked into and out of the par t by the clock, SCL. The signal tim-
ings for a read and write cycle are shown in Figure 20 and Figure 21. A Start condition is defined as a
falling transition of SDA while the clock is high. A Stop condition is defined as a rising transition of SDA
while the clock is high. All other transitions of SDA occur while the clock is low. The first byte sent to the
CS42L52 after a Start condition consists of a 7-bit chip address field and a R/W bit (high for a read, low
for a write).
The upper 7 bits of the address field are fixed at 1001010. To communicate with the CS42L52, the chip
address field, which is the first byte sent to the CS42L52, should match 1001010. The eighth bit of the
address is the R/W bit. If the operation is a write, the next byte is the Memory Address Pointer (MAP),
which selects the register to be read or written. If the opera tion is a read, the contents of the register point-
ed to by the MAP will be output. Setting the auto-increment bit in MAP allows successive reads or writes
of consecutiv e registers. Each by te is separated by an acknowledge bit. The ACK bit is output from the
CS42L52 after each input byte is read and is input to the CS42L52 from the microcontroller after each
transmitted byte.
Since the read operation cannot set the MAP, an aborted write operation is used as a preamble. As shown
in Figure 21, the write operation is aborted after the acknowledg e for the MAP byte by sending a stop con-
dition. The following pseudocode illustrates an aborted write operation followed by a read operation.
4 5 6 7 24 25
SCL
CHIP ADDRESS (WRITE) MAP BYTE DATA DATA +1
START
ACK STOP
ACKACKACK
1 0 0 1 0 1 0 0
SDA INCR 6 5 4 3 2 1 0 7 6 1 0 7 6 1 0 7 6 1 0
0 1 2 3 8 9 12 16 17 18 19 10 11 13 14 15 27 28
26
DATA +n
Figure 20. Control Port Timing, I²C Write
SCL
CHIP ADDRESS (WRITE) MAP BY TE DATA DATA + 1
START ACK
STOP
ACK
ACK
ACK
1 0 0 1 0 1 0 0
SDA 1 0 0 1 0 1 0 1
CHIP ADDRESS (READ)
START
INCR 6 5 4 3 2 1 0 7 0 7 0 7 0
NO
16 8 9 12 13 14 15 4 5 6 7 0 1 20 21 22 23 24 26 27 28
2 3 10 11 17 18 19 25
ACK
DATA + n
STOP
Figure 21. Control Port Timing, I²C Read
DS680F1 39
CS42L52
5/13/08
Send start condition.
Send 10010100 (ch ip address & write operation).
Receive acknowledge bit.
Send MAP byte, auto-increment off.
Receive acknowledge bit.
Send stop condition, aborting write.
Send start condition.
Send 10010101 (chip address & read operation).
Receive acknowledge bit.
Receive byte, co nt en ts of selec te d re gis ter .
Send acknowledge bit.
Send stop condition.
Setting the auto-increment bit in the MAP allows successive reads or writes of consecutive registers. Each
byte is separated by an acknowledge bit.
4.12.2 Memory Address Pointer (MAP)
The MAP byte comes after the address byte and selects the register to be read or written. Refer to the
pseudo code above for implementation details.
4.12.2.1 Map Increment (INCR)
The device has MAP auto-increment capability enabled by the INCR bit (the MSB) of the MAP. If INCR is
set to 0, MAP will stay constant for successive I²C writes or reads. If INCR is set to 1, MAP will auto-in-
crement after each byte is read or written, allowing block reads or writes of successive registers.
40 DS680F1
CS42L52
5/13/08
5. REGISTER QUICK REFERENCE
(Default values are shown below the bit names)
I²C Address: 1001010[R/W] - 10010100 = 0x94(Write); 10010101 = 0x95(Read)
Adr. Function 7 6 5 4 3 2 1 0
01h ID CHIPID4 CHIPID3 CHIPID2 CHIPID1 CHIPID0 REVID2 REVID1 REVID0
p42 11100xxx
02h Power Ctl 1 PDN_CHRG Reserved Reserved PDN_PGAB PDN_PGAA PDN_ADCB PDN_ADCA PDN
p42 00000001
03h Power Ctl 2 Reserved Reserved Reserved OVRDB OVRDA PDN_MICB PDN_MICA PDN_BIAS
p43 00000111
04h Power Ctl 3 PDN_HPB1 PDN_HPB0 PDN_HPA1 PDN_HPA0 PDN_SPKB1 PDN_SPKB0 PDN_SPKA1 PDN_SPKA0
p44 00000101
05h Clocking Ctl AUTO SPEED1 SPEED0 32kGROUP VIDEOCLK RATIO1 RATIO0 MCLKDIV2
p44 10100000
06h Interface Ctl 1 M/S INV_SCLK ADCDIF DSP DACDIF1 DACDIF0 AWL1 AWL0
p46 00000000
07h Interface Ctl 2 Reserved SCLK=MCLK DIGLOOP 3ST_SP INV_SWCH BIASLVL2 BIASLVL1 BIASLVL0
p47 00000000
08h Input A Select ADCASEL2 ADCASEL1 ADCASEL0 PGAASEL5 PGAASEL4 PGAASEL3 PGAASEL2 PGAASEL1
p48 10000001
09h Input B Select ADCBSEL2 ADCBSEL1 ADCBSEL0 PGABSEL5 PGABSEL4 PGABSEL3 PGABSEL2 PGABSEL1
p48 10000001
0Ah Analog,
HPF Ctl HPFB HPFRZB HPFA HPFRZA ANLGSFTB ANLGZCB ANLGSFTA ANLGZCA
p49 10100101
0Bh ADC HPF Cor-
ner Freq. Reserved Reserved Reserved Reserved HPFB_CF1 HPFB_CF0 HPFA_CF1 HPFA_CF0
p50 00000000
0Ch Misc. ADC Ctl ADCB=A DIGMIX DIGSUM1 DIGSUM0 INV_ADCB INV_ADCA ADC BMUTE ADCAMUTE
p50 00000000
0Dh Playback Ctl 1 HPGAIN2 HPGAIN1 HPGAIN0 PLYBCKB=A INV_PCMB INV_PCMA MSTBMUTE MSTAMUTE
p51 01100000
0Eh Misc. Ctl PASSTHRUB PASSTHRUA PASSBMUTE PASSAMUTE FREEZE DEEMPH DIGSFT DIGZC
p52 00000010
0Fh Playback Ctl 2 HPBMUTE HPAMUTE SPKBMUTE SPKAMUTE SPKB=A SPKSWAP SPKMONO MUTE50/50
p54 00000 00
10h MICA Amp Ctl Reserved MICASEL MICACFG MICAGAIN4 MICAGAIN3 MICAGAIN2 MICAGAIN1 MICAGAIN0
p55 00000000
11h MICB Amp Ctl Reserved MICBSEL MICBCFG MICBGAIN4 MICBGAIN3 MICBGAIN2 MICBGAIN1 MICBGAIN0
p55 00000000
12h PGAA Vol, Misc ALCASRDIS ALCAZCDIS PGAAVOL5 PGAAVOL4 PGAAVOL3 PGAAVOL2 PGAAVOL1 PGAAVOL0
p55 00000000
13h PGAB Vol, Misc ALCBSRDIS ALCBZCDIS PGABVOL5 PGABVOL4 PGABVOL3 PGABVOL2 PGABVOL1 PGABVOL0
p55 00000000
14h Passthru A Vol PASSAVOL7 PASSAVOL6 PASSAVOL5 PASSAVOL4 PASSAVOL3 PASSAVOL2 PASSAVOL1 PASSAVOL0
p57 00000000
15h Passthru B Vol PASSBVOL7 PASSBVOL6 PASSBVOL5 PASSBVOL4 PASSBVOL3 PASSBVOL2 PASSBVOL1 PASSBVOL0
p57 00000000
16h ADCA Vol ADCAVOL7 ADCAVOL6 ADCAVOL5 ADCAVOL4 ADCAVOL3 ADCAVOL2 ADCAVOL1 ADCAVOL0
p57 00000000
17h ADCB Vol ADCBVOL 7 ADCBVOL6 ADCBVOL5 ADCBVOL4 ADCBVOL3 ADCBVOL2 ADCBVOL1 ADCBVOL0
p57 00000000
18h ADCMIXA Vol AMIXAMUTE AMIXAVOL6 AMIXAVOL5 AMIXAVOL4 AMIXAVOL3 AMIXAVOL2 AMIXAVOL1 AMIXAVOL0
p58 10000000
19h ADCMIXB Vol AMIXBMUTE AMIXBVOL6 AMIXBVOL5 AMIXBVOL4 AMIXBVOL3 AMIXBVOL2 AMIXBVOL1 AMIXBVOL0
p58 10000000
1Ah PCMMIXA Vol PMIXAMUTE PMIXAVOL6 PMIXAVOL5 PMIXAVOL4 PMIXAVOL3 PMIXAVOL2 PMIXAVOL1 PMIXAVOL0
p58 00000000
DS680F1 41
CS42L52
5/13/08
1Bh PCMMIXB Vol PMIXBMUTE PMIXBVOL6 PMIXBVOL5 PMIXBVOL4 PMIXBVOL3 PMIXBVOL2 PMIXBVOL1 PMIXBVOL0
p58 000 00000
1Ch BEEP Freq,
On Time FREQ3 FREQ2 FREQ1 FREQ0 ONTIME3 ONTIME2 ONTIME1 ONTIME0
p59 000 00000
1Dh BEEP Vol,
Off Time OFFTIME2 OFFTIME1 OFFTIME0 BPVOL4 BPVOL3 BPVOL2 BPVOL1 BPVOL0
p60 000 00000
1Eh BEEP,
Tone Cfg. BEEP1 BEEP0 BEEPMIXDIS TREB_CF1 TREB_CF0 BASS_CF1 BASS_CF0 TC_EN
p61 000 00000
1Fh Tone Ctl TREB3 TREB2 TREB1 TREB0 BASS3 BASS2 BASS1 BASS0
p62 100 01000
20h Master A Vol MSTAVOL7 MSTAVOL6 MSTAVOL5 MSTAVOL4 MSTAVOL3 MSTAVOL2 MSTAVOL1 MSTAVOL0
p63 000 00000
21h Master B Vol MSTBVOL7 MSTBVOL6 MSTBVOL5 MSTBVOL4 MSTBVOL3 MSTBVOL2 MSTBVOL1 MSTBVOL0
p63 000 00000
22h Headphone A
Volume HPAVOL7 HPAVOL6 HPAVOL5 HPAVOL4 HPAVOL3 HPAVOL2 HPAVOL1 HPAVOL0
p63 000 00000
23h Headphone B
Volume HPBVOL7 HPBVOL6 HPBVOL5 HPBVOL4 HPBVOL3 HPBVOL2 HPBVOL1 HPBVOL0
p63 000 00000
24h Speaker A
Volume SPKAVOL7 SPKAVOL6 SPKAVOL5 SPKAVOL4 SPKAVOL3 SPKAVOL2 SPKAVOL1 SPKAVOL0
p64 000 00000
25h Speaker B
Volume SPKBVOL7 SPKBVOL6 SPKBVOL5 SPKBVOL4 SPKBVOL3 SPKBVOL2 SPKBVOL1 SPKBVOL0
p64 000 00000
26h Channel Mixer
& Swap PCMASWP1 PCMASWP0 PCMBSWP1 PCMBSWP0 ADCASWP1 ADCASWP0 ADCBSWP1 ADCBSWP0
p64 000 00000
27h Limit Ctl 1,
Thresholds LMAX2 LMAX1 LMAX0 CUSH2 CUSH1 CUSH0 LIMSRDIS LIMZCDIS
p65 000 00000
28h Limit Ctl 2,
Release Rate LIMIT LIMIT_ALL LIMRRATE5 LIMRRATE4 LIMRRATE3 LIMRRATE2 LIMRRATE1 LIMRRATE0
p66 011 11111
29h Limiter Attack
Rate Reserved Reserved LIMARATE5 LIMARATE4 LIMARATE3 LIMARATE2 LIMARATE1 LIMARATE0
p67 110 00000
2Ah ALC Ctl 1,
Attack Rate ALCB ALCA ALCARATE5 AALCRATE4 ALCARATE3 ALCARATE2 ALCARATE1 ALCARATE0
p67 000 00000
2Bh ALC Release
Rate Reserved Reserved ALCRRATE5 ALCRRATE4 ALCRRATE3 ALCRRATE2 ALCRRATE1 ALCRRATE0
p68 001 11111
2Ch AL C Thresh-
olds ALCMAX2 ALCMAX1 ALCMAX0 ALCMIN2 ALCMIN1 ALCMIN0 Reserved Reserved
p68 000 00000
2Dh Noise Gate Ctl NGALL NG NGBOOST THRESH2 THRESH1 THRESH0 NGDELAY1 NGDELAY0
p69 000 00000
2Eh Overflow &
Clock Status Reserved SPCLKERR DSPBOVFL DSPAOVFL PCMAOVFL PCMBOVFL ADCAOVFL ADCBOVFL
p70 000 00000
2Fh Battery Com-
pensation BATTCMP VPMONITOR Reserved Reserved VPREF3 VPREF2 VPREF1 VPREF0
p71 000 00000
30h VP Battery
Level VPLVL7 VPLVL6 VPLVL5 VPLVL4 VPLVL3 VPLVL2 VPLVL1 VPLVL0
p72 000 00000
31h Speaker Status Reserved Reserved SPKASHRT SPKBSHRT SPKR/HP Reserved Reserved Reserved
p72 000 00000
32h Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved
001 11011
33h Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved
000 00000
34h Charge Pump
Frequency CHGFREQ3 CHGFREQ2 CHGFREQ1 CHGFREQ0 Reserved Reserved Reserved Reserved
p73 010 11111
I²C Address: 1001010[R/W] - 10010100 = 0x94(Write); 10010101 = 0x95(Read)
Adr. Function 7 6 5 4 3 2 1 0
42 DS680F1
CS42L52
5/13/08
6. REGISTER DESCRIPTION
All registers are read/write except for the chip I.D. and Revision Register and Interrupt Status Register which are
read only. See the following bit definition tables for bit assignm ent info rmat ion. T he d efau lt stat e of ea ch b it af ter a
power-up sequence or reset is listed in each bit description. Unless otherwise specified, all “Reserved” bits must
maintain their default value.
6.1 Chip I.D. and Revision Register (Address 01h) (Read Only)
6.1.1 Chip I.D. (Read Only)
I.D. code for the CS42L52.
6.1.2 C hip Revision (Read Only)
CS42L52 revision level.
6.2 Power Control 1 (Address 02h)
6.2.1 Power Down ADC Charge Pump
Configures the power state of the ADC charge pump.
6.2.2 Power Down PGAx
Configures the power state of PGA channel x.
Notes:
1. The CS42L52 employs a clever scheme for controlling the power to the PGA when PASSTHRU
(“Passthrough Analog” on page 52) is enabled. Refer to the referenced application for more information.
2. This bit should be used in conjunction with ADCxSEL and PGAxSEL bits to determine the analog
76543210
CHIPID4 CHIPID3 CHIPID2 CHIPID1 CHIPID0 REVID2 REVID1 REVID0
CHIPID[4:0] Device
11100 CS42L52
REVID[2:0] Revision Level
000 A0
001 A1
010 B0
011 B1
76543210
PDN_CHRG Reserved Reserved PDN_PGAB PDN_PGAA PDN_ADCB PDN_ADCA PDN
PDN_CHRG ADC Charge Pump Status
0 Powered Up
1 Powered Down
PDN_PGAx PGA Status
0Powered Up (ONLY when the ADC or the analog passthru is used)
1 Powered Down
Application “Analog In to Analog Out Passthrough” on page 32
DS680F1 43
CS42L52
5/13/08
input path. The PGAxSEL bits may be used to isolate the input signal(s) from the PGA outputs. When
the PGA is powered down, no input should be selected. Refer to “ADC Input Select” on page 48 and
“PGA Input Mapping” on page 49 for the required settings.
6.2.3 Power Down ADCx
Configures the power state of ADC channel x.
Notes:
1. The CS42L52 employs a clever scheme for controlling the power to the ADC when PASSTHRU
(“Passthrough Analog ” on page 52) and PDN_OVRD (“Power Down ADC Override” on page 43) are
enabled. Refer to the referenced application.
6.2.4 Power Down
Configures the power state of the entire CODEC.
6.3 Power Control 2 (Address 03h)
6.3.1 Power Down ADC Override
Configures an ove r ride of th e po we r do wn cont ro l for ADCx.
6.3.2 Power Down MICx
Configures the power state of the microphone pre-amplifier for channel x.
6.3.3 Power Down MIC Bias
Configures the power state of the microphone bias circuit.
PDN_ADCx ADC Status
0Powered Up
1 Powered Down
Application “Analog In to Analog Out Passthrough” on page 32
PDN CODEC Status
0 Powered Up
1Powered Down
76543210
Reserved Reserved Reserved OVRDB OVRDA PDN_MICB PDN_MICA PDN_BIAS
OVRDx PDN_ADC Override
0Disable
1 Enable
Application “Analog In to Analog Out Passthrough” on page 32
PDN_MICx MIC Pre-Amp Status
0 Powered Up
1Powered Down
Application “MIC Inputs” on page 27
PDN_BIAS MIC Bias Status
0 Powered Up
1Powered Down
44 DS680F1
CS42L52
5/13/08
6.4 Power Control 3 (Address 04h)
6.4.1 Headphone Power Control
Configures how the SPKR/HP pin, 31, controls the power for the headphone amplifier.
6.4.2 Speaker Power Control
Configures how the SPKR/HP pin, 31, controls the power for the speaker amplifier.
6.5 Clocking Control (Address 05h)
6.5.1 Auto-Detect
Configures the auto-detect circuitry for detecting the speed mode of the CODEC when operating as a
slave.
Notes:
1. The SPEED[1:0] bits are ignored and speed is determined by the MCLK/LRCK ratio.
2. When AUTO is disabled and the CODEC operates in master mode, the MCLKDIV2 bit is ignored.
3. Certain sample and MCLK frequencies require setting the SPEED[1:0] bits, the 32k_GROUP bit
(“32kHz Sample Rate Group” on page 45) and/or the VIDEOCLK bit (“27 MHz Video Clock” on
page 45) and RATIO[1:0] bits (“Internal MCLK/LRCK Ratio” on page 45). Low sample rates may also
affect dynamic range performance in the typical audio band. Refer to the referenced application for
more information.
76543210
PDN_HPB1 PDN_HPB0 PDN_HPA1 PDN_HPA0 PDN_SPKB1 PDN_SPKB0 PDN_SPKA1 PDN_SPKA0
PDN_HPx[1:0] Headphone Status
00 Headphone channel is ON when the SPKR/HP pin, 31, is LO.
Headphone channel is OFF when the SPKR/HP pin, 31, is HI.
01 Headphone channel is ON when the SPKR/HP pin, 31, is HI.
Headphone channel is OFF when the SPKR/HP pin, 31, is LO.
10 Headphone channel is always ON.
11 Headphone channel is always OFF.
PDN_SPKx[1:0] Speaker Status
00 Speaker channel is ON when the SPKR/HP pin, 31, is LO.
Speaker channel is OFF when the SPKR/HP pin, 31, is HI.
01 Speaker channel is ON when the SPKR/HP pin, 31, is HI.
Speaker channel is OFF when the SPKR/HP pin, 31, is LO.
10 Speaker channel is always ON.
11 Speaker channel is always OFF.
76543210
AUTO SPEED1 SPEED0 32k_GROUP VIDEOCLK RATIO1 RATIO0 MCLKDIV2
AUTO Auto-detection of Speed Mode
0 Disabled
1Enabled
Application: “Serial Port Clocking” on page 34
DS680F1 45
CS42L52
5/13/08
6.5.2 Speed Mode
Configures the speed m ode of the CODEC in slave mode and sets the appropriate MCLK divide ratio for
LRCK and SCLK in master mode.
Notes:
1. Slave/Master Mode is determined by the M/S bit in “Master/Slave Mode” on page 46.
2. Certain sample and MCLK frequencies require setting the SPEED[1:0] bits, the 32k_GROUP bit
(“32kHz Sample Rate Group” on page 45) and/or the VIDEOCLK bit (“27 MHz Video Clock” on
page 45) and RATIO[1:0] bits ( “Internal MCLK/LRCK Ratio” on page 45). Low sample rates may also
affect dynamic range performance in the typical audio band. Refer to the referenced application for
more information.
3. These bits are ignored when the AUTO bit (“Auto-Detect” on page 44) is enabled.
6.5.3 32kHz Sample Rate Group
Specifies whether or not the input/output sample rate is 8 kHz, 16 kHz or 32 kHz.
6.5.4 27 MHz Video Clock
Specifies whether or not the external MCLK frequency is 27 MHz
6.5.5 Internal MCLK/LRCK Ratio
Configures the internal MCLK/LRCK ratio.
SPEED[1:0] Slave Mode Master Mode
Serial Port Speed MCLK/LRCK Ratio SCLK/LRCK Ratio
00 Double-Speed Mode (DSM - 50 kHz -100 kHz Fs) 512 64
01 Single-Speed Mode (SSM - 4 kHz -50 kHz Fs) 256 64
10 Half-Speed Mode (HSM - 12.5kHz -25 kHz Fs) 128 64
11 Quarter-Speed Mode (QSM - 4 kHz -12.5 kHz Fs) 128 64
Application: “Serial Port Clocking” on page 34
32kGROUP 8 kHz, 16 kHz or 32 kHz sample rate?
0No
1Yes
Application: “Serial Port Clocking” on page 34
VIDEOCLK 27 MHz MCLK?
0No
1Yes
Application: “Serial Port Clocking” on page 34
RATIO[1:0] Internal MCLK Cycles per LRCK SCLK/LRCK Ratio in Master Mode
00 128 64
01 125 62
10 132 66
11 136 68
Application: “Serial Port Clocking” on page 34
46 DS680F1
CS42L52
5/13/08
6.5.6 MCLK Divide By 2
Divides the input MCLK by 2 prior to all internal circuitry.
Note: In slave mode, this bit is ignored when the AUTO bit (“Auto-Detect” on page 44) is disabled.
6.6 Interface Control 1 (Address 06h)
6.6.1 Master/Slave Mode
Configures the serial port I/O clocking.
6.6.2 S CLK Polarity
Configures the polarity of the SCLK signal.
6.6.3 A DC Interface Format
Configures the digital interface format for data on SDOUT.
6.6.4 D SP Mode
Configures a data-packed interface format for both the ADC and DAC.
Notes:
1. Select the audio word length using the AWL[1:0] bits (“Audio Word Length” on page 47).
2. The interface format for both the ADC and the DAC must be set to “Left-Justified” when DSP Mode
is enabled.
MCLKDIV2 MCLK signal into CODEC
0No divide
1 Divided by 2
Application: “Serial Port Clocking” on page 34
76543210
M/S INV_SCLK ADCDIF DSP DACDIF1 DACDIF0 AWL1 AWL0
M/S Serial Port Clocks
0Slave (input ONLY)
1 Master (output ONLY)
INV_SCLK SCLK Polarity
0Not Inverted
1 Inverted
ADCDIF ADC Interf ace Format
0Left Justified
1I²S
Application: “Digital Interface Formats” on page 36
DSP DSP Mode
0Disabled
1 Enabled
Application: “DSP Mode” on page 36
DS680F1 47
CS42L52
5/13/08
6.6.5 DAC Interface Format
Configures the digital interface format for data on SDIN.
Note: Select the audio word length for Right Justified using the AWL[1:0] bits (“Audio Word Length” on
page 47).
6.6.6 Audio Word Length
Configures the audio sample word length used for the data into SDIN and ou t of SDOUT.
Note: When the internal MCLK/LRCK ratio is set to 125 in master mode, the 32-bit data width option
for DSP Mode is not valid unless SCLK=MCLK.
6.7 Interface Control 2 (Address 07h)
6.7.1 SCLK equals MCLK
Configures the SCLK signal source for master mode.
Note: This bit is only valid for MCLK = 12.0000 MHz.
6.7.2 SDOUT to SDIN Digital Loopback
Configures an internal loops the signal on the SDOUT pin to SDIN.
DACDIF[1:0] DAC Interface Format
00 Left Justified, up to 24-bit data
01 I²S, up to 24-bit data
10 Right Justified
11 Reserved
Application: “Digital Interface Formats” on page 36
AWL[1:0] Audio Word Length
DSP Mode Right Justified (DAC ONLY)
00 32-bit data 24-bit data
01 24-bit data 20-bit data
10 20-bit data 18-bit data
11 16-bit data 16-bit data
Application: “DSP Mode” on page 36
765432 10
Reserved SCLK=MCLK DIGLOOP 3ST_SP INV_SWCH BIASLVL2 BIASLVL1 BIASLVL0
SCLK=MCLK Output SCLK
0Re-timed signal, synchronously derived from MCLK
1 Non-retimed, MCLK signal
DIGLOOP Internal Loopback
0Disabled; SDOUT internally disconnect ed from SDIN
1 Enabled; SDOUT internally connected to SDIN
48 DS680F1
CS42L52
5/13/08
6.7.3 Tri-State Serial Port Interface
Determines the state of the serial port drivers.
Notes:
1. Slave/Master Mode is determined by the M/S bit in “Master/Slave Mode” on page 46.
2. When the serial port is tri-stated in master mode, the ADC and DAC serial ports are clocked internally.
6.7.4 Speaker/Headphone Switch Invert
Determines the control signal polarity of the SPK/HP_SW pin.
6.7.5 MIC Bias Level
Sets the output voltage level on the MICBIAS output pin.
6.8 Input x Select: ADCA and PGAA (Address 08h), ADCB and PGAB (Address 09h)
6.8.1 A DC Input Select
Selects the specified analog input signal into ADCx.
3ST_SP Serial Port Status
Slave Mode Master Mode
0Serial Port clocks are inputs and SDOUT is output Serial Port clocks and SDOUT are outputs
1 Serial Port clocks are inputs and SDOUT is HI-Z Serial Port clocks and SDOUT are HI-Z
INV_SWCH SPK/HP_SW pin 6 Control
0Not inverted
1 Inverted
BIASLVL[2:0] Output Bias Level
000 0.5 x VA
001 0.6 x VA
010 0.7 x VA
011 0.8 x VA
100 0.83 x VA
101 0.91 x VA
110 Reserved
111 Reserved
7 6 5 4 3210
ADCASEL2 ADCASEL1 ADCASEL0 PGAASEL5 PGAASEL4 PGAASEL3 PGAASEL2 PGAASEL1
ADCxSEL[2:0] Selected Input to ADCx
000 AIN1x
001 AIN2x
010 AIN3x
011 AIN4x
100 PGAx - Use PGAxSEL bits (“PGA Input Mapping” on page 49) to select input channels
101 Reserved
110 Reserved
111 Reserved
Application: “Analog Inputs” on page 26
DS680F1 49
CS42L52
5/13/08
6.8.2 PGA Input Mapping
Selects one or sums/mixes the analog input signal into the PGA. Each bit of the PGAx_SEL[5:1] word
corresponds to individual channels (i.e. PGAx_SEL1 selects AIN1x, PGAx_SEL2 selects AIN2x, etc.).
6.9 Analog & HPF Control (Address 0Ah)
6.9.1 ADCx High-Pass Filter
Configures the internal high -pass filter after ADCx.
6.9.2 ADCx High-Pass Filter Freeze
Configures the high pass filter’s digital DC subtraction and/or calib ra tio n afte r AD Cx.
6.9.3 Ch. x Analog Soft Ramp
Configures an incremental volume ramp from the current level to the new level at the specified rate.
6.9.4 Ch. x Analog Zero Cross
Configures when the sig nal level changes occur for the analog volume controls.
Note: If the signal does not encounter a zero crossing, the requested volume change will occur after a
timeout period of 102 4 sample periods (approximately 10.7 ms at 48 kHz sample rate).
PGAxSEL[5:1] Selected Input to PGAx (Examples)
00000 No inputs selected
00001 AIN1x
00010 AIN2x
00100 AIN3x
01000 AIN4x
10000 MICx; for single-ended MIC inputs, use MICxSEL (“MIC x Select” on page 55) to select MIC 1 or MIC 2; for
differential MIC inputs, enable MICxCFG (“MICx Configuration” on page 55)
10001 MICx + AIN1x
10011 MICx + AIN1x + AIN2x
Application: “Analog Inputs” on page 26
Note: Table does not show all possible combinations.
76543210
HPFB HPFRZB HPFA HPFRZA ANLGSFTB ANLGZCB ANLGSFTA ANLGZCA
HPFx High Pass Filter Status
0 Disabled
1Enabled
HPFRZx High Pass Filter Digital Subtraction
0Continuous DC Subtraction
1 Frozen DC Subtraction
ANLGSFTx Volume Changes Affected Analog Volume Controls
0Do not occur with a soft ramp MICxGAIN[4:0] (“MICx Gain” on page 55), PGAxVOL[5:0] (“PGAx Volume”
on page 56), and PASSxVOL[7:0] (“Passthrough x Volume” on page 57)
1 Occur with a soft ramp
Ramp Rate: 1/2 dB every 16 LRCK cycles
ANLGZCx Volume Changes Affected Analog Volume Controls
0Do not occur on a zero cross-
ing MICxGAIN[4:0] (“MICx Gain” on page 55), PGAxVOL[5:0] (“PGAx Volume”
on page 56), and PASSxVOL[7:0] (“Passthrough x Volume” on page 57)
1Occur on a zero crossing
50 DS680F1
CS42L52
5/13/08
6.10 ADC HPF Corner Frequency (Address 0Bh)
6.10.1 HPF x Corner Frequency
Sets the corner frequency (-3 dB point) for the internal High-Pass Filter (HPF).
6.11 Misc. ADC Control (Address 0Ch)
6.11.1 Analog Front-End Volume Setting B=A
Configures independent or ganged volume control and muting of the analog front end.
6.11.2 Digital MUX
Selects the signal source for the ADC serial port
6.11.3 Digital Sum
Configures a mix/swap of ADCA and ADCB.
76543210
Reserved Reserved Reserved Reserved HPFB_CF1 HPFB_CF0 HPFA_CF1 HPFA_CF0
HPFx_CF[1:0] HPF Corner Frequency Setting (Fs=48 kHz)
00 Normal setting as specified in “ADC Digital Filter Characteristics” on page 14
01 119 Hz
10 236 Hz
11 464 Hz
76543210
ADCB=A DIGMUX DIGSUM1 DIGSUM0 INV_ADCB INV_ADCA ADCBMUTE ADCAMUTE
ADCB=A Single Volume Control Affected Volume Controls
0Disabled ADCxVOL[7:0] (“ADCx Volume” on page 57),
ADCxMUTE (“ADC Mute” on page 51),
ALC and Limiter Attack/Release (page 66 to page 68)
MICxGAIN[4:0] (“MICx Gain” on page 55),
PGAxVOL[5:0] (“PGAx Volume” on page 56),
PASSxVOL[7:0] (“Passthrough x Volume” on page 57)
1 Enabled
DIGMUX SDOUT Signal Source
0ADC
1DSP
DIGSUM[1:0] Serial Output Signal
Left Channel Right Channel
00 ADCA ADCB
01 (ADCA + ADCB)/2 (ADCA + ADCB)/2
10 (ADCA - ADCB)/2 (ADCA - ADCB)/2
11 ADCB ADCA
DS680F1 51
CS42L52
5/13/08
6.11.4 Invert ADC Signal Polarity
Configures the polarity of the ADC signal.
6.11.5 ADC Mute
Configures a digital mute on ADC channel x.
Note: When the ADCxMUTE bit is enabled, the PGA will automatically apply 6 dB of attenuation.
6.12 Playback Control 1 (Address 0Dh)
6.12.1 Headphone Analog Gain
Selects the gain multiplier for the headphone/lin e outputs.
Note: Refer to “Line Output Voltage Level Characteri stics” on page 20 and “Headphone Outp ut Power
Characteristics” on page 19.
6.12.2 Playback Volume Setting B=A
Configures independent or ganged volume control of all playback channels.
INV_ADCx ADC Signal Polarity
0Not Inverted
1 Inverted
ADCxMUTE ADC Mute
0Disabled
1 Enabled
76543210
HPGAIN2 HPGAIN1 HPGAIN0 PLYBCKB=A INV_PCMB INV_PCMA MSTBMUTE MSTAMUTE
HPGAIN[2:0] Headphone/Line Gain Setting (G)
000 0.3959
001 0.4571
010 0.5111
011 0.6047
100 0.7099
101 0.8399
110 1.000
111 1.1430
PLYBCKB=A Single Volume Control Affected Volume Controls
0Disabled HPxMUTE (“Playback Control 2 (Address 0Fh)” on page 54),
AMIXxVOL[7:0] (“ADC Mixer Channel x Volume” on page 58),
PMIXxVOL[7:0] (“PCM Mixer Channel x Volume” on page 58),
MSTxVOL[7:0] (“Master Volume Control” on page 63),
HPxVOL[7:0] (“Headphone Volume Control” on page 63)
1 Enabled
52 DS680F1
CS42L52
5/13/08
6.12.3 Invert PCM Signal Polarity
Configures the polarity of the digital input signal.
6.12.4 Master Playback Mute
Configures a digital mute on the ma ster volume control for channel x.
Note: The muting function is affected by the DIGSFT (“Digital Soft Ramp” on page 53) and DIGZC
(“Digital Zero Cross” on page 53) bits.
6.13 Miscellaneous Controls (Address 0Eh)
6.13.1 Passthrough Analog
Configures an analog passthrough from the PGA inputs to the headphone/lin e outputs.
Notes:
1. The Passthrough volume contro l is realized using a combina tion of the PGA volume control settings
(“PGAx Volume” on page 56) and the headphone amplifier volume control settings (hidden). When
passthrough is enabled and the PGA to ADC path is selected, the signal seen by the ADC will change
depending on the passthrough volume setting.
6.13.2 Passthrough Mute
Configures an analog mute on the ch annel x analog in to analog out passthrough.
6.13.3 Freeze Registers
Configures a hold on all register settings.
INV_PCMx PCM Signal Polarity
0Not Inverted
1 Inverted
MSTxMUTE Master Mute
0Not Inverted
1 Inverted
76543210
PASSTHRUB PASSTHRUA PASSBMUTE PASSAMUTE FREEZE DEEMPH DIGSFT DIGZC
PASSTHRUx Analog In Routed to HP/Line Output
0Disabled
1 Enabled
PASSxMUTE Passthrough Mute
0Disabled
1 Enabled
FREEZE Control Port Status
0Register changes take effect immediately
1Modifications may be made to all control port registers without the changes taking effect until after the
FREEZE is disabled.
DS680F1 53
CS42L52
5/13/08
6.13.4 HP/Speaker De-emphasis
Configures a 15µs/50µs digital de-emphasis filte r response on the headphone/lin e and speaker outputs.
6.13.5 Digital Soft Ramp
Configures an incremental volume ramp from the current level to the new level at the specified rate.
Notes:
1. When the DIGSFT bit is enabled, the Master Volume (MSTxVOL[7:0]) transitions are guaranteed to
occur with a soft ramp only when bits 7 and 6 in register 29h are set to ‘00’b.
6.13.6 Digital Zero Cross
Configures when the signal level changes occur for the digital volume controls.
Notes:
1. If the signal does not encounter a zero crossing, the requested volume change will occur after a
timeout period be tween 1 024 and 2048 sample pe riods (21.3 ms to 42.7 ms at 48 kHz samp le rate).
2. The zero cross function is independently monitored and implemented for each channel.
3. The DIS_LIMSFT bit (“Limiter Soft Ramp Disable” on page 65) is ignored when zero cross is en abled.
4. When the DIGSFT bit is enabled, the Master Volume (MSTxVOL[7:0]) transitions are guaranteed to
occur on a zero crossing only when bits 7 and 6 in register 29h are set to ‘00’b.
DEEMPHASIS Control Port Status
0Disabled
1 Enabled
DIGSFT Volume Changes Affected Digital Volume Controls
0 Do not occur with a soft ramp MSTxMUTE (“Master Playback Mute” on page 52),
HPxMUTE, SPKxMUTE (“Playback Control 2 (Address 0Fh)” on page 54),
ADCxVOL[7:0] (“ADCx Volume” on page 57),
AMIXxMUTE, AMIXxVOL[7:0] (“ADC Mixer Channel x Volume” on page 58),
PMIXxMUTE, PMIXxVOL[7:0] (“PCM Mixer Channel x Volume” on page 58),
MSTxVOL[7:0] (“Master Volume Control” on page 63),
HPxVOL[7:0] (“Headphone Volume Control” on page 63),
SPKxVOL[7:0] (“Speaker Volume Control” on page 64),
ALC and Limiter Attack/Release (page 66 to page 68)
Beep Volume (“Beep Volume” on page 61)
1Occur with a soft ramp
Ramp Rate: 1/8 dB every LRCK cycle
DIGZC Volume Changes Affected Digital Volume Controls
0Do not occur on a zero cross-
ing MSTxMUTE (“Master Playback Mute” on page 52),
AMIXxMUTE, AMIXxVOL[7:0] (“ADC Mixer Channel x Volume” on page 58),
PMIXxMUTE, PMIXxVOL[7:0] (“PCM Mixer Channel x Volume” on page 58),
MSTxVOL[7:0] (“Master Volume Control” on page 63),
ALC and Limiter Attack/Release (page 66 to page 68)
Beep Volume (“Beep Volume” on page 61)
1 Occur on a zero crossing
54 DS680F1
CS42L52
5/13/08
6.14 Playback Control 2 (Address 0Fh)
6.14.1 Headphone Mute
Configures a digital mute on he adphone channel x.
6.14.2 Speaker Mute
Configures a digital mute on speaker channel x.
6.14.3 Speaker Volume Setting B=A
Configures independe nt or ganged volume control of the speaker output.
6.14.4 Speaker Channel Swap
Configures a channel swa p on the speaker channels.
6.14.5 Speaker MONO Control
Configures a parallel full-bridge output for the speaker channels.
6.14.6 Speaker Mute 50/50 Control
Configures how the speaker channels mute.
76543210
HPBMUTE HPAMUTE SPKBMUTE SPKAMUTE SPKB=A SPKSWAP SPKMONO MUTE50/50
HPxMUTE Headphone Mute
0Disabled
1 Enabled
SPKxMUTE Speaker Mute
0Disabled
1 Enabled
SPKB=A Single Volume Control Affected Volume Controls
0Disabled SPKxMUTE (“Speaker Mute” on page 54),
SPKxVOL[7:0] (“Speaker Volume Control” on page 64)
1 Enabled
SPKSWAP Speaker Output
0Channel A
1 Channel B
Application: “Mono Speaker Output Configuration” on page 33
SPKMONO Parallel Full Bridge Output
0Disabled
1 Enabled
Application: “Mono Speaker Output Configuration” on page 33
MUTE50/50 Speaker Mute 50/50
0Disabled; The PWM amplifiers outputs modulated silence when SPKxMUTE is enabled.
1Enabled; The PWM amplifiers switch at an exact 50%-duty-cycle signal (not modulated) when SPKxMUTE is
enabled.
DS680F1 55
CS42L52
5/13/08
6.15 MICx Amp Control:MIC A (Address 10h) & MIC B (Address 11h)
6.15.1 MIC x Select
Selects one of two single-ended MIC inputs on channel x.
6.15.2 MICx Configuration
Configures the input topology for MICx.
6.15.3 MICx Gain
Sets the gain of the microphone pre-amplifier.
6.16 PGAx Vol. & ALCx Transition Ctl.:
ALC, PGA A (Address 12h) & ALC, PGA B (Address 13h)
6.16.1 ALCx Soft Ramp Disable
Configures an ove r rid e of the an alo g soft ram p se ttin g.
76543210
Reserved MICxSEL MICxCFG MICxGAIN4 MICxGAIN3 MICxGAIN2 MICxGAIN1 MICxGAIN0
MICxSEL MIC x Selection
0MIC 1x
1 MIC 2x
Application: “MIC Inputs” on page 27
MICxCFG MIC Input Topology
0Single-Ended
1 Differential
Application: “MIC Inputs” on page 27
MICxGAIN[4:0] Gain
1 1111 32 dB
... ...
1 0000 32 dB
0 1111 30.5 dB
0 1110 30 dB
... ...
0 0000 16 dB
Step Size: 1 dB (unless otherwise noted)
Application: “MIC Inputs” on page 27
76543210
ALCxSRDIS ALCxZCDIS PGAxVOL5 PGAxVOL4 PGAxVOL3 PGAxVOL2 PGAxVOL1 PGAxVOL0
ALCxSRDIS ALC Soft Ramp Disable
0OFF; ALC Attack Rate is dictated by the ANLGSFT (“Ch. x Analog Soft Ramp” on page 49) setting
1 ON; ALC volume changes take effect in one step, regardless of the ANLGSFT setting.
Application: “Automatic Level Control (ALC)” on page 27
56 DS680F1
CS42L52
5/13/08
6.16.2 ALCx Zero Cross Disable
Configures an override of the analog zero cross setting.
6.16.3 PGAx Volume
Sets the volume/gain of the Programmable Gain Amplifier (PGA).
Note: The PGAxVOL bits are ignored when the PASSTHRUx bit (“Passthrough Analog ” on page 52) is
enabled.
ALCxZCDIS ALC Zero Cross Disable
0OFF; ALC Attack Rate is dictated by the ANLGZC (“Ch. x Analog Zero C ross” on page 49) setting
1 ON; ALC volume changes take effect at any time, regardless of the ANLGZC setting.
Application: “Automatic Level Control (ALC)” on page 27
PGAxVOL[5:0] Volume
01 1111 12 dB
... ...
01 1000 12 dB
... ...
00 0001 +0.5 dB
00 0000 0 dB
11 1111 -0.5 dB
... ...
10 1000 -6.0 dB
... ...
10 0000 -6.0 dB
Step Size: 0.5 dB
DS680F1 57
CS42L52
5/13/08
6.17 Passthrough x Volume: PASSAVOL (Address 14h) & PASSBVOL (Address 15h)
6.17.1 Passthrough x Volume
Sets the volume/gain of the signal routed from the PGA to the headphone/line output.
Notes:
1. This register is ignored when the PASSTHRUx bit (“Passthrough Analog” on page 52) is disabled.
2. The step size may deviate from 0.5 dB at settings below -40 dB. Code settings 0x95, 0xA1, 0xAD,
and 0xB9 are not guaranteed to be monotonic.
6.18 ADCx Volume Control: ADCAVOL (Address 16h) & ADCBVOL (Address 17h)
6.18.1 ADCx Volume
Sets the volume of the ADC signal out the serial data output (SDOUT).
76543210
PASSxVOL7 PASSxVOL6 PASSxVOL5 PASSxVOL4 PASSxVOL3 PASSxVOL2 PASSxVOL1 PASSxVOL0
PASSxVOL[7:0] Gain
0111 1111 12 dB
... ...
0001 1000 12 dB
... ...
0000 0001 +0.5 dB
0000 0000 0 dB
11111 1111 -0.5 dB
... ...
1000 1000 -60.0 dB
... ...
1000 0000 -60.0 dB
Step Size: 0.5 dB (approximate)
Application: “Analog In to Analog Out Passthrough” on page 32
76543210
ADCAVOL7 ADCAVOL6 ADCAVOL5 ADCAVOL4 ADCAVOL3 ADCAVOL2 ADCAVOL1 ADCAVOL0
ADCxVOL[7:0] Volume
0111 1111 24 dB
... ...
0001 1000 24 dB
... ...
0000 0000 0 dB
1111 1111 -1.0 dB
1111 1110 -2.0 dB
... ...
1010 0000 -96.0 dB
... ...
1000 0000 -96.0 dB
Step Size: 1.0 dB
58 DS680F1
CS42L52
5/13/08
6.19 ADCx Mixer Volume: ADCA (Address 18h) & ADCB (Address 19h)
6.19.1 ADC Mixer Channel x Mute
Configures a digital mute on the ADC mix in the DSP.
6.19.2 ADC Mixer Channel x Volume
Sets the volume/gain of the ADC mix in the DSP.
6.20 PCMx Mixer Volume: PCMA (Address 1Ah) & PCMB (Address 1Bh)
6.20.1 PCM Mixer Channel x Mute
Configures a digital mute on the PCM mix from the serial data input (SDIN) to the DSP.
6.20.2 PCM Mixer Channel x Volume
Sets the volume/gain of the PCM mix from the serial data input (SDIN) to th e DSP.
76543210
AMIXxMUTE AMIXxVOL6 AMIXxVOL5 AMIXxVOL4 AMIXxVOL3 AMIXxVOL2 AMIXxVOL1 AMIXxVOL0
AMIXxMUTE ADC Mixer Mute
0 Disabled
1Enabled
AMIXxVOL[6:0] Volume
001 1000 +12.0 dB
... ...
000 0001 +0.5 dB
000 0000 0 dB
111 1111 -0.5 dB
... ...
001 1001 -51.5 dB
Ste p Size: 0.5 dB
76543210
PMIXxMUTE PMIXxVOL6 PMIXxVOL5 PMIXxVOL4 PMIXxVOL3 PMIXxVOL2 PMIXxVOL1 PMIXxVOL0
PMIXxMUTE PCM Mixer Mute
0Disabled
1 Enabled
PMIXxVOL[6:0] Volume
001 1000 +12.0 dB
... ...
000 0001 +0.5 dB
000 0000 0 dB
111 1111 -0.5 dB
... ...
001 1001 -51.5 dB
Step Size: 0.5 dB
DS680F1 59
CS42L52
5/13/08
6.21 Beep Frequency & On Time (Address 1Ch)
6.21.1 Beep Frequency
Sets the freque n cy of th e be ep sign a l.
Notes:
1. This setting must not change when BEEP is enabled.
2. Beep frequency will scale directly with sample rate, Fs, but is fixed at the nominal Fs within each
speed mode.
76543210
FREQ3 FREQ2 FREQ1 FREQ0 ONTIME3 ONTIME2 ONTIME1 ONTIME0
FREQ[3:0] Frequency (Fs = 12, 24, 48 or 96 kHz) Pitch
0000 260.87 Hz C4
0001 521.74 Hz C5
0010 585.37 Hz D5
0011 666.67 Hz E5
0100 705.88 Hz F5
0101 774.19 Hz G5
0110 888.89 Hz A5
0111 1000.00 Hz B5
1000 1043.48 Hz C6
1001 1200.00 Hz D6
1010 1333.33 Hz E6
1011 1411.76 Hz F6
1100 1600.00 Hz G6
1101 1714.29 Hz A6
1110 2000.00 Hz B6
1111 2181.82 Hz C7
Application: “Beep Generator” on page 30
60 DS680F1
CS42L52
5/13/08
6.21.2 Beep On Time
Sets the on duration of the beep signal.
Notes:
1. This setting must not change when BEEP is enabled.
2. Beep on time will scale inversely with sample rate, Fs, but is fixed at the nominal Fs within each speed
mode.
6.22 Beep Volume & Off Time (Address 1Dh)
6.22.1 Beep Off Time
Sets the off duration of the beep signal.
Notes:
1. This setting must not change when BEEP is enabled.
2. Beep off time will scale inversely with sample rate, Fs, but is fixed at the nominal Fs within each speed
mode.
ONTIME[3:0] On Time (Fs = 12, 24, 48 or 96 kHz)
0000 ~86 ms
0001 ~430 ms
0010 ~780 ms
0011 ~1.20 s
0100 ~1.50 s
0101 ~1.80 s
0110 ~2.20 s
0111 ~2.50 s
1000 ~2.80 s
1001 ~3.20 s
1010 ~3.50 s
1011 ~3.80 s
1100 ~4.20 s
1101 ~4.50 s
1110 ~4.80 s
1111 ~5.20 s
Application: “Beep Generator” on page 30
76543210
OFFTIME2 OFFTIME1 OFFTIME0 BPVOL4 BPVOL3 BPVOL2 BPVOL1 BPVOL0
OFFTIME[2:0] Off Time (Fs = 48 or 96 kHz)
000 ~1.23 s
001 ~2.58 s
010 ~3.90 s
011 ~5.20 s
100 ~6.60 s
101 ~8.05 s
110 ~9.35 s
111 ~10.80 s
Application: “Beep Generator” on page 30
DS680F1 61
CS42L52
5/13/08
6.22.2 Beep Volume
Sets the volume of the beep signal.
Note: This setting must not change when BEEP is enabled.
6.23 Beep & Tone Configuration (Address 1Eh)
6.23.1 Beep Configuration
Configures a beep mixed with the HP/Line and SPK output.
Notes:
1. When used in analog pass-through mode, the output alternates between the signal from the PGA and
the beep signal. The beep signa l does not mix with the analog signal from the PGA.
2. Re-engaging the beep before it has completed its initial cycle will cause the beep signal to remain ON
for the maximum ONTIME duration.
6.23.2 Beep Mix Disable
Configures how the beep mixes with the serial data input.
Note: This setting must not change when BEEP is enabled.
BEEPVOL[4:0] Gain
00110 +6.0 dB
··· ···
00000 -6 dB
11111 -8 dB
11110 -10 dB
··· ···
00111 -56 dB
Step Size: 2 dB
Application: “Beep Generator” on page 30
76543210
BEEP1 BEEP0 BEEPMIXDIS TREBCF1 TREBCF0 BASSCF1 BASSCF0 TCEN
BEEP[1:0] Beep Occurrence
00 Off
01 Single
10 Multiple
11 Continuous
Application: “Beep Generator” on page 30
BEEPMIXDIS Beep Output to HP/Line and Speaker
0Mix Enabled; The beep signal mixes with the digital signal from the serial data input.
1Mix Disabled; The output alternates between the signal from the serial data input and the beep signal. The
beep signal does not mix with the digital signal from the serial data input.
Application: “Beep Generator” on page 30
62 DS680F1
CS42L52
5/13/08
6.23.3 Treble Corner Frequency
Sets the corner frequency (-3 dB point) for the treble shel ving filter.
6.23.4 Bass Corner Frequency
Sets the corner frequency (-3 dB point) for the bass shelving filter.
6.23.5 Tone Control Enable
Configures the treble and bass activation.
6.24 Tone Control (Address 1Fh)
6.24.1 Treble Gain
Sets the gain of the treble shelving filter.
TREBCF[1:0] Treble Corner Frequency Setting
00 5 kHz
01 7 kHz
10 10 kHz
11 15 kHz
BASSCF[1:0] Bass Corner Frequency Setting
00 50 Hz
01 100 Hz
10 200 Hz
11 250 Hz
TCEN Bass and Treble Control
0Disabled
1 Enabled
Application: “Beep Generator” on page 30
76543210
TREB3 TREB2 TREB1 TREB0 BASS3 BASS2 BASS1 BASS0
TREB[3:0] Gain Setting
0000 +12.0 dB
··· ···
0111 +1.5 dB
1000 0 dB
1001 -1.5 dB
··· ···
1111 -10.5 dB
Step Size: 1.5 dB
DS680F1 63
CS42L52
5/13/08
6.24.2 Bass Gain
Sets the gain of the bass shelving filter.
6.25 Master Volume Control: MSTA (Address 20h) & MSTB (Address 21h)
6.25.1 Master Volume Control
Sets the volume of the signal out the DSP.
6.26 Headphone Volume Control: HPA (Address 22h) & HPB (Address 23h)
6.26.1 Headphone Volume Control
Sets the volume of the signal out the DAC.
TREB[3:0] Gain Setting
0000 +12.0 dB
··· ···
0111 +1.5 dB
1000 0 dB
1001 -1.5 dB
··· ···
1111 -10.5 dB
Step Size: 1.5 dB
76543210
MSTxVOL7 MSTxVOL6 MSTxVOL5 MSTxVOL4 MSTxVOL3 MSTxVOL2 MSTxVOL1 MSTxVOL0
MSTxVOL[7:0] Master Volume
0001 1000 +12.0 dB
··· ···
0000 0000 0 dB
1111 1111 -0.5 dB
1111 1110 -1.0 dB
··· ···
0011 0100 -102 dB
··· ···
0001 1001 -102 dB
Step Size: 0.5 dB
76543210
HPxVOL7 HPxVOL6 HPxVOL5 HPxVOL4 HPxVOL3 HPxVOL2 HPxVOL1 HPxVOL0
HPxVOL[7:0] Headphone Volume
0000 0000 0 dB
1111 1111 -0.5 dB
1111 1110 -1.0 dB
··· ···
0011 0100 -96.0 dB
··· ···
0000 0001 Muted
Step Size: 0.5 dB
64 DS680F1
CS42L52
5/13/08
6.27 Speaker Volume Control: SPKA (Address 24h) & SPKB (Address 25h)
6.27.1 Speaker Volume Control
Sets the volume of the signal out the PWM modulator.
Note: The maximum step size error is ±0.15 dB.
6.28 ADC & PCM Channel Mixer (Address 26h)
6.28.1 PCM Mix Channel Swap
Configures a mix/swap of the PCM Mix to the headphone/line or speaker outputs.
6.28.2 ADC Mix Channel Swap
Configures a mix/swap of the ADC Mix to the headphone/line or speaker outputs.
76543210
SPKxVOL7 SPKxVOL6 SPKxVOL5 SPKxVOL4 SPKxVOL3 SPKxVOL2 SPKxVOL1 SPKxVOL0
SPKxVOL[7:0] Speaker Volume
0000 0000 0 dB
1111 1111 -0.5 dB
1111 1110 -1.0 dB
··· ···
0100 0000 -96.0 dB
··· ···
0000 0001 Muted
Step Size: 0.5 dB
76543210
PCMASWP1 PCMASWP0 PCMBSWP1 PCMBSWP0 ADCASWP1 ADCASWP0 ADCBSWP1 ADCBSWP0
PCMxSWP[1:0] PCM Mix to HP/LINEOUTA PCM Mix to HP/LINEOUTB
00 Left Right
01 (Left + Right)/2 (Left + Right)/2
10
11 Right Left
ADCxSWP[1:0] ADC Mix to HP/LINEOUTA Channel ADC Mix to HP/LINEOUTB Channel
00 Left Right
01 (Left + Right)/2 (Left + Right)/2
10
11 Right Left
DS680F1 65
CS42L52
5/13/08
6.29 Limiter Control 1, Min/Max Thresholds (Address 27h)
6.29.1 Limiter Maximum Threshold
Sets the maximum level, below full scale, at which to limit and attenuate the output signal at the attack
rate (LIMARATE - “Limiter Release Rate” on page 66).
Note: Bass, Treble, and dig ital g ain settin gs tha t bo ost the sig nal be yo nd the maximu m thr eshol d may
trigger an attack.
6.29.2 Limiter Cushion Threshold
Sets the minimum level at which to disengage the Limiter’s attenuation at the release rate (LIMRRATE -
“Limiter Release Rate” on page 66) until levels lie between th e LM AX an d CUSH thre sho l ds.
Note: This setting is usually set slightly be low the LM AX th re shold .
6.29.3 Limiter Soft Ramp Disable
Configures an over rid e of th e dig ita l soft ram p settin g.
Note: This bit is ignored when the DIGZC (“Digital Zero Cross” on page 53) is enabled.
76543210
LMAX2 LMAX1 LMAX0 CUSH2 CUSH1 CUSH0 LIMSRDIS LIMZCDIS
LMAX[2:0] Threshold Setting
000 0 dB
001 -3 dB
010 -6 dB
011 -9 dB
100 -12 dB
101 -18 dB
110 -24 dB
111 -30 dB
Application: “Limiter” on page 31
CUSH[2:0] Threshold Setting
000 0 dB
001 -3 dB
010 -6 dB
011 -9 dB
100 -12 dB
101 -18 dB
110 -24 dB
111 -30 dB
Application: “Limiter” on page 31
LIMSRDIS Limiter Soft Ramp Disable
0OFF; Limiter Attack Rate is dictated by the DIGSFT (“Digital Soft Ramp” on page 53) setting
1 ON; Limiter volume changes take effect in one step, regardless of the DIGSFT setting.
Application: “Limiter” on page 31
66 DS680F1
CS42L52
5/13/08
6.29.4 Limiter Zero Cross Disable
Configures an override of the digital zero-cross setting.
6.30 Limiter Control 2, Release Rate (Address 28h)
6.30.1 Peak Detect and Limiter
Configures the peak-de tect and limiter circuitry.
6.30.2 Peak Signal Limit All Channels
Sets how channels are attenuated when the limiter is enabled.
6.30.3 Limiter Release Rate
Sets the rate at which the limiter relea ses the dig ita l attenuation from leve ls below the CUSH[2:0 ] thresh-
old (“Limiter Cushion Threshold” on page 65) and returns the analog output level t o the MSTxVOL[7:0]
(“Master Volume Control” on pag e 63) setting.
Note: The limiter release rate is user-selectable but is also a function of the sampling frequency, Fs,
and the DIGSFT (“Digital Soft Ramp” on page 53) and DIGZC (“Digital Zero Cross” on page 53) set t ing.
LIMZCDIS Limiter Zero Cross Disable
0OFF; Limiter Attack Rate is dictated by the DIGZC (“Digital Zero Cross” on page 53) setting
1 ON; Limiter volume changes take effect in one step, regardless of the DIGZC setting.
Application: “Limiter” on page 31
76543210
LIMIT LIMIT_ALL LIMRRATE5 LIMRRATE4 LIMRRATE3 LIMRRATE2 LIMRRATE1 LIMRRATE0
LIMIT Limiter Status
0Disabled
1 Enabled
Application: “Limiter” on page 31
LIMIT_ALL Limiter action:
0
Apply the necessary attenuation on a specific channel only when the signal amplitude on that specific chan-
nel rises above LMAX.
Remove attenuation on a specific channel only when the signal amplitude on that specific channel falls below
CUSH.
1Apply the necessary attenuation on BOTH channels when the signal amplitude on any ONE channel rises
above LMAX.
Remove attenuation on BOTH channels only when the signal amplitude on BOTH channels fall below CUSH.
Application: “Limiter” on page 31
LIMRRATE[5:0] Release Time
00 0000 Fastest Release
··· ···
11 1111 Slowest Release
Application: “Limiter” on page 31
DS680F1 67
CS42L52
5/13/08
6.31 Limiter Attack Rate (Address 29h)
6.31.1 Limiter Attack Rate
Sets the rate at which the limiter applies digital attenuation from levels above the MAX[2:0] threshold
(“Limiter Maximum Threshold” on page 65).
Note: The limiter attack rate is user-selectable b ut is also a function of the sampling frequency, Fs, and
the DIGSFT (“Digital Soft Ramp” on page 53) and DIGZC (“Digital Zero Cross” on page 53) setting unless
the respective disable bit (“Limiter Soft Ramp Disable” on page 65 or “Limiter Zero Cross Disable” on
page 66) is enabled.
6.32 ALC Enable & Attack Rate (Address 2Ah)
6.32.1 ALCx Enable
Configures the automatic level controller.
Note: The ALC is not available in passthrough mode.
6.32.2 ALC Attack Rate
Sets the rate at which the ALC applies analog and/or digita l attenuation from levels above the AMAX[2:0]
threshold (“ALC Maximum Threshold” on page 68).
Note: The ALC attack ra te is use r-se lecta ble but is a lso a function of the sampling frequency, Fs, and
the ANLGSFTx (“Ch. x Analog Soft Ramp” on page 49) and ANLGZCx (“Ch. x Analog Zero Cross” on
page 49) setting unless the respective disable bit (“ALCx Soft Ramp Disable” on page 55 or “ALCx Zero
Cross Disable” on page 56) is enabled.
76543210
Reserved Reserved LIMARATE5 LIMARATE4 LIMARATE3 LIMARATE2 LIMARATE1 LIMARATE0
LIMARATE[5:0] Attack Time
00 0000 Fastest Attack
··· ···
11 1111 Slowest Attack
Application: “Limiter” on page 31
76543210
ALCB ALCA ALCARATE5 AALCRATE4 ALCARATE3 ALCARATE2 ALCARATE1 ALCARATE0
ALC ALC Status
0Disabled
1 Enabled
Application: “Automatic Level Control (ALC)” on page 27
LIMARATE[5:0] Attack Time
00 0000 Fastest Attack
··· ···
11 1111 Slowest Attack
Application: “Automatic Level Control (ALC)” on page 27
68 DS680F1
CS42L52
5/13/08
6.33 ALC Release Rate (Address 2Bh)
6.33.1 ALC Release Rate
Sets the rate at which the ALC releases the analog and/or digital attenuation from levels below the
MIN[2:0] threshold (“ALC Minimum Threshold” on page 69) and returns the signal level to the PGAx-
VOL[5:0] (“PGAx Volume” on page 56) and ADC xVO L[ 7:0 ] (“ADCx Volume” on page 57) setting.
Notes:
1. The ALC release rate is user-selectable but is also a function of the sampling frequen cy, Fs, and the
ANLGSFTx (“Ch. x Analog Soft Ramp” on page 4 9) and ANLGZCx (“Ch. x Analog Zero Cross” on
page 49) setting.
2. The Release Rate setting must always be slower than the Attack Rate.
6.34 ALC Threshold (Address 2Ch)
6.34.1 ALC Maximum Threshold
Sets the maximum level, below full scale, at which to limit and atte nuate the input signal a t the attack r ate
(ALCARATE - “ALC Attack Rate” on page 67).
76543210
Reserved Reserved ALCRRATE5 ALCRRATE4 ALCRRATE3 ALCRRATE2 ALCRRATE1 ALCRRATE0
ALCRRATE[5:0] Release Time
00 0000 Fastest Release
··· ···
11 1111 Slowest Release
Application: “Automatic Level Control (ALC)” on page 27
76543210
ALCMAX2 ALCMAX1 ALCMAX0 ALCMIN2 ALCMIN1 ALCMIN0 Reserved Reserved
MAX[2:0] Threshold Setting
000 0 dB
001 -3 dB
010 -6 dB
011 -9 dB
100 -12 dB
101 -18 dB
110 -24 dB
111 -30 dB
Application: “Automatic Level Control (ALC)” on page 27
DS680F1 69
CS42L52
5/13/08
6.34.2 ALC Minimum Threshold
Sets the minimum level at which to disengage the ALC’s attenuation or amplify the input signal at the re-
lease rate (ALCRRATE - “ALC Rele as e Ra te ” on pa g e 68) until lev els lie between the ALCMAX and AL-
CMIN thresholds.
Notes:
1. This setting is usually set slightly below the ALCMAX threshold.
6.35 Noise Gate Control (Address 2Dh)
6.35.1 Noise Gate All Channels
Sets which channels are attenuated when clipping on any single channel occurs.
6.35.2 Noise Gate Enable
Configures the noise gate.
ALCMIN[2:0] Threshold Setting
000 0 dB
001 -3 dB
010 -6 dB
011 -9 dB
100 -12 dB
101 -18 dB
110 -24 dB
111 -30 dB
Application: “Automatic Level Control (ALC)” on page 27
76543210
NGALL NG NG_BOOST THRESH2 THRESH1 THRESH0 NGDELAY1 NGDELAY0
NGALL Noise Gate triggered by:
0Individual channel; Any channel that falls below the threshold setting triggers the noise gate attenuation for
both channels.
1Both channels A & B; Both channels must fall below the threshold setting for the noise gate attenuation to
take effect.
Application: “Noise Gate” on page 28
NG Noise Gate Status
0Disabled
1 Enabled
Application: “Noise Gate” on page 28
70 DS680F1
CS42L52
5/13/08
6.35.3 Noise Gate Threshold and Boost
THRESH sets the threshold level of the noise gate. Input signals below the threshold level will be attenu-
ated to -96 dB. NG_BOOST configures a +30 dB boost to the threshold settings.
6.35.4 Noise Gate Delay Timing
Sets the delay time before the noise gate attacks.
Note: The Noise Gate attack rate is a functio n of the sampling frequency, Fs, and the ANLGSFTx (“Ch.
x Analog Soft Ramp” on page 49) and ANLGZCx (“Ch. x Analog Zero Cross” on page 49) setting unless
the respective disable bit (“ALCx Soft Ramp Disable” on page 55 or “ALCx Zero Cross Disable” on
page 56) is enabled.
6.36 Status (Address 2Eh) (Read Only)
For all bits in this register, a “1” means the associated error condition has occu rred at leas t once since th e
register was last read. A”0” means the associated error condition has NOT occurred since the last reading
of the register. Reading the register resets all bits to 0.
6.36.1 Serial Port Clock Error (Read Only)
Indicates the status of the MCLK to LRCK ratio.
Note: On initial power up and application of clocks, this bit will report ‘1’b as the serial port re-synchro-
nizes.
THRESH[2:0] Minimum Setting (NG_BOOST = ‘0’b) Minimum Setting (NG_BOOST = ‘1’b)
000 -64 dB -34 dB
001 -67 dB -37 dB
010 -70 dB -40 dB
011 -73 dB -43 dB
100 -76 dB -46 dB
101 -82 dB -52 dB
110 Reserved -58 dB
111 Reserved -64 dB
Application: “Noise Gate” on page 28
NGDELAY[1:0] Delay Setting
00 50 ms
01 100 ms
10 150 ms
11 200 ms
Application: “Noise Gate” on page 28
76543210
Reserved SPCLKERR DSPAOVFL DSPBOVFL PCMAOVFL PCMBOVFL ADCAOVFL ADCBOVFL
SPCLKERR Serial Port Clock Status:
0 MCLK/LRCK ratio is valid.
1 MCLK/LRCK ratio is not valid.
Application: “Serial Port Clocking” on page 34
DS680F1 71
CS42L52
5/13/08
6.36.2 DSP Engine Overflow (Read Only)
Indicates the over-range status in the DSP data path.
6.36.3 PCMx Overflow (Read Only)
Indicates the over-range status in the PCM mix data path.
6.36.4 ADCx Overflow (Read Only)
Indicates the over-range status in the ADC signal path.
6.37 Battery Compensation (Address 2Fh)
6.37.1 Battery Compensation
Configures automatic adjustment of the speaker volume when VP deviates from VPREF[3:0].
6.37.2 VP Monitor
Configures the internal ADC that monitors the VP voltage level.
Notes:
1. The internal ADC that monitors the VP supp ly is enabled automatica lly when BATTCMP is en ab led,
regardless of the VPMONITOR setting. Conversely, when BATTCMP is disabled, the ADC may be
enabled by enabling VPMONITOR; this provides a convenient battery monitor without enabling
battery compensation.
2. When enabled, VPMONITOR remains enabled regardless of the PDN bit setting.
DSPxOVFL DSP Overflow Status:
0 No digital clipping has occurred in the data path after the DSP.
1 Digital clipping has occurred in the data path after the DSP.
Application: “Analog Outputs” on page 29
PCMxOVFL PCM Overflow Status:
0No digital clipping has occurred in the data p ath of the PCM mix (“PCM Mixer Channel x Volume” on page 58)
of the DSP.
1 Digital clipping has occurred in the data path of the PCM mix of the DSP.
Application: “Analog Outputs” on page 29
ADCxOVFL ADC Overflow Status:
0 No clipping has occurred anywhere in the ADC signal path.
1 Clipping has occurred in the ADC signal path.
Application: “Analog Inputs” on page 26
76543210
BATTCMP VPMONITOR Reserved Reserved VPREF3 VPREF2 VPREF1 VPREF0
BATTCMP Automatic Battery Compensation
0Disabled
1 Enabled
Application: “Maintaining a Desired Output Level” on page 34
VPMONITOR VP ADC Status
0Disabled
1 Enabled
72 DS680F1
CS42L52
5/13/08
6.37.3 VP Reference
Sets the desired VP reference used for battery compensa tion.
6.38 VP Battery Level (Address 30h) (Read Only)
6.38.1 VP Voltage Level (Read Only)
Indicates the unsig ne d VP voltage lev el.
6.39 Speaker Status (Address 31h) (Read Only)
6.39.1 Speaker Current Load Status (Read Only)
Indicates whet he r or not an y of the sp ea ker ou tp uts is shorted to groun d .
VPREF[3:0] Desired VP used to calculate the required attenuation on the speaker output:
(for VA = 1.8 V)
0000 1.5 V
0001 2.0 V
0010 2.5 V
0011 3.0 V
0100 3.5 V
0101 4.0 V
0110 4.5 V
0111 5.0 V (for VA = 2.5 V)
1000 1.5 V
1001 2.0 V
1010 2.5 V
1011 3.0 V
1100 3.5 V
1101 4.0 V
1110 4.5 V
1111 5.0 V
Application: “VP Battery Compensation” on page 33
76543210
VPLVL7 VPLVL6 VPLVL5 VPLVL4 VPLVL3 VPLVL2 VPLVL1 VPLVL0
VPLVL[7:0] VP Voltage
...
0101 1110 3.0 V (for VA = 2.0 V); apply formula using actual VA voltage to calculate VP voltage.
...
0111 0010 3.7 V (for VA = 2.0 V); apply formula using actual VA voltage to calculate VP voltage.
...
Formula: VP Voltage = (Binary representation of VPLVL[7:0]) * VA / 63.3
76543210
Reserved Reserved SPKASHRT SPKBSHRT SPKR/HP Reserved Reserved Reserved
SPKxSHRT Speaker Output Load
0 No overload detected
1 Overload detected
DS680F1 73
CS42L52
5/13/08
6.39.2 SPKR/HP Pin Status (Read Only)
Indicates the status of the SPKR/HP pin.
6.40 Charge Pump Frequency (Address 34h)
6.40.1 Charge Pump Frequency
Sets the charge pump frequency on FLYN and FLYP.
Note: The headphone output THD+N performance may be affected.
SPKR/HP Pin State
0 Pulled Low
1 Pulled High
76543210
CHGFREQ3 CHGFREQ2 CHGFREQ1 CHGFREQ0 Reserved Reserved Reserved Reserved
CHGFREQ[3:0] N
0000 0
...
0101 5
...
1111 15
Formula: Frequency = (64xFs)/(N+2)
74 DS680F1
CS42L52
5/13/08
7. ANALOG PERFORMANCE PLOTS
7.1 Headphone THD+N versus Output Power Plots
Test conditions (unless otherwise specified): Input test signal is a 997 Hz sine wave; measurement band-
width is 10 Hz to 20 kHz; Fs = 48 kHz.
G = 0.6047
G = 0.7099
G = 0.8399
G = 1.0000
G = 1.1430
Legend
-100
-10
-95
-90
-85
-80
-75
-70
-65
-60
-55
-50
-45
-40
-35
-30
-25
-20
-15
d
B
r
A
080m10m 20m 30m 40m 50m 60m 70m
W
Figure 22. THD+N vs. Output Power per Channel at 1.8 V (16 load)
VHP = VA = 1.8 V
NOTE: Graph shows the out-
put power per channel (i.e.
Output Power = 23 mW into
single 16 and 46 mW into
stereo 16 with THD+N = -
75 dB).
G = 0.6047
G = 0.7099
G = 0.8399
G = 1.0000
G = 1.1430
Legend
-100
-10
-95
-90
-85
-80
-75
-70
-65
-60
-55
-50
-45
-40
-35
-30
-25
-20
-15
d
B
r
A
080m10m 20m 30m 40m 50m 60m 70m
W
Figure 23. THD+N vs. Output Power per Channel at 2.5 V (16 load)
VHP = VA = 2.5 V
NOTE: Graph shows the out-
put power per channel (i.e.
Output Power = 44 mW into
single 16 and 88 mW into
stereo 16 with THD+N = -
75 dB).
DS680F1 75
CS42L52
5/13/08
G = 0.6047
G = 0.7099
G = 0.8399
G = 1.0000
G = 1.1430
Legend
-100
-20
-95
-90
-85
-80
-75
-70
-65
-60
-55
-50
-45
-40
-35
-30
d
B
r
A
060m6m 12m 18m 24m 30m 36m 42m 48m 54m
W
Figure 24. THD+N vs. Output Power per Channel at 1.8 V (32 load)
VHP = VA = 1.8 V
NOTE: Graph shows the out-
put power per channel (i.e.
Output Power = 22 mW into
single 32 and 44 mW into
stereo 32 with THD+N = -
75 dB).
G = 0.6047
G = 0.7099
G = 0.8399
G = 1.0000
G = 1.1430
Legend
-100
-20
-95
-90
-85
-80
-75
-70
-65
-60
-55
-50
-45
-40
-35
-30
-25
d
B
r
A
060m5m 10m 15m 20m 25m 30m 35m 40m 45m 50m 55m
W
Figure 25. THD+N vs. Output Power per Channel at 2.5 V (32 load)
VHP = VA = 2.5 V
NOTE: Graph shows the out-
put power per channel (i.e.
Output Power = 42 mW into
single 32 and 84 mW into
stereo 32 with THD+N = -
75 dB).
76 DS680F1
CS42L52
5/13/08
8. EXAMPLE SYSTEM CLOCK FREQUENCIES *The”MCLKDIV2” bit must be enabled.
8.1 Auto Detect Enabled
8.2 Auto Detect Disabled
Sample Rate
LRCK (kHz) MCLK (MHz)
1024x 1536x 2048x* 3072x*
8 8.1920 12.2880 16.3840 24.5760
11.025 11.2896 16.9344 22.5792 33.8688
12 12.2880 18.4320 24.5760 36.8640
Sample Rate
LRCK (kHz) MCLK (MHz)
512x 768x 1024x* 1536x*
16 8.1920 12.2880 16.3840 24.5760
22.05 11.2896 16.9344 22.5792 33.8688
24 12.2880 18.4320 24.5760 36.8640
Sample Rate
LRCK (kHz) MCLK (MHz)
256x 384x 512x* 768x*
32 8.1920 12.2880 16.3840 24.5760
44.1 11.2896 16.9344 22.5792 33.8688
48 12.2880 18.4320 24.5760 36.8640
Sample Rate
LRCK (kHz) MCLK (MHz)
128x 192x 256x* 384x*
64 8.1920 12.2880 16.3840 24.5760
88.2 11.2896 16.9344 22.5792 33.8688
96 12.2880 18.4320 24.5760 36.8640
Sample Rate
LRCK (kHz) MCLK (MHz)
512x 768x 1024x 1536x 2048x 3072x
8 - 6.1440 8.1920 12.2880 16.3840 24.5760
11.025 - 8.4672 11.2896 16.9344 22.5792 33.8688
12 6.1440 9.2160 12.2880 18.4320 24.5760 36.8640
Sample Rate
LRCK (kHz) MCLK (MHz)
256x 384x 512x 768x 1024x 1536x
16 - 6.1440 8.1920 12.2880 16.3840 24.5760
22.05 - 8.4672 11.2896 16.9344 22.5792 33.8688
24 6.1440 9.2160 12.2880 18.4320 24.5760 36.8640
Sample Rate
LRCK (kHz) MCLK (MHz)
256x 384x 512x 768x
32 8.1920 12.2880 16.3840 24.5760
44.1 11.2896 16.9344 22.5792 33.8688
48 12.2880 18.4320 24.5760 36.8640
Sample Rate
LRCK (kHz) MCLK (MHz)
128x 192x 256x 384x
64 8.1920 12.2880 16.3840 24.5760
88.2 11.2896 16.9344 22.5792 33.8688
96 12.2880 18.4320 24.5760 36.8640
DS680F1 77
CS42L52
5/13/08
9. PCB LAYOUT CONSIDERATIONS
9.1 Power Supply, Grounding
As with any high-reso lution co nverte r, the CS42L52 re quires ca refu l attention to power supply and gr ound-
ing arrangements if its p otential performance is to be realized. Figure 1 o n page 10 shows the reco mmend-
ed power arrangements, with VA and VHP connected to clean supplies VD, which powers the digital
circuitry, may be run from the system logic supply. Alternatively, VD may be powered from the analog supply
via a ferrite bead. In this case, no additional devices should be powered from VD.
Extensive use of power and ground planes, ground plane fill in unused areas and surface mount decoupling
capacitors are recommended. Decoupling capacitors should be as close to the pins of the CS4 2L52 as pos-
sible. The low value ceramic capacitor should be closest to the pin and should be mounted on the same
side of the board as the CS42L52 to minimize inductance effects.
All signals, especially clocks, should be kept away from the FILT+ and VQ pins in order to avoid unwante d
coupling into the modu lators. The FILT+ and VQ d ecoupling capacitors, particularly the 0.1 µF, must be po-
sitioned to minimize the electrical path from FILT+ and AGND. The CDB42L52 evaluation board demon-
strates the optimum layout and power supply ar rangements.
9.2 QFN Thermal Pad
The CS42L52 is available in a compact QFN package. The underside of the QFN package reveals a large
metal pad that serves as a thermal relief to provide for maximum h eat dissip ation. This pad must mate with
an equally dimensioned copper pad on the PCB and must be electrically connected to ground. A series of
vias should be used to connect this copper pad to one or more larger ground planes on other PCB layers.
In split ground systems, it is recommended that this thermal pad be connected to AGND for best perfor-
mance. The CS42L52 evaluation board demonstr ates the optimum thermal pad and via configuration.
78 DS680F1
CS42L52
5/13/08
10.ADC & DAC DIGITAL FILTERS
Figure 26. ADC Passband Ripple Figure 27. ADC Stopband Rejection
Figure 28. ADC Transition Band Figure 29. ADC Transition Band (Detail)
Figure 30. DAC Passband Ripple Figure 31. DAC Stopband
Figure 32. DAC Transition Band Figure 33. DAC Transition Band (Detail)
DS680F1 79
CS42L52
5/13/08
11.PARAMETER DEFINITIONS
Dynamic Range
The ratio of the rms value of the signal to the rms sum of all other spectral compon ents over th e specified
bandwidth. Dynamic Range is a signal-to-noise ratio mea surement over the specified band width made with
a -60 dBFS signal. 60 dB is added to resulting measurement to refer the measurement to full-scale. This
technique ensu res tha t the distortion co mpone nts are below the noise level and do n ot affect the m easure-
ment. This measurement technique has been accepted by the Audio Engineering Society, AES17-1991,
and the Electronic Industries Association of Japan, EIAJ CP-307 . Exp re sse d in decib els .
Total Harmonic Distortion + Noise
The ratio of the rms value of the signal to the rms sum of all other spectral compon ents over th e specified
band width (typically 10 Hz to 20 kHz), including distortion components. Expressed in decibels. Measured
at -1 and -20 dBFS as suggested in AES17-1991 Annex A.
Frequency Response
A measure of the amplitude response variation from 10 Hz to 20 kHz relative to the amplitude response at
1 kHz. Units in decibels.
Interchannel Isolation
A measure of crosstalk betwe en the left and right cha nnel pairs. Measu red for each ch annel at the conver t-
er's output with no signal to the inpu t under test and a full- scale signal applied to the oth er channel. Units in
decibels.
Interchannel Gain Mismatch
The gain difference between left and right channel pairs. Units in decibels.
Gain Drift
The change in gain value with temperature. Units in ppm/°C.
Offset Error
The deviation of the mid-scale transition (111...111 to 000...000) from the ideal. Units in mV.
80 DS680F1
CS42L52
5/13/08
12.PACKAGE DIMENSIONS
1. Dimensioning and tolerance per ASME Y 14.5M-1995.
2. Dimensioning lead width applies to the plated terminal and is measured between 0.20 mm and 0.25 mm
from the terminal tip.
THERMAL CHARACTERISTICS
INCHES MILLIMETERS NOTE
DIM MIN NOM MAX MIN NOM MAX
A----0.0394----1.001
A1 0.0000 -- 0.0020 0.00 -- 0.05 1
b 0.0071 0.0091 0.0110 0.18 0.23 0.28 1,2
D 0.2362 BSC 6.00 BSC 1
D2 0.1594 0.1614 0.1634 4.05 4.10 4.15 1
E 0.2362 BSC 6.00 BSC 1
E2 0.1594 0.1614 0.1634 4.05 4.10 4.15 1
e 0.0197 BSC 0.50 BSC 1
L 0.0118 0.0157 0.0197 0.30 0.40 0.50 1
JEDEC #: MO-220
Controlling Dimension is Millimeters.
Parameter Symbol Min Typ Max Units
Junction to Ambient Thermal Impedance 2 Layer Board
4 Layer Board θJA -
-44
19 -
-°C/Watt
40L QFN (6 X 6 mm BODY) PACKAGE DRAWING
eb
A
A1
PIN #1 IDENTIFIER
0.50±0.10
LASER MARKING
E
2.00 REF
D2
L
PIN #1 CORNER
2.00 REF
E2
D
DS680F1 81
CS42L52
5/13/08
13.ORDERING INFORMATION
14.REFERENCES
1. Philips Semiconductor, The I²C-Bus Specification: Version 2.1, January 2000.
http://www.semiconductors.philips.com.
15.REVISION HISTORY
Product Description Package Pb-Free Grade Temp Range Container Order #
CS42L52
Low-Power Stereo
CODEC w/HP and
Speaker Amps for
Portable Apps
40L-QFN Yes Commerci al -40 to +85° C Rail CS42L52-CNZ
Tape & Reel CS42L52-CNZR
Automotive -40 to +105° C Rail CS42L52-DNZ
Tape & Reel CS42L52-DNZR
CDB42L52 CS42L52 Evaluation
Board - No - - - CDB42L52
CRD42L52 CS42L52 Reference
Design - No - - - CRD42L52
Revision Changes
F1
Removed the Thermal Error Detection and Thermal Foldback Feature
Added “Internal Connections” to table in “I/O Pin Characteristics” on page 9.
Added and updated absolute maximum parameters in “Absolute Maximum Ratings” on page 11
Lowered the VP Current Consumption in “Power Consumption” on page 24.
Updated the expected ALC behavior when signals cross the MIN threshold in “Automatic Level Control (ALC)” on
page 27.
Added the Thermal Error Disable control port initialization setting in “Required Initializa tion Settings” on page 37.
Updated note 2 in “Power Down PGAx” on page 42.
Added note in “ADC Mute” on page 51.
Added note in “Digital Soft Ramp” on page 53.
Added notes in “Digital Zero Cross” on page 53.
Updated the ADCB=A, PLYBCKB=A and SPKRB=A descriptions in “Analog Front-End Volume Setting B=A” on
page 50, “Playback Volume Settin g B=A” on page 51, and “Speaker Volume Setting B=A” on page 54.
Corrected the MICxGAIN decode settings in “MICx Gain” on page 55.
Corrected BEEP volume settings to reflect level relative to DAC’s full scale in “Beep Volume” on page 61.
Added note 2 in “VP Monitor” on page 71.
82 DS680F1
CS42L52
5/13/08
Contacting Cirrus Logic Support
For all product questions and inquiries, contact a Cirrus Logic Sales Representative.
To find one nearest you, go to www.cirrus.com.
IMPORTANT NOTICE
Cirrus Logic, Inc. and its subsidiaries (“Cirrus”) believe that the information contained in this document is accurate and reliable. However, the information is subject
to change wi thout notice and is provi ded “AS I S” withou t warrant y of any kind (ex press or implied) . Customer s are ad vised to o btain the latest version of relevant
information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and cond itions of sa le
supplied at the time of order acknow ledgment, inclu ding those pertainin g to warranty, indemnific ation, and limitation of liability. No responsibility is assumed by Cirrus
for the use of this information, including use of this information as the basis for manufacture or sale of any items, or for infringement of patents or othe r rights o f third
parties. This d ocu m e nt i s th e pr op erty of Cirrus and by furnishin g this information, Cirrus grants n o license, express or i m pl ied under an y patents, mask wor k rights,
copyrights, trademarks, trade secrets or other intellectual property rights. Cirrus owns the copyrights associate d with the information co ntained herein an d gives con-
sent for copies to be made of the information only for u s e with in your organization with respect to Cirrus integrated circuits or other products of Cirrus. This consent
does not extend to other copying such as copying for general distribution, advertising or promotional purposes, or for creating any work for resale.
CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROP-
ERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL APPLICA TIONS”). CIRRUS PR ODUCTS AR E NOT DESIGNED, AUTHORIZED OR WARRANTED FOR USE
IN PRODUCTS SURGICALLY IMPLAN TED INTO THE BODY, AUTOMOTIVE SAFETY OR SECURITY DEVICES, LIFE SUPPORT PRODUCTS OR OTHER CRIT-
ICAL APPLICATIONS. INCLUSION OF CIRRUS PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER’S RISK AND CIR-
RUS DISCLAIMS AND MAKES NO WARRANTY, EXPRESS, STATUTORY OR IMPLIED, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR PARTICULAR PURPOSE, WITH REGARD TO ANY CIRRUS PRODUCT THAT IS USED IN SUCH A MANNER. IF THE CUSTOMER OR CUSTOM-
ER’S CUSTOMER USES OR PERMITS THE USE OF CIRRUS PRODUCTS IN CRITICAL APPLICATIONS, CUSTOMER AGREES, BY SUCH USE, TO FULLY
INDEMNIFY CI RRUS, I TS OFFI CERS, DIRECT ORS, EMPLOY EES, DIST RIBUT ORS AND OTHER AGENTS FROM ANY AND ALL LIABILITY, INCLUDING AT-
TORNEYS’ FEES AND COSTS, THAT MAY RESULT FROM OR ARISE IN CONNECTION WITH THESE USES .
Cirrus Logic, Cirrus, and the Cirrus Logic logo designs are trademarks of Cirrus Logic, Inc. All other brand and product names in this document may be trademarks
or service marks of their respective owners.
I²C is a registered trademark of Philips Semiconductor.