MPC5746C
MPC5746C Microcontroller
Datasheet
Features
1 × 160 MHz Power Architecture® e200z4 Dual issue,
32-bit CPU
Single precision floating point operations
8 KB instruction cache and 4 KB data cache
Variable length encoding (VLE) for significant code
density improvements
1 x 80 MHz Power Architecture® e200z2 Single issue,
32-bit CPU
Using variable length encoding (VLE) for
significant code size footprint reduction
End to end ECC
All bus masters, for example, cores, generate a
single error correction, double error detection
(SECDED) code for every bus transaction
SECDED covers 64-bit data and 29-bit address
Memory interfaces
3 MB on-chip flash memory supported with the
flash memory controller
3 x flash memory page buffers (3-port flash memory
controller)
384 KB on-chip SRAM across three RAM ports
Clock interfaces
8-40 MHz external crystal (FXOSC)
16 MHz IRC (FIRC)
128 KHz IRC (SIRC)
32 KHz external crystal (SXOSC)
Clock Monitor Unit (CMU)
Frequency modulated phase-locked loop (FMPLL)
Real Time Counter (RTC)
System Memory Protection Unit (SMPU) with up to 32
region descriptors and 16-byte region granularity
16 Semaphores to manage access to shared resources
Interrupt controller (INTC) capable of routing
interrupts to any CPU
Crossbar switch architecture for concurrent access to
peripherals, flash memory, and RAM from multiple
bus masters
32-channel eDMA controller with multiple transfer
request sources using DMAMUX
Boot Assist Flash (BAF) supports internal flash
programming via a serial link (SCI)
Analog
Two analog-to-digital converters (ADC), one 10-bit
and one 12-bit
Three analog comparators
Cross Trigger Unit to enable synchronization of
ADC conversions with a timer event from the
eMIOS or from the PIT
Communication
Four Deserial Serial Peripheral Interface (DSPI)
Four Serial Peripheral interface (SPI)
16 serial communication interface (LIN) modules
Eight enhanced FlexCAN3 with FD support
Four inter-IC communication interface (I2C)
ENET complex (10/100 Ethernet) that supports
Multi queue with AVB support, 1588, and MII/
RMII
Dual-channel FlexRay controller
Audio
Synchronous Audio Interface (SAI)
Fractional clock dividers (FCD) operating in
conjunction with the SAI
Configurable I/O domains supporting FlexCAN,
LINFlexD, Ethernet, and general I/O
Supports wake-up from low power modes via the
WKPU controller
On-chip voltage regulator (VREG)
Debug functionality
e200z2 core:NDI per IEEE-ISTO 5001-2008
Class3+
e200z4 core: NDI per IEEE-ISTO 5001-2008 Class
3+
NXP Semiconductors Document Number MPC5746C
Data Sheet: Technical Data Rev. 6, 11/2018
NXP reserves the right to change the production detail specifications as may be
required to permit improvements in the design of its products.
Timer
16 Periodic Interrupt Timers (PITs)
Two System Timer Modules (STM)
Three Software Watchdog Timers (SWT)
64 Configurable Enhanced Modular Input Output Subsystem (eMIOS) channels
Device/board boundary Scan testing supported with Joint Test Action Group (JTAG) of IEEE 1149.1 and IEEE 1149.7
(CJTAG)
Security
Hardware Security Module (HSMv2)
Password and Device Security (PASS) supporting advanced censorship and life-cycle management
One Fault Collection and Control Unit (FCCU) to collect faults and issue interrupts
Functional Safety
ISO26262 ASIL-B compliance
Multiple operating modes
Includes enhanced low power operation
MPC5746C Microcontroller Datasheet, Rev. 6, 11/2018
2 NXP Semiconductors
Table of Contents
1 Block diagram.................................................................................... 4
2 Family comparison.............................................................................4
3 Ordering parts.....................................................................................8
3.1 Determining valid orderable parts ..........................................8
3.2 Ordering Information ............................................................. 9
4 General............................................................................................... 9
4.1 Absolute maximum ratings..................................................... 9
4.2 Recommended operating conditions....................................... 11
4.3 Voltage regulator electrical characteristics............................. 13
4.4 Voltage monitor electrical characteristics...............................17
4.5 Supply current characteristics................................................. 18
4.6 Electrostatic discharge (ESD) characteristics......................... 22
4.7 Electromagnetic Compatibility (EMC) specifications............ 22
5 I/O parameters....................................................................................23
5.1 AC specifications @ 3.3 V Range...........................................23
5.2 DC electrical specifications @ 3.3V Range............................24
5.3 AC specifications @ 5 V Range..............................................25
5.4 DC electrical specifications @ 5 V Range..............................25
5.5 Reset pad electrical characteristics..........................................26
5.6 PORST electrical specifications..............................................28
6 Peripheral operating requirements and behaviours............................28
6.1 Analog..................................................................................... 28
6.1.1 ADC electrical specifications................................. 28
6.1.2 Analog Comparator (CMP) electrical
specifications.......................................................... 33
6.2 Clocks and PLL interfaces modules........................................34
6.2.1 Main oscillator electrical characteristics.................34
6.2.2 32 kHz Oscillator electrical specifications ............ 36
6.2.3 16 MHz RC Oscillator electrical specifications......36
6.2.4 128 KHz Internal RC oscillator Electrical
specifications ......................................................... 37
6.2.5 PLL electrical specifications ..................................37
6.3 Memory interfaces...................................................................38
6.3.1 Flash memory program and erase specifications....38
6.3.2 Flash memory Array Integrity and Margin Read
specifications.......................................................... 39
6.3.3 Flash memory module life specifications............... 40
6.3.4 Data retention vs program/erase cycles.................. 40
6.3.5 Flash memory AC timing specifications................ 41
6.3.6 Flash read wait state and address pipeline control
settings ................................................................... 42
6.4 Communication interfaces.......................................................43
6.4.1 DSPI timing............................................................ 43
6.4.2 FlexRay electrical specifications............................ 49
6.4.2.1 FlexRay timing....................................49
6.4.2.2 TxEN...................................................49
6.4.2.3 TxD..................................................... 50
6.4.2.4 RxD..................................................... 51
6.4.3 Ethernet switching specifications........................... 52
6.4.4 SAI electrical specifications .................................. 53
6.5 Debug specifications............................................................... 55
6.5.1 JTAG interface timing ........................................... 55
6.5.2 Nexus timing...........................................................58
6.5.3 WKPU/NMI timing................................................ 60
6.5.4 External interrupt timing (IRQ pin)........................61
7 Thermal attributes.............................................................................. 61
7.1 Thermal attributes................................................................... 61
8 Dimensions.........................................................................................65
8.1 Obtaining package dimensions ...............................................65
9 Pinouts................................................................................................66
9.1 Package pinouts and signal descriptions................................. 66
10 Reset sequence................................................................................... 66
10.1 Reset sequence........................................................................ 66
10.1.1 Reset sequence duration..........................................66
10.1.2 BAF execution duration..........................................66
10.1.3 Reset sequence description..................................... 67
11 Revision History.................................................................................69
11.1 Revision History......................................................................69
MPC5746C Microcontroller Datasheet, Rev. 6, 11/2018
NXP Semiconductors 3
1 Block diagram
4 KB d-cache8 KB i-cache
Nexus 3+SPFP-APU
64-bit AHBE2 E-ECC
160 MHz e200z4
Peripheral
bridge
E2 E-ECC
Flash Memory Low power
unit interface
(LPU)
E2 E-ECC64-bit data SMPU
64-bit AHB
E2 E-ECC
Nexus 3+
80 MHz e200z2
Flexray
HSMv2
Ethernet
(ENET)
eDMA
System bus masters
System
128 KHz
SIRC
MEMU
WKPU
BAF
FMPLL
RTC/API
2 x SWTs
16 x SEMA42
16 x PIT-RTI
32 KHz
SXOSC
8–40 MHz
FXOSC
Padkeeper
support
Register
protection
MC_CGM,
MC_PCU,
MC_ME,
MC_RGM
STCU
(MBIST)
SIUL
2 x STM
PMC
16 MHz FIRC
DEBUG/
JTAG
FCCU
PASS
SSCM
CMU
TDM
Peripheral clusters
68 ch 10-bit ADC0
(mix int and ext) 31 ch 12-bit ADC1 1 x FlexCAN(PN)*
7 x FlexCAN* 16 x LINFlexD
4 x I2C3 x analog
comparator (CMP) 4 x DSPI
4 x SPI 3 x SAI
3 x FCD
2 x eMIOS + BCTU 2-core INTC DMA and
2 x channel mux 1 x CRC
3 x SA-PF buffers
3 MB array (inc EEE)
E2 E-ECC
Triple ported
64-bit wide RAM
2xRAM
E2 E-ECC
256 KB array
* All FlexCANs optionally support
CAN FD
256 KB array
Figure 1. MPC5746C block diagram
2Family comparison
The following table provides a summary of the different members of the MPC5746C
family and their proposed features. This information is intended to provide an
understanding of the range of functionality offered by this family. For full details of all of
the family derivatives please contact your marketing representative.
Block diagram
MPC5746C Microcontroller Datasheet, Rev. 6, 11/2018
4 NXP Semiconductors
NOTE
All optional features (Flash memory, RAM, Peripherals) start
with lowest number or address (e.g., FlexCAN0) and end at
highest available number or address (e.g., MPC574xB/C have 6
CAN, ending with FlexCAN5).
Table 1. MPC5746C Family Comparison1
Feature MPC5745B MPC5744B MPC5746B MPC5744C MPC5745C MPC5746C
CPUs e200z4 e200z4 e200z4 e200z4
e200z2
e200z4
e200z2
e200z4
e200z2
FPU e200z4 e200z4 e200z4 e200z4 e200z4 e200z4
Maximum
Operating
Frequency2
160MHz (Z4) 160MHz (Z4) 160MHz (Z4) 160MHz (Z4)
80MHz (Z2)
160MHz (Z4)
80MHz (Z2)
160MHz (Z4)
80MHz (Z2)
Flash memory 2 MB 1.5 MB 3 MB 1.5 MB 2 MB 3 MB
EEPROM
support
Emulated up to 64K Emulated up to 128K
RAM 256 KB 192 KB 384 KB
(Optional
512KB)3
192 KB 256 KB 384 KB
(Optional
512KB)3
ECC End to End
SMPU 16 entry
DMA 32 channels
10-bit ADC 36 Standard channels
32 External channels
12-bit ADC 15 Precision channels
16 Standard channels
Analog
Comparator
3
BCTU 1
SWT 1, SWT[0] 24
STM 1, STM[0] 2
PIT-RTI 16 channels PIT
1 channels RTI
RTC/API 1
Total Timer I/O564 channels
16-bits
LINFlexD 1
Master and Slave (LINFlexD[0], 11 Master
(LINFlexD[1:11])
1
Master and Slave (LINFlexD[0], 15 Master
(LINFlexD[1:15])
FlexCAN 6 with optional CAN FD support (FlexCAN[0:5]) 8 with optional CAN FD support (FlexCAN[0:7])
DSPI/SPI 4 x DSPI
4 x SPI
Table continues on the next page...
Family comparison
MPC5746C Microcontroller Datasheet, Rev. 6, 11/2018
NXP Semiconductors 5
Table 1. MPC5746C Family Comparison1 (continued)
Feature MPC5745B MPC5744B MPC5746B MPC5744C MPC5745C MPC5746C
I2C 4 4 4 4
SAI/I2S 3 3 3 3
FXOSC 8 - 40 MHz
SXOSC 32 KHz
FIRC 16 MHz
SIRC 128 KHz
FMPLL 1
Low Power Unit
(LPU)
Yes
FlexRay 2.1
(dual channel)
Yes, 128 MB Yes, 128 MB Yes, 128 MB Yes, 128 MB
Ethernet (RMII,
MII + 1588, Muti
queue AVB
support)
1 1 1 1
CRC 1
MEMU 2
STCU2 1
HSM-v2
(security)
Optional
Censorship Yes
FCCU 1
Safety level Specific functions ASIL-B certifiable
User MBIST Yes
I/O Retention in
Standby
Yes
GPI 1 (100 BGA), 17 (176 LQFP-EP), 18 (256 BGA), 18 (324 BGA)
GPIO 65 (100 BGA), 129 (176 LQFP-EP), 178 (256 BGA), 246 (324 BGA)
Debug JTAGC,
cJTAG
Nexus Z4 N3+ (Only available on 324BGA (development only) )
Z2 N3+ (Only available on 324BGA (development only) )
Packages 176 LQFP-EP
256 BGA
100 BGA
176 LQFP-EP
256 BGA
100 BGA
176 LQFP-EP
256 BGA
100 BGA
176 LQFP-EP
256 BGA
100 BGA
176 LQFP-EP
256 BGA
100 BGA
176 LQFP-EP
256 BGA,
324 BGA
(development
only)
100 BGA
1. Feature set dependent on selected peripheral multiplexing, table shows example. Peripheral availability is package
dependent.
2. Based on 125°C ambient operating temperature and subject to full device characterization.
3. Contact NXP representative for part number
4. Additional SWT included when HSM option selected
Family comparison
MPC5746C Microcontroller Datasheet, Rev. 6, 11/2018
6 NXP Semiconductors
5. See device datasheet and reference manual for information on to timer channel configuration and functions.
Table 2. MPC5746C Family Comparison - NVM Memory Map 1
Start Address End Address Flash block RWW partition MPC5744 MPC5745 MPC5746
0x01000000 0x0103FFFF 256 KB code
Flash block 0
6 available available available
0x01040000 0x0107FFFF 256 KB code
Flash block 1
6 available available available
0x01080000 0x010BFFFF 256 KB code
Flash block 2
6 available available available
0x010C0000 0x010FFFFF 256 KB code
Flash block3
6 available available available
0x01100000 0x0113FFFF 256 KB code
Flash block 4
6 not available available available
0x01140000 0x0117FFFF 256 KB code
Flash block 5
7 not available available available
0x01180000 0x011BFFFF 256 KB code
Flash block 6
7 not available not available available
0x011C0000 0x011FFFFF 256 KB code
Flash block 7
7 not available not available available
0x01200000 0x0123FFFF 256 KB code
Flash block 8
7 not available not available available
0x01240000 0x0127FFFF 256 KB code
Flash block 9
7 not available not available available
Table 3. MPC5746C Family Comparison - NVM Memory Map 2
Start Address End Address Flash block RWW partition MPC5744B
MPC5745B
MPC5746B
MPC5744C
MPC5745C
MPC5746C
0x00F9000010x00F93FFF 16 KB data Flash 2 available available1
0x00F94000 0x00F97FFF 16 KB data Flash 2 available available1
0x00F98000 0x00F9BFFF 16 KB data Flash 2 available available1
0x00F9C000 0x00F9FFFF 16 KB data Flash 2 available available1
0x00FA0000 0x00FA3FFF 16 KB data Flash 3 not available available1
0x00FA4000 0x00FA7FFF 16 KB data Flash 3 not available available1
0x00FA8000 0x00FABFFF 16 KB data Flash 3 not available available1
0x00FAC000 0x00FAFFFF 16 KB data Flash 3 not available available1
0x00FB0000 0x00FB7FFF 32 KB data Flash Reserved
0x00FB8000 0x00FBFFFF 32 KB data Flash Reserved
0x00FC0000 0x00FC7FFF 32 KB data Flash 0 available available
0x00FC8000 0x00FCFFFF 32 KB data Flash 1 available available
0x00FD0000 0x00FD7FFF 32 KB data Flash 1 available available
0x00FD8000 0x00FDFFFF 32 KB data Flash 1 available available
0x00FE0000 0x00FEFFFF 64 KB data Flash 0 available available
0x00FF0000 0x00FFFFFF 64 KB data Flash 1 available available
Family comparison
MPC5746C Microcontroller Datasheet, Rev. 6, 11/2018
NXP Semiconductors 7
1. Flexible patitions for boot and EEPROM
Table 4. MPC5748G Family Comparison - NVM Memory Map 3
Start Address End Address Flash block RWW MPC5744B
MPC5745B
MPC5746B
MPC5744C
MPC5745C
MPC5746C
0x00610000 0x0061FFFF 64 KB HSM Code
block 2
0 available available
0x00620000 0x0062FFFF 64 KB HSM Code
block 3
1 available available
HSM Data
0x00630000 0x00F7FFFF 9536 KB Reserved
HSM Data
0x00F80000 0x00F83FFF 16 KB HSM data
block 0
4 available available
0x00F84000 0x00F87FFF 16 KB HSM data
block 1
5 available available
0x00F88000 0x00F8BFFF 16 KB Reserved
Small HSM Code Block
0x00F8C000 0x00F8FFFF 16 KB Code Flash
block
0 available available
Table 5. MPC5746C Family Comparison - RAM Memory Map
Start Address End Address Allocated size Description MPC5744 MPC5745 MPC5746
0x40000000 0x40001FFF 8 KB SRAM0 available available available
0x40002000 0x4000FFFF 56 KB SRAM1 available available available
0x40010000 0x4001FFFF 64 KB SRAM2 available available available
0x40020000 0x4002FFFF 64 KB SRAM3 available available available
0x40030000 0x4003FFFF 64 KB SRAM4 not available available available
0x40040000 0x4004FFFF 64 KB SRAM5 not available not available available
0x40050000 0x4005FFFF 64 KB SRAM6 not available not available available
0x40060000 0x4006FFFF 64 KB SRAM7 not available not available optional
0x40070000 0x4007FFFF 64 KB SRAM8 not available not available optional
Ordering parts
3.1 Determining valid orderable parts
To determine the orderable part numbers for this device, go to www.nxp.com and
perform a part number search for the following device number: MPC5746C.
3
Ordering parts
MPC5746C Microcontroller Datasheet, Rev. 6, 11/2018
8 NXP Semiconductors
3.2 Ordering Information
Qualification Status
Power Architecture
Automotive Platform
Core Version
Flash Size (core dependent)
Product
Optional fields
Temperature spec.
Package Code
Qualification Status
P = Engineering samples
S = Automotive qualified
PC = Power Architecture
Automotive Platform
57 = Power Architecture in 55nm
Core Version
4 = e200z4 Core Version (highest
core version in the case of multiple
cores)
Flash Memory Size
4 = 1.5 MB
5 = 2 MB
6 = 3 MB
Product Version
Optional fields
Fab and mask version indicator
K = TSMC Fab
#(0,1,etc.) = Version of the
maskset, like rev. 0=0N65H
Temperature spec.
C = -40.C to +85.C Ta
V = -40.C to +105.C Ta
M = -40.C to +125.C Ta
R = Tape & Reel (blank if Tray)
Package Code
KU = 176 LQFP EP
MJ = 256 MAPBGA
MN = 324 MAPBGAM
CPU Frequency
Shipping Method
R = Tape and reel
Blank = Tray
CPU Frequency
Fab and mask indicator
Example Code
2 = Z4 operates upto 120 MHz
6 = Z4 operates upto 160 MHz
B = Single core
C = Dual core
P PC 57 4 6 C S K0 MMJ 6 R
F = CAN FD
B = HSM + CAN FD
R = 512K RAM
T = HSM + 512K RAM
G* = CAN FD + 512K RAM
H* = HSM + CAN FD + 512K RAM
* G and H for 5746 B/C only
MH = 100MAPBGA
Note: Not all part number combinations are available as production product
Blank = No optional feature
S = HSM (Security Module)
General
4.1 Absolute maximum ratings
NOTE
Functional operating conditions appear in the DC electrical
characteristics. Absolute maximum ratings are stress ratings
only, and functional operation at the maximum values is not
guaranteed. See footnotes in Table 6 for specific conditions
4
General
MPC5746C Microcontroller Datasheet, Rev. 6, 11/2018
NXP Semiconductors 9
Stress beyond the listed maximum values may affect device
reliability or cause permanent damage to the device.
Table 6. Absolute maximum ratings
Symbol Parameter Conditions1Min Max Unit
VDD_HV_A, VDD_HV_B,
VDD_HV_C2, 33.3 V - 5. 5V input/output supply voltage –0.3 6.0 V
VDD_HV_FLA4, 53.3 V flash supply voltage (when supplying
from an external source in bypass mode)
–0.3 3.63 V
VDD_LP_DEC6Decoupling pin for low power regulators7 –0.3 1.32 V
VDD_HV_ADC1_REF83.3 V / 5.0 V ADC1 high reference voltage –0.3 6 V
VDD_HV_ADC0
VDD_HV_ADC1
3.3 V to 5.5V ADC supply voltage –0.3 6.0 V
VSS_HV_ADC0
VSS_HV_ADC1
3.3V to 5.5V ADC supply ground –0.1 0.1 V
VDD_LV9, 10, 11, 12 Core logic supply voltage –0.3 1.32 V
VINA Voltage on analog pin with respect to
ground (VSS_HV)
–0.3 Min (VDD_HV_x,
VDD_HV_ADCx,
VDD_ADCx_REF)
+0.3
V
VIN Voltage on any digital pin with respect to
ground (VSS_HV)
Relative to
VDD_HV_A,
VDD_HV_B,
VDD_HV_C
–0.3 VDD_HV_x + 0.3 V
IINJPAD Injected input current on any pin during
overload condition
Always –5 5 mA
IINJSUM Absolute sum of all injected input currents
during overload condition
–50 50 mA
Tramp Supply ramp rate 0.5 V / min 100V/ms
TA13 Ambient temperature -40 125 °C
TSTG Storage temperature –55 165 °C
1. All voltages are referred to VSS_HV unless otherwise specified
2. VDD_HV_B and VDD_HV_C are common together on the 176 LQFP-EP package.
3. Allowed VDD_HV_x = 5.5–6.0 V for 60 seconds cumulative time with no restrictions, for 10 hours cumulative time device in
reset, TJ= 150 °C, remaining time at or below 5.5 V.
4. VDD_HV_FLA must be connected to VDD_HV_A when VDD_HV_A = 3.3V
5. VDD_HV_FLA must be disconnected from ANY power sources when VDD_HV_A = 5V
6. This pin should be decoupled with low ESR 1 µF capacitor.
7. Not available for input voltage, only for decoupling internal regulators
8. 10-bit ADC does not have dedicated reference and its reference is bonded to 10-bit ADC supply(VDD_HV_ADC0) inside
the package.
9. Allowed 1.45 – 1.5 V for 60 seconds cumulative time at maximum TJ = 150 °C, remaining time as defined in footnotes 10
and 11.
10. Allowed 1.38 – 1.45 V– for 10 hours cumulative time at maximum TJ = 150 °C, remaining time as defined in footnote 11.
11. 1.32 – 1.38 V range allowed periodically for supply with sinusoidal shape and average supply value below 1.326 V at
maximum TJ = 150 °C.
12. If HVD on core supply (VHVD_LV_x) is enabled, it will generate a reset when supply goes above threshold.
13. TJ=150°C. Assumes TA=125°C
Assumes maximum θJA for 2s2p board. See Thermal attributes
General
MPC5746C Microcontroller Datasheet, Rev. 6, 11/2018
10 NXP Semiconductors
4.2 Recommended operating conditions
The following table describes the operating conditions for the device, and for which all
specifications in the data sheet are valid, except where explicitly noted. The device
operating conditions must not be exceeded in order to guarantee proper operation and
reliability. The ranges in this table are design targets and actual data may vary in the
given range.
NOTE
For normal device operations, all supplies must be within
operating range corresponding to the range mentioned in
following tables. This is required even if some of the
features are not used.
If VDD_HV_A is in 5.0V range, VDD_HV_FLA should be
externally supplied using a 3.3V source. If VDD_HV_A is
in 3.3V range, VDD_HV_FLA should be shorted to
VDD_HV_A.
VDD_HV_A, VDD_HV_B and VDD_HV_C are all
independent supplies and can each be set to 3.3V or 5V.
The following tables: 'Recommended operating conditions
(VDD_HV_x = 3.3 V)' and table 'Recommended operating
conditions (VDD_HV_x = 5 V)' specify their ranges when
configured in 3.3V or 5V respectively.
Table 7. Recommended operating conditions (VDD_HV_x = 3.3 V)
Symbol Parameter Conditions1Min2Max Unit
VDD_HV_A
VDD_HV_B
VDD_HV_C
HV IO supply voltage 3.15 3.6 V
VDD_HV_FLA3HV flash supply voltage 3.15 3.6 V
VDD_HV_ADC1_REF HV ADC1 high reference voltage 3.0 5.5 V
VDD_HV_ADC0
VDD_HV_ADC1
HV ADC supply voltage max(VDD_H
V_A,VDD_H
V_B,VDD_H
V_C) - 0.05
3.6 V
VSS_HV_ADC0
VSS_HV_ADC1
HV ADC supply ground -0.1 0.1 V
VDD_LV4, 5Core supply voltage 1.2 1.32 V
VIN1_CMP_REF6, 7Analog Comparator DAC reference voltage 3.15 3.6 V
IINJPAD Injected input current on any pin during
overload condition
-3.0 3.0 mA
Table continues on the next page...
General
MPC5746C Microcontroller Datasheet, Rev. 6, 11/2018
NXP Semiconductors 11
Table 7. Recommended operating conditions (VDD_HV_x = 3.3 V) (continued)
Symbol Parameter Conditions1Min2Max Unit
TA8Ambient temperature under bias fCPU ≤ 160
MHz
–40 125 °C
TJJunction temperature under bias –40 150 °C
1. All voltages are referred to VSS_HV unless otherwise specified
2. Device will be functional down (and electrical specifications as per various datasheet parameters will be guaranteed) to the
point where one of the LVD/HVD resets the device. When voltage drops outside range for an LVD/HVD, device is reset.
3. VDD_HV_FLA must be connected to VDD_HV_A when VDD_HV_A = 3.3V
4. Only applicable when supplying from external source.
5. VDD_LV supply pins should never be grounded (through a small impedance). If these are not driven, they should only be
left floating.
6. VIN1_CMP_REF ≤ VDD_HV_A
7. This supply is shorted VDD_HV_A on lower packages.
8. TJ=150°C. Assumes TA=125°C
Assumes maximum θJA of 2s2p board. See Thermal attributes
NOTE
If VDD_HV_A is in 5V range, it is necessary to use internal
Flash supply 3.3V regulator. VDD_HV_FLA should not be
supplied externally and should only have decoupling capacitor.
Table 8. Recommended operating conditions (VDD_HV_x = 5 V)
Symbol Parameter Conditions 1Min2Max Unit
VDD_HV_A
VDD_HV_B
VDD_HV_C
HV IO supply voltage 4.5 5.5 V
VDD_HV_FLA3HV flash supply voltage 3.15 3.6 V
VDD_HV_ADC1_REF HV ADC1 high reference voltage 3.15 5.5 V
VDD_HV_ADC0
VDD_HV_ADC1
HV ADC supply voltage max(VDD_H
V_A,VDD_H
V_B,VDD_H
V_C) - 0.05
5.5 V
VSS_HV_ADC0
VSS_HV_ADC1
HV ADC supply ground -0.1 0.1 V
VDD_LV4Core supply voltage 1.2 1.32 V
VIN1_CMP_REF6Analog Comparator DAC reference voltage 3.15 5.55V
IINJPAD Injected input current on any pin during
overload condition
-3.0 3.0 mA
TA7Ambient temperature under bias fCPU ≤ 160
MHz
–40 125 °C
TJJunction temperature under bias –40 150 °C
1. All voltages are referred to VSS_HV unless otherwise specified
2. Device will be functional down (and electrical specifications as per various datasheet parameters will be guaranteed) to the
point where one of the LVD/HVD resets the device. When voltage drops outside range for an LVD/HVD, device is reset.
3. When VDD_HV is in 5 V range, VDD_HV_FLA cannot be supplied externally.This pin is decoupled with Cflash_reg.
General
MPC5746C Microcontroller Datasheet, Rev. 6, 11/2018
12 NXP Semiconductors
4. VDD_LV supply pins should never be grounded (through a small impedance). If these are not driven, they should only be
left floating
5. VIN1_CMP_REF ≤ VDD_HV_A
6. This supply is shorted VDD_HV_A on lower packages.
7. TJ=150°C. Assumes TA=125°C
Assumes maximum θJA of 2s2p board. See Thermal attributes
4.3 Voltage regulator electrical characteristics
The voltage regulator is composed of the following blocks:
Choice of generating supply voltage for the core area.
Control of external NPN ballast transistor
Generating core supply using internal ballast transistor
Connecting an external 1.25 V (nominal) supply directly without the NPN ballast
Internal generation of the 3.3 V flash supply when device connected in 5V
applications
External bypass of the 3.3 V flash regulator when device connected in 3.3V
applications
Low voltage detector - low threshold (LVD_IO_A_LO) for VDD_HV_IO_A supply
Low voltage detector - high threshold (LVD_IO_A_Hi) for VDD_HV_IO_A supply
Low voltage detector (LVD_FLASH) for 3.3 V flash supply (VDD_HV_FLA)
Various low voltage detectors (LVD_LV_x)
High voltage detector (HVD_LV_cold) for 1.2 V digital core supply (VDD_LV)
Power on Reset (POR_LV) for 1.25 V digital core supply (VDD_LV)
Power on Reset (POR_HV) for 3.3 V to 5 V supply (VDD_HV_A)
The following bipolar transistors1 are supported, depending on the device performance
requirements. As a minimum the following must be considered when determining the
most appropriate solution to maintain the device under its maximum power dissipation
capability: current, ambient temperature, mounting pad area, duty cycle and frequency for
Idd, collector voltage, etc
1. BCP56, MCP68 and MJD31are guaranteed ballasts.
General
MPC5746C Microcontroller Datasheet, Rev. 6, 11/2018
NXP Semiconductors 13
VDD_LP_DEC
CLP/ULPREG
CFLASH_REG
VRC_CTRL
VSS_HV
CFP_REG
VDD_HV_BALLAST
DEVICE
FPREG
VDD_HV_FLA
LPPREG
ULPPREG
Flash
voltage
regulator
CBE_FPREG
DD_LV
V
SS_HV
V
VSS_HV
Figure 2. Voltage regulator capacitance connection
NOTE
On BGA, VSS_LV and VSS_HV have been joined on substrate
and renamed as VSS.
Table 9. Voltage regulator electrical specifications
Symbol Parameter Conditions Min Typ Max Unit
Cfp_reg1External decoupling / stability
capacitor
Min, max values shall be granted
with respect to tolerance, voltage,
temperature, and aging
variations.
1.32 2.223 µF
Combined ESR of external
capacitor
0.001 0.03 Ohm
Clp/ulp_reg External decoupling / stability
capacitor for internal low power
regulators
Min, max values shall be granted
with respect to tolerance, voltage,
temperature, and aging
variations.
0.8 1 1.4 µF
Combined ESR of external
capacitor
0.001 0.1 Ohm
Cbe_fpreg3Capacitor in parallel to base-
emitter
BCP68 and BCP56 3.3 nF
MJD31 4.7
Table continues on the next page...
General
MPC5746C Microcontroller Datasheet, Rev. 6, 11/2018
14 NXP Semiconductors
Table 9. Voltage regulator electrical specifications (continued)
Symbol Parameter Conditions Min Typ Max Unit
Cflash_reg4External decoupling / stability
capacitor for internal Flash
regulators
Min, max values shall be granted
with respect to tolerance, voltage,
temperature, and aging
variations.
1.32 2.2 3 µF
Combined ESR of external
capacitor
0.001 0.03 Ohm
CHV_VDD_A VDD_HV_A supply capacitor 5Min, max values shall be granted
with respect to tolerance, voltage,
temperature, and aging
variations.
1 µF
CHV_VDD_B VDD_HV_B supply capacitor5Min, max values shall be granted
with respect to tolerance, voltage,
temperature, and aging
variations.
1 µF
CHV_VDD_C VDD_HV_C supply capacitor5Min, max values shall be granted
with respect to tolerance, voltage,
temperature, and aging
variations.
1 µF
CHV_ADC0
CHV_ADC1
HV ADC supply decoupling
capacitances
Min, max values shall be granted
with respect to tolerance, voltage,
temperature, and aging
variations.
1 µF
CHV_ADR6HV ADC SAR reference supply
decoupling capacitances
Min, max values shall be granted
with respect to tolerance, voltage,
temperature, and aging
variations.
0.47 µF
VDD_HV_BALL
AST7FPREG Ballast collector supply
voltage
When collector of NPN ballast is
directly supplied by an on board
supply source (not shared with
VDD_HV_A supply pin) without
any series resistance, that is,
RC_BALLAST less than 0.01 Ohm.
2.25 5.5 V
RC_BALLAST Series resistor on collector of
FPREG ballast
When VDD_HV_BALLAST is
shorted to VDD_HV_A on the
board
0.1 Ohm
tSU Start-up time with external
ballastafter main supply
(VDD_HV_A) stabilization
Cfp_reg = 3 μF 74 μs
tSU_int Start-up time with internal ballast
after main supply (VDD_HV_A)
stabilization
Cfp_reg = 3 μF 103 μs
tramp Load current transient Iload from 15% to 55%
Cfp_reg = 3 µF
1.0 µs
1. Split capacitance on each pair VDD_LV pin should sum up to a total value of Cfp_reg
2. Typical values will vary over temperature, voltage, tolerance, drift, but total variation must not exceed minimum and
maximum values.
3. Ceramic X7R or X5R type with capacitance-temperature characteristics +/-15% of -55 degC to +125degC is
recommended. The tolerance +/-20% is acceptable.
4. It is required to minimize the board parasitic inductance from decoupling capacitor to VDD_HV_FLA pin and the routing
inductance should be less than 1nH.
General
MPC5746C Microcontroller Datasheet, Rev. 6, 11/2018
NXP Semiconductors 15
5. 1. For VDD_HV_x, 1µf on each side of the chip
a. 0.1 µf close to each VDD/VSS pin pair.
b. 10 µf near for each power supply source
c. For VDD_LV, 0.1uf close to each VDD/VSS pin pair is required. Depending on the the selected regulation
mode, this amount of capacitance will need to be subtracted from the total capacitance required by the
regulator for e.g., as specified by CFP_REG parameter.
2. For VDD_LV, 0.1uf close to each VDD/VSS pin pair is required. Depending on the the selected regulation mode, this
amount of capacitance will need to be subtracted from the total capacitance required by the regulator for e.g., as
specified by CFP_REG parameter
6. Only applicable to ADC1
7. In external ballast configuration the following must be ensured during power-up and power-down (Note: If VDD_HV_BALLAST
is supplied from the same source as VDD_HV_A this condition is implicitly met):
During power-up, VDD_HV_BALLAST must have met the min spec of 2.25V before VDD_HV_A reaches the
POR_HV_RISE min of 2.75V.
During power-down, VDD_HV_BALLAST must not drop below the min spec of 2.25V until VDD_HV_A is below
POR_HV_FALL min of 2.7V.
NOTE
For a typical configuration using an external ballast transistor
with separate supply for VDD_HV_A and the ballast collector,
a bulk storage capacitor (as defined in Table 9) is required on
VDD_HV_A close to the device pins to ensure a stable supply
voltage.
Extra care must be taken if the VDD_HV_A supply is also
being used to power the external ballast transistor or the device
is running in internal regulation mode. In these modes, the
inrush current on device Power Up or on exit from Low Power
Modes is significant and may cause the VDD_HV_A voltage to
drop resulting in an LVD reset event. To avoid this, the board
layout should be optimized to reduce common trace resistance
or additional capacitance at the ballast transistor collector (or
VDD_HV_A pins in the case of internal regulation mode) is
required. NXP recommends that customers simulate the
external voltage supply circuitry.
In all circumstances, the voltage on VDD_HV_A must be
maintained within the specified operating range (see
Recommended operating conditions) to prevent LVD events.
General
MPC5746C Microcontroller Datasheet, Rev. 6, 11/2018
16 NXP Semiconductors
4.4 Voltage monitor electrical characteristics
Table 10. Voltage monitor electrical characteristics
Symbol Parameter State Conditions Configuration Threshold Unit
Power Up
1Mask
Opt2Reset
Type
Min Typ Max V
VPOR_LV LV supply power
on reset detector
Fall Untrimmed Yes No POR 0.930 0.979 1.028 V
Trimmed - - - V
Rise Untrimmed 0.980 1.029 1.078 V
Trimmed - - - V
VHVD_LV_col
d
LV supply high
voltage
monitoring,
detecting at
device pin
Fall Untrimmed No Yes Function
al
Disabled at Start
Trimmed 1.325 1.345 1.375 V
Rise Untrimmed Disabled at Start
Trimmed 1.345 1.365 1.395 V
VLVD_LV_PD
2_hot
LV supply low
voltage
monitoring,
detecting on the
PD2 core (hot)
area
Fall Untrimmed Yes No POR 1.0800 1.1200 1.1600 V
Trimmed 1.1250 1.1425 1.1600 V
Rise Untrimmed 1.1000 1.1400 1.1800 V
Trimmed 1.1450 1.1625 1.1800 V
VLVD_LV_PD
1_hot (BGFP)
LV supply low
voltage
monitoring,
detecting on the
PD1 core (hot)
area
Fall Untrimmed Yes No POR 1.0800 1.1200 1.1600 V
Trimmed 1.1140 1.1370 1.1600 V
Rise Untrimmed 1.1000 1.140 1.1800 V
Trimmed 1.1340 1.1570 1.1800 V
VLVD_LV_PD
0_hot (BGFP)
LV supply low
voltage
monitoring,
detecting on the
PD0 core (hot)
area
Fall Untrimmed Yes No POR 1.0800 1.1200 1.1600 V
Trimmed 1.1140 1.1370 1.1600 V
Rise Untrimmed 1.1000 1.1400 1.1800 V
Trimmed 1.1340 1.1570 1.1800 V
VPOR_HV HV supply power
on reset detector
Fall Untrimmed Yes No POR 2.7000 2.8500 3.0000 V
Trimmed - - - V
Rise Untrimmed 2.7500 2.9000 3.0500 V
Trimmed - - - V
VLVD_IO_A_L
O, 3HV IO_A supply
low voltage
monitoring - low
range
Fall Untrimmed Yes No POR 2.7500 2.9230 3.0950 V
Trimmed 2.9780 3.0390 3.1000 V
Rise Untrimmed 2.7800 2.9530 3.1250 V
Trimmed 3.0080 3.0690 3.1300 V
VLVD_IO_A_H
I3HV IO_A supply
low voltage
monitoring - high
range
Fall Trimmed No Yes Function
al
Disabled at Start
4.0600 4.151 4.2400 V
Rise Trimmed Disabled at Start
4.1150 4.2010 4.3000 V
Table continues on the next page...
General
MPC5746C Microcontroller Datasheet, Rev. 6, 11/2018
NXP Semiconductors 17
Table 10. Voltage monitor electrical characteristics (continued)
Symbol Parameter State Conditions Configuration Threshold Unit
Power Up
1Mask
Opt2Reset
Type
Min Typ Max V
VLVD_LV_PD
2_cold
LV supply low
voltage
monitoring,
detecting at the
device pin
Fall Untrimmed No Yes Function
al
Disabled at Start
Trimmed 1.1400 1.1550 1.1750 V
Rise Untrimmed Disabled at Start
Trimmed 1.1600 1.1750 1.1950 V
1. All monitors that are active at power-up will gate the power up recovery and prevent exit from POWERUP phase until the
minimum level is crossed. These monitors can in some cases be masked during normal device operation, but when active
will always generate a POR reset.
2. Voltage monitors marked as non maskable are essential for device operation and hence cannot be masked.
3. There is no voltage monitoring on the VDD_HV_ADC0, VDD_HV_ADC1, VDD_HV_B and VDD_HV_C I/O segments. For applications
requiring monitoring of these segments, either connect these to VDD_HV_A at the PCB level or monitor externally.
4.5 Supply current characteristics
Current consumption data is given in the following table. These specifications are design
targets and are subject to change per device characterization.
NOTE
The ballast must be chosen in accordance with the ballast
transistor supplier operating conditions and recommendations.
Table 11. Current consumption characteristics
Symbol Parameter Conditions1Min Typ Max Unit
IDD_BODY_1
2, 3
RUN Body Mode Profile Operating
current
LV supply + HV supply + HV
Flash supply +
2 x HV ADC supplies4
Ta = 125°C , 5
VDD_LV = 1.25 V
VDD_HV_A = 5.5V
SYS_CLK = 80MHz
147 mA
Ta = 105°C 142 mA
Ta = 85 °C 137 mA
IDD_BODY_2
6
RUN Body Mode Profile Operating
current
LV supply + HV supply + HV
Flash supply + 2 x HV ADC
supplies4
Ta = 125°C5
VDD_LV = 1.25 V
VDD_HV_A = 5.5V
SYS_CLK = 160MHz
246 mA
Table continues on the next page...
General
MPC5746C Microcontroller Datasheet, Rev. 6, 11/2018
18 NXP Semiconductors
Table 11. Current consumption characteristics (continued)
Symbol Parameter Conditions1Min Typ Max Unit
Ta = 105°C 235 mA
Ta = 85°C 210 mA
IDD_BODY_3
7
RUN Body Mode Profile Operating
current
LV supply + HV supply + HV
Flash supply + 2 x HV ADC
supplies4
Ta = 125 °C 5
VDD_LV = 1.25 V
VDD_HV_A = 5.5V
SYS_CLK = 120MHz
181 mA
Ta = 105 °C 176 mA
Ta = 85°C 171 mA
IDD_BODY_48RUN Body Mode Profile Operating
current
LV supply + HV supply + HV
Flash supply + 2 x HV ADC
supplies4
Ta = 125 °C 5
VDD_LV = 1.25 V
VDD_HV_A = 5.5V
SYS_CLK = 120MHz
264 mA
Ta = 105 °C 176 mA
Ta = 85 °C 171 mA
IDD_STOP STOP mode Operating current Ta = 125 °C9
VDD_LV = 1.25 V
49 mA
Ta = 105 °C
VDD_LV = 1.25 V
10.6
Ta = 85 °C
VDD_LV = 1.25 V
8.1
Ta = 25 °C
VDD_LV = 1.25 V
4.6
IDD_HV_ADC_REF10, 11 ADC REF Operating current Ta = 125 °C5
2 ADCs operating at 80 MHz
VDD_HV_ADC_REF = 5.5 V
200 400 µA
Ta = 105 °C
2 ADCs operating at 80 MHz
VDD_HV_ADC_REF = 5.5 V
200
Ta = 85 °C
2 ADCs operating at 80 MHz
VDD_HV_ADC_REF = 5.5 V
200
Ta = 25 °C
2 ADCs operating at 80 MHz
200
Table continues on the next page...
General
MPC5746C Microcontroller Datasheet, Rev. 6, 11/2018
NXP Semiconductors 19
Table 11. Current consumption characteristics (continued)
Symbol Parameter Conditions1Min Typ Max Unit
VDD_HV_ADC_REF = 3.6 V
IDD_HV_ADCx11 ADC HV Operating current Ta = 125 °C5
ADC operating at 80 MHz
VDD_HV_ADC = 5.5 V
1.2 2 mA
Ta = 25 °C
ADC operating at 80 MHz
VDD_HV_ADC = 3.6 V
1 2
IDD_HV_FLASH12 Flash Operating current during read
access
Ta = 125 °C5
3.3 V supplies
160 MHz frequency
40 45 mA
Ta = 105 °C
3.3 V supplies
160 MHz frequency
40 45
Ta = 85 °C
3.3 V supplies
160 MHz frequency
40 45
1. The content of the Conditions column identifies the components that draw the specific current.
2. Single e200Z4 core cache disabled @80 MHz, no FlexRay, no ENET, 2 x CAN, 8 LINFlexD, 2 SPI, ADC0 and 1 used
constantly, no HSM, Memory: 2M flash, 128K RAM RUN mode, Clocks: FIRC on, XOSC, PLL on, SIRC on for TOD, no
32KHz crystal (TOD runs off SIRC).
3. Recommended Transistors:MJD31 @ 85°C, 105°C and 125°C. In case of internal ballast mode, it is expected that the
external ballast is not mounted and BAL_SELECT_INT pin is tied to VDD_HV_A supply on board. Internal ballast can be
used for all use cases with current consumption upto 150mA. For internal ballast configuration the VRC_CTL pin should be
left floating.
4. The power consumption does not consider the dynamic current of I/Os
5. Tj=150°C. Assumes Ta=125°C
Assumes maximum θJA of 2s2p board. SeeThermal attributes
6. e200Z4 core, 160MHz, cache enabled; e200Z2 core , 80MHz, no FlexRay, no ENET, 7 CAN, 16 LINFlexD, 4 SPI, 1x ADC
used constantly, includes HSM at start-up / periodic use, Memory: 3M flash, 256K RAM, Clocks: FIRC on, XOSC on, PLL
on, SIRC on, no 32KHz crystal
7. e200Z4 core, 120MHz, cache enabled; e200Z2 core, 60MHz; no FlexRay, no ENET, 7 CAN, 16 LINFlexD, 4 SPI, 1x ADC
used constantly, includes HSM at start-up / periodic use, Memory: 3M flash, 128K RAM, Clocks: FIRC on, XOSC on, PLL
on, SIRC on, no 32KHz crystal
8. e200Z4 core, 160MHz, cache enabled; e200Z4 core, 80MHz; HSM fully operational (Z0 core @80MHz) FlexRay, 5x CAN,
5x LINFlexD, 2x SPI, 1x ADC used constantly, 1xeMIOS (5 ch), Memory: 3M flash, 384K RAM, Clocks: FIRC on, XOSC
on, PLL on, SIRC on, no 32KHz crystal
9. Assuming Ta=Tj, as the device is in Stop mode. Assumes maximum θJA of 2s2p board. SeeThermal attributes.
10. Internal structures hold the input voltage less than VDD_HV_ADC_REF + 1.0 V on all pads powered by VDDA supplies, if the
maximum injection current specification is met (3 mA for all pins) and VDDA is within the operating voltage specifications.
11. This value is the total current for two ADCs.Each ADC might consume upto 2mA at max.
12. This assumes the default configuration of flash controller register. For more details, refer to Flash memory program and
erase specifications
General
MPC5746C Microcontroller Datasheet, Rev. 6, 11/2018
20 NXP Semiconductors
Table 12. Low Power Unit (LPU) Current consumption characteristics
Symbol Parameter Conditions1Min Typ Max Unit
LPU_RUN with 256K RAM Ta = 25 °C
SYS_CLK = 16MHz
ADC0 = OFF, SPI0 = OFF, LIN0 = OFF, CAN0 = OFF
10 mA
Ta = 85 °C
SYS_CLK = 16MHz
ADC0 = ON, SPI0 = ON, LIN0 = ON, CAN0 = ON
10.5
Ta = 105 °C
SYS_CLK = 16MHz
ADC0 = ON, SPI0 = ON, LIN0 = ON, CAN0 = ON
11
Ta = 125 °C, 2
SYS_CLK = 16MHz
ADC0 = ON, SPI0 = ON, LIN0 = ON, CAN0 = ON
26
LPU_STOP with 256K RAM Ta = 25 °C 0.18 mA
Ta = 85 °C 0.60
Ta = 105 °C 1.00
Ta = 125 °C 2 10.6
1. The content of the Conditions column identifies the components that draw the specific current.
2. Assuming Ta=Tj, as the device is in static (fully clock gated) mode. Assumes maximum θJA of 2s2p board. SeeThermal
attributes
Table 13. STANDBY Current consumption characteristics
Symbol Parameter Conditions1Min Typ Max Unit
STANDBY0 STANDBY with
8K RAM
Ta = 25 °C 71 µA
Ta = 85 °C 125 700
Ta = 105 °C 195 1225
Ta = 125 °C , 2 314 2100
STANDBY1 STANDBY with
64K RAM
Ta = 25 °C 72 µA
Ta = 85 °C 140 715
Ta = 105 °C 225 1275
Ta = 125 °C 2 358 2250
STANDBY2 STANDBY with
128K RAM
Ta = 25 °C 75 µA
Ta = 85 °C 155 730
Ta = 105 °C 255 1350
Ta = 125 °C 2 396 2600
STANDBY3 STANDBY with
256K RAM
Ta = 25 °C 80 µA
Ta = 85 °C 180 800
Ta = 105 °C 290 1425
Ta = 125 °C 2 465 2900
STANDBY3 FIRC ON Ta = 25 °C 500 µA
General
MPC5746C Microcontroller Datasheet, Rev. 6, 11/2018
NXP Semiconductors 21
1. The content of the Conditions column identifies the components that draw the specific current.
2. Assuming Ta=Tj, as the device is in static (fully clock gated) mode. Assumes maximum θJA of 2s2p board. SeeThermal
attributes
NOTE
For the Precision channel Analog inputs, SIUL2_MSCRn[PUS]
must be configured to 0 before entering STANDBY. An
increase in current would be observed when
SIUL2_MSCRn[PUS] is configured to be 1, irrespective of the
state of IBE or PUE. The current numbers would increase
irrespective of whether the pad is pulled low/high externally.
4.6 Electrostatic discharge (ESD) characteristics
Electrostatic discharges (a positive then a negative pulse separated by 1 second) are
applied to the pins of each sample according to each pin combination. The sample size
depends on the number of supply pins in the device (3 parts × (n + 1) supply pin). This
test conforms to the AEC-Q100-002/-003/-011 standard.
NOTE
A device will be defined as a failure if after exposure to ESD
pulses the device no longer meets the device specification
requirements. Complete DC parametric and functional testing
shall be performed per applicable device specification at room
temperature followed by hot temperature, unless specified
otherwise in the device specification.
Table 14. ESD ratings
Symbol Parameter Conditions1Class Max value2Unit
VESD(HBM) Electrostatic discharge
(Human Body Model)
TA = 25 °C
conforming to AEC-
Q100-002
H1C 2000 V
VESD(CDM) Electrostatic discharge
(Charged Device Model)
TA = 25 °C
conforming to AEC-
Q100-011
C3A 500
750 (corners)
V
1. All ESD testing is in conformity with CDF-AEC-Q100 Stress Test Qualification for Automotive Grade Integrated Circuits.
2. Data based on characterization results, not tested in production.
4.7 Electromagnetic Compatibility (EMC) specifications
EMC measurements to IC-level IEC standards are available from NXP on request.
General
MPC5746C Microcontroller Datasheet, Rev. 6, 11/2018
22 NXP Semiconductors
I/O parameters
5.1 AC specifications @ 3.3 V Range
Table 15. Functional Pad AC Specifications @ 3.3 V Range
Symbol Prop. Delay (ns)1
L>H/H>L
Rise/Fall Edge (ns) Drive Load
(pF)
SIUL2_MSCRn[SRC 1:0]
Min Max Min Max MSB,LSB
pad_sr_hv
(output)
6/6 1.9/1.5 25 11
2.5/2.5 8.25/7.5 0.8/0.6 3.25/3 50
6.4/5 19.5/19.5 3.5/2.5 12/12 200
2.2/2.5 8/8 0.55/0.5 3.9/3.5 25 10
0.090 1.1 0.035 1.1 asymmetry2
2.9/3.5 12.5/11 1/1 7/6 50
11/8 35/31 7.7/5 25/21 200
8.3/9.6 45/45 4/3.5 25/25 50 01
13.5/15 65/65 6.3/6.2 30/30 200
13/13 75/75 6.8/6 40/40 50 003
21/22 100/100 11/11 51/51 200
pad_i_hv/
pad_sr_hv
(input)4
2/2 0.5/0.5 0.5 NA
1. As measured from 50% of core side input to Voh/Vol of the output
2. This row specifies the min and max asymmetry between both the prop delay and the edge rates for a given PVT and 25pF
load. Required for the Flexray spec.
3. Slew rate control modes
4. Input slope = 2ns
NOTE
The specification given above is based on simulation data into
an ideal lumped capacitor. Customer should use IBIS models
for their specific board/loading conditions to simulate the
expected signal integrity and edge rates of their system.
NOTE
The specification given above is measured between 20% / 80%.
5
I/O parameters
MPC5746C Microcontroller Datasheet, Rev. 6, 11/2018
NXP Semiconductors 23
5.2 DC electrical specifications @ 3.3V Range
Table 16. DC electrical specifications @ 3.3V Range
Symbol Parameter Value Unit
Min Max
Vih (pad_i_hv) Pad_I_HV Input Buffer High Voltage 0.72*VDD_HV_
x
VDD_HV_x +
0.3
V
Vil (pad_i_hv) Pad_I_HV Input Buffer Low Voltage VDD_HV_x -
0.3
0.45*VDD_HV_
x
V
Vhys (pad_i_hv) Pad_I_HV Input Buffer Hysteresis 0.11*VDD_HV_
x
V
Vih_hys CMOS Input Buffer High Voltage (with hysteresis
enabled)
0.67*VDD_HV_
x
VDD_HV_x +
0.3
V
Vil_hys CMOS Input Buffer Low Voltage (with hysteresis
enabled)
VDD_HV_x -
0.3
0.35*VDD_HV_
x
V
Vih CMOS Input Buffer High Voltage (with hysteresis
disabled)
0.57 *
VDD_HV_x1VDD_HV_x1 +
0.3
V
Vil CMOS Input Buffer Low Voltage (with hysteresis
disabled)
VDD_HV_x -
0.3
0.4 *
VDD_HV_x1V
Vhys CMOS Input Buffer Hysteresis 0.09 *
VDD_HV_x1V
Pull_IIH (pad_i_hv) Weak Pullup Current2 Low 15 µA
Pull_IIH (pad_i_hv) Weak Pullup Current3 High 55 µA
Pull_IIL (pad_i_hv) Weak Pulldown Current3 Low 28 µA
Pull_IIL (pad_i_hv) Weak Pulldown Current2 High 85 µA
Pull_Ioh Weak Pullup Current415 50 µA
Pull_Iol Weak Pulldown Current515 50 µA
Iinact_d Digital Pad Input Leakage Current (weak pull inactive) -2.5 2.5 µA
Voh Output High Voltage60.8
*VDD_HV_x1 V
Vol Output Low Voltage7
Output Low Voltage8
0.2
*VDD_HV_x1
0.1 *VDD_HV_x
V
Ioh_f Full drive Ioh9 (SIUL2_MSCRn.SRC[1:0] = 11) 18 70 mA
Iol_f Full drive Iol9 (SIUL2_MSCRn.SRC[1:0] = 11) 21 120 mA
Ioh_h Half drive Ioh9 (SIUL2_MSCRn.SRC[1:0] = 10) 9 35 mA
Iol_h Half drive Iol9 (SIUL2_MSCRn.SRC[1:0] = 10) 10.5 60 mA
1. VDD_HV_x = VDD_HV_A, VDD_HV_B, VDD_HV_C
2. Measured when pad=0.69*VDD_HV_x
3. Measured when pad=0.49*VDD_HV_x
4. Measured when pad = 0 V
5. Measured when pad = VDD_HV_x
6. Measured when pad is sourcing 2 mA
7. Measured when pad is sinking 2 mA
8. Measured when pad is sinking 1.5 mA
9. Ioh/Iol is derived from spice simulations. These values are NOT guaranteed by test.
I/O parameters
MPC5746C Microcontroller Datasheet, Rev. 6, 11/2018
24 NXP Semiconductors
5.3 AC specifications @ 5 V Range
Table 17. Functional Pad AC Specifications @ 5 V Range
Symbol Prop. Delay (ns)1
L>H/H>L
Rise/Fall Edge (ns) Drive Load (pF) SIUL2_MSCRn[SRC 1:0]
Min Max Min Max MSB,LSB
pad_sr_hv
(output)
4.5/4.5 1.3/1.2 25 11
6/6 2.5/2 50
13/13 9/9 200
5.25/5.25 3/2 25 10
9/8 5/4 50
22/22 18/16 200
27/27 13/13 50 012
40/40 24/24 200
40/40 24/24 50 002
65/65 40/40 200
pad_i_hv/
pad_sr_hv
(input)
1.5/1.5 0.5/0.5 0.5 NA
1. As measured from 50% of core side input to Voh/Vol of the output
2. Slew rate control modes
NOTE
The above specification is based on simulation data into an
ideal lumped capacitor. Customer should use IBIS models for
their specific board/loading conditions to simulate the expected
signal integrity and edge rates of their system.
NOTE
The above specification is measured between 20% / 80%.
5.4 DC electrical specifications @ 5 V Range
Table 18. DC electrical specifications @ 5 V Range
Symbol Parameter Value Unit
Min Max
Vih (pad_i_hv) pad_i_hv Input Buffer High Voltage 0.7*VDD_HV_x VDD_HV_x +
0.3
V
Table continues on the next page...
I/O parameters
MPC5746C Microcontroller Datasheet, Rev. 6, 11/2018
NXP Semiconductors 25
Table 18. DC electrical specifications @ 5 V Range (continued)
Symbol Parameter Value Unit
Min Max
Vil (pad_i_hv) pad_i_hv Input Buffer Low Voltage VDD_HV_x -
0.3
0.45*VDD_HV_
x
V
Vhys (pad_i_hv) pad_i_hv Input Buffer Hysteresis 0.09*VDD_HV_
x
V
Vih_hys CMOS Input Buffer High Voltage (with hysteresis
enabled)
0.65*
VDD_HV_x
VDD_HV_x +
0.3
V
Vil_hys CMOS Input Buffer Low Voltage (with hysteresis
enabled)
VDD_HV_x -
0.3
0.35*VDD_HV_
x
V
Vih CMOS Input Buffer High Voltage (with hysteresis
disabled)
0.55 *
VDD_HV_x1VDD_HV_x1 +
0.3
V
Vil CMOS Input Buffer Low Voltage (with hysteresis
disabled)
VDD_HV_x -
0.3
0.40 *
VDD_HV_x1V
Vhys CMOS Input Buffer Hysteresis 0.09 *
VDD_HV_x1V
Pull_IIH (pad_i_hv) Weak Pullup Current2 Low 23 µA
Pull_IIH (pad_i_hv) Weak Pullup Current3 High 82 µA
Pull_IIL (pad_i_hv) Weak Pulldown Current3 Low 40 µA
Pull_IIL (pad_i_hv) Weak Pulldown Current2 High 130 µA
Pull_Ioh Weak Pullup Current430 80 µA
Pull_Iol Weak Pulldown Current530 80 µA
Iinact_d Digital Pad Input Leakage Current (weak pull inactive) -2.5 2.5 µA
Voh Output High Voltage60.8 *
VDD_HV_x1 V
Vol Output Low Voltage7
Output Low Voltage8
0.2*VDD_HV_x
0.1*VDD_HV_x
V
Ioh_f Full drive Ioh9 (SIUL2_MSCRn.SRC[1:0] = 11) 18 70 mA
Iol_f Full drive Iol9 (SIUL2_MSCRn.SRC[1:0] = 11) 21 120 mA
Ioh_h Half drive Ioh9 (SIUL2_MSCRn.SRC[1:0] = 10) 9 35 mA
Iol_h Half drive Iol9 (SIUL2_MSCRn.SRC[1:0] = 10) 10.5 60 mA
1. VDD_HV_x = VDD_HV_A, VDD_HV_B, VDD_HV_C
2. Measured when pad=0.69*VDD_HV_x
3. Measured when pad=0.49*VDD_HV_x
4. Measured when pad = 0 V
5. Measured when pad = VDD_HV_x
6. Measured when pad is sourcing 2 mA
7. Measured when pad is sinking 2 mA
8. Measured when pad is sinking 1.5 mA
9. Ioh/Iol is derived from spice simulations. These values are NOT guaranteed by test.
5.5 Reset pad electrical characteristics
The device implements a dedicated bidirectional RESET pin.
I/O parameters
MPC5746C Microcontroller Datasheet, Rev. 6, 11/2018
26 NXP Semiconductors
VIL
VDD_HV_IOx
device reset forced by PORST
VDDMIN
PORST
VIH
device start-up phase
A
A
A
A
Figure 3. Start-up reset requirements
VPORST
VIL
VIH
VDD_HV_IO
filtered by
hysteresis filtered by
lowpass filter
WFRST
WNFRST
hw_rst
‘1’
‘0’
filtered by
lowpass filter
WFRST
unknown reset
state device under hardware reset
A
Figure 4. Noise filtering on reset signal
Table 19. Functional reset pad electrical specifications
Symbol Parameter Conditions Value Unit
Min Typ Max
VIH CMOS Input Buffer High Voltage 0.65*VD
D_HV_x
VDD_HV_x
+0.3
V
VIL CMOS Input Buffer Low Voltage VDD_HV_
x-0.3
0.35*VDD_HV
_x
V
Table continues on the next page...
I/O parameters
MPC5746C Microcontroller Datasheet, Rev. 6, 11/2018
NXP Semiconductors 27
Table 19. Functional reset pad electrical specifications (continued)
Symbol Parameter Conditions Value Unit
Min Typ Max
VHYS CMOS Input Buffer hysterisis 300 mV
VDD_POR Minimum supply for strong pull-down
activation
1.2 V
IOL_R Strong pull-down current 1Device under power-on reset
VDD_HV_IO= V DD_POR
VOL = 0.35*VDD_HV_IO
0.2 mA
Device under power-on reset
3.0 V < VDD_HV_IO < 5.5 V
VOL = 0.35*VDD_HV_IO
11 mA
WFRST RESET input filtered pulse 500 ns
WNFRST RESET input not filtered pulse 2000 ns
|IWPU| Weak pull-up current absolute value RESET pin VIN = VDD 23 82 µA
1. Strong pull-down is active on PHASE0, PHASE1, PHASE2, and the beginning of PHASE3 for RESET.
5.6 PORST electrical specifications
Table 20. PORST electrical specifications
Symbol Parameter Value Unit
Min Typ Max
WFPORST PORST input filtered pulse 200 ns
WNFPORST PORST input not filtered pulse 1000 ns
VIH Input high level 0.65 x
VDD_HV_A
V
VIL Input low level 0.35 x
VDD_HV_A
V
Peripheral operating requirements and behaviours
Analog
6.1.1 ADC electrical specifications
The device provides a 12-bit Successive Approximation Register (SAR) Analog-to-
Digital Converter.
6
6.1
Peripheral operating requirements and behaviours
MPC5746C Microcontroller Datasheet, Rev. 6, 11/2018
28 NXP Semiconductors
(2
)
(1)
(3
)
(4)
(5)
Offset Error OSE
Offset Error OSE
Gain Error GE
1 LSB (ideal)
Vin(A) (LSBideal)
(1) Example of an actual transfer curve
(2) The ideal transfer curve
(3) Differential non-linearity error (DNL)
(4) Integral non-linearity error (INL)
(5) Center of a step of the actual transfer
curve
code out
4095
4094
4093
4092
4091
4090
5
4
3
2
1
0
7
6
1 2 3 4 5 6 7 4089 4090 4091 4092 4093 4094 4095
1 LSB ideal =(VrefH-VrefL)/ 4096 =
3.3V/ 4096 = 0.806 mV
Total Unadjusted Error
TUE = +/- 6 LSB = +/- 4.84mV
Figure 5. ADC characteristics and error definitions
Analog
MPC5746C Microcontroller Datasheet, Rev. 6, 11/2018
NXP Semiconductors 29
6.1.1.1 Input equivalent circuit and ADC conversion characteristics
RF
CF
RSRLRSW1
CP2
VDD_IO
Sampling
Source Filter Current Limiter
EXTERNAL CIRCUIT INTERNAL CIRCUIT SCHEME
RSSource Impedance
RFFilter Resistance
CFFilter Capacitance
RLCurrent Limiter Resistance
RSW1 Channel Selection Switch Impedance
RAD Sampling Switch Impedance
CPPin Capacitance (two contributions, CP1 and CP2)
CSSampling Capacitance
CP1
RAD
Channel
Selection
VACS
Figure 6. Input equivalent circuit
NOTE
The ADC performance specifications are not guaranteed if two
ADCs simultaneously sample the same shared channel.
Table 21. ADC conversion characteristics (for 12-bit)
Symbol Parameter Conditions Min Typ1Max Unit
fCK ADC Clock frequency (depends on
ADC configuration) (The duty cycle
depends on AD_CK2 frequency)
15.2 80 80 MHz
fsSampling frequency 80 MHz 1.00 MHz
tsample Sample time380 MHz@ 100 ohm source
impedance
250 ns
tconv Conversion time480 MHz 700 ns
ttotal_conv Total Conversion time tsample +
tconv (for standard and extended
channels)
80 MHz 1.55 µs
Total Conversion time tsample +
tconv (for precision channels)
1
CS, 6ADC input sampling capacitance 3 5 pF
CP16ADC input pin capacitance 1 5 pF
CP26ADC input pin capacitance 2 0.8 pF
RSW16Internal resistance of analog
source
VREF range = 4.5 to 5.5 V 0.3
VREF range = 3.15 to 3.6 V 875 Ω
Table continues on the next page...
Analog
MPC5746C Microcontroller Datasheet, Rev. 6, 11/2018
30 NXP Semiconductors
Table 21. ADC conversion characteristics (for 12-bit) (continued)
Symbol Parameter Conditions Min Typ1Max Unit
RAD6Internal resistance of analog
source
825 Ω
INL Integral non-linearity (precise
channel)
–2 2 LSB
INL Integral non-linearity (standard
channel)
–3 3 LSB
DNL Differential non-linearity –1 1 LSB
OFS Offset error –6 6 LSB
GNE Gain error –4 4 LSB
ADC Analog Pad
(pad going to one
ADC)
Max leakage (precision channel) 150 °C 250 nA
Max leakage (standard channel) 150 °C 2500 nA
Max leakage (standard channel) 105 °C TA 5 250 nA
Max positive/negative injection –5 5 mA
TUEprecision channels Total unadjusted error for precision
channels
Without current injection –6 +/-4 6 LSB
With current injection7+/-5 LSB
TUEstandard/extended
channels
Total unadjusted error for standard/
extended channels
Without current injection –8 +/-6 8 LSB
With current injection7+/-8 LSB
trecovery STOP mode to Run mode recovery
time
< 1 µs
1. Active ADC input, VinA < [min(ADC_VrefH, ADC_ADV, VDD_HV_IOx)]. VDD_HV_IOx refers to I/O segment supply
voltage. Violation of this condition would lead to degradation of ADC performance. Please refer to Table: 'Absolute
maximum ratings' to avoid damage. Refer to Table: 'Recommended operating conditions (VDD_HV_x = 3.3 V)' for required
relation between IO_supply_A,B,C and ADC_Supply.
2. The internally generated clock (known as AD_clk or ADCK) could be same as the peripheral clock or half of the peripheral
clock based on register configuration in the ADC.
3. During the sample time the input capacitance CS can be charged/discharged by the external source. The internal
resistance of the analog source must allow the capacitance to reach its final voltage level within tsample. After the end of the
sample time tsample, changes of the analog input voltage have no effect on the conversion result. Values for the sample
clock tsample depend on programming.
4. This parameter does not include the sample time tsample, but only the time for determining the digital result and the time to
load the result register with the conversion result.
5. Apart from tsample and tconv, few cycles are used up in ADC digital interface and hence the overall throughput from the
ADC is lower.
6. See Figure 2.
7. Current injection condition for ADC channels is defined for an inactive ADC channel (on which conversion is NOT being
performed), and this occurs when voltage on the ADC pin exceeds the I/O supply or ground. However, absolute maximum
voltage spec on pad input (VINA, see Table: Absolute maximum ratings) must be honored to meet TUE spec quoted here
Table 22. ADC conversion characteristics (for 10-bit)
Symbol Parameter Conditions Min Typ1Max Unit
fCK ADC Clock frequency (depends on
ADC configuration) (The duty cycle
depends on AD_CK2 frequency.)
15.2 80 80 MHz
fsSampling frequency 1.00 MHz
tsample Sample time380 MHz@ 100 ohm source
impedance
275 ns
Table continues on the next page...
Analog
MPC5746C Microcontroller Datasheet, Rev. 6, 11/2018
NXP Semiconductors 31
Table 22. ADC conversion characteristics (for 10-bit) (continued)
Symbol Parameter Conditions Min Typ1Max Unit
tconv Conversion time480 MHz 550 ns
ttotal_conv Total Conversion time tsample +
tconv (for standard channels)
80 MHz 1 µs
Total Conversion time tsample +
tconv (for extended channels)
1.5
CSADC input sampling capacitance 3 5 pF
CP15ADC input pin capacitance 1 5 pF
CP25ADC input pin capacitance 2 0.8 pF
RSW15Internal resistance of analog
source
VREF range = 4.5 to 5.5 V 0.3
VREF range = 3.15 to 3.6 V 875 Ω
RAD5Internal resistance of analog
source
825 Ω
INL Integral non-linearity –2 2 LSB
DNL Differential non-linearity –1 1 LSB
OFS Offset error –4 4 LSB
GNE Gain error –4 4 LSB
ADC Analog Pad
(pad going to one
ADC)
Max leakage (standard channel) 150 °C 2500 nA
Max positive/negative injection –5 5 mA
Max leakage (standard channel) 105 °C TA 5 250 nA
TUEstandard/extended
channels
Total unadjusted error for standard
channels
Without current injection –4 +/-3 4 LSB
With current injection6+/-4 LSB
trecovery STOP mode to Run mode recovery
time
< 1 µs
1. Active ADC Input, VinA < [min(ADC_ADV, IO_Supply_A,B,C)]. Violation of this condition would lead to degradation of ADC
performance. Please refer to Table: 'Absolute maximum ratings' to avoid damage. Refer to Table: 'Recommended
operating conditions' for required relation between IO_supply_A, B, C and ADC_Supply.
2. The internally generated clock (known as AD_clk or ADCK) could be same as the peripheral clock or half of the peripheral
clock based on register configuration in the ADC.
3. During the sample time the input capacitance CS can be charged/discharged by the external source. The internal
resistance of the analog source must allow the capacitance to reach its final voltage level within tsample. After the end of the
sample time tsample, changes of the analog input voltage have no effect on the conversion result. Values for the sample
clock tsample depend on programming.
4. This parameter does not include the sample time tsample, but only the time for determining the digital result and the time to
load the result register with the conversion result.
5. See Figure 2-1
6. Current injection condition for ADC channels is defined for an inactive ADC channel (on which conversion is NOT being
performed), and this occurs when voltage on the ADC pin exceeds the I/O supply or ground. However, absolute maximum
voltage spec on pad input (VINA, see Table: Absolute maximum ratings) must be honored to meet TUE spec quoted here
Analog
MPC5746C Microcontroller Datasheet, Rev. 6, 11/2018
32 NXP Semiconductors
6.1.2 Analog Comparator (CMP) electrical specifications
Table 23. Comparator and 6-bit DAC electrical specifications
Symbol Description Min. Typ. Max. Unit
IDDHS Supply current, High-speed mode (EN=1, PMODE=1) 250 μA
IDDLS Supply current, low-speed mode (EN=1, PMODE=0) 5 11 μA
VAIN Analog input voltage VSS VIN1_CMP_RE
F
V
VAIO Analog input offset voltage 1-47 47 mV
VHAnalog comparator hysteresis 2
CR0[HYSTCTR] = 00
CR0[HYSTCTR] = 01
CR0[HYSTCTR] = 10
CR0[HYSTCTR] = 11
1
20
40
60
25
50
70
105
mV
mV
mV
mV
tDHS Propagation Delay, High Speed Mode (Full Swing) 1, 3 250 ns
tDLS Propagation Delay, Low power Mode (Full Swing) 1, 3 5 21 μs
Analog comparator initialization delay, High speed
mode4 4 μs
Analog comparator initialization delay, Low speed
mode 4 100 μs
IDAC6b 6-bit DAC current adder (when enabled)
3.3V Reference Voltage 6 9 μA
5V Reference Voltage 10 16 μA
INL 6-bit DAC integral non-linearity –0.5 0.5 LSB5
DNL 6-bit DAC differential non-linearity –0.8 0.8 LSB
1. Measured with hysteresis mode of 00
2. Typical hysteresis is measured with input voltage range limited to 0.6 to VDD_HV_A-0.6V
3. Full swing = VIH, VIL
4. Comparator initialization delay is defined as the time between software writes to change control inputs (Writes to DACEN,
VRSEL, PSEL, MSEL, VOSEL) and the comparator output settling to a stable level.
5. 1 LSB = Vreference/64
Analog
MPC5746C Microcontroller Datasheet, Rev. 6, 11/2018
NXP Semiconductors 33
Clocks and PLL interfaces modules
6.2.1 Main oscillator electrical characteristics
This device provides a driver for oscillator in pierce configuration with amplitude
control. Controlling the amplitude allows a more sinusoidal oscillation, reducing in this
way the EMI. Other benefits arises by reducing the power consumption. This Loop
Controlled Pierce (LCP mode) requires good practices to reduce the stray capacitance of
traces between crystal and MCU.
An operation in Full Swing Pierce (FSP mode), implemented by an inverter is also
available in case of parasitic capacitances and cannot be reduced by using crystal with
high equivalent series resistance. For this mode, a special care needs to be taken
regarding the serial resistance used to avoid the crystal overdrive.
Other two modes called External (EXT Wave) and disable (OFF mode) are provided. For
EXT Wave, the drive is disabled and an external source of clock within CMOS level
based in analog oscillator supply can be used. When OFF, EXTAL is pulled down by 240
Kohms resistor and the feedback resistor remains active connecting XTAL through
EXTAL by 1M resistor.
6.2
Clocks and PLL interfaces modules
MPC5746C Microcontroller Datasheet, Rev. 6, 11/2018
34 NXP Semiconductors
Figure 7. Oscillator connections scheme
Table 24. Main oscillator electrical characteristics
Symbol Parameter Mode Conditions Min Typ Max Unit
fXOSCHS Oscillator
frequency
FSP/LCP 8 40 MHz
gmXOSCHS Driver
Transconduct
ance
LCP 23 mA/V
FSP 33
VXOSCHS Oscillation
Amplitude
LCP1, 28 MHz 1.0 VPP
16 MHz 1.0
40 MHz 0.8
TXOSCHSSU Startup time FSP/LCP18 MHz 2 ms
16 MHz 1
40 MHz 0.5
Oscillator
Analog Circuit
supply current
FSP 8 MHz 2.2 mA
16 MHz 2.2
Table continues on the next page...
Clocks and PLL interfaces modules
MPC5746C Microcontroller Datasheet, Rev. 6, 11/2018
NXP Semiconductors 35
Table 24. Main oscillator electrical characteristics (continued)
Symbol Parameter Mode Conditions Min Typ Max Unit
40 MHz 3.2
LCP 8 MHz 141 uA
16 MHz 252
40 MHz 518
VIH Input High
level CMOS
Schmitt trigger
EXT Wave Oscillator
supply=3.3
1.95 V
VIL Input low level
CMOS
Schmitt trigger
EXT Wave Oscillator
supply=3.3
1.25 V
1. Values are very dependent on crystal or resonator used and parasitic capacitance observed in the board.
2. Typ value for oscillator supply 3.3 V@27 °C
6.2.2 32 kHz Oscillator electrical specifications
Table 25. 32 kHz oscillator electrical specifications
Symbol Parameter Condition Min Typ Max Unit
fosc_lo Oscillator crystal
or resonator
frequency
32 40 KHz
tcst Crystal Start-up
Time1, 22 s
1. This parameter is characterized before qualification rather than 100% tested.
2. Proper PC board layout procedures must be followed to achieve specifications.
6.2.3 16 MHz RC Oscillator electrical specifications
Table 26. 16 MHz RC Oscillator electrical specifications
Symbol Parameter Conditions Value Unit
Min Typ Max
FTarget IRC target frequency 16 MHz
PTA IRC frequency variation after trimming -5 5 %
Tstartup Startup time 1.5 us
TSTJIT Cycle to cycle jitter 1.5 %
TLTJIT Long term jitter 0.2 %
NOTE
The above start up time of 1 us is equivalent to 16 cycles of 16
MHz.
Clocks and PLL interfaces modules
MPC5746C Microcontroller Datasheet, Rev. 6, 11/2018
36 NXP Semiconductors
6.2.4 128 KHz Internal RC oscillator Electrical specifications
Table 27. 128 KHz Internal RC oscillator electrical specifications
Symbol Parameter Condition Min Typ Max Unit
Foscu1Oscillator
frequency
Calibrated 119 128 136.5 KHz
Temperature
dependence
600 ppm/C
Supply
dependence
18 %/V
Supply current Clock running 2.75 µA
Clock stopped 200 nA
1. Vdd=1.2 V, 1.32V, Ta=-40 C, 125 C
6.2.5 PLL electrical specifications
Table 28. PLL electrical specifications
Parameter Min Typ Max Unit Comments
Input Frequency 8 40 MHz
VCO Frequency Range 600 1280 MHz
Duty Cycle at pllclkout 48% 52% This specification is guaranteed
at PLL IP boundary
Period Jitter See Table 29 ps NON SSCG mode
TIE See Table 29 at 960 M Integrated over 1MHz
offset not valid in SSCG mode
Modulation Depth (Center Spread) +/- 0.25% +/- 3.0%
Modulation Frequency 32 KHz
Lock Time 60 µs Calibration mode
Table 29. Jitter calculation
Type of jitter Jitter due to
Supply
Noise (ps)
JSN1
Jitter due to
Fractional Mode
(ps) JSDM2
Jitter due to
Fractional Mode
JSSCG (ps) 3
1 Sigma
Random
Jitter JRJ
(ps) 4
Total Period Jitter (ps)
Period Jitter 60 ps 3% of pllclkout1,2 Modulation depth 0.1% of
pllclkout1,2
+/-(JSN+JSDM+JSSCG+N[4]
×JRJ)
Long Term Jitter
(Integer Mode)
40 +/-(N x JRJ)
Long Term jitter
(Fractional Mode)
100 +/-(N x JRJ)
1. This jitter component is due to self noise generated due to bond wire inductances on different PLL supplies. The jitter value
is valid for inductor value of 5nH or less each on VDD_LV and VSS_LV.
Clocks and PLL interfaces modules
MPC5746C Microcontroller Datasheet, Rev. 6, 11/2018
NXP Semiconductors 37
2. This jitter component is added when the PLL is working in the fractional mode.
3. This jitter component is added when the PLL is working in the Spread Spectrum Mode. Else it is 0.
4. The value of N is dependent on the accuracy requirement of the application. See Percentage of sample exceeding
specified value of jitter table
Table 30. Percentage of sample exceeding specified value of jitter
N Percentage of samples exceeding specified value of jitter
(%)
1 31.73
2 4.55
3 0.27
4 6.30 × 1e-03
5 5.63 × 1e-05
6 2.00 × 1e-07
7 2.82 × 1e-10
Memory interfaces
6.3.1 Flash memory program and erase specifications
NOTE
All timing, voltage, and current numbers specified in this
section are defined for a single embedded flash memory within
an SoC, and represent average currents for given supplies and
operations.
Table 31 shows the estimated Program/Erase times.
Table 31. Flash memory program and erase specifications
Symbol Characteristic1Typ2Factory
Programming3, 4Field Update Unit
Initial
Max
Initial
Max, Full
Temp
Typical
End of
Life5
Lifetime Max6
20°C ≤TA
≤30°C
-40°C ≤TJ
≤150°C
-40°C ≤TJ
≤150°C
≤ 1,000
cycles
≤ 250,000
cycles
tdwpgm Doubleword (64 bits) program time 43 100 150 55 500 μs
tppgm Page (256 bits) program time 73 200 300 108 500 μs
tqppgm Quad-page (1024 bits) program
time
268 800 1,200 396 2,000 μs
t16kers 16 KB Block erase time 168 290 320 250 1,000 ms
t16kpgm 16 KB Block program time 34 45 50 40 1,000 ms
Table continues on the next page...
6.3
Memory interfaces
MPC5746C Microcontroller Datasheet, Rev. 6, 11/2018
38 NXP Semiconductors
Table 31. Flash memory program and erase specifications (continued)
Symbol Characteristic1Typ2Factory
Programming3, 4Field Update Unit
Initial
Max
Initial
Max, Full
Temp
Typical
End of
Life5
Lifetime Max6
20°C ≤TA
≤30°C
-40°C ≤TJ
≤150°C
-40°C ≤TJ
≤150°C
≤ 1,000
cycles
≤ 250,000
cycles
t32kers 32 KB Block erase time 217 360 390 310 1,200 ms
t32kpgm 32 KB Block program time 69 100 110 90 1,200 ms
t64kers 64 KB Block erase time 315 490 590 420 1,600 ms
t64kpgm 64 KB Block program time 138 180 210 170 1,600 ms
t256kers 256 KB Block erase time 884 1,520 2,030 1,080 4,000 ms
t256kpgm 256 KB Block program time 552 720 880 650 4,000 ms
1. Program times are actual hardware programming times and do not include software overhead. Block program times
assume quad-page programming.
2. Typical program and erase times represent the median performance and assume nominal supply values and operation at
25 °C. Typical program and erase times may be used for throughput calculations.
3. Conditions: ≤ 150 cycles, nominal voltage.
4. Plant Programing times provide guidance for timeout limits used in the factory.
5. Typical End of Life program and erase times represent the median performance and assume nominal supply values.
Typical End of Life program and erase values may be used for throughput calculations.
6. Conditions: -40°C ≤ TJ ≤ 150°C, full spec voltage.
6.3.2 Flash memory Array Integrity and Margin Read specifications
Table 32. Flash memory Array Integrity and Margin Read specifications
Symbol Characteristic Min Typical Max1Units
2
tai16kseq Array Integrity time for sequential sequence on 16 KB block. 512 x
Tperiod x
Nread
tai32kseq Array Integrity time for sequential sequence on 32 KB block. 1024 x
Tperiod x
Nread
tai64kseq Array Integrity time for sequential sequence on 64 KB block. 2048 x
Tperiod x
Nread
tai256kseq Array Integrity time for sequential sequence on 256 KB block. 8192 x
Tperiod x
Nread
tmr16kseq Margin Read time for sequential sequence on 16 KB block. 73.81 110.7 μs
tmr32kseq Margin Read time for sequential sequence on 32 KB block. 128.43 192.6 μs
tmr64kseq Margin Read time for sequential sequence on 64 KB block. 237.65 356.5 μs
tmr256kseq Margin Read time for sequential sequence on 256 KB block. 893.01 1,339.5 μs
Memory interfaces
MPC5746C Microcontroller Datasheet, Rev. 6, 11/2018
NXP Semiconductors 39
1. Array Integrity times need to be calculated and is dependent on system frequency and number of clocks per read. The
equation presented require Tperiod (which is the unit accurate period, thus for 200 MHz, Tperiod would equal 5e-9) and
Nread (which is the number of clocks required for read, including pipeline contribution. Thus for a read setup that requires
6 clocks to read with no pipeline, Nread would equal 6. For a read setup that requires 6 clocks to read, and has the
address pipeline set to 2, Nread would equal 4 (or 6 - 2).)
2. The units for Array Integrity are determined by the period of the system clock. If unit accurate period is used in the
equation, the results of the equation are also unit accurate.
6.3.3 Flash memory module life specifications
Table 33. Flash memory module life specifications
Symbol Characteristic Conditions Min Typical Units
Array P/E
cycles
Number of program/erase cycles per block
for 16 KB, 32 KB and 64 KB blocks.1 250,000 P/E
cycles
Number of program/erase cycles per block
for 256 KB blocks.2 1,000 250,000 P/E
cycles
Data
retention
Minimum data retention. Blocks with 0 - 1,000 P/E
cycles.
50 Years
Blocks with 100,000 P/E
cycles.
20 Years
Blocks with 250,000 P/E
cycles.
10 Years
1. Program and erase supported across standard temperature specs.
2. Program and erase supported across standard temperature specs.
6.3.4 Data retention vs program/erase cycles
Graphically, Data Retention versus Program/Erase Cycles can be represented by the
following figure. The spec window represents qualified limits. The extrapolated dotted
line demonstrates technology capability, however is beyond the qualification limits.
Memory interfaces
MPC5746C Microcontroller Datasheet, Rev. 6, 11/2018
40 NXP Semiconductors
6.3.5 Flash memory AC timing specifications
Table 34. Flash memory AC timing specifications
Symbol Characteristic Min Typical Max Units
tpsus Time from setting the MCR-PSUS bit until MCR-DONE bit is set
to a 1.
9.4
plus four
system
clock
periods
11.5
plus four
system
clock
periods
μs
tesus Time from setting the MCR-ESUS bit until MCR-DONE bit is set
to a 1.
16
plus four
system
clock
periods
20.8
plus four
system
clock
periods
μs
tres Time from clearing the MCR-ESUS or PSUS bit with EHV = 1
until DONE goes low.
100 ns
tdone Time from 0 to 1 transition on the MCR-EHV bit initiating a
program/erase until the MCR-DONE bit is cleared.
5 ns
tdones Time from 1 to 0 transition on the MCR-EHV bit aborting a
program/erase until the MCR-DONE bit is set to a 1.
16
plus four
system
clock
periods
20.8
plus four
system
clock
periods
μs
tdrcv Time to recover once exiting low power mode. 16 45 μs
Table continues on the next page...
Memory interfaces
MPC5746C Microcontroller Datasheet, Rev. 6, 11/2018
NXP Semiconductors 41
Table 34. Flash memory AC timing specifications (continued)
Symbol Characteristic Min Typical Max Units
plus seven
system
clock
periods.
plus seven
system
clock
periods
taistart Time from 0 to 1 transition of UT0-AIE initiating a Margin Read
or Array Integrity until the UT0-AID bit is cleared. This time also
applies to the resuming from a suspend or breakpoint by
clearing AISUS or clearing NAIBP
5 ns
taistop Time from 1 to 0 transition of UT0-AIE initiating an Array
Integrity abort until the UT0-AID bit is set. This time also applies
to the UT0-AISUS to UT0-AID setting in the event of a Array
Integrity suspend request.
80
plus fifteen
system
clock
periods
ns
tmrstop Time from 1 to 0 transition of UT0-AIE initiating a Margin Read
abort until the UT0-AID bit is set. This time also applies to the
UT0-AISUS to UT0-AID setting in the event of a Margin Read
suspend request.
10.36
plus four
system
clock
periods
20.42
plus four
system
clock
periods
μs
6.3.6 Flash read wait state and address pipeline control settings
The following table describes the recommended RWSC and APC settings at various
operating frequencies based on specified intrinsic flash access times of the flash module
controller array at 125 °C.
Table 35. Flash Read Wait State and Address Pipeline Control Combinations
Flash frequency RWSC setting APC setting
0 MHz < fFlash <= 33 MHz 0 0
33 MHz < fFlash <= 100 MHz 2 1
100 MHz < fFlash <= 133 MHz 3 1
133 MHz < fFlash <= 160 MHz 4 1
Memory interfaces
MPC5746C Microcontroller Datasheet, Rev. 6, 11/2018
42 NXP Semiconductors
Communication interfaces
6.4.1 DSPI timing
Table 36. DSPI electrical specifications
No Symbol Parameter Conditions High Speed Mode1low Speed mode Unit
Min Max Min Max
1 tSCK DSPI cycle
time
Master 25 50 ns
Slave (MTFE = 0) 40 60
2 tCSC PCS to SCK
delay
16 ns
3 tASC After SCK
delay
16 ns
4 tSDC SCK duty
cycle
tSCK/2 - 10 tSCK/2 + 10 ns
5 tASlave access
time
SS active to SOUT
valid
40 ns
6 tDIS Slave SOUT
disable time SS inactive to SOUT
High-Z or invalid
10 ns
7 tPCSC PCSx to
PCSS time
13 ns
8 tPASC PCSS to
PCSx time
13 ns
9 tSUI Data setup
time for
inputs
Master (MTFE = 0) NA 20 ns
Slave 2 2
Master (MTFE = 1,
CPHA = 0)
15 82
Master (MTFE = 1,
CPHA = 1)
15 20
10 tHI Data hold
time for
inputs
Master (MTFE = 0) NA –5 ns
Slave 4 4
Master (MTFE = 1,
CPHA = 0)
0 112
Master (MTFE = 1,
CPHA = 1)
0 -5
11 tSUO Data valid
(after SCK
edge)
Master (MTFE = 0) NA 4 ns
Slave 15 23
Master (MTFE = 1,
CPHA = 0)
4 162
Master (MTFE = 1,
CPHA = 1)
4 4
12 tHO Data hold
time for
outputs
Master (MTFE = 0) NA –2 ns
Table continues on the next page...
6.4
Communication interfaces
MPC5746C Microcontroller Datasheet, Rev. 6, 11/2018
NXP Semiconductors 43
Table 36. DSPI electrical specifications (continued)
No Symbol Parameter Conditions High Speed Mode1low Speed mode Unit
Min Max Min Max
Slave 4 6
Master (MTFE = 1,
CPHA = 0)
-2 102
Master (MTFE = 1,
CPHA = 1)
–2 –2
1. Only one {SIN,SOUT and SCK} group per DSPI/SPI will support high frequency mode. See Table 3.
2. SMPL_PTR should be set to 1
NOTE
Restriction For High Speed modes
DSPI2, DSPI3, SPI1 and SPI2 will support 40MHz Master
mode SCK
DSPI2, DSPI3, SPI1 and SPI2 will support 25MHz Slave
SCK frequency
Only one {SIN,SOUT and SCK} group per DSPI/SPI will
support high frequency mode. See Table 38.
For Master mode MTFE will be 1 for high speed mode
For high speed slaves, their master have to be in MTFE=1
mode or should be able to support 15ns tSUO delay
NOTE
For numbers shown in the following figures, see Table 36
Table 37. Continuous SCK timing
Spec Characteristics Pad Drive/Load Value
Min Max
tSCK SCK cycle timing strong/50 pF 100 ns -
- PCS valid after SCK strong/50 pF - 15 ns
- PCS valid after SCK strong/50 pF -4 ns -
Table 38. DSPI high speed mode I/Os
DSPI High speed SCK High speed SIN High speed SOUT
DSPI2 GPIO[78] GPIO[76] GPIO[77]
DSPI3 GPIO[100] GPIO[101] GPIO[98]
SPI1 GPIO[173] GPIO[175] GPIO[176]
SPI2 GPIO[79] GPIO[110] GPIO[111]
Communication interfaces
MPC5746C Microcontroller Datasheet, Rev. 6, 11/2018
44 NXP Semiconductors
Data Last Data
First Data
First Data Data Last Data
SIN
SOUT
PCSx
SCK Output
4
9
12
1
11
10
4
SCK Output
(CPOL=0)
(CPOL=1)
3
2
Figure 8. DSPI classic SPI timing — master, CPHA = 0
Data Last Data
First Data
SIN
SOUT
12 11
10
Last Data
Data
First Data
SCK Output
SCK Output
PCSx
9
(CPOL=0)
(CPOL=1)
Figure 9. DSPI classic SPI timing — master, CPHA = 1
Communication interfaces
MPC5746C Microcontroller Datasheet, Rev. 6, 11/2018
NXP Semiconductors 45
Figure 10. DSPI classic SPI timing — slave, CPHA = 0
5 6
9
12
11
10
Last Data
Last Data
SIN
SOUT
SS
First Data
First Data
Data
Data
SCK Input
SCK Input
(CPOL=0)
(CPOL=1)
Figure 11. DSPI classic SPI timing — slave, CPHA = 1
Communication interfaces
MPC5746C Microcontroller Datasheet, Rev. 6, 11/2018
46 NXP Semiconductors
PCSx
3
1
4
10
4
9
12 11
SCK Output
SCK Output
SIN
SOUT
First Data Data Last Data
First Data Data Last Data
2
(CPOL=0)
(CPOL=1)
Figure 12. DSPI modified transfer format timing — master, CPHA = 0
PCSx
10
9
12 11
SCK Output
SCK Output
SIN
SOUT
First Data Data Last Data
First Data Data Last Data
(CPOL=0)
(CPOL=1)
Figure 13. DSPI modified transfer format timing — master, CPHA = 1
Communication interfaces
MPC5746C Microcontroller Datasheet, Rev. 6, 11/2018
NXP Semiconductors 47
Last Data
First Data
3
4
1
Data
Data
SIN
SOUT
SS
4
5 6
9
11
10
SCK Input
First Data Last Data
SCK Input
2
(CPOL=0)
(CPOL=1)
12
Figure 14. DSPI modified transfer format timing – slave, CPHA = 0
5 6
9
12
11
10
Last Data
Last Data
SIN
SOUT
SS
First Data
First Data
Data
Data
SCK Input
SCK Input
(CPOL=0)
(CPOL=1)
Figure 15. DSPI modified transfer format timing — slave, CPHA = 1
PCSx
78
PCSS
Figure 16. DSPI PCS strobe (PCSS) timing
Communication interfaces
MPC5746C Microcontroller Datasheet, Rev. 6, 11/2018
48 NXP Semiconductors
FlexRay electrical specifications
6.4.2.1 FlexRay timing
This section provides the FlexRay Interface timing characteristics for the input and output
signals. It should be noted that these are recommended numbers as per the FlexRay EPL
v3.0 specification, and subject to change per the final timing analysis of the device.
6.4.2.2 TxEN
dCCTxENRISE
dCCTxENFALL
20 %
80 %
TxEN
Figure 17. TxEN signal
Table 39. TxEN output characteristics1
Name Description Min Max Unit
dCCTxENRISE25 Rise time of TxEN signal at CC 9 ns
dCCTxENFALL25 Fall time of TxEN signal at CC 9 ns
dCCTxEN01 Sum of delay between Clk to Q of the last FF and the final
output buffer, rising edge
25 ns
dCCTxEN10 Sum of delay between Clk to Q of the last FF and the final
output buffer, falling edge
25 ns
1. All parameters specified for VDD_HV_IOx = 3.3 V -5%, +±10%, TJ = –40 °C / 150 °C, TxEN pin load maximum 25 pF
6.4.2
FlexRay electrical specifications
MPC5746C Microcontroller Datasheet, Rev. 6, 11/2018
NXP Semiconductors 49
dCCTxEN10 dCCTxEN01
TxEN
PE_Clk
Figure 18. TxEN signal propagation delays
6.4.2.3 TxD
dCCTxD50%
TxD
dCCTxDFALL dCCTxDRISE
20 %
50 %
80 %
Figure 19. TxD Signal
Table 40. TxD output characteristics
Name Description1Min Max Unit
dCCTxAsym Asymmetry of sending CC @ 25 pF load (=dCCTxD50% - 100
ns)
–2.45 2.45 ns
dCCTxDRISE25+dCCTx
DFALL25
Sum of Rise and Fall time of TxD signal at the output 92ns
Table continues on the next page...
FlexRay electrical specifications
MPC5746C Microcontroller Datasheet, Rev. 6, 11/2018
50 NXP Semiconductors
Table 40. TxD output characteristics (continued)
Name Description1Min Max Unit
dCCTxD01 Sum of delay between Clk to Q of the last FF and the final
output buffer, rising edge
25 ns
dCCTxD10 Sum of delay between Clk to Q of the last FF and the final
output buffer, falling edge
25 ns
1. All parameters specified for VDD_HV_IOx = 3.3 V -5%, +±10%, TJ = –40 °C / 150 °C, TxD pin load maximum 25 pF.
2. For 3.3 V ± 10% operation, this specification is 10 ns.
dCCTxD10 dCCTxD01
TxD
PE_Clk*
*FlexRay Protocol Engine Clock
Figure 20. TxD Signal propagation delays
6.4.2.4 RxD Table 41. RxD input characteristic
Name Description1Min Max Unit
C_CCRxD Input capacitance on
RxD pin
7 pF
uCCLogic_1 Threshold for detecting
logic high
35 70 %
uCCLogic_0 Threshold for detecting
logic low
30 65 %
dCCRxD01 Sum of delay from
actual input to the D
input of the first FF,
rising edge
10 ns
dCCRxD10 Sum of delay from
actual input to the D
input of the first FF,
falling edge
10 ns
FlexRay electrical specifications
MPC5746C Microcontroller Datasheet, Rev. 6, 11/2018
NXP Semiconductors 51
1. All parameters specified for VDD_HV_IOx = 3.3 V -5%, +±10%, TJ = –40 oC / 150 oC.
6.4.3 Ethernet switching specifications
The following timing specs are defined at the chip I/O pin and must be translated
appropriately to arrive at timing specs/constraints for the physical interface.
6.4.3.1 MII signal switching specifications
The following timing specs meet the requirements for MII style interfaces for a range of
transceiver devices.
Table 42. MII signal switching specifications
Symbol Description Min. Max. Unit
RXCLK frequency 25 MHz
MII1 RXCLK pulse width high 35% 65% RXCLK
period
MII2 RXCLK pulse width low 35% 65% RXCLK
period
MII3 RXD[3:0], RXDV, RXER to RXCLK setup 5 ns
MII4 RXCLK to RXD[3:0], RXDV, RXER hold 5 ns
TXCLK frequency 25 MHz
MII5 TXCLK pulse width high 35% 65% TXCLK
period
MII6 TXCLK pulse width low 35% 65% TXCLK
period
MII7 TXCLK to TXD[3:0], TXEN, TXER invalid 2 ns
MII8 TXCLK to TXD[3:0], TXEN, TXER valid 25 ns
MII7MII8
Valid data
Valid data
Valid data
MII6 MII5
TXCLK (input)
TXD[n:0]
TXEN
TXER
Figure 21. RMII/MII transmit signal timing diagram
FlexRay electrical specifications
MPC5746C Microcontroller Datasheet, Rev. 6, 11/2018
52 NXP Semiconductors
MII2 MII1
MII4MII3
Valid data
Valid data
Valid data
RXCLK (input)
RXD[n:0]
RXDV
RXER
Figure 22. RMII/MII receive signal timing diagram
6.4.3.2 RMII signal switching specifications
The following timing specs meet the requirements for RMII style interfaces for a range of
transceiver devices.
Table 43. RMII signal switching specifications
Num Description Min. Max. Unit
EXTAL frequency (RMII input clock RMII_CLK) 50 MHz
RMII1 RMII_CLK pulse width high 35% 65% RMII_CLK
period
RMII2 RMII_CLK pulse width low 35% 65% RMII_CLK
period
RMII3 RXD[1:0], CRS_DV, RXER to RMII_CLK setup 4 ns
RMII4 RMII_CLK to RXD[1:0], CRS_DV, RXER hold 2 ns
RMII7 RMII_CLK to TXD[1:0], TXEN invalid 4 ns
RMII8 RMII_CLK to TXD[1:0], TXEN valid 15 ns
6.4.4 SAI electrical specifications
All timing requirements are specified relative to the clock period or to the minimum
allowed clock period of a device
Table 44. Master mode SAI Timing
no Parameter Value Unit
Min Max
Operating Voltage 2.7 3.6 V
S1 SAI_MCLK cycle time 40 - ns
Table continues on the next page...
FlexRay electrical specifications
MPC5746C Microcontroller Datasheet, Rev. 6, 11/2018
NXP Semiconductors 53
Table 44. Master mode SAI Timing (continued)
no Parameter Value Unit
Min Max
S2 SAI_MCLK pulse width high/low 45% 55% MCLK
period
S3 SAI_BCLK cycle time 80 - BCLK
period
S4 SAI_BCLK pulse width high/low 45% 55% ns
S5 SAI_BCLK to SAI_FS output valid - 15 ns
S6 SAI_BCLK to SAI_FS output invalid 0 - ns
S7 SAI_BCLK to SAI_TXD valid - 15 ns
S8 SAI_BCLK to SAI_TXD invalid 0 - ns
S9 SAI_RXD/SAI_FS input setup before SAI_BCLK 28 - ns
S10 SAI_RXD/SAI_FS input hold after SAI_BCLK 0 - ns
Figure 23. Master mode SAI Timing
Table 45. Slave mode SAI Timing
No Parameter Value Unit
Min Max
Operating Voltage 2.7 3.6 V
S11 SAI_BCLK cycle time (input) 80 - ns
S12 SAI_BCLK pulse width high/low (input) 45% 55% BCLK period
S13 SAI_FS input setup before SAI_BCLK 10 - ns
S14 SAI_FS input hold after SAI_BCLK 2 - ns
Table continues on the next page...
FlexRay electrical specifications
MPC5746C Microcontroller Datasheet, Rev. 6, 11/2018
54 NXP Semiconductors
Table 45. Slave mode SAI Timing (continued)
No Parameter Value Unit
Min Max
S15 SAI_BCLK to SAI_TXD/SAI_FS output valid - 28 ns
S16 SAI_BCLK to SAI_TXD/SAI_FS output invalid 0 - ns
S17 SAI_RXD setup before SAI_BCLK 10 - ns
S18 SAI_RXD hold after SAI_BCLK 2 - ns
Figure 24. Slave mode SAI Timing
Debug specifications
6.5.1 JTAG interface timing
Table 46. JTAG pin AC electrical characteristics 1
# Symbol Characteristic Min Max Unit
1 tJCYC TCK Cycle Time 262.5 ns
2 tJDC TCK Clock Pulse Width 40 60 %
3 tTCKRISE TCK Rise and Fall Times (40% - 70%) 3 ns
4 tTMSS, tTDIS TMS, TDI Data Setup Time 5 ns
5 tTMSH, tTDIH TMS, TDI Data Hold Time 5 ns
6 tTDOV TCK Low to TDO Data Valid 203ns
7 tTDOI TCK Low to TDO Data Invalid 0 ns
8 tTDOHZ TCK Low to TDO High Impedance 15 ns
11 tBSDV TCK Falling Edge to Output Valid 6004ns
Table continues on the next page...
6.5
Debug specifications
MPC5746C Microcontroller Datasheet, Rev. 6, 11/2018
NXP Semiconductors 55
Table 46. JTAG pin AC electrical characteristics 1 (continued)
# Symbol Characteristic Min Max Unit
12 tBSDVZ TCK Falling Edge to Output Valid out of High
Impedance
600 ns
13 tBSDHZ TCK Falling Edge to Output High Impedance 600 ns
14 tBSDST Boundary Scan Input Valid to TCK Rising Edge 15 ns
15 tBSDHT TCK Rising Edge to Boundary Scan Input Invalid 15 ns
1. These specifications apply to JTAG boundary scan only.
2. This timing applies to TDI, TDO, TMS pins, however, actual frequency is limited by pad type for EXTEST instructions.
Refer to pad specification for allowed transition frequency
3. Timing includes TCK pad delay, clock tree delay, logic delay and TDO output pad delay.
4. Applies to all pins, limited by pad slew rate. Refer to IO delay and transition specification and add 20 ns for JTAG delay.
TCK
1
2
2
3
3
Figure 25. JTAG test clock input timing
Debug specifications
MPC5746C Microcontroller Datasheet, Rev. 6, 11/2018
56 NXP Semiconductors
TCK
4
5
6
78
TMS, TDI
TDO
Figure 26. JTAG test access port timing
Debug specifications
MPC5746C Microcontroller Datasheet, Rev. 6, 11/2018
NXP Semiconductors 57
TCK
Output
Signals
Input
Signals
Output
Signals
11
12
13
14
15
Figure 27. JTAG boundary scan timing
6.5.2 Nexus timing
Table 47. Nexus debug port timing 1
No. Symbol Parameter Condition
s
Min Max Unit
1 tMCYC MCKO Cycle Time 15.6 ns
2 tMDC MCKO Duty Cycle 40 60 %
3 tMDOV MCKO Low to MDO, MSEO, EVTO Data Valid2 –0.1 0.25 tMCYC
4 tEVTIPW EVTI Pulse Width 4 tTCYC
5 tEVTOPW EVTO Pulse Width 1 tMCYC
6 tTCYC TCK Cycle Time3 62.5 ns
7 tTDC TCK Duty Cycle 40 60 %
8 tNTDIS,
tNTMSS
TDI, TMS Data Setup Time 8 ns
Table continues on the next page...
Debug specifications
MPC5746C Microcontroller Datasheet, Rev. 6, 11/2018
58 NXP Semiconductors
Table 47. Nexus debug port timing 1 (continued)
No. Symbol Parameter Condition
s
Min Max Unit
9 tNTDIH,
tNTMSH
TDI, TMS Data Hold Time 5 ns
10 tJOV TCK Low to TDO/RDY Data Valid 0 25 ns
1. JTAG specifications in this table apply when used for debug functionality. All Nexus timing relative to MCKO is measured
from 50% of MCKO and 50% of the respective signal.
2. For all Nexus modes except DDR mode, MDO, MSEO, and EVTO data is held valid until next MCKO low cycle.
3. The system clock frequency needs to be four times faster than the TCK frequency.
1
2
MCKO
MDO
MSEO
EVTO
Output Data Valid
3
5
Figure 28. Nexus output timing
EVTI 4
Figure 29. Nexus EVTI Input Pulse Width
Debug specifications
MPC5746C Microcontroller Datasheet, Rev. 6, 11/2018
NXP Semiconductors 59
TDO/RDY
8
9
TMS, TDI
10
TCK
6
7
Figure 30. Nexus TDI, TMS, TDO timing
6.5.3 WKPU/NMI timing
Table 48. WKPU/NMI glitch filter
No. Symbol Parameter Min Typ Max Unit
1 WFNMI NMI pulse width that is rejected 20 ns
2 WNFNMID NMI pulse width that is passed 400 ns
Debug specifications
MPC5746C Microcontroller Datasheet, Rev. 6, 11/2018
60 NXP Semiconductors
6.5.4 External interrupt timing (IRQ pin)
Table 49. External interrupt timing specifications
No. Symbol Parameter Conditions Min Max Unit
1 tIPWL IRQ pulse width low 3 tCYC
2 tIPWH IRQ pulse width high 3 tCYC
3 tICYC IRQ edge to edge time 6 tCYC
These values applies when IRQ pins are configured for rising edge or falling edge events,
but not both.
IRQ
1
2
3
Figure 31. External interrupt timing
Thermal attributes
7.1 Thermal attributes
Board type Symbol Description 176LQFP Unit Notes
Single-layer (1s) RθJA Thermal
resistance, junction
to ambient (natural
convection)
50.7 °C/W 1, 2
Four-layer (2s2p) RθJA Thermal
resistance, junction
to ambient (natural
convection)
24.2 °C/W 1, 2, 3
Single-layer (1s) RθJMA Thermal
resistance, junction
to ambient (200 ft./
min. air speed)
38.1 °C/W 1, 3
Four-layer (2s2p) RθJMA Thermal
resistance, junction
17.8 °C/W 1, 3
Table continues on the next page...
7
Thermal attributes
MPC5746C Microcontroller Datasheet, Rev. 6, 11/2018
NXP Semiconductors 61
Board type Symbol Description 176LQFP Unit Notes
to ambient (200 ft./
min. air speed)
RθJB Thermal
resistance, junction
to board
10.9 °C/W 4
RθJC Thermal
resistance, junction
to case
8.4 °C/W 5
ΨJT Thermal
resistance, junction
to package top
0.5 °C/W 6
ΨJB Thermal
characterization
parameter, junction
to package bottom
0.3 °C/W 7
1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site
(board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board
thermal resistance.
2. Per SEMI G38-87 and JEDEC JESD51-2 with the single layer board horizontal.
3. Per JEDEC JESD51-6 with the board horizontal.
4. Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured
on the top surface of the board near the package.
5. Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883
Method 1012.1).
6. Thermal resistance between the die and the solder pad on the bottom of the package based on simulation without any
interface resistance. When Greek letters are not available, the thermal characterization parameter is written as Psi-JT.
7. Thermal characterization parameter indicating the temperature difference between package top and the junction
temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written
as Psi-JB.
Board type Symbol Description 324 MAPBGA Unit Notes
Single-layer (1s) RθJA Thermal
resistance, junction
to ambient (natural
convection)
31.0 °C/W 1, 2
Four-layer (2s2p) RθJA Thermal
resistance, junction
to ambient (natural
convection)
24.3 °C/W 1,2,3
Single-layer (1s) RθJMA Thermal
resistance, junction
to ambient (200 ft./
min. air speed)
23.5 °C/W 1, 3
Four-layer (2s2p) RθJMA Thermal
resistance, junction
to ambient (200 ft./
min. air speed)
20.1 °C/W 1,3
RθJB Thermal
resistance, junction
to board
16.8 °C/W 4
Table continues on the next page...
Thermal attributes
MPC5746C Microcontroller Datasheet, Rev. 6, 11/2018
62 NXP Semiconductors
Board type Symbol Description 324 MAPBGA Unit Notes
RθJC Thermal
resistance, junction
to case
7.4 °C/W 5
ΨJT Thermal
characterization
parameter, junction
to package top
natural convection
0.2 °C/W 6
ΨJB Thermal
characterization
parameter, junction
to package bottom
natural convection
7.3 °C/W 7
1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site
(board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board
thermal resistance.
2. Per JEDEC JESD51-2 with the single layer board horizontal. Board meets JESD51-9 specification.
3. Per JEDEC JESD51-6 with the board horizontal
4. Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured
on the top surface of the board near the package.
5. Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883
Method 1012.1).
6. Thermal characterization parameter indicating the temperature difference between package top and the junction
temperature per JEDEC JESD51-2.
7. Thermal characterization parameter indicating the temperature difference between package bottom center and the junction
temperature per JEDEC JESD51-12. When Greek letters are not available, the thermal characterization parameter is
written as Psi-JB.
Board type Symbol Description 256 MAPBGA Unit Notes
Single-layer (1s) RθJA Thermal
resistance, junction
to ambient (natural
convection)
42.6 °C/W 1, 2
Four-layer (2s2p) RθJA Thermal
resistance, junction
to ambient (natural
convection)
26.0 °C/W 1,2,3
Single-layer (1s) RθJMA Thermal
resistance, junction
to ambient (200 ft./
min. air speed)
31.0 °C/W 1,3
Four-layer (2s2p) RθJMA Thermal
resistance, junction
to ambient (200 ft./
min. air speed)
21.3 °C/W 1,3
RθJB Thermal
resistance, junction
to board
12.8 °C/W 4
RθJC Thermal
resistance, junction
to case
7.9 °C/W 5
Table continues on the next page...
Thermal attributes
MPC5746C Microcontroller Datasheet, Rev. 6, 11/2018
NXP Semiconductors 63
Board type Symbol Description 256 MAPBGA Unit Notes
ΨJT Thermal
characterization
parameter, junction
to package top
outside center
(natural
convection)
0.2 °C/W 6
RθJB_CSB Thermal
characterization
parameter, junction
to package bottom
outside center
(natural
convection)
9.0 °C/W 7
1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site
(board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board
thermal resistance.
2. Per SEMI G38-87 and JEDEC JESD51-2 with the single layer board horizontal.
3. Per JEDEC JESD51-6 with the board horizontal
4. Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured
on the top surface of the board near the package.
5. Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883
Method 1012.1).
6. Thermal characterization parameter indicating the temperature difference between package top and the junction
temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written
as Psi-JT.
7. Thermal characterization parameter indicating the temperature difference between package bottom center and the junction
temperature per JEDEC JESD51-12. When Greek letters are not available, the thermal characterization parameter is
written as Psi-JB.
Board type Symbol Description 100 MAPBGA Unit Notes
Single-layer (1s) RθJA Thermal
resistance, junction
to ambient (natural
convection)
50.9 °C/W 1,2
Four-layer (2s2p) RθJA Thermal
resistance, junction
to ambient (natural
convection)
27.0 °C/W 1,2,3
Single-layer (1s) RθJMA Thermal
resistance, junction
to ambient (200 ft./
min. air speed)
38.0 °C/W 1,3
Four-layer (2s2p) RθJMA Thermal
resistance, junction
to ambient (200 ft./
min. air speed)
22.2 °C/W 1,3
RθJB Thermal
resistance, junction
to board
10.8 °C/W 4
Table continues on the next page...
Thermal attributes
MPC5746C Microcontroller Datasheet, Rev. 6, 11/2018
64 NXP Semiconductors
Board type Symbol Description 100 MAPBGA Unit Notes
RθJC Thermal
resistance, junction
to case
8.2 °C/W 5
ΨJT Thermal
characterization
parameter, junction
to package top
outside center
(natural
convection)
0.2 °C/W 6
ΨJB Thermal
characterization
parameter, junction
to package bottom
outside center
(natural
convection)
7.8 °C/W 7
1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site
(board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board
thermal resistance.
2. Per SEMI G38-87 and JEDEC JESD51-2 with the single layer board horizontal.
3. Per JEDEC JESD51-6 with the board horizontal
4. Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured
on the top surface of the board near the package.
5. Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883
Method 1012.1).
6. Thermal characterization parameter indicating the temperature difference between package top and the junction
temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written
as Psi-JT.
7. Thermal characterization parameter indicating the temperature difference between package bottom center and the junction
temperature per JEDEC JESD51-12. When Greek letters are not available, the thermal characterization parameter is
written as Psi-JB.
Dimensions
8.1 Obtaining package dimensions
Package dimensions are provided in package drawing.
To find a package drawing, go to www.nxp.com and perform a keyword search for the
drawing’s document number:
Package NXP Document Number
100 MAPBGA 98ASA00802D
176-pin LQFP-EP 98ASA00698D
256 MAPBGA 98ASA00346D
324 MAPBGA 98ASA10582D
8
Dimensions
MPC5746C Microcontroller Datasheet, Rev. 6, 11/2018
NXP Semiconductors 65
Pinouts
9.1 Package pinouts and signal descriptions
For package pinouts and signal descriptions, refer to the Reference Manual.
Reset sequence
10.1 Reset sequence
This section describes different reset sequences and details the duration for which the
device remains in reset condition in each of those conditions.
10.1.1 Reset sequence duration
Table 50 specifies the reset sequence duration for the five different reset sequences
described in Reset sequence description.
Table 50. RESET sequences
No. Symbol Parameter TReset Unit
Min Typ 1Max
1 TDRB Destructive Reset Sequence, BIST enabled 6.2 7.3 - ms
2 TDR Destructive Reset Sequence, BIST disabled 110 182 - us
3 TERLB External Reset Sequence Long, Unsecure Boot 6.2 7.3 - ms
4 TFRL Functional Reset Sequence Long, Unsecure Boot 110 182 - us
5 TFRS Functional Reset Sequence Short, Unsecure Boot 7 9 - us
1. The Typ value is applicable only if the reset sequence duration is not prolonged by an extended assertion of RESET_B by
an external reset generator.
9
10
Pinouts
MPC5746C Microcontroller Datasheet, Rev. 6, 11/2018
66 NXP Semiconductors
10.1.2 BAF execution duration
Following table specifies the typical BAF execution time in case BAF boot header is
present at first location (Typical) and last location (worst case). Total Boot time is the
sum of reset sequence duration and BAF execution time.
Table 51. BAF execution duration
BAF execution
duration
Min Typ Max Unit
BAF execution time
(boot header at first
location)
200 μs
BAF execution time
(boot header at last
location)
320 μs
10.1.3 Reset sequence description
The figures in this section show the internal states of the device during the five different
reset sequences. The dotted lines in the figures indicate the starting point and the end
point for which the duration is specified in .
With the beginning of DRUN mode, the first instruction is fetched and executed. At this
point, application execution starts and the internal reset sequence is finished.
The following figures show the internal states of the device during the execution of the
reset sequence and the possible states of the RESET_B signal pin.
NOTE
RESET_B is a bidirectional pin. The voltage level on this pin
can either be driven low by an external reset generator or by the
device internal reset circuitry. A high level on this pin can only
be generated by an external pullup resistor which is strong
enough to overdrive the weak internal pulldown resistor. The
rising edge on RESET_B in the following figures indicates the
time when the device stops driving it low. The reset sequence
durations given in are applicable only if the internal reset
sequence is not prolonged by an external reset generator
keeping RESET_B asserted low beyond the last Phase3.
Reset sequence
MPC5746C Microcontroller Datasheet, Rev. 6, 11/2018
NXP Semiconductors 67
PHASE0 PHASE1,2 PHASE3 PHASE1,2 PHASE3 DRUNBIST
Reset Sequence Trigger
Reset Sequence Start Condition
RESET_B
TDRB, min <TRESET <TDRB, max
Establish
IRC and
PWR
Flash
Init
Device
Config Device
Config
Flash
Init
Self Test
Setup MBIST Application
Execution
Figure 32. Destructive reset sequence, BIST enabled
PHASE0 PHASE1,2 PHASE3 DRUN
Reset Sequence Trigger
Reset Sequence Start Condition
RESET_B
Establish Flash Device Application
IRC and
PWR
Init Config Execution
TDR, min <TRESET <TDR, max
BAF+
Figure 33. Destructive reset sequence, BIST disabled
PHASE1,2 PHASE3 PHASE1,2 PHASE3 DRUNBIST
Reset Sequence Trigger
Reset Sequence Start Condition
RESET_B
TERLB, min <TRESET <TERLB, max
MBIST
Self Test
Setup
Flash
Init
Device
Config Flash
Init
Device
Config
Application
Execution
Figure 34. External reset sequence long, BIST enabled
PHASE1,2 PHASE3 DRUN
Reset Sequence Trigger
Reset Sequence Start Condition
RESET_B
Application
Flash
Init Device
Config Ex ecut ion
TFRL, min <TRESET <TFRL, max
BAF+
Figure 35. Functional reset sequence long
Reset sequence
MPC5746C Microcontroller Datasheet, Rev. 6, 11/2018
68 NXP Semiconductors
PHASE3 DRUN
Reset Sequence Trigger
Reset Sequence Start Condition
RESET_B
Application
Execution
TFRS, min <TRESET <TFRS, max
BAF+
Figure 36. Functional reset sequence short
The reset sequences shown in Figure 35 and Figure 36 are triggered by functional reset
events. RESET_B is driven low during these two reset sequences only if the
corresponding functional reset source (which triggered the reset sequence) was enabled to
drive RESET_B low for the duration of the internal reset sequence. See the RGM_FBRE
register in the device reference manual for more information.
Revision History
11.1 Revision History
The following table provides a revision history for this document.
Table 52. Revision History
Rev. No. Date Substantial Changes
Rev 1 14 March 2013 Initial Release
Rev 2 7 August 2015 In features:
Updated BAF feature with sentence, Boot Assist Flash (BAF) supports internal
flash programming via a serial link (SCI)
Updated FlexCAN3 with FD support
Updated number of STMs to two.
In Block diagram:
Updated SRAM size from 128 KB to 256 KB.
In Family Comparison:
Added note: All optional features (Flash memory, RAM, Peripherals) start with
lowest number or address (e.g. FlexCAN0) and end at highest available number
or address (e.g. MPC574xB/D have 6 CAN, ending with FlexCAN5).
Revised MPC5746C Family Comparison table.
In Ordering parts:
Updated ordering parts diagram to include 100 MAPBGA information and optional
fields.
In table: Absolute maximum ratings
Removed entry: 'VSS_HV'
Added spec for 'VDD12'
Updated 'Max' column for 'VINA'
Table continues on the next page...
11
Revision History
MPC5746C Microcontroller Datasheet, Rev. 6, 11/2018
NXP Semiconductors 69
Table 52. Revision History (continued)
Rev. No. Date Substantial Changes
Updated footnote for VDD_HV_ADC1_REF.
Added footnote to 'Conditions', All voltages are referred to VSS_HV unless
otherwise specified
Removed footnote from 'Max', Absolute maximum voltages are currently
maximum burn-in voltages. Absolute maximum specifications for device stress
have not yet been determined.
In section: Recommended operating conditions
Added opening text: ''The following table describes the operating conditions ... "
Added note: "VDD_HV_A, VDD_HV_B and VDD_HV_C are all ... "
In table: Recommended operating conditions (VDD_HV_x = 3.3 V) and
(VDD_HV_x = 5 V)
Added footnote to 'Conditions' cloumn, (All voltages are referred to VSS_HV
unless otherwise specified).
Updated footnote for 'Min' column to Device will be functional down (and
electrical specifications as per various datasheet parameters will be
guaranteed) to the point where one of the LVD/HVD resets the device.
When voltage drops outside range for an LVD/HVD, device is reset.
Removed footnote for 'VDD_HV_A', 'VDD_HV_B', and 'VDD_HV_C' entry and
updated the parameter column.
Removed entry : 'VSS_HV'
Updated 'Parameter' column for 'VDD_HV_FLA', 'VDD_HV_ADC1_REF', 'VDD_LV'
Updated 'Min' column for 'VDD_HV_ADC0' 'VDD_HV_ADC1'
Updated 'Parameter' 'Min' 'Max' columns for 'VSS_HV_ADC0' and 'VSS_HV_ADC1'
Updated footnote for 'VDD_LV ' to VDD_LV supply pins should never be
grounded (through a small impedance). If these are not driven, they should
only be left floating.
Removed row for symbol 'VSS_LV'
Removed footnote from 'Max' column of 'VDD_HV_ADC0' and 'VDD_HV_ADC1',
(PA3, PA7, PA10, PA11 and PE12 ADC_1 channels are coming from
VDD_HV_B domain hence VDD_HV_ADC1 should be within ±100 mV of
VDD_HV_B when these channels are used for ADC_1).
In table: Recommended operating conditions (VDD_HV_x = 3.3 V)
Removed footnote from 'VIN1_CMP_REF', (Only applicable when supplying
from external source).
In table: Recommended operating conditions (VDD_HV_x = 5 V)
Added spec for 'VIN1_CMP_REF' and corresponding footnotes.
In section: Voltage monitor electrical characteristics
Updated description for Low Voltage detector block.
Added note, BCP56, MCP68 and MJD31 are guaranteed ballasts.
In table: Voltage regulator electrical specifications
Added footnote, Ceramic X7R or X5R type with capacitance-temperature
characteristics +/-15% of -55 degC to +125degC is recommended. The
tolerance +/-20% is acceptable.
Revised table, Voltage monitor electrical characteristics
In section: Supply current characteristics
In table: Current consumption characteristics
IDD_BODY_4: Updated SYS_CLK to 120 MHz.
IDD_BODY_4: Updated Max for Ta= 105 °C fand 85 °C )
Idd_STOP: Added condition for Ta= 105 °C and removed Max value for Ta= 85
°C.
IDD_HV_ADC_REF: Added condition for Ta= 105 °C and 85 °C and removed
Max value for Ta= 25 °C.
IDD_HV_FLASH: Added condition for Ta= 105 °C and 85 °C
In table: Low Power Unit (LPU) Current consumption characteristics
LPU_RUN and LPU_STOP: Added condition for Ta= 105 °C and 85 °C
Table continues on the next page...
Revision History
MPC5746C Microcontroller Datasheet, Rev. 6, 11/2018
70 NXP Semiconductors
Table 52. Revision History (continued)
Rev. No. Date Substantial Changes
In table: STANDBY Current consumption characteristics
Added condition for Ta= 105 °C and 85 °C for all entries.
In section: I/O parameters
In table: Functional Pad AC Specifications @ 3.3 V Range
Updated values for 'pad_sr_hv (output)'
In table: DC electrical specifications @ 3.3V Range
Updateded Min and Max values for Vih and Vil respectively.
In table: Functional Pad AC Specifications @ 5 V Range
Updated values for 'pad_sr_hv (output)'
In table DC electrical specifications @ 5 V Range
Updated Min value for Vhys
In section: Reset pad electrical characteristics
Revised table, Reset electrical characteristics
Deleted note, There are some specific ports that supports TTL functionality. These
ports are, PB[4], PB[5], PB[6], PB[7], PB[8], PB[9], PD[0], PD[1], PD[2], PD[3],
PD[4], PD[5], PD[6], PD[7], PD[8], PD[9], PD[10], and PD[11].
In section: PORST electrical specifications
In table: PORST electrical specifications
Updated 'Min' value for WNFPORST
In section: Peripheral operating requirements and behaviours
Changed section title from Input impedance and ADC accuracy to Input equivalent
circuit and ADC conversion characteristics.
Revised table: ADC conversion characteristics (for 12-bit) and ADC conversion
characteristics (for 10-bit)
Removed table, ADC supply configurations.
In section: Analogue Comparator (CMP) electrical specifications
In table: Comparator and 6-bit DAC electrical specifications
Updated 'Max' value of IDDLS
Updated 'Min' and 'Max' for VAIO and DNL
Updated 'Descripton' 'Min' 'Max' od VH
Updated row for tDHS
Added row for tDLS
Removed row for VCMPOh and VCMPOl
In section: Clocks and PLL interfaces modules
In table: Main oscillator electrical characteristics
VXOSCHS: Removed values for 4 MHz.
TXOSCHSSU: Updated range to 8-40 MHz.
In table: 16 MHz RC Oscillator electrical specifications
Updated 'Max' for Tstartup and TLTJIT
Removed FUntrimmed row
In table: 128 KHz Internal RC oscillator electrical specifications
Fosc: Removed Uncaliberated 'Condition' and updated 'Min', 'Typ', and
'Max' for Caliberated condition
Fosc: Updated 'Temperature dependence' and 'Supply dependence' Max
values
In table: PLL electrical specifications
Removed entries for Input Clock Low Level, Input Clock High Level, Power
consumption, Regulator Maximum Output Current, Analog Supply, Digital
Supply (VDD_LV), Modulation Depth (Down Spread), PLL reset assertion
time, and Power Consumption
Table continues on the next page...
Revision History
MPC5746C Microcontroller Datasheet, Rev. 6, 11/2018
NXP Semiconductors 71
Table 52. Revision History (continued)
Rev. No. Date Substantial Changes
Removed 'Typ' value for Duty Cycle at pllclkout
Removed 'Min' value for Lock Time in calibration mode.
In table: Jitter calculation
Added 1 Sigma Random Jitter and Total Period Jitter values for Long Term
Jitter (Interger and Fractional Mode) rows.
In section Flash read wait state and address pipeline control settings
In Flash Read Wait State and Address Pipeline Control: Updated APC for 40 MHz.
Removed section: On-chip peripherals
In section, Thermal attributes
Added table for 100 MAPBGA
In section Obtaining package dimensions
Updated package details for 100 MAPBGA
Editoral updates throughtout including correction of various module names.
Rev 3 2 March 2016 In section, Recommended operating conditions
Added a new Note
In section, Voltage regulator electrical characteristics
In table, Voltage regulator electrical specifications:
Added a new row for CHV_VDD_B
Added a footnote on VDD_HV_BALLAST
Added a new Note at the end of this section
In section, Voltage monitor electrical characteristics
In table, Voltage monitor electrical characteristics:
Removed "VLVD_FLASH" and "VLVD_FLASH during low power mode using
LPBG as reference" rows
Updated Fall and Rise trimmed Minimum values for VHVD_LV_cold
In section, Supply current characteristics
In table, Current consumption characteristics:
Updated the footnote mentioned in the Condition column of IDD_STOP row
Updated all TBD values
In table, Low Power Unit (LPU) Current consumption characteristics:
Updated the typical value of LPU_STOP to 0.18 mA
Updated all TBD values
In table, STANDBY Current consumption characteristics:
Updated all TBD values
In section, AC specifications @ 3.3 V Range
In table, Functional Pad AC Specifications @ 3.3 V Range:
Updated Rise/Fall Edge values
In section, DC electrical specifications @ 3.3V Range
In table, DC electrical specifications @ 3.3V Range:
Updated Max value for Vol to 0.1 * VDD_HV_x
In section, AC specifications @ 5 V Range
In table, Functional Pad AC Specifications @ 5 V Range:
Updated Rise/Fall Edge values
In section, DC electrical specifications @ 5 V Range
In table, DC electrical specifications @ 5 V Range:
Table continues on the next page...
Revision History
MPC5746C Microcontroller Datasheet, Rev. 6, 11/2018
72 NXP Semiconductors
Table 52. Revision History (continued)
Rev. No. Date Substantial Changes
Updated Min and Max values for Pull_Ioh and Pull_Iol rows
Updated Max value for Vol to 0.1 * VDD_HV_x
In section, Reset pad electrical characteristics
In table, Functional reset pad electrical specifications:
Updated parameter column for VIH, VIL and VHYS rows
Updated Min and Max values for VIH and VIL rows
In section, PORST electrical specifications
In table, PORST electrical specifications:
Updated Unit and Min/Max values for VIH and VIL rows
In section, Input equivalent circuit and ADC conversion characteristics
In table, ADC conversion characteristics (for 12-bit):
Updated "ADC Analog Pad (pad going to one ADC)" row
In table, ADC conversion characteristics (for 10-bit):
Updated "ADC Analog Pad (pad going to one ADC)" row
In section, Analog Comparator (CMP) electrical specifications
In table, Comparator and 6-bit DAC electrical specifications:
Updated Min and Max values for VAIO to ±47 mV
Updated Max value for tDLS to 21 μs
In section, Main oscillator electrical characteristics
In table, Main oscillator electrical characteristics:
Updated VIH Min value to 1.95V
Updated VIL Max value to 1.25V
Removed VIH Typ value
In section, PLL electrical specifications
In table, PLL electrical specifications:
Updated Max value for Modulation Depth (Center Spread) to +/- 3.0%
Rev 4 9 March 2016 In section, Voltage regulator electrical characteristics
In table, Voltage regulator electrical specifications:
Updated the footnote on VDD_HV_BALLAST
Rev 5 27 February
2017
In Family Comparison section:
Updated the "MPC5746C Family Comparison" table.
added "NVM Memory Map 1", "NVM Memory Map 2", and "RAM Memory Map"
tables.
Updated the product version, flash memory size and optional fields information in
Ordering Information section.
In Recommended Operating Conditions section, removed the note related to additional
crossover current.
VDD_HV_C row added in "Voltage regulator electrical specifications" table in Voltage
regulator electrical characteristics section.
In Voltage Monitor Electrical Characteristics section, updated the "Trimmed" Fall and
Rise specs of VHVD_LV_cold parameter in "Voltage Monitor Electrical Characteristics"
table.
In AC Electrical Specifications: 3.3 V Range section, changed the occurrences of
“ipp_sre[1:0]” to “SIUL2_MSCRn.SRC[1:0]” in the table.
Table continues on the next page...
Revision History
MPC5746C Microcontroller Datasheet, Rev. 6, 11/2018
NXP Semiconductors 73
Table 52. Revision History (continued)
Rev. No. Date Substantial Changes
In DC Electrical Specifications: 3.3 V Range section, changed the occurrences of
“ipp_sre[1:0]” to “SIUL2_MSCRn.SRC[1:0]” and updated "Vol min and max" values in
the table.
In AC Electrical Specifications: 5 V Range section, changed the occurrences of
“ipp_sre[1:0]” to “SIUL2_MSCRn.SRC[1:0]” in the table.
In DC Electrical Specifications: 5 V Range section, changed the occurrences of
“ipp_sre[1:0]” to “SIUL2_MSCRn.SRC[1:0]” and updated "Vol min and max" values in
the table.
In "Flash memory AC timing specifications" table in Flash memory AC timing
specifications section:
Updated the "tpsus" typ value from 7 us to 9.4 us.
Updated the "tpsus" max value from 9.1 us to 11.5 us.
Added "Continuous SCK Timing" table in DSPI timing section.
Added "ADC pad leakage" at 105°C TA conditions in "ADC conversion characteristics
(for 12-bit)" table in ADC electrical specifications section.
In "STANDBY Current consumption characteristics" table in Supply current
characteristics section:
Updated the Typ and max values of IDD Standby current.
Added IDD Standby3 current spec for FIRC ON.
Removed IVDDHV and IVDDLV specs in 16 MHz RC Oscillator electrical specifications
section.
Added Reset Sequence section, with Reset Sequence Duration, BAF execution duration
section, and Reset Sequence Distribution as its sub-sections.
Rev 5.1 22 May 2017 Removed the Introduction section from Section 4 "General".
In AC Specifications@3.3V section, removed note related to Cz results and added two
notes.
In AC Specifications@5V section, added two notes.
In ADC Electrical Specifications section, added spec value of "ADC Analog Pad" at Max
leakage (standard channel)@ 105 C TA in "ADC conversion characteristics (for 10-bit)"
table.
In PLL Electrical Specifications section, updated the first footnote of "Jitter calculation"
table.
In Analog Comparator Electrical Specifications section, updated the TDLS (propagation
delay, low power mode) max value in "Comparator and 6-bit DAC electrical
specifications" table to 21 us.
In Recommended Operating Conditions section, updated the footnote link to TA in
"Recommended operating conditions (V DD_HV_x = 5V)" table.
Rev 6 21 Nov 2018 In Table 2 changed the Code Flash Block 9 (0x01240000 - 0x0127FFFF) from 'not
available' to 'available' for MPC5746.
In Table 3 added 32 and 64 KB flash blocks and footnote "Flexible patitions for boot and
EEPROM".
Added Table 4.
Revision History
MPC5746C Microcontroller Datasheet, Rev. 6, 11/2018
74 NXP Semiconductors
Table 52. Revision History
Rev. No. Date Substantial Changes
Updated GPIO and added GPI row in Table 1.
Changed the EEPROM support for MPC574xC devices from Emulated up to"64K" to
"Emulated up to 128K" in Table 1.
Changed "VDD_HV_A" to "VDD_HV_IO" and changed the condition from "VDD_HV_A =
VDD_POR" to "3.0 V < VDD_HV_IO < 5.5 V" in Table 19.
Added the text "For internal ballast configuration the VRC_CTL pin should be left
floating" in existing foot note "Recommended Transistors:MJD31 @ 85°C....." in Table
11.
Added note "For the Precision channel Analog inputs...pulled low/high externally" after
the table "STANDBY Current consumption characteristics" in Supply current
characteristics.
In Table 36 :
Added footnote in "High Speed Mode" column.
For Parameter "DSPI cycle time" changed the Condition from "Master (MTFE=0)"
to "Master".
In Voltage monitor electrical characteristics
Under the column "Reset Type" changed "Destructive" to "POR" throughout the
table "Voltage monitor electrical characteristics".
Changed the Reset type of "VLVD_IO_A_HI" to "Functional"
Revision History
MPC5746C Microcontroller Datasheet, Rev. 6, 11/2018
NXP Semiconductors 75
How to Reach Us:
Home Page:
nxp.com
Web Support:
nxp.com/support
Information in this document is provided solely to enable system and software implementers to use
NXP products. There are no express or implied copyright licenses granted hereunder to design or
fabricate any integrated circuits based on the information in this document. NXP reserves the right to
make changes without further notice to any products herein.
NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any
particular purpose, nor does NXP assume any liability arising out of the application or use of any
product or circuit, and specifically disclaims any and all liability, including without limitation
consequential or incidental damages. “Typical” parameters that may be provided in NXP data sheets
and/or specifications can and do vary in different applications, and actual performance may vary over
time. All operating parameters, including “typicals,” must be validated for each customer application
by customerʼs technical experts. NXP does not convey any license under its patent rights nor the
rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be
found at the following address: nxp.com/SalesTermsandConditions.
While NXP has implemented advanced security features, all products may be subject to unidentified
vulnerabilities. Customers are responsible for the design and operation of their applications and
products to reduce the effect of these vulnerabilities on customer's applications and products, and
NXP accepts no liability for any vulnerability that is discovered. Customers should implement
appropriate design and operating safeguards to minimize the risks associated with their applications
and products.
NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX,
EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE, JCOP, LIFE VIBES, MIFARE, MIFARE
CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT,
MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET,
TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, C-5, CodeTEST, CodeWarrior,
ColdFire, ColdFire+, C-Ware, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV,
mobileGT, PEG, PowerQUICC, Processor Expert, QorIQ, QorIQ Qonverge, Ready Play, SafeAssure,
the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet,
Flexis, MXC, Platform in a Package, QUICC Engine, SMARTMOS, Tower, TurboLink, and UMEMS
are trademarks of NXP B.V. All other product or service names are the property of their respective
owners. AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink,
CoreSight, Cortex, DesignStart, DynamIQ, Jazelle, Keil, Mali, Mbed, Mbed Enabled, NEON, POP,
RealView, SecurCore, Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-PLUS,
ULINKpro, μVision, Versatile are trademarks or registered trademarks of Arm Limited (or its
subsidiaries) in the US and/or elsewhere. The related technology may be protected by any or all of
patents, copyrights, designs and trade secrets. All rights reserved. Oracle and Java are registered
trademarks of Oracle and/or its affiliates. The Power Architecture and Power.org word marks and the
Power and Power.org logos and related marks are trademarks and service marks licensed by
Power.org.
© 2018 NXP B.V.
Document Number MPC5746C
Revision 6, 11/2018