Manual Order No.: 6DD1903-0BB0
Edition 05.01
Standard Software Packa
g
e
SPA440 Angular Synchronous Control
for the
T400 Techn ology M o dule
ϕ
1
=
ϕ
2
ü
ϕ1ϕ2
Contents
SPA440 angular synchronous control - SIMADYN D - Manual 1
6DD1903-0BB0 Edition 05.01
Contents
0 Warning information.............................. ................................................................................3
1 Overview..................................................................................................................................5
1.1 Validity........................................... ...................................................................................... 5
1.2 Order Numbers.................................................................................................................... 6
1.3 Introduction.......................................................................................................................... 6
1.4 Terminology......................................................................................................................... 6
1.4.1 Important terminology................................................................................................ 6
1.4.2 Functions and features.............................................................................................. 8
1.5 A comparison between speed- and angular synchronism................................................... 9
1.5.1 Model......................................................................................................................... 9
1.5.2 Differences between speed- and angular synchronism .......................................... 10
1.6 Displacement and synchronization.................................................................................... 11
1.7 Hardware constellation.................... .................................................................................. 14
1.8 Information and instructions when using angular synchronous control............................. 16
2 T400 technology module .....................................................................................................17
2.1 Communication interfaces................................................................................................. 17
2.1.1 Interface to the basic drive (CU) ............................................................................. 18
2.1.2 Interface to COMBOARD ........................................................................................ 19
2.1.3 Peer-to-peer interface.............. ............................................................................... 20
2.1.4 Diagnostics interface............................................................................................... 20
2.1.5 USS-slave interface................................................................................................. 21
2.2 Terminal assignment..................... .................................................................................... 22
2.2.1 Digital I/O................................................................................................................. 22
2.2.2 Analog I/O........................... .................................................................................... 24
2.2.3 Pulse encoders........................................................................................................ 24
Absolute value encoder ..................................................................................................... 27
3 Function description............................................................................................................28
3.1 Ratio......................................... ......................................................................................... 29
3.1.1 Speed ratio........................... ................................................................................... 29
3.1.2 Fine ratio.................................. ...............................................................................30
3.2 Setpoints and actual values............................................................................................... 31
3.2.1 Setpoints........................... ...................................................................................... 31
3.2.2 Actual value sensing................. .............................................................................. 32
3.2.3 Position actual value sensing with absolute value encoders................................... 35
3.3 Determining the displacement and synchronization.......................................................... 41
3.3.1 Synchronization......................... .............................................................................. 41
3.3.2 Determining the displacement................................................................................. 42
3.3.3 Noise-immune synchronization ............................................................................... 46
3.3.4 Synchronism achieved........... ................................................................................. 48
3.4 Closed-loop angular control............................................................................................... 49
3.4.1 Enable signals............................... .......................................................................... 49
3.4.2 Displacement setpoint............................................................................................. 49
3.4.3 Angular controller............................. ....................................................................... 50
3.5 Closed-loop speed control................................................................................................. 52
3.5.1 Ratio....................................... ................................................................................. 52
3.5.2 Master speed setpoint............................................................................................. 53
3.5.3 Inertia compensation............................................................................................... 53
3.5.4 Speed controller Kp adaption .................................................................................. 54
Contents
2SPA440 angular synchronous control - SIMADYN D - Manual
6DD1903-0BB0 Edition 05.01
3.5.5 Jogging....................................................................................................................54
3.5.6 Parameters to the speed controller ......................................................................... 55
3.6 Open-loop control........................... ................................................................................... 56
3.7 Faults, alarm and status display ........................................................................................ 56
3.7.1 General information on faults and alarms ............................................................... 56
3.7.2 Monitoring the communication coupling .................................................................. 57
3.8 Application example........................................................................................................... 58
3.8.1 Synchronous operation and synchronizing using as an example a gantry crane.... 58
4 Parameters and connectors ................................................................................................60
4.1 Parameter handling.................................... .......................................................................60
4.1.1 BICO parameters.................................. .................................................................. 61
4.1.2 Resources to adapt the software and commissioning............................................. 61
4.2 Parameter list................................ .................................................................................... 63
4.3 Connector list................................................................................................................... 104
5 Start-up................................................................................................................................115
5.1 Commissioning, general............. ..................................................................................... 115
5.2 Commissioning, closed-loop speed control..................................................................... 117
5.3 Commissioning the angular control ................................................................................. 123
5.3.1 Information regarding optimizing the angular controller ........................................ 126
5.4 Commissioning synchronization ...................................................................................... 127
5.5 Trace function with “symTrace-D7” ................................................................................. 129
6 Literature................................... ..........................................................................................130
7 Appendix..............................................................................................................................131
8 Changes...............................................................................................................................145
Warning information
SPA440 angular synchronous control - SIMADYN D - Manual 3
6DD1903-0BB0 Edition 05.01
0 Warning information
Electrical equipment has components which are at dangerous voltage levels.
If these instructions are not strictly adhered to, this can result in severe bodily
injury and mater ial damage.
Only appropriately qualified personnel may work on/commission this
equipment.
This personnel must be completely knowledgable about all the warnings and
service measures according to this User Manual.
It is especially important that the warning information in the relevant
Operating Instructions (MASTERDRIVES or DC MASTER) is strictly
observed.
WARNING
D Qualified personnel for the purpose of this Manual and product labels
are personnel who are familiar with the installation, mounting, start-up and
operation of the equipment and the hazards involved. He or she must
have the following qualifications:
1. Trained and authorized to energize, de-energize, clear, ground and tag
circuits and equipment in accordance with established safety
procedures.
2. Trained in the proper care and use of protective equipment in
accordance with established safety procedures.
3. Trained in rendering first aid.
!DANGER For the purpose of this Manual and product labels, „Danger“ indicates
death, severe personal injury and/or substantial property damage will
result if proper precautions are not taken.
!WARNING For the purpose of this Manual and product labels, „Warning“ indicates
death, severe personal injury or property damage can result if prope
r
precautions are not taken
!CAUTION For the purpose of this Manual and product labels, „Caution“ indicates
that minor personal injury or material damage can result if prope
r
precautions are not taken.
Definitions
Warning information
4SPA440 angular synchronous control - SIMADYN D - Manual
6DD1903-0BB0 Edition 05.01
NOTE For the purpose of this Manual, „Note“ indicates information about the
product or the respective part of the Manual which is essential to
highlight.
CAUTION
This board contains components which can be destroyed by electrostatic
discharge. Prior to touching any electronics board, your body must be
electrically discharged. This can be simply done by touching a conductive,
grounded object immediately beforehand (e.g. bare metal cabinet
components, soc k et protecti ve conductor contact).
Overview
SPA440 angular synchronous control - SIMADYN D - Manual 5
6DD1903-0BB0 Edition 05.01
1 Overview
1.1 Validity
This User Manual is valid for the SPA440 angular synchronous control
standard software package.
NOTE This documentation is not compatible with the previous MS340
angular synchronous controls!
Contrary to the earlier version, version 2.02 and higher includes so-
called BICO technology. This allows connections within the application
to be adapted to the actual task by making the appropriate parameter
changes. Supplementary functions can be implemented by inserting
free blocks.
For compatibility reasons, the multiplexer blocks have been kept,
although they are no longer required as a result of the BICO technology.
All of the parameters from versions V2.00 and V2.01 which can be
changed, have been kept. Changes have been made with respect to
the display parameters.
The documentation refers to operational standard software package,
comprising the T400 technology module and the software which is loaded
onto it. Generally, the T400 is operated in the drive converter (SIMOVERT
MASTERDRIVES MC or VC; DC Master) with/without communications
module (e. g.: PROFIBUS connection).
However, the software package can also be used when the T400 is
inserted in the SRT400. In this particular case, data is not transferred to
the basic drive converter via a common backplane bus. Presently, it is not
possible to parameterize the system using SIMOVIS.
NOTE The control core (all of the functions) of the SPA440 standard software
package is also available for other configurations, e.g. CPU modules
PM4 - PM6 with the IT41 expansion module. In this case, the
application-specific changes are made using the graphic configuring
tool CFC.
Hardware
configuration
Overview
6SPA440 angular synchronous control - SIMADYN D - Manual
6DD1903-0BB0 Edition 05.01
1.2 Order Numbers
The sources of the standard software package SPA440 angular
synchronous control, are available on CD-ROM (designation SPA440) .
When required, the angular synchronous control function can be adapted
to specific customer requirements using the graphic configuring interface
of SIMADYN D, i.e. CFC (also refer to Table 1-1).
Designation Explanation MLFB / Order No.
SPA440 SPA440 angular synchronous control on CD-ROM and the
documentation (as file).
6DD1842-0AB0
D7 ES SIMADYN D configuring software D7-ES. Package comprising
STEP7, CFC and D7-SYS on CD-ROM
6DD1801-4DA2
Table 1-1 Components for adapti ng the software package using CFC
1.3 Introduction
The angular synchronous control with synchronization is an application
which is frequently used in drive technology. This synchronous operation,
which is achieved with the control software, is also known as ”Electrical
shaft”.
Angular synchronous operation is implemented using the SPA440
standard software package. This standard software package can run on
the T400 technology module, integrated in a drive converter. It is available
as CFC source software on CD-ROM or directly on the T400. It can be
modified with STEP7, CFC and the supplementary D7-SYS software, to
adapt the technology functions to the customer’s precise requirements.
1.4 Terminology
1.4.1 Important terminology
The ”angular synchronous” application comprises a master drive and one
or several slave drives. The master drive specifies the speed and angular
position of the slaves.
Position actual values are sensed by counting the pulses received from
the connected pulse encoder. The pulse encoder has two signal lines,
which supply pulse series with a 90° offset to one another. The direction
of rotation is determined from the phase position of the two pulse series.
For these pulse series, both the rising as well as the falling edges are
evaluated. Overall, the pulses are quadrupled, which means that the
resolution is also quadrupled. The position- and speed actual values are
retrieved from the quadrupled pulses per software (using the speed
sensing function blocks).
Electrical shaft
Standard software
package
Master slave
Pulses / pulse
encoder
Encoder pulse
number /
synchronizing
pulse number
Overview
SPA440 angular synchronous control - SIMADYN D - Manual 7
6DD1903-0BB0 Edition 05.01
A differentiation must be made between ”Encoder pulse number”
(parameter H011) and ”Synchronizing pulse number” (parameter
H100). ”Encoder pulse number” specifies the number of encoder
pulses per revolution (“Pulse number”). On the other hand, the
”Synchronizing pulse number” refers to the number of pulse edges
between two synchronizing pulses (quadrupled pulses). This means, that
for an encoder with an encoder pulse number H011=1024, the
synchronizing pulse number is H100=4096, if one synchronizing pulse
(e.g. zero pulse) occurs per revolution.
The number of summed pulses since the drive was powered-up, or since
it was reset the last time. The position actual value can be reset, e.g.
when a zero pulse occurs. In this case, the position actual value
corresponds to the number of summed pulses since the last time the
drive was reset.
Rotation of the rotor of a drive with reference to a defined zero position in
angular degrees. The definition of the actual angular value is from 0 to
360°. It can only be determined after a synchronizing pulse has been
received (zero pulse, BERO proximity switch) with the drive running. The
absolute position of the drive is known as a result of the synchronizing
pulse. As the drive moves, additional pulses are received, which are
summed and the actual position changes. The actual angular value is
obtained from the difference of the instantaneous actual position and the
actual position at the synchronizing instant. It therefore corresponds to the
angle that the rotor has moved through since the last synchronizing pulse
was received.
The summed pulses of the incremental encoder represent the actual
position value. The actual travel is calculated from the actual position
value, which is generated due to the fact that the drive is moving, e.g. the
distance that a gantry crane moves when the drives are running (refer to
3.8.1)
The master- and slave drive(s) receive the same speed setpoint. The
speed setpoint can be weighted for the individual drives using a ratio. For
pure synchronous speed control, only the speeds of the drives are
controlled and the angular position is ignored.
The angular synchronous control has a closed-loop speed synchronizing
control as subordinate control loop. In addition to the speed synchronism,
the differential position actual values (i. e. the difference pulses) between
the master- and slave drive(s) are fed to a higher-level closed-loop
angular control. Angular synchronous operation of the drives means that
while the master- and slave drives are operational, the relative angular
position between the master and slaves is controlled so that it remains
constant. The same as the closed-loop synchronous speed control, the
master/slave ratio can be adjusted over a wide range.
In addition to speed- and angular synchronism, the drives can also be
synchronized with one another. This means, that the angular- or positions
of the drives can be synchronized to a specified offset (displacement)
when synchronizing marks are passed (pulse encoder zero pulse or
BERO proximity switch). Synchronization is realized, depending on the
application, at various intervals. The synchronizing mechanism is
explained in more detail in Section 1.5.
Position actual
value
Actual angular
value
Position actual
value
Speed
synchronism
Angular
synchronism
Synchronization
Overview
8SPA440 angular synchronous control - SIMADYN D - Manual
6DD1903-0BB0 Edition 05.01
1.4.2 Functions and features
Ratio between the master and slave which can be set over a wide
range
Both drives can be synchronized with one another, also for a flying
master
An offset (displacement) can be entered depending on the direction of
rotation
Speed controller KP adaption for low speeds
Angular controller KP adaption as a function of the ratio
Communications coupling is monitored and the angular controller
enabled
From V2.1. onwards for linear axis, angular synchronism can also be
implemented using 2 absolute value encoders by comparing the two
position actual values: Delta_Pos = Pos_Master – Pos_Slave.
When using this version, parameters L098 must be set to 0 and L099
to 1. In this case, the peer-to-peer coupling of the T400 cannot be
used.
If the standard version is used (position differential sensing with
incremental encoders), parameter L098 must be set to 1 and L099 to
0 (factory setting).
The control core consists of the following CFC charts: SYNC01, SYNC02
and CONTR. All of the other charts form the interfaces to the drive
converter, communication channels and HMI devices.
Functions in the standard software package Implemented in CFC chart Sampl. time Description
Closed-loop control
- reading-in setpoints
- sensing actual values
- angular controller
- determining the displacement
- synchronizing
- speed controller (optional)
- analog outputs
- analog inputs
AE1
AE2 to AE4
SYNC01, SYNC02
9.6 ms
1.2 ms
1.2 ms
1.2 ms
1.2 ms
1.2 ms
1.2 ms
1.2 ms
9.6 ms
Section 2.2
Section 3
Open-loop control
- jogging
- enable functions for:
angular controller
synchronization
speed controller
communication interfaces
- fault- and alarm handling
- monitoring functions
couplings
CONTR
19.2 ms
19.2 ms
19.2 ms
19.2 ms
when initial.
153.6 ms
19.2 ms
Section 3
Communications
- drive converter (CU), receive PZD
- drive converter (CU), send PZD
- COMBOARD PZD
IF_CU (interface to CU)
IF_COM (interface to CB1)
19.2 ms
1.2 ms
9.6 ms
Section 2.1
Functions
Overview
SPA440 angular synchronous control - SIMADYN D - Manual 9
6DD1903-0BB0 Edition 05.01
- peer-to-peer PZD IF_Peer (interface to peer.) 9.6 ms
Parameter handling
- defining the texts for the
technology parameters
PAR_GER (German)
PAR_ENG (English)
153.6 ms Section 4
Table 1-2 Functi ons and structure at a glance
1.5 A comparison between speed- and angular synchroni sm
1.5.1 Model
The following sketch of the model is intended to provide a better
understanding of the control principles of speed- and angular
synchronism.
Disk, slave drive
P_S
Disk, master drive
P_M
N zero mark
F
Stroboscope S
Offset
Sensor
Fig. 1-1 Model to illus t rate angular synchronis m
The lefthand disk is located on the rotor of the master drive. In the
following it will be called ”Disk, master drive” (P_M). The righthand disk is
connected to the rotor of the slave drive and is called ”Disk, slave drive”
(P_S).
The slave drive is operated from a closed-loop synchronous speed- or
angular synchronous control, where the reference is the master. The
master/slave speed ratio is assumed to be 1:1, i.e. the two disks P_M and
P_S rotate with the same speed, in the same direction. Stroboscope S is
triggered by the rotational motion of the master. It is triggered precisely
then, when cam N is located above sensor F, i.e., if the line on the disk
P_M points vertically upwards (i.e. to ”12”). This is implemented, e.g.
using the zero pulse of a pulse encoder.
NOTE The situation assumes a master/slave speed ratio of 1:1 (this is easier
to depict). The observations also apply for other ratios.
In spite of the rotational movement, as a result of the stroboscope,
anybody looking at the disk, will see a steady-state pattern of lines on the
disks P_M and P_S. The principles behind closed-loop speed- and
angular synchronous controls can be made very clear using the position
of the lines on the two disks, as will be seen in the following.
S_M and S_S
Stroboscope S
Pulse pattern
Overview
10 SPA440 angular synchronous control - SIMADYN D - Manual
6DD1903-0BB0 Edition 05.01
1.5.2 Differences between speed- and angular synchronism
For synchronous speed control, the master- and slave drives receive the
same speed setpoint, while the angular position is ignored. The closed-
loop angular synchronous control has, as subordinate control, a closed-
loop synchronous speed control. In addition to speed synchronism, the
differential position actual values (i. e. the difference pulses) between the
master- and slave drives, are fed to a higher-level closed-loop angular
control.
The differences between the two control types will be clarified using the
following example: There are three disks (refer to Fig. 1-2): one master
disk (P_M) and two slave (P_S) disks. The master drive rotates with a
constant impressed speed. One of the slave drives is controlled from a
closed-loop speed control, and the other slave drive, from a closed-loop
angular synchronous control; both of them are referred to the master
drive. The master/slave ratio is set to 1:1 for both of the slaves, i.e. the
three disks rotate in the same direction and with the same speed.
Master Slave, Slave,
speed synchronism angular synchronism
Status
Instant t
Undisturbed,
steady-state
operation
Instant t+1
Disturbance
quantity
injected into
the slave
Instant t+2
Disturbance
quantity has
been corrected
VxVx
Vx
Fig. 1-2 Difference between speed- and angular synchronism
Three instants in time are shown in Fig. 1-2 : the disks of the master
(P_M) and slave (P_S) at the instants t, t+1 and t+2.
Operation without any disturbance quantity. In this operating status, there
are no differences between closed-loop speed- and angular synchronous
control. However, this particular situation is only of theoretical relevance,
as in practical operation, disturbances are always present.
Instant t:
Instant t+1:
Overview
SPA440 angular synchronous control - SIMADYN D - Manual 11
6DD1903-0BB0 Edition 05.01
A disturbance affects the slave drives. This disturbance initially causes
the slave drive to lead by a specific offset Vx, both for the closed-loop
speed- as well as for the closed-loop angular synchronous control.
In steady-state operation, for closed-loop angular synchronous control,
this offset Vx is corrected and for the pure closed-loop synchronous speed
control, it is not. For the closed-loop angular synchronous control, the
slave disk re-assumes its original position, contrary to the pure closed-
loop synchronous speed control. The angular controller corrects until the
previous pulse difference between the master- and slave drive at instant t
has been re-established.
Note After the disturbance has been corrected, for the closed-loop angular
synchronous control, disk P_S assumes its original position, i.e. relative
angular position. Contrary to this, for the pure closed-loop speed
control, this disturbance is not corrected. This means that the additional
angular offset, caused by the fault, is kept !
1.6 Displacement and synchronization
When two drives are operated with synchronous control, it may be
necessary to also synchronize the drives. This is generally the case after
the drives have been powered-up, as the master- and slave drives are not
in a defined position. Certain applications make it also necessary to
synchronize shorter or longer intervals (also refer to e.g. Section 3.7.1).
The goal is to correct an erroneous differential pulse actual value between
the master and slave. In this case, the sensed actual values are
referenced to absolute synchronizing marks.
When synchronizing, the displacementat the synchronizing instant is
determined and then this displacement to a specified displacement
setpoint is corrected. Synchronization is required, if the relative position
between two drives regarding absolute synchronizing marks must be
detected and corrected.
When a synchronizing mark is passed it is detected per hardware using a
zero pulse from the pulse encoder or using a BERO proximity switch. The
absolute position of the drives with respect to one another is sensed using
one synchronizing signal.
The actual angular values of the two drives is set to defined actual
angular values when the fixed synchronizing marks are passed. Only after
both drives have passed their synchronizing marks, can the actual offset
(actual value) be defined as the number of pulses, which are received
from the master- and slave drives between the synchronizing marks.
Note The number of synchronizing pulses between the master- and slave
drive at the machine part, to which the drive must be synchronized,
must be the same. This standard software package does not take into
account unequal synchronizing pulse rates !
Displacement and synchronization are explained using a rotary
movement. This is essentially the same also for linear motion (refer to
Section 3.7.1)
Instant t+2:
Synchronization
Synchronizing
mark
Displacement
(actual value)
Overview
12 SPA440 angular synchronous control - SIMADYN D - Manual
6DD1903-0BB0 Edition 05.01
Disk, slave drive
PS
Offset
Disk, master drive
PM
Position of the zer
o
mark of the master
drive
Position of the zero
mark of the slave drive
Fig. 1-3 Position displ acement between t he master- and slave dri ves
After both drive synchronizing marks have been passed, the correct
displacement (actual value) can be determined as master/slave pulse
difference. This displacement replaces the previous differential position
actual value in the angular synchronous control (which could have been
possibly incorrect).
The relative (angular) position of the master and slave are entered using
the displacement setpoint so that the master- and slave drives have the
required position to one another. If they are not synchronized, the
displacement setpoint refers to the angular position of the drives at the
instant that the differential position actual value was last set. For example,
at the start of the closed-loop control. If synchronized, the displacement
setpoint refers to the last synchronized displacement actual value. The
displacement is entered as quadrupled pulses (refer to Section 1.3.1).
The disks of the master (P_M) and slave (P_S) at instants t, t+1 and t+2
are illustrated in Fig. 1-4 at three instants in time. They are intended to
clarify the interaction between displacement setpoint and displacement
actual value. These instantaneous states are obtained using a
stroboscope and the model as shown in Fig. 1-1.
Fig. 1-4Synchronizing to an displacement setpoint
The slave drive is operated from the closed-loop angular synchronous
control. V1* is available as displacement setpoint, which should specify
the required relative displacement between the master and slave. The
Displacement
setpoint
Instant t:
Action, status Master Slave
Instant t
Displacement actual value V
1
and displacement
Setpoint V
1
* are present
Instant t+1
Synchronization has taken place, the displacement
actual value has been corrected.
Displacement setpoint V
1
is kept, the change is
corrected.
Instant t+2
New displacement setpoint V
2
* is entered and kept,
actual value V
2
is corrected.
V
1
*
V
1
V
1
*
V
2
*
V
2
Overview
SPA440 angular synchronous control - SIMADYN D - Manual 13
6DD1903-0BB0 Edition 05.01
displacement setpoint V1* refers to the angular position of the drive the
last time that the differential position actual value was set. If
synchronization still has not taken place, this reference instant can extend
back to the past until the angular controller has been enabled after power-
on. However, if synchronization has already taken place, the
displacement setpoint refers to the last synchronized angular position.
However, the actual displacement is V1. This means that synchronization
is necessary (refer to instant t+1). The displacement setpoint V1* is kept
during synchronization.
Synchronizing takes place after the synchronizing marks have been
passed. An undesirable deviation between the actual displacement V1 and
the displacement setpoint V1* occurs. The deviation is corrected with
unchanged displacement setpoint V1*. In the closed-loop angular
synchronous control, the displacement actual value is set directly to the
actual displacement at the synchronizing instant. The angular control then
corrects the set displacement actual value to the constant displacement
setpoint. Synchronization is completed at instant t+1.
A new displacement setpoint V2* is entered and corrected. The setpoint
now refers to the synchronized angular position at instant t+1.
Synchronization is sub-divided into:
Determining the displacement, and
Correcting the deviation, to the differential angular actual value.
The angular synchronous control is a lower-level control to the
synchronizing circuit. When synchronizing, the differential position actual
value is directly set to the actual displacement at the synchronizing instant
(i. e. when at least one synchronizing mark is passed). With a constant
displacement setpoint at the angular synchronous controller, deviations
which may be present at the synchronizing instant, are corrected.
Instant t+1:
Instant t+2:
Summary
Overview
14 SPA440 angular synchronous control - SIMADYN D - Manual
6DD1903-0BB0 Edition 05.01
1.7 Hardware constellation
A typical hardware constellation to implement angular synchronous
control on a T400 technology module is shown in Fig. 1-5.
The incremental encoder for the master drive is connected at connector
X6. For the slave drive, the pulse encoder signals are either received from
connector X8 or via the backplane bus of the basic drive (refer to Section
2.2)
BASEBOARD
(Mast erDrives / DC Mast er)
COMBOARD
(CB1, CBP, ...)
Technology module
CU COM T400
Electr oni cs b ox of t he dri ve
converter
Fig. 1-5: Typical hardware arrangement i n t he el ectronics box of a driv e converter
The basic closed-loop control structure of the angular synchronous
control is shown in Fig. 1-6. The master- and slave drive(s) are connected
to a common speed master setpoint n*. The speed master setpoint n* is
used for pre-control and ensures that the required speed of the slave(s) is
achieved. Further, the speed of each slave drive can be set using
different master/slave ratios. The higher-level angular controller ensures
angular synchronism and corrects steady-state errors in the lower-level
speed control loop (also refer to Fig. 3-1, Overview closed-loop control).
Incremental
encoder
Control structure
Overview
SPA440 angular synchronous control - SIMADYN D - Manual 15
6DD1903-0BB0 Edition 05.01
Master
setpoint
Drive
converter
T400 T400
CU CU
Motor Motor Motor
Drive converter Drive converter
n*
n*
n
Master
n
Slave
Master drive Slave drive 1 If required, add. slave drives
if required,
amplifier
Position and speed of the master
Commands, messa
g
es/si
g
nals
setpoints and actual values
Fig. 1-6 Basic cl osed-loop control struct ure of the angular synchronous cont rol (CU: Basic dri ve module)
The closed-loop control for the slave drive requires the following input
quantities:
Speed master setpoint n* (reference speed for the master and slave)
Speed- and position actual value of the master (from pulse encoder
signals)
Additional commands and signals, setpoints and actual values (e. g.
from the automation)
The closed-loop control structure, illustrated above, is independent of the
synchronization. This is because, when synchronizing, only a correction
signal for the differential position actual value can be generated from the
position of the synchronizing marks (refer to Fig. 3-1).
NOTE Synchronization is only necessary if the machine requires this.
Angular synchronous control can also be operated without
synchronization (without synchronizing pulse/marks).
If angular synchronism has to be established between several drives,
then the drive with the highest output or the longest rise time should be
used as the master drive. If this drive runs unsteadily, then it might make
more sense to select a smoother running drive, i.e. deviating from this
recommendation.
NOTES The pulse encoder of the master drive must be simultaneously
connected to the appropriate inputs of the slave drives. It is not
permissible to overload the pulse encoder of the master drive!
Input quantities
Synchronization
Several slave
drives
Overview
16 SPA440 angular synchronous control - SIMADYN D - Manual
6DD1903-0BB0 Edition 05.01
1.8 Informati on and i nstr uctions when using angular
synchronous control
NOTE Applications
Angular synchronous control means that the machine runs in true
angular synchronism which for instance can be realized using
mechanical linkages and couplings (e. g. shafts or gearboxes).
NOTE Applications, which under certain circumstances, are not
practical:
Applications, which can be implemented using a pure closed-loop
speed control. Closed-loop speed control is preferable to angular
synchronism due to the simpler controller optimization, if the task in
hand permits this. Generally, angular synchronous control does not
further improve the control dynamic performance.
Applications, which require load equalization or closed-loop tension
control.
T400 technology module
SPA440 angular synchronous control - SIMADYN D - Manual 17
6DD1903-0BB0 Edition 05.01
2 T400 technology module
The interfaces between the standard software package and the system
environment are explained in this Section. In addition to the local
interfaces of the T400 technology module (terminals and backplane bus
to the basic drive), the three configured communication interfaces are
also involved.
2.1 Communication interfaces
The approximate structure of the standard software package is shown in
Fig. 2-1. It is sub-divided into:
Communication interfaces: COMBOARD (e. g. PROFIBUS slave),
peer-to-peer and USS slave (USS is only required if the T400 is used
in standalone applications, i.e. is not used with a basic drive. In this
case, only restricted parameterization capability is possible via the
USS-slave interface.)
Interface to the basic drive (process data PZD, parameterization, fault-
and alarm messages)
Analog and digital I/O
Control core (the speed controller can be alternatively located on the
T400 or in the basic drive).
The functions of the control core are explained in detail in Section 0. The
interfaces, via which process- and parameter data are
transferred/exchanged with the T400, are described in the following
Sections.
Local interfaceControl coreCommunications
COMBOARD
(e.g. PROFIBUS)
Peer-to-peer
USS slave
(operation without CU)
Closed-loop angular control
Open-loop control
Closed-loop speed control
Speed/position sensing
Interface CU
Analog I/O
Digital I/O
Fig. 2-1 Structure of the standard soft ware package (CU is the proces sor module of the basi c drive)
T400 technology module
18 SPA440 angular synchronous control - SIMADYN D - Manual
6DD1903-0BB0 Edition 05.01
2.1.1 Interface to the basic drive (CU)
Data, including fast process data and parameters, as well as
faults/alarms, is exchanged between the T400 technology module and the
basic drive converter (abbreviated: ”Basic drive”) using the backplane bus
LBA (Local Bus Adapter) via a parallel DUAL-PORT RAM interface.
The basic drive must be commissioned. For instance, for SIMOVERT
MasterDrives this is realized according to the ”Expert application” mode in
the Operating Instructions[1]. In order to operate the SPA440 standard
software package, the following pre-set basic drive parameters must be
set, refer to Table 2-1 and Table 2-2.
NOTE The T400 supplies the basic drive with the following control words;
however, they are only effective in the drive converter after the basic
drive has been appropriately parameterized.
Variable Word VC (CU2) CUMC DC-Master
Bit Param. Value Param. Value Param. Value
On command (main
contactor)
W1.0 P554 3001 P554 3100 P654 3100
Off2 W1.1 P555..557 3001 P555 3101 P655 3101
Off3 W1.2 P558..560 3001 P558 3102 P658 3102
Setpoint enable W1.6 P564 3001 P564 3106 P664 3106
Fault acknowledgement W1.7 P565-567 3001 P565 3107 P665 3107
Jogging 1 W1.8 P568 3001 P568 3108 P668 3108
Jogging 2 W1.9 P569 3001 P569 3109 P669 3109
External fault 1 W1.15 P575 3001 P575 3115 P675 3115
Speed controller enable W4.9 P585 3004 P585 3409 P685 3409
Speed setpoint
(if H140 = 0)
W2 P443 3002 P443 3002 P644 3002
Suppl. speed setpoint from
the angular controller W5 P433 3005 P224 3005 P634 3005
Pre-control value for the
speed controller W8 P506 3008 P262 3008 P501 3008
Table 2-1 Control word- and setpoint c hannel
Variable Word / VC CUMC DC-Master
Bit Param. Value Param. Value Param. Value
Status word 1 W1 P694.01 968
552
P734.01 0032 U734.01 0032
Speed actual value W2 P694.02 219 P734.02 0091 U734.02 0040
Torque W3 P694.03 7 P734.03 0182 U734.03 0142
Status word 2 W4 P694.04 553 P734.04 0033 U734.04 0033
Drive converter output current W5 P694.05 4 P734.05
U734.05 0116
Table 2-2 Status word- and act ual value channel
Communications
with CU
Basic drive setting
T400 technology module
SPA440 angular synchronous control - SIMADYN D - Manual 19
6DD1903-0BB0 Edition 05.01
2.1.2 Interface to COMBOARD
Communication modules (COMBOARDs; abbreviated: CB) form the
interface between the T400 and a communication’s network. The type of
COMBOARD depends on the network protocol. For example, CB1,CBP
or CBP2 are available for PROFIBUS applications. For the T400, the
COMBOARD is an interface, which can be used to transfer process data
(PZD) and parameters (PKW).
The COMBOARD is parameterized from the basic drive (protocol, baud
rate, telegram length, monitoring,... ). The number of pieces of net
(useful) data can extend up to 10 PZD (each 16 bits).
The parameterization is only made from the T400, if the T400 is used as
standalone solution in the SRT400 with COMBOARD at slot 2.
Parameters H480 - H496 are provided for this special case.
Example Fixed protocol versions are available for PROFIBUS (parameter process
data objects PPO [2, 4]). The required PPO type of the slave is generally
saved in the master. It defines the number of PZD which are transferred.
If, for example, PPO type 4 (6 PZD) is used, PZD7 to PZD10 are
undefined.
COMBOARD communications can be activated or de-activated using
parameter H409.
The first 6 of the process data received from the communications module
are assigned as follows in the factory setting (refer to Chart 410):
PZD Receive words (factory setting) Normalization Display
1 Control word1 (e. g. On) None d460
2 Master setpoint H451 d450
3 Setpoint, displacement setpoint H453 d452
4 Control word2 None d461
5 Setpoint, ratio H455 d454
6 Setpoint, inertia compensation H457 d456
Table 2-3 COMBOARD rec e i ve channels (sampling time 9.6 ms; free PZD, ref er to Chart 410)
The send data are selected via multiplexer (H442 to H449), or using BICO
re-connections. Refer to Chart 440 to normalize the send data.
Telegram reception can be monitored from a time perspective
(watchdog). Two time limits are available. After power-on there is a delay
of H462 ms, and during operation H463 ms for a valid receive telegram.
The error- and alarm messages are transferred to the CU where they are
displayed if the messages were not suppressed (H003 and H004).
Communications
module
T400 in the SRT400
Enable
Receive data
Send data
Monitoring
T400 technology module
20 SPA440 angular synchronous control - SIMADYN D - Manual
6DD1903-0BB0 Edition 05.01
2.1.3 Peer-to-peer interface
The standard software package contains a peer-to-peer interface for fast
data transfer between two modules, e.g. to an additional T400. This
interface has the following factory setting:
Baud rate H363 19200 baud
Monitoring time limit after power-on H360 20 s
Monitoring time limit in operation H361 100 ms
Telegram structure (cannot be
changed)
1 control word
2 floating-point values
Table 2-4 Factory setti ng, peer-to-peer interface
NOTE The peer-to-peer telegram always includes 5 PZD. (PZD2 and PZD3) o
r
(PZD4 and PZD 5) can, alternatively, be used as single words, double
word or floating-point value (refer to Chart 300). For the factory setting,
floating-point values are transferred.
In order to eliminate data transfer disturbances, the interface terminating
resistors must be switched-in (switches S1/3 to S1/6; refer to [4]).
Parameter H309 is used to enable or inhibit peer-to-peer
communications.
Telegram reception can be monitored from a time perspective. There are
two time limits. After power-on, there is a delay of H360 ms and during
operation H361 ms for a valid receive telegram. The error- and alarm
messages are transferred to the CU where they are displayed if the
messages were not suppressed (refer to H003 and H004).
If the position sensing of the 2 absolute value encoders of the T400 are
used, the peer-to-peer interface cannot be used, as absolute value
encoder 2 uses the same terminals!
2.1.4 Diagnostics interface
A PC can be connected to serial interface 1 (RS232). The interface can
be used with the Service-IBS/ TELEMASTER or with the CFC in the test
mode. Thus, values and connections can be changed.
The baud rate 19200 baud.
T400 PC
Terminal Function 9-pin 25-pin
67 RxD 3 3
68 TxD 2 2
69 Ground 5 7
Communications
via peer-to-peer
Caution
Enable
Monitoring
For absolute value
encoders
T400 technology module
SPA440 angular synchronous control - SIMADYN D - Manual 21
6DD1903-0BB0 Edition 05.01
Table 2-5 Terminals of i nterface X01 on T400 (RS232)
2.1.5 USS-slave interface
Serial interface 1 (RS232 / RS485) can be alternatively used for
parameterization. This is intended for the special case, where the T400 is
used in the SRT400. When used in the basic drive, parameterization is
realized via the basic drive. The following settings are required for this
particular case:
Involves Value Factory Significance
H700 1 1 Enable USS slave
H701 9600 Baud rate (OP1S : 9600 or 19200)
H703 0 Slave address at the USS bus
H704 0 0: RS485 (OP1S)
1: RS232 (SIMOVIS)
S1/8 on
T400
ON OFF Changeover from online operation (CFC, basic start-up) on USS.
This only becomes effective after power-down / when the T400 is
reset
Table 2-6 Setti ngs for USS-slave operati on (f actory = f actory s et ting)
It is not possible to simultaneously use USS and CFC online! USS
operation is not possible if the parameterization is incorrect. This means,
that the error can only be resolved if online operation is selected, and then
the error is, for example, resolved using the basic-IBS (basic start-up
tool). OP1S can only be used from version V2.3 onwards.
Caution:
T400 technology module
22 SPA440 angular synchronous control - SIMADYN D - Manual
6DD1903-0BB0 Edition 05.01
2.2 Terminal assignment
Setpoints and control signals can be read-in and actual values and status
signals output via digital and analog signals. For the T400, the
system/plant signals are connected directly at the appropriate terminals,
which are accessible from the front. Fig. 2-2 shows an overview of the
T400 connections. The following description refers to the terminal
assignment.
2.2.1 Digital I/O
The digital inputs and outputs of the T400 Technology Module have a 24
V signal level. The 24 V power supply for the digital outputs must be
externally connected.
The SPA440 control core uses 5 control signals, which, when required
can be entered via digital inputs (refer Table 2-7) .
Terminal Recommended assignment (control signals)
53 Angular controller enable
54 Synchronizing command
55 Reset position
56 Displacement reset
57 Jog enable
Table 2-7 Recommended terminal assi gnment for the digital i nputs, T400 module
The digital outputs are pre-assigned for status messages, refer to Table
2-8.
When the unit is powered-up, all of the outputs are initially open-circuit
(high ohmic state). After the initialization phase, they are driven with the
values which are present. All of the outputs are connected to ground
when the drive converter is powered-down or when a fault develops.
NOTE Logical ”0”: Output open-circuit or connected to ground
Logical ”1”: Output is closed, i. e. the terminal is at the
connected supply voltage of approx. - 2.5 V.
The max. output load is 50 mA, short-circuit proof
Term. Factory setting BICO param. Enable
46 Synchronism reached H631 H637
47 Angular controller at its limit H632 H638
48 Enable status of the ang. controller H633 H639
49 Fault H634 H640
51 Alarm H635 Not relev.
Table 2-8 Terminal assi gnment of the digital outputs of the T400
Supply voltage
Digital outputs
Properties
T400 technology module
SPA440 angular synchronous control - SIMADYN D - Manual 23
6DD1903-0BB0 Edition 05.01
24V
53
54
55
24V
4 digital I/O
bi-directional
24 V DC
(8 mA input
current)
X5.
50
94
5 analog inputs
2 differential inputs
11 bits + sign
± 10 V / 10 k
91
93
92
±10V
95
X9.
90
4 digital
inputs
24 V DC
98
2 analog outputs
±10 V / 10 mA
11 bits + sign
X9.97
11 bits + VZ
Absolute value
encoder-2
or
Serial interface 2
Peer-to-peer or
USS
X7
.72
73
74
75
45 P24 external
61
58
X5.
45
2 digital outputs
24 V DC / 100 mA
Base load 40 mA
for external P24-
supply, which can
also be taken from
the basic drive
51
52
+24V
P24 external
50
99
4 digital inputs
interrupt-capable
24 V DC
(8 mA input
current )
X8.
80
Zero pulse
Pulse encoder
+15V / 100mA
Track
A
Track
B
Track A +
Track B +
81
82
83
X6
.62
63
64
Coarse pulse
66
65
84
Track A -
Track B -
X8
.86
87
88
Absolute value
encoder 1
85 M
X7.
76
77
78
79
68
Serial interface 1
Program download
CFC online
USS / SIMOVIS
RS485, 2-wire
X7
.70
71
69
Tx/Rx+
Tx/Rx-
RxD
TxD
67
Symbolic
hardware
addresses of
the basic
software
package
Ana_In_1
Ana_In_2
Ana_In_3
Ana_In_4
Ana_In_5
Ana_Out_1
Ana_Out_2
BinInput
SSI_1
SSI_2
X02
X01
M
Increm_1
Increm_2
Communi-
cations
module
e.g.: CB1
M
T400
Pulse
encoder
1
Pulse
encoder
2
Zero
pulse
Coarse pulse
Zero pulse
+
-
A
D
±10V +
-
A
D
±10V +
-
A
D
96
±10V +
-
A
D
99
±10V +
-
A
D
46
47
48
49
57
56
59
60
Dual
port
RAM
Dual
port
RAM
TTL
RS232
D
A
D
A
HTL
TTL
RS422
Selected using
switch S2
HTL
M
X6
M
BinInOut
Zero pulse from CU
Tracks A and B from CU
MASTERDRIVES
basic drive
CUx
MASTERDRIVES
basic drive
CUx
Fig. 2-2 Layout of the terminals of t he T400 Technology Module
T400 technology module
24 SPA440 angular synchronous control - SIMADYN D - Manual
6DD1903-0BB0 Edition 05.01
2.2.2 Analog I/O
An output- and input voltage of 5 V corresponds, in the factory setting to
an internal value of 1.0 (100 %). This pre-setting can be changed using
scaling factors and offsets. The following is valid for analog inputs:
Analog value = terminal voltage scaling factor / 5 V - offset
Generally, the analog inputs have a smoothing element connected in
series. The smoothing can be de-activated by setting the filter time
constant to 0.
Term-
inal Recommended
assignment Sampling
time Scaling Offset Filter time
constant Value,
smoothed
90 / 91 Inertia compensation 1.2 ms H210 H211 H222 d223
92 / 93 Ratio 9.6 ms H213 H214 H224 d225
94 / 99 Speed master setpoint 9.6 ms H216 H217 H226 d227
95 / 99 Offset setpoint 9.6 ms H219 H220 H228 d229
Table 2-9 Terminal assi gnment of the analog inputs, T400 module
T400 has two analog outputs which are processed in the fastest sampling
time (1.2 ms). The output quantity is selected per multiplexer or the BICO
connection. During operation, every output can be inhibited by a control
signal (output = 0V).
The outputs can be scaled. For the factory setting, 1.0 is output for 5 V.
The output voltage V is obtained as follows:
V = ( value + offset ) scaling factor 5 V
Terminal Multiplexer BICO input Inhibit input Scaling factor Offset
97 / 99 H618 H620 H621 H161 H160
98 / 99 H619 H622 H623 H163 H162
Table 2-10 Analog output s and assoc i ated parameters
2.2.3 Pulse encoders
Pulse encoders with two tracks, offset through 90 degrees must be
used. If the synchronizing function is used, the zero pulse or a
comparable synchronizing signal (e. g. BERO switch) must be connected.
The T400 module provides 15 V (max. 100 mA) as encoder power
supply.
Encoders with a 15 - 24 V supply voltage, especially: SIEMENS rotary
pulse encoders 1XP8001-1 (for 1LA5 motors, frame sizes 100K to 200L);
Scaling
Analog outputs
Pulse encoder type
Encoder power
supply
Shielding
T400 technology module
SPA440 angular synchronous control - SIMADYN D - Manual 25
6DD1903-0BB0 Edition 05.01
The pulse encoder cable and the cables used to conduct the
synchronizing pulses must be shielded. The cable shield must be
connected at both ends, if possible through clamps, to ground potential
through the lowest impedance connection. This is especially important for
signals from proximity- or switches using contacts.
If the 100 mA of the internal 15 V supply is not adequate, we recommend
the following 15V power supplies:
Type CM62-PS-220 AC/ 15 DC/ 1
220 V AC to 15V DC, load capacity 1 A
Manufacturer, Phoenix
Type FMP 15S 500 ”with fast mounting”
110/220 V AC to 15V DC, load capacity 0.5 A
Manufacturer, Block
When selecting the encoder pulse number, the following issues must be
taken into account:
1. Maximum pulse frequency, 1.5 MHz
2. The ratio should be approx. 1:1 as in this case, the best dynamic
performance is obtained. A ratio in the range from 1:4 to 4:1 is
acceptable (definitions, refer to the following sections).
3. The encoder pulse numbers of the master- and slave drives should be
same; however, criteria 1) and 2) have priority.
The master drive pulse encoders are directly connected to the T400. The
slave drive can use the incremental encoder signals from the basic drive
(CU) from the backplane bus.
The operating mode can be parameterized using parameters H018 and
H019. The following should be set:
Encoder type
Filter parameterization and filter time constant of the digital filter for the
signals of the two pulse tracks / zero pulse track
Source of the encoder tracks
The recommended values for H018 and H019 are specified in the
parameter table in Section 4.2. For additional information, refer to Lit.[5]
block NAVS, connector MOD.
15 V power
supply units
Encoder pulse
numbers
T400 technology module
26 SPA440 angular synchronous control - SIMADYN D - Manual
6DD1903-0BB0 Edition 05.01
Encoder 1 Encoder 2
HTL RS422 HTL TTL HTL ±3V
Track A+ and track A 81 62 62 62 62
Track A- - 86 - - -
Track B+ and track B 82 63 63 63 63
Track B- - 87 - - -
Synchronizing pulse N+ 83 64 64 64 64
Synchronizing pulse N - 66 88 - - -
Coarse pulse inputs 84 65 65 65 65
P15 output for the 15 V encoder power supply 80 80 80 80 80
Ground 85 66 66 66 66
Switch S2.1 ON OFF ON OFF
Switch S2.2 ON OFF ON OFF
Switch S2.3 ON OFF OFF ON
Switch S2.4 ON OFF ON OFF
Switch S2.5 ON OFF OFF ON
Table 2-11 Incremental encoder inputs of the T400: Terminal ass i gnment and swit ch setti ngs for various encoder
types
Coarse pulses are used to suppress undesirable synchronizing signals.
For example, by combining coarse- and fine pulses, disturbances can be
suppressed, or just specific synchronizing pulses evaluated.
5 different cases are investigated. The default setting is for synchronizing
pulses which are used independently of the associated coarse pulses
(mode 1). The coarse pulse mode is selected using H022 and H023.
Coarse pulse
Fine pulses
Evaluation signal
Mode 1
Coarse pulse ignored
XG
XF
Y
Coarse pulse
Fine pulses
Evaluation signal
Mode 2
Y = XG AND XF
only 1st pulse
Coarse pulse
Fine pulses
Evaluation signal
Mode 3
Y = XG AND XF
Coarse pulse
Fine pulses
Evaluation signal
Mode 4
Y = XG AND XF
only 1st pulse
Coarse pulse
Fine pulses
Evaluation signal
Mode 5
Y = XG AND XF
Fig. 2-3 Operating modes for coarse puls e evaluation (the synchronizing pulses correspond to t he fine pulses )
Coarse pulse
evaluation
T400 technology module
SPA440 angular synchronous control - SIMADYN D - Manual 27
6DD1903-0BB0 Edition 05.01
Absolute value encoder
When using the absolute value encoder for differential position sensing,
two absolute encoders with SSI or EnDat interface are connected.
We recommend a multi-turn encoder with e.g. 4096 steps per revolution
and 4096 revolutions which can be differentiated between. The encoder
should be a coded rotary encoder.
(function block type to evaluate an absolute value encoder: AENC)
T400
terminal Significance Drive to be connected
72 Absolute encoder 2, data +
73 Absolute encoder 2, data -
74 Absolute encoder 2, clock +
75 Absolute encoder 2, clock -
Master drive
76 Absolute encoder 1, data +
77 Absolute encoder 1, data -
78 Absolute encoder 1, clock +
79 Absolute encoder 1, clock -
Slave drive with T400
Table 2-12: T400 terminals for absolut e value encoder
Function description
28 SPA440 angular synchronous control - SIMADYN D - Manual
6DD1903-0BB0 Edition 05.01
3 Function description
A control-related block diagram of the standard angular synchronism
software package is illustrated in Fig. 3-1.
The closed-loop angular control is implemented on the technology
module. The closed-loop speed c ontrol is either realized on the
connected drive converter or is internally computed on the T400 (refer to
parameter H140).
The setpoints are either received from the basic drive (CU), COMBOARD,
peer-to-peer or analog input or can be entered as fixed value.
Conversion into pulse
number conversion
Closed-loop angular
control
Displace-
ment
determination
&
synchroniz-
ation
Position difference
Position difference - correction value
Angular controller
P- or PI controller
0
Displacement
act. value
Displacement -
position difference
Slave
Master
Pulse encoder
Control signals for
synchronizing
Actual value
sensing
#
Position act. value, slave and master
Status and control signals
Speed actual
values
Closed-loop speed
control Basic drive CU
To the
current
controller
Ramp-function
generator
Speed actual value, slave
Speed setpoint
Inertia
compensation
Master speed
setpoint
(reference speed)
Ratio
Displacement
setpoint
Speed controller
Fig. 3-1 Overview of t he SPA440 st andard softw are package
Function description
SPA440 angular synchronous control - SIMADYN D - Manual 29
6DD1903-0BB0 Edition 05.01
3.1 Ratio
3.1.1 Speed ratio
The master- and slave drives receive the same speed setpoint, whereby
this setpoint is weighted by the (master/slave) speed ratio ü.
The speed ratio ü between the master and slave drive is defined as
follows:
Speed ratio ü = Speed, master drive
Speed, slave drive
Example:
Speed, master drive: nM = 1710 RPM
Ratio ü = 1.5
Speed, slave drive: nS = nM / ü = 1710 RPM / 1.5 = 1140 RPM
NOTE Contrary to the older versions of the angular synchronous control, the
ratio, as floating-point value, can be practically set without any
limitations.
Parameter Use
H040 Multiplexer selection of the source for the ratio
H041 Source for the supplementary ratio
H043 Fixed value, ratio
d044 Actual ratio
d045 Ratio, numerator
d046 Ratio, denominator
H047 Fixed value, supplementary ratio
H048 Multiplexer selection for the relative ratio
H067 Source for the ratio
H068 Source for the relative ratio
H086 Fixed value, fine ratio, numerator
H087 Fixed value, fine ratio, denominator
H088 Enable fine ratio
H155 Resolution for calculating numerator and denominator
Table 3-1 Parameters to define and display the ratio
Function description
30 SPA440 angular synchronous control - SIMADYN D - Manual
6DD1903-0BB0 Edition 05.01
3.1.2 Fine ratio
The ratio is generally entered as a floating-point value. The integer value
for numerator and denominator DN and NM are automatically calculated
from the selected ratio (refer to Chart 80). The calculated ratio exhibits a
maximum error of 0.0001 with respect to the floating-point input (this can
be influenced using the resolution of the ratio H155).
Nominator and denominator can be separately entered as integer value
(”fine ratio”) (refer to Table 3-1). (For example, this may be required if the
ratio is entered with OP1S, whereby only 3 decimal points are possible).
Ratio: 2/3 (master speed/slave speed)
Pulses, slave/revolution: 1024
Pulses, master/revolution: 2048
Displacement correction should be made
Parameter Value Explanation
H077
H078
5001 Source for fixed value 1st ratio of the displacement
calculation = 1, as the number of pulses between 2
synchronizing operations has been taken into account
(refer to H100, H102, H105, H107)
H086 2 Fine ratio, numerator
H087 3 Fine ratio, denominator
H088 1 Activates the fine ratio
H100 16384 (242048) number of edges between 2 synchronizing
signals of the master (2 revolutions)
H102 12288 (341024) number of edges between 2 synchronizing
signals of the slave (3 revolutions)
H105 10993 Suppresses the first synchronizing pulse from the master
(synchronizing is only enabled after 1.5 revolutions)
H107 10240 Suppresses the first two synchronizing pulses from the
slave (synchronizing is only enabled after 2.5 revolutions)
Example:
Settings:
Function description
SPA440 angular synchronous control - SIMADYN D - Manual 31
6DD1903-0BB0 Edition 05.01
3.2 Setpoints and actual values
3.2.1 Setpoints
Setpoints can be entered from any interface. A connection must be
established from the required source to the appropriate setpoint input
using BICO technology. When making a selection with the multiplexer, a
selection can be made between the following sources. Also refer to
function chart 500 and the tables specified below.
Setpoint Selection Pre-assigned with ...
Displacement H050 Fixed value (by H066)
Ratio H040 Fixed value (by H043)
Relative ratio H048 Fixed value (by H049)
Master speed setpoint H070 Speed actual value, master
Inertia compensation H080 Differentiation of the speed setpoint
Table 3-2 Multipl exer to selec t the set poi nt channel
Selection Normalization Setpoint sources
0 - Fixed value 0.0
1 - Fixed value (a separate fixed value for each setpoint channel)
2 H210 Analog input 1, smoothed
3 H213 Analog input 2, smoothed
4 H216 Analog input 3, smoothed
5 H219 Analog input 4, smoothed
6 H550 Basic drive, word 2
7 H552 Basic drive, word 3
8 H554 Basic drive, word 5
9 H451 COMBOARD word 2
10 H453 COMBOARD word 3
11 H455 COMBOARD word 5
12 H457 COMBOARD word 6
13 - Peer-to-peer, words 2 + 3
14 - Peer-to-peer, words 4 + 5
15 Speed actual value, master (channel 15 is only available to
select the master setpoint)
Table 3-3 Setpoint sources
Function description
32 SPA440 angular synchronous control - SIMADYN D - Manual
6DD1903-0BB0 Edition 05.01
3.2.2 Actual value sensing
The actual speed, position and position difference are sensed by
counting the pulses from the two pulse encoders from the master- and
slave drives.
The speed actual value sensing is calibrated using parameters H010 to
H013. The speed actual value is referred to the configured rated speed,
i.e. the rated speed has a speed actual value of 1.0.
Speed Pulses
Measuring time
Normalization factor
Encoder pulse No.
.
Rated speed
All of the parameters which have to be set for the actual value sensing
are listed in Table 3-4:
Param. Significance Explanation
H010 Encoder pulse number, slave Number of pulses (single) per revolution
H011 Encoder pulse number, master Number of pulses (single) per revolution
H012 Rated speed, slave Speed actual value, which is simulated for 1.0
H013 Rated speed, master Speed actual value, which is simulated for 1.0
d014 Speed actual value, slave Display parameter
d015 Speed actual value, master Display parameter
d016 Position actual value, slave Display parameter
d017 Position actual value, master Display parameter
H018 Slave sensing mode Encoder type (always type 1); filter time; behavior for zero pulse;
source of the tracked signals and zero pulse
H019 Master sensing mode Encoder type (always type 1); filter time; behavior for zero pulse
d020 Error code, slave sensing Refer to Section 4.2
d021 Error code, master sensing Refer to Section 4.2
H022 Coarse pulse evaluation, slave Refer to Section 4.2 and 2.2.3
H023 Coarse pulse evaluation,
master
Refer to Section 4.2 and 2.2.3
Table 3-4 Parameters f or t he speed actual value sensi ng
NOTE The explanations in this Manual only assume encoders with 2 tracks A
and B, offset through 90° and possibly with zero pulse! However, the
information is also valid for encoders with separate forwards- and
reverse tracks.
Rated speed, master (H013) and rated system frequency:
If the master setpoint for the slave is referred to the encoder pulses of
the master (H070 = 15), the rated speed of the master (H013) and the
rated system frequency (or the speed for a drive converter) must be
parameterized so that they are identical.
The rated speeds of the master and slave are required to generate the
master setpoint and to display the speed actual value (d014, d015).
These are used when calculating the pos. and pos. difference.
Principle
Function description
SPA440 angular synchronous control - SIMADYN D - Manual 33
6DD1903-0BB0 Edition 05.01
The master and slave position actual values are required to determine
the displacement. To sense the position actual value, the encoder pulse
edges from the master- and slave drives are counted which have been
received since the last time the system was reset with the drives
operational.
The position actual values are reset as follows:
the control signal reset position (refer to Chart 90)
when enabling the angular controller
using the synchronizing pulse (e. g. zero pulse) at the pulse encoder
input. When the synchronizing marks are passed, the position actual
value is set to 0 and runs-up to four times the encoder pulse number in
one revolution.
The position difference is sensed per software using a 32-bit counter.
This means that a maximum pulse number of
±231 = ± 2147483648 quadrupled pulses is possible.
NOTE In order that the position actual values do not overflow (e. g. from 231
Þ
ÞÞ
Þ -231), a synchronizing pulse must be generated, at the latest after
231 quadrupled pulses, which then resets the position!
Param. Significance Explanation
d017 Position actual value, master Calculated in quadrupled pulses
d016 Position actual value, slave Calculated in quadrupled pulses
H105 Synchronizing threshold, slave A synchronizing pulse is only evaluated if the position
actual value exceeds threshold H105
H107 Synchronizing threshold, master As for H105, however for the master position
d109 Status of the angular controller
enable
At d109=0, the position is reset
H173 Multiplexer for reset position Selects the source for this control signal
H097
H167
Inputs for the reset position
function
BICO inputs
H181 Input, reset slave position
H189 Input, reset master position
Table 3-5 Parameters f or position actual value s ensing
The position difference actual value is defined as the position actual value
through which the slave must be moved, so that the position actual value
of the slave and the position actual value of the master, referred to the
slave, are the same.
The position pulse number of the master drive is re-normalized to the
slave. This means it can be directly compared with the position pulse
number of the slave, i.e. the angle through which the master drive moves,
is represented as a pulse number of the slave. The following algorithm for
the position difference is obtained, taking into account different encoder
Position actual
value sensing
Position difference
sensing
Function description
34 SPA440 angular synchronous control - SIMADYN D - Manual
6DD1903-0BB0 Edition 05.01
pulse numbers for the master- and slave drives. ”Master- and encoder
pulses” refer to the quadrupled position pulses generated by the pulse
encoder. ”Rated pulses” represents the number of position pulses, where
the position actual value should be 1.0.
The quotient of NM / DN corresponds to ratio ü (refer to Section 3.1.2).
A so-called correction pulse number (H093), calculated from the displace-
ment calculation, is added to the position difference for synchronization.
This means that the angular controller is forced to correct the position
difference which is entered. This correction value is zero if
synchronization is not applied or when in the synchronous condition
Par. Significance Explanation
H093 Correction pulse number Number of pulses which, when the displacement is being corrected
are input per sampling time into the angular controller to correct the
displacement
H117 Filter time, position
difference
d124 Differential position actual
value, smoothed
Number of pulse edges (pulses 4) which represents the offset
between the master and slave; this is zero when the system is
synchronized.
Table 3-6 Parameters f or t he di fferential position sensing
The pulse number ratio should be approximately 1:1. An inaccuracy of
several pulses can occur, especially for a pulse number ratio 1. The
highest accuracy is achieved for a pulse number ratio of 1:1, refer to the
example in Fig. 3.5.
Counter saved Counter saved
1 edge
9 edges
123456 78 9
1
Pulses, master
Pulses, slave
Ratio = 1
Determined position difference: 9 edges - 1 edge = 8 edges
Actual position difference: 4.5 pulses - 0.75 pulses = 3.75 pulses
Ratio = 6
Determined position difference: 9 edges - 6 1 edge = 3 edges
Actual position difference: 4.5 pulses - 6 0.75 pulses = 0 pulse
Fig. 3-2 Example of inacc uracies when determining the position difference
Calculation
Correction pulse
number
Inaccuracy
Slave encoder pulse No.
Master encoder pulse No.- Pulse
Slave
Pos. difference =
Rated pulses
Pulse
Master
DN
NM
Function description
SPA440 angular synchronous control - SIMADYN D - Manual 35
6DD1903-0BB0 Edition 05.01
The settings when using absolute value encoders are described in the
next section.
3.2.3 Position actual value sensing with absolute value encoders
Para-
meter Description Factory
setting Connector
L098 Enables position sensing using a pulse
encoder (NAVS).
It is necessary to reset after a value is
changed!
1 ---
L099 Enables position sensing using an
absolute value encoder (AENC).
It is necessary to reset after a value is
changed!
0 ---
Table 3-7: Ac tivati ng t he absolute val ue encoder
The absolute value encoder is set using the following parameters. The
required data can be taken from the manufacturers Operating Instructions
for the particular absolute value encoder.
Absolute
encoder
1
Absolute
encoder
2
Description
L100 L200 Resolution per turn (RPT)
Example: L100 = 4096 (Operating Instructions, absolute
encoder)
L101 L201 Number of turns (NOT)
only for multi-turn encoders. For single-turn encoders =
0.
Example: A multi-turn encoder is used. L101 = 4096
(Operating Instructions, absolute encoder)
L102 L202 Preceding zero bits (PZB)
Number of non-relevant bits at the start of the position
value transfer. This is valid for SSI encoders, with which
the various protocol versions are specified.
Example: L102 = 0 (Operating Instructions, absolute
encoder)
L103 L203 Alarm bit position (ABP)
Position of the interrupt bit within the data transfer
protocol of an SSI encoder. If there is no interrupt bit,
then ABP = 0 applies.
Example: L103 = 0 (Operating Instructions, absolute
encoder)
L104 L204 Clock frequency (MDF)
There are four possible clock frequencies for data
transfer.
0 : Clock frequency = 100 kHz, period = 10 µs
1 : Clock frequency = 500 kHz, period = 2 µs
2 : Clock frequency = 1 MHz, period = 1 µs
3 : Clock frequency = 2 MHz, period = 0.5 µs
Example: L104 = 0 (Operating Instructions, absolute
encoder)
Settings
Function description
36 SPA440 angular synchronous control - SIMADYN D - Manual
6DD1903-0BB0 Edition 05.01
L105 L205 Encoder type (MDT)
Specification of the encoder type. The differentiation
between coded rotary encoders and length measuring
systems has an influence on the velocity output
(parameter c114 or c214).
0 : SSI (coded rotary encoder)
1 : SSI (coded length measuring system)
2 : EnDat (coded rotary encoder)
3 : EnDat (coded length measuring system)
4 : SSI (coded length measuring system with range
correction)
5 : EnDat (coded length measuring system with range
correction)
Example: L105 = 0 (Operating Instructions, absolute
encoder)
L106 L206 Data coding (MDC)
0 : Binary code (permissible for EnDat and SSI)
1 : Gray code (permissible for SSI)
2 : Gray Excess code (permissible for SSI single-turn
encoders)
Example: L106 = 1 (Operating Instructions, absolute
encoder)
L107 L207 Control word (CW)
Bit 0 : Enables the parity monitoring for an SSI encoder.
A check is made for even parity. The parity bit is directly
transferred after the position value, i.e. as 14th bit or as
26th bit.
0 = No parity monitoring (permissible for SSI, EnDat)
1 = Parity monitoring, even parity (permissible for SSI).
Bit 1 : Resets the AENC block and deletes the fault
messages and alarms as well as individual bits of the
fault word.
When using an EnDat encoder, its alarms and alarm bits
are reset.
For SSI encoders, after connecting-up and powering-up
the encoder, it is necessary to reset. A 0 to 1 signal edge
is required to reset.
Example: L107 = 0000h (hexadecimal value, with all bits
= 0, setting, bit 0 from the Operating Instructions,
absolute encoder)
L108 L208 Gearbox ratio (NFG)
Takes into account a gear ratio between the coded rotary
encoder and the drive system. The position values and
the speed are converted over to the drive system.
For a length measuring system, the gear ratio is not
taken into account.
The following applies: Position(drive) = gear ratio *
position(encoder).
Example: L208 = 1.0 (recommended setting)
L109 L209 Normalization, position (NFP)
Normalization basis for the offset input (OFF).
Example: L109 = 1.0 (recommended setting)
L110 L210 Normalization, speed (NFY)
This value influences the output value Y of the speed:
Y = NFY * revolutions/min.
Factory setting: 0.0
Example: L110 = 1.0 (i.e. for 100 revolutions/min, c114 =
100.0 is displayed at the output)
Function description
SPA440 angular synchronous control - SIMADYN D - Manual 37
6DD1903-0BB0 Edition 05.01
L111 L211 Position offset (OFF)
When entering an offsets 0 the encoder zero position is
shifted.
The offset value has the same normalization as the
position outputs.
It is subtracted from the encoder position actual value.
Example:
L111 = .... (must be determined from the position
normalization, refer to Section 4)
L112 L212 Upper speed limit (LU)
Maximum operating speed of the encoder where valid
position values can still be determined. The data is a
value normalized to the speed output (parameter c114
and c214).
Example: L112 = 6000.0 (i.e. 6000 revolutions/min, must,
if required, be adapted)
²³L120 L220 Offset, number of rotations
This is used to enter an offset for the number of
revolutions (parameter c116 or c216). This determines
the scaled position actual value.
Example: L120 = ... (must be determined from the
position normalization, refer to Section 6.2.6)
L121 L221 Scaling, position actual value
This normalizes the scaled position actual value (c125 or
c225).
Example: L121 = ... (must be determined from the
position normalization, refer to Section 4)
L122 L222 Selection, MUL/DIV:
0: The scaling factor L121 (or L221) is multiplied by the
value supplied from AENC.
1: The value supplied from AENC is divided by the
scaling factor L121 (or L221). The scaling factor must be
assigned its inverse value: L121 = 1.0 / L121.
The selection must be made if the scaling factor < 0.1
and otherwise the multiplication would be too inaccurate.
Example: 1: L122 = 0 (the scaling factor L121 = 3.431
determined from the position normalization and can
therefore be multiplied)
Example: 2: L122 = 1 (the original scaling factor L121U =
0.01234 originally determined from the position
normalization, is less than 0.1. The scaling factor to be
entered, L121 = 1.0 / L121U = 81.037.
L123 L223 Offset, position actual value:
The position can only be normalized if a defined point
has the position actual value 0.0. However, if this point is
not at 0.0, then it can be shifted to 0.0 using the offset.
The following applies for AENC 1:
if L122 = 0 : c125 = (c115 + c116 – L120) * L121 + L123.
if L122 = 1 : c125 = (c115 + c116 – L120) / L121 + L123.
The corresponding is true for AENC 2.
Example: H123 = 10000.0 (reference point 1 for the
position normalization is at 10000.0 mm, however, it
must be 0.0 and is therefore shifted via L123 (offset).
Table 3-8: Set tings for absolute val ue encoders (examples onl y for AENC1)
Parameters L100 – L106 (or L200 – L206) are INIT parameters, i.e. after a value has been
changed, a reset is required (e.g. power off/on).
INIT parameters
Function description
38 SPA440 angular synchronous control - SIMADYN D - Manual
6DD1903-0BB0 Edition 05.01
c114 Speed actual value AENC1, slave only display KR4114
c115 Position counter AENC1, slave only display KR4115
c116 Revolution counter AENC1, slave only display KR4116
c118 Error code AENC1, slave (refer below) only display ---
c119 Error word AENC1, slave (refer below) only display ---
c125 Position actual value AENC1, slave
[length units]
only display KR4125
c214 Speed actual value AENC2, master only display KR4214
c215 Position counter AENC2, master only display KR4215
c216 Revolution counter AENC2, master only display KR4216
c218 Error code AENC2, master (refer below) only display ---
c219 Error word AENC2, master (refer below) only display ---
c225 Position actual value AENC2, master
[length units]
only display KR4225
c300 Differential position, master – slave
[length units]
only display KR4300
Table 3-9: Diagnos t i c parameters for absolute val ue encoders
L301 Adaptation, division differential position
(Y1 = c300/L301)
1.0 ---
L302 Adaptation, multiplication differential
position Y2 = Y1 * L302.
This value is saved in connector KR3124
via the filter smoothed with H117 and
transferred to the angular controller.
1.0 ---
Table 3-10: Parameter and c onnectors f or absolute val ue encoders
The position actual values can be represented in length units. A length
unit can be freely selected, e.g. 1 length unit = 1 mm or 1 length unit = 1
m.
Procedure when normalizing the position (as an example, AENC1).
Parameters L111, L120, L121, L122 and L123 must be defined using the
position normalization.
1. Prerequisites:
L111 = 0.0 (Offset zero position).
L120 = 0.0 (Offset, number of revolutions)
L121 = 1.0 (Scaling factor).
L122 = 0 (Multiplication of the scaling factor).
The defined first position should be, e.g. 10000 mm: L123 = 10000.
These values should first be entered.
The angular synchronism may still not be activated (H172=0), as the
values from the absolute value encoder block have still not been
normalized in this phase and therefore are not correct.
2. Move to the first position (in this case 10,000 mm). The first position
is now used as a virtual zero point.
Diagnostics
Normalization of
the position actual
values
Position
normalization
Function description
SPA440 angular synchronous control - SIMADYN D - Manual 39
6DD1903-0BB0 Edition 05.01
Read-off c115 and enter in L111.
Read-off c116 and enter in L120.
A value of 10000 must now be in c125.
3. Traverse to a second position. The distance lDiff to the first position
must be known.
lDiff = 15014.3 mm; i.e. the second position is 25014.3 mm, as the first
position = 10000 mm.
Read-off parameter c125.
Example 1: If c125 = 26023.5, a scaling factor is obtained
L121 = 15014.3 / (26023.5 – 10000) = 0.937
This value is greater than 0.1, which means that L122 can be kept at
0.
Example 2: If c125 = 1234567.8, then this results in a scaling factor
L121 = 15014.3 / (1234567.8 – 10000) = 0.0123
This value is less than 0.1, a correction must be made:
L122 = 1 (it is divided by the scaling factor).
L121 = (1234567.8 – 10000) / 15014.3 = 81.560
4. Check:
Move to the "second position" position and read-off c125 (in this case,
c125 = 25014.3).
Then move to the "first position" and ready-off c125 (in this case,
c125 = 10000).
5. Proceed in the same way for the master drive (AENC2).
6. After position normalization, the synchronous operation function
can be activated. The slave will now always control itself to track the
master position.
If the position is to shift, then this can be corrected via the offset slave
L123 or offset master L223.
Example:
Actual slave position = 12000.0 mm, display c125 = 12000.5 mm.
Then
L123 = L123old + real position – c125 = 10000.0 + 12000.0 – 12000.5
= 9999.5
This means that the display is c125 = 12000.0
The position actual value must be re-normalized if the encoder type is
changed.
When using the plausibility check (function chart 75 of the SPA440
Operating Instructions) the dn enable (H118 and H119) must be set to a
higher value (e.g. 1.2), if the speed actual value source (parameter H192
or H195) was not configured.
A higher value is not required for the dn enable if the speed actual values
from the master and slave from the absolute value encoder blocks are
Function description
40 SPA440 angular synchronous control - SIMADYN D - Manual
6DD1903-0BB0 Edition 05.01
used. In this particular case, the source parameters should be set as
follows:
H192 = 4114 (speed actual value AENC1, observe the normalization
L110!)
H195 = 4214 (speed actual value AENC2, observe the normalization
L210!)
Parameters c118 and c218
This involves erroneous input parameters (configuring error)
communication errors (possibly erroneous encoder specification) or
operating errors.
Bit 0 - 1 Not specified
Bit 2 Timeout
Bit 3 Communications error:
The component of messages (telegrams) with parity/CRC errors is,
on the average, 10% and more.
If the error rate decreases the error bit is automatically reset.
Bit 4 Communication errors:
On the average, a parity or CFC error occurs at each second
position transfer (or more frequently). The error bit is automatically
reset if the error rate decreases.
Bit 5 Not specified
Bit 6 Parity check only possible in the SSI mode
Bit 7 Illegal data coding
Bit 8 Illegal encoder type
Bit 9 Illegal clock cycle frequency
Bit 10 Format error: Contradictory or illegal data
Bit 11 Hardware address illegal or already assigned
Bit 12-15 Not specified
Table 3-11: Error c odes for absolute value encoders
Monitoring parameters c119 and c219
Error status word of an EnDat encoder. The significance of the error bits
can be taken from the manufacturers data sheets.
Fault word = 0000Hex, as long as no fault is present.
Fault word = FFFFHex, as long as an SSI encoder sends a set interrupt
bit.
Faults and alarms can also be sent to the basic unit (CU):
Fault Significance Alarm Binector
F125 Fault AENC2 master A106 B0212
F126 Fault AENC1 slave A107 B0211
Error codes for the
absolute value
encoders
Errors words of the
absolute encoder
Faults, alarms via
CU
Function description
SPA440 angular synchronous control - SIMADYN D - Manual 41
6DD1903-0BB0 Edition 05.01
3.3 Determining the displacement and synchronization
3.3.1 Synchronization
The differential position actual value is determined as a result of the
difference between the pulses which have occurred since the position
difference was reset. This does not indicate the relative position of the
drives to one another! The displacement is determined if the position
of two drives with respect to one another regarding their
synchronizing pulses (e.g. zero pulses) must be identified and
corrected.
Synchronization involves determining and correcting the displacement,
which isn’t clear from the position difference, e.g. after the drives have
been rotated with the drive converter powered-down. For instance, it
makes sense to first synchronize the drives after they have been
powered-up, as they are still not in defined positions at the instant of
power-on. Initial synchronization can be automatically initiated (refer to
H168, H169). After this initial synchronization, additional synchronized
operations are required, if errors occur in the position actual value
sensing of the drives, as a result of disturbances for example, wheel slip
(also refer to Section 3.8.1)
NOTE For angular synchronous control, synchronization and therefore the
availability of synchronizing marks is not a prerequisite (if the
displacement is not specified)!
Synchronization is sub-divided into:
1. Determining the displacement from the position of the synchronizing
marks, whereby a correction value for the differential position actual
value is generated,
2. Correcting the differential position actual value by correcting the
displacement.
In principle, it is adequate to synchronize just once. Continuous
synchronization is mandatory under the following conditions:
The (pulse number) ratio cannot be precisely entered. While fractions
can be precisely set, irrational ratios (e.g. π
ππ
π) cannot be precisely
entered !
Encoder pulses can be lost
Closed-loop position control of a traversing gear (refer to Section3.8.1)
should be executed. As the pulse encoders are mounted on the motor,
they do not emulate the actual position of the crane (position actual
values). For wheel slip, position actual value sensing drive errors
occur, which can only be corrected by synchronizing.
Synchronization, i. e. correcting an displacement which may have been
identified, is realized by activating a synchronizing command (H174). The
synchronizing command must be inhibited for applications which do not
require synchronization.
Task
Enable
Synchronization
sequence
Function description
42 SPA440 angular synchronous control - SIMADYN D - Manual
6DD1903-0BB0 Edition 05.01
The differential position actual value can be corrected using the
calculated displacement, either once within a sampling time, or distributed
over several sampling times.
Directly setting the displacement
The differential position actual value is set directly to a correction value,
which is retrieved from the position of the synchronizing marks, if a
synchronizing command is present, and after at least one synchronizing
pulse has been received.
Thus, the angular controller receives a system deviation, generated from
the displacement calculation, which must be corrected. As there is a time
delay between the instant that the displacement is determined, and the
instant that the displacement is set per software, then the difference
pulses, which are received during this time, must be taken into account.
This is possible when configuring the speed sensing blocks by
appropriately connecting-up the setting inputs and selecting specific
setting modes. The differential position actual value is corrected, so that
no pulses are lost between determining the displacement and correcting
the differential position actual value.
Successively setting the displacement in n sampling times
When the displacement is set once, this can result in large steps in the
differential position actual value at the angular synchronous controller and
can even result in overshoot. Steps such as these can be avoided by
successively setting the displacement. Correction is then step-by-step, i.e.
in n sampling times by the correction pulse number (H093):
n = displacement/H093.
H093 is used to define how many pulses of the defined displacement per
sampling time should be corrected. If the angular controller is inactive,
then the differential position value would assume the displacement
setpoint after n sampling cycles. In order that the displacement correction
isn’t too high, the correction pulse number H093 should be set to
extremely low values (typically =1). The value of the correction pulse
number is subtracted from the differential position actual value in each
sampling time until synchronism is achieved.
NOTE A synchronizing operation, started once is executed until synchronism
is achieved (correction value is 0); this can no longer be interrupted !
3.3.2 Determining the displacement
The number of encoder pulses between two synchronizing pulses, the so-
called synchronizing pulse number, must be entered in order to determine
the displacement actual value (refer to Fig. 3-3). The synchronizing
pulse numbers from the master- and slave drives are entered using
parameters H100 and H102.
If a small deviation occurs between the entered and actual pulse number,
e.g. as a result of an encoder error, then this is corrected by the
synchronization.
Correction pulse
number
Synchronizing
pulse number
Function description
SPA440 angular synchronous control - SIMADYN D - Manual 43
6DD1903-0BB0 Edition 05.01
Synchronizing
pulse, master
Track A
Track B
Pulse
edges
Synchronizing
pulse, slave
Track A
Track B
Pulse
edges
Master drive, pulses, pulse edges
Slave drive, pulses, pulse edges
Synchronizing pulse number, master H100 (in this case: 52)
Synchronizing pulse number, slave H102 (in this case: 104)
Fig. 3-3 Explanation of the sync hronizing pulse number
The displacement actual value can be determined once if the master- and
slave drives pass over the two synchronizing marks at least once. This
can be determined in two ways:
"continuous” (H091=0) displacement determination:
As soon as the displacement actual value has been determined once, i. e.
both synchronizing marks have been passed once, then an displacement
actual value (d094, d095) is calculated each time a synchronizing mark is
passed. The number of synchronizing pulses passed is counted and is
evaluated with the synchronizing pulse numbers (H100 and H102). This
allows the actual displacement to be determined, even if the associated
synchronizing pulse of the other drive is missing. Several revolutions of
the machine parts to be synchronized may be included in the
displacement actual value. For a synchronizing operation, several
synchronizing pulses which are passed are corrected (”revolutions”).
This is the default mode.
”Retrigger” displacement calculation (H091=1):
When synchronizing, correction is only made within a synchronizing
pulse period. This corresponds, for example, for a zero pulse during one
encoder revolution.
The Retrigger” operating mode should be used, if
1. if, for technology reasons it is sufficient or it makes more sense to only
synchronize within one “revolution”, or
2. if the synchronizing pulse number can only be determined with
insufficient accuracy. In this case, both synchronizing pulses are
required in order to determine the precise displacement.
Operating mode
Function description
44 SPA440 angular synchronous control - SIMADYN D - Manual
6DD1903-0BB0 Edition 05.01
In order to determine a new displacement, both synchronizing marks
must be again passed. The number of synchronizing marks which are
passed is not counted. If an displacement of several revolutions is to be
obtained, then this is lost the next time the displacement is calculated.
NOTE In the “Retrigger” mode, the danger exists, that the angular control
loop becomes unstable if the dynamic performance is set too high and
for low-frequency synchronizing pulses. This is because if the two
synchronizing pulses occur one after the another, alternating positive
and negative displacement actual values could be determined, which
the angular controller would attempt to correct
Example: +10° would be obtained from an displacement of -370°
The displacement is determined when the synchronizing pulse edges
are received using the position actual values from the master- and slave
drives. Using the example of the switching cam in Fig. 3-4, this
corresponds to edge a for clockwise direction of rotation or edge b for
counter-clockwise direction of rotation.
The synchronizing circuit has a so-called direction of rotation-
dependent edge evaluation, i.e. synchronization is realized for both
directions of rotations at the same edge of the switching cam and more
precisely, at the front (positive) edge of the synchronizing pulse when
rotating clockwise (in Fig. 3-4, edge a). When rotating counter-clockwise,
synchronization is realized at the falling edge of the synchronizing pulse (i.
e. at edge a).
RL LL
P
rox
i
m
it
y
switch
S
a
b
L
S=switching cams, length L with edges a and b
Fig. 3-4 Determining the displac ement and synchronizing for clockwise- and counter-
clockwis e di rections of rotation
The synchronizing command can be parameterized for either signal level-
or edge control using parameter H092. The synchronizing command must
be 1 for at least the time it takes to determine the displacement. For
signal level control, the displacement is corrected as long as the signal is
active (logical 1); for edge control, correction is only executed once after a
positive (01) edge. The displacement isn’t suddenly corrected, but it is
corrected with a pulse number, which can be set using parameter H093,
at each sampling time.
Resetting the displacement calculation is realized by
using the reset position control signal (refer to Chart 90)
by enabling the angular controller
NOTE The displacement calculation should only be reset briefly when
required, for example, when the drive starts. After this, it is
Edge evaluation
Command type
Resetting
displacement
calculation
Function description
SPA440 angular synchronous control - SIMADYN D - Manual 45
6DD1903-0BB0 Edition 05.01
automatically controlled by the internal monitoring function
The displacement at the instant that at least one synchronizing pulse is
received, is calculated using the function block Displace in the CFC Chart
SYNC02.
NOTES The distance between two synchronizing operations may not exceed
231 quadrupled pulses.
The time between two synchronizing operations must be greater
than 4.8 ms (for safety reasons, 4x sampling time for a basic
sampling time of 1.2 ms)
The synchronizing pulse must be inactive for T > 1.6 ms, i. e. low
(for safety, 2x sampling time for a basic sampling time of 1.2 ms).
Master- and slave drive with pulse encoders mounted on the motor shaft.
The pulse encoders generate two pulse series, displacement through 90°
and zero pulses.
The drives should be synchronized, so that the zero pulses (synchronizing
pulses) are always simultaneously received. The pulse trains would look
like this on a suitable plotter or oscilloscope:
Synchronizing pulse, slave
Synchronizing pulse, master
Track A
Track A
Track B
Track B
Position act. value, slave
Positon act. value, master
Synchronizing
command
(edge-dependent)
Pulses, master
Pulses, slave
Determine offset Correction duration
Fig. 3-5 Calculating the displacement and synchronization
Displacement
calculation
Synchronizing
example
Function description
46 SPA440 angular synchronous control - SIMADYN D - Manual
6DD1903-0BB0 Edition 05.01
3.3.3 Noise-immune synchronization
An adjustable enable threshold is used to suppress multiple edges (switch
bounce) and suppress disturbances on the synchronizing pulse cable.
Erroneous synchronizing pulses, caused by switch bounce or
disturbances, can have, among others, the following results:
inaccuracy in the angular position,
the synchronizing control sense could be reversed, as the rigid
sequence of synchronizing pulses is interrupted (e.g. master-,
slave-, master drive),
the slave drive could run without any closed-loop control.
Thus, the synchronizing pulse cables must be especially carefully
routed and shielded.
The following diagrams should show the behavior at contact-bounce and
the resulting evaluation.
Signals at the T400 terminals
Internal evaluation
Switching
threshold
Fig. 3-6 Si gnal characteris tic w i t h clear pulse edges , e.g. for zero pulses f rom puls e encoders
Synchronizing pulse at the T400 terminal
Internal evaluation
Switching
threshold
Te
> 0,8
Fig. 3-7 Nois y signal c haracterist i cs, e. g. for proximit y switches.
NOTE Disturbances and noise which occur in the sampling time are
automatically suppressed when processed in the sampling time !
Faults which occur between two leading edges of the synchronizing
pulses can be suppressed by entering an enable threshold when a
specific position actual value is reached. The synchronizing pulses are
Function description
SPA440 angular synchronous control - SIMADYN D - Manual 47
6DD1903-0BB0 Edition 05.01
only evaluated again after the position actual value exceeds the threshold
for the master- (H107) or slave drive (H105) (refer to Fig. 3-8).
Calculating the limit value of the enable thresholds (H105, H107):
1.) If the situation is non-critical, the enable threshold can be set to
approx. 95% of the synchronizing pulse numbers (parameters H100
and H102).
If the synchronizing pulses are noisy or there is the danger, that at high
speeds, an enable threshold for the enable minimum duration tmin (refer
to Fig. 3-8) is not maintained, then enable threshold d can be calculated
using the following formula:
dSS tSFTS
T
(min )1 ; d > 0
Whereby:
SS Number of pulse edges between 2 synchronizing pulses
TS Time between 2 synchronizing pulses at the maximum speed
tmin Minimum enable time. Time period where synchronization is
permitted; calculation: e.g.: 4 T1 (4 base sampling time = 4.8
ms)
SF Safety factor (0.05 to 0.1) if the synchronizing pulse comes earlier
due to mechanical inaccuracy.
Limit value d designates the enable threshold for the synchronizing pulse.
It defines, how many edges (pulses 4) must be counted after
synchronization (i. e. how high the position actual value must be) before
the next synchronizing operation is enabled. Limit value d must be
separately calculated for master- and slave drive.
Signal at the T400
terminal
Enable
Switching
threshold
Internal
evaluation
Bounce time ( typical 1 ms .. 10 ms)
Inhibit duration f (threshold)
Enabled
TS
Inhibited
t
syn
tmin
Fig. 3-8: Effect of the enable control (onl y one dri ve is shown)
Function description
48 SPA440 angular synchronous control - SIMADYN D - Manual
6DD1903-0BB0 Edition 05.01
3.3.4 Synchronism achieved
The threshold for the Synchronism reached” signal can be set using
parameter H103. A high signal is output at digital output terminal 46 when
synchronism is reached.
Dynamic fluctuations in the angular difference, which are mirrored in the
actual displacement, are taken into account by correcting the displace-
ment actual value by the differential angular actual value. This corrected
actual displacement is known as the conditioned actual displacement.
Synchronism is reached, if the conditioned actual displacement has been
determined and this is zero or is a selected displacement setpoint
(including a possible synchronizing displacement setpoint which is
dependent on the direction of rotation), i. e.
conditioned actual displacement = displacement setpoint ±
±±
± H103.
Par. Significance Explanation
d056 Actual displacement setpoint Display parameter
H091 Trigger condition, actual displacement
sensing
0 = continuous
1 = retrigger
H092 Edge evaluation, synchronizing command 0 = level controlled (continuous)
1 = edge-controlled (once)
H093 Correction pulse number Select the lowest possible value (preferably 1);
this should be increased, if the displacement, in spite
of low-frequency synchronizing pulses, must be
quickly corrected, or if required, for the “Retrigger”
operating mode
d094 Displacement actual value Display parameter;
also includes, if relevant, a set displacement setpoint
d095 Actual displacement - differential position
act. value
Display parameter
d096 Actual displacement sensing, error
identification:
Bit 0 = Overflow SSslave
Bit 1 = Overflow SSmaster
Bit 2 = Overflow SSslave (H102)
Bit 3 = Overflow SSmaster (H100)
Bit 8 = Overflow displacement- diff. pos.
actual value
Display parameter
SS = Sum of the synchronizing pulses
H100 Synchronizing pulse number, master Pulse edges (pulses *4) of the master drive, which are
received between 2 synchronizing pulses
H102 Synchronizing pulse number, slave Pulse edges (pulses *4) of the slave drive, which are
received between 2 synchronizing pulses
H103 Response threshold, synchronism reached If the actual displacement = displacement setpoint ±
H103, synchronism has been reached.
H105 Enable threshold, slave synchronization To suppress the effects of contact bounce and
suppressing disturbances on the zero pulse cable.
H107 Enable threshold, master synchronization Same as H105
Table 3-12 Parameters f or displacement s ensing/synchronization
Conditioned actual
displacement
Function description
SPA440 angular synchronous control - SIMADYN D - Manual 49
6DD1903-0BB0 Edition 05.01
3.4 Closed-loop angul ar control
Closed-loop angular synchronous control refers to a cascading speed
control loop with a higher-level angular control. The angular controller has
the task to control the relative angular position between the master- and
slave drive to zero or to an displacement setpoint. Angular differences,
which can be obtained due to different load levels and speed fluctuations
are corrected. The implementation of an angular controller is shown in
Function Chart 110 (Appendix).
3.4.1 Enable signals
The angular controller is enabled as a result of the following two
conditions
External enable, angular controller enable (H173, H131,H139), and
Enable threshold of the angular controller (H118)
The angular controller is first enabled. The angular control (d109) is
actually enabled by automatically monitoring the speed actual value of the
slave. An enable threshold defines the margin between the speed
setpoint of the slave and speed actual value of the slave. As soon as the
enable threshold is reached, the angular controller is automatically
switched-in. The displacement calculation is simultaneously reset
together with the position actual values of the slave/master. This avoids
unnecessary overshoot and non-stable rotary motion of the closed-loop
angular synchronous control if there is a considerable speed difference
between the master and slave (e. g: when powering-up or powering-down
a slave while the master is running).
The SPA440 standard software package permits this automatic
monitoring function to also synchronize a stationary slave with a flying
master, and to establish angular synchronism. Before the slave speed
actual value approaches its setpoint, or an enable threshold is reached,
the angular controller becomes inactive. The displacement calculation
and slave/master position are simultaneously reset. Only the speed
control operates during this time. Synchronization is only executed after
the angular controller has been actually enabled.
3.4.2 Displacement setpoint
A shift between the relative angular position of the master- and slave
drives can be set using the displacement setpoint. If synchronization was
not realized, the displacement setpoint refers to the angular drive position
at the instant that the differential position actual value was last set, e.g.
that the angular controller was enabled. If synchronization was realized,
the displacement setpoint refers to the synchronized angular position.
The displacement setpoint is defined as the number of slave-encoder
pulse edges (pulses 4), which the slave drive leads with respect to the
master drive. The limits can be set using parameters H054, H055.
Encoder pulse number, slave = 1000 (H010)
Principle
Principle
Flying
synchronization
Examples:
Function description
50 SPA440 angular synchronous control - SIMADYN D - Manual
6DD1903-0BB0 Edition 05.01
The slave drive should lead the master drive by 0.5 revolutions
displacement setpoint = 0.5 * (1000 * 4) = 2000 pulses
The displacement setpoint is fed to the angular controller via a ramp-
function generator. The ramp-up time should be selected to be as high as
possible (recommended: 5 s to 10 s).
NOTE The displacement setpoint, in the displacement calculation =
retrigger (H091=1) mode, should be a maximum of half of a revolution
of the parts which are to be synchronized (safety-/control margin, refer
to Section 3.3.1)
It is possible to provide an displacement setpoint depending on the
direction of rotation. Generally, independent of the direction of rotation,
the same edge of the synchronizing signal is always used (i. e. the same
encoder position). Various displacements can be added to the speed
setpoint using parameters H062 to H064 depending on the direction of
rotation of the master and slave.
Param. Master speed Slave speed Displacement for positive
value
H062 Positive Positive Slave lags
H063 Negative Positive Slave lags
H064 Positive Negative Slave leads
H065 Negative Negative Slave leads
Table 3-13 Directi on of rotation-dependent synchronizing displac ement setpoint
3.4.3 Angular controller
The angular controller can be operated as P- or PI controller (H110).
Optionally, the P gain can be adapted as a function of ratio ü.
The differential position actual value is smoothed using a PT1 element.
The smoothing time is set using parameter H117. The smoothed
differential position actual value is used as actual value for the angular
controller.
The angular controller provides a supplementary speed setpoint for the
speed controller at its output. For high speed ratios ü, an over-
proportional high supplementary speed setpoint is demanded and at low
speeds, an appropriately below-proportional low supplementary speed
setpoint. This non-linear interdependency is simulated using a polygon
characteristic (refer to Fig. 3-9),
The polygon characteristic sets the P gain, dependent on the ratio. The
characteristic linearly interpolated between transition points A and B.
The P gain should be adapted if the ratio is changed in operation by
factors of approximately > 1.5 or < 0.75.
Direction of
rotation-dependent
synchronous
displacement
Smoothing,
differential position
actual value
Adapting the P gain
Function description
SPA440 angular synchronous control - SIMADYN D - Manual 51
6DD1903-0BB0 Edition 05.01
H116
ue_KP_O
H115
ue_KP
-H115 -H116
H113 KP_UE
H114 KP_UE_O
KP
ü
A
B
No adaption for: H115 = H116 = 0
H113 = H114
Fig. 3-9 A dapting the P gain for the angular cont rol l er
The adaption values are determined empirically using the usual
techniques:
1. Starting from the standard setting (no adaption), the highest ratio is
selected. This is entered for ue_KP, and the control should be
optimized for this value (KP_UE).
2. The lowest ratio is then selected. This is entered at ue_KP_0, and the
control should be optimized for this value (KP_UE_0).
Ratio range: 0.2 to 4.0
H116 = ue_KP_0 = 0.2
H114 = KP_UE_0 = 3
H115 = ue_KP = 4.0
H113 = KP_UE = 5
Table 3-14 lists the parameters used in the angular controller. The
structure is illustrated in Chart 110.
Parameter Significance Explanation
H052 Ramp-up time, displacement setpoint
H053 Ramp-down time, displacement
setpoint
H054 Setpoint limiting, positive Displacement setpoint limiting
H055 Setpoint limiting, negative Displacement setpoint limiting
d056 Actual displacement setpoint Display parameter
H062-H065 Direction of rotation-dependent
displacement setpoint
Synchronizing displacement setpoint (refer to
Table 3-13)
H066 Fixed setpoint Default ‘0’
H110 Angular controller as P controller (0 / 1 = no / yes = = PI / P controller)
H111 Integral action time TN I controller
H112 Limit value, angular controller Positive and negative output limiting (as a %
of the rated speed)
H113 P gain, KP_UE P gain for a high ratio ü > ue_KP
Example:
Parameter list
Function description
52 SPA440 angular synchronous control - SIMADYN D - Manual
6DD1903-0BB0 Edition 05.01
Parameter Significance Explanation
H114 P gain, KP_UE_0 For a low ratio
H115 Limit value, ue_KP From a P gain = KP_UE
H116 Limit value, ue_KP_0 From a P gain = KP_UE_0
H117 Smoothing, differential pos. act. value Smoothing time
H118 Threshold for angular controller enable
and monitoring the slave speed
Reduce for a low speed setpoint (default 0.1)
d120 Output, angular controller Display parameter
d121 System deviation, angular controller Display parameter
d122 I component, angular controller Display parameter
d109 Status of the angular controller enable Also available at digital terminal 48
Table 3-14 Parameters f or t he angul ar controller
3.5 Closed-loop speed contr ol
The closed-loop speed control is either external using the connected
drive converter or internal on the T400 processor module. The ”Closed-
loop speed control external or internal” option is used to select one of
these alternatives, which can be controlled using parameter H140 (H140
= 1 Þ
ÞÞ
Þ internal on the T400).
Parameter H140 = 0 is the default setting, i. e. the closed-loop speed
control is implemented in the drive converter of the slave drive. It receives
a speed setpoint via the communications interface to the basic drive.
The speed controller structure is illustrated in function chart 120.
3.5.1 Ratio
Ratio ü is defined as the ratio between the speed of the master drive
referred to the speed of the slave drive. The actual ratio comprises three
parts (refer to Chart 80):
Ratio (d060)
Relative change of the ratio (d061)
Supplementary ratio (this is added)
A ratio, entered as absolute value is used, for example, to set stretching
factors and compression factors for material webs in a user-friendly
fashion. The absolute ratio is multiplied by a value, which is supplied from
a source which can be selected using H048, H068. If this factor has the
value 1.0, the selected ratio is not changed.
A fixed ratio can be set using parameter H047; the product of d060 with
d061 is added to this value.
External or internal
Supplementary
ratio
Relative change
Function description
SPA440 angular synchronous control - SIMADYN D - Manual 53
6DD1903-0BB0 Edition 05.01
3.5.2 Master speed setpoint
The master speed setpoint is the speed setpoint at which the master
drive should rotate. The speed setpoint for the slave drive is calculated
from the speed master setpoint after smoothing (H072; refer to Chart
115) and after dividing by the ratio. This is fed to the speed control which
is superimposed on an angular control.
The master speed setpoint source is selected using a parameter (H070,
H071). The setpoint smoothing (in ms) is set using parameter H072. This
is recommended, if the master speed actual value is used as master
setpoint (setting, H070 = 15).
NOTE If the angular controller or synchronization is used, then the slave
master setpoint with respect to the master may only be changed using
ratio ü.
The angular difference, which occurs as a result of the ratio, does not
appear as differential position value, so that the angular controller does
not have to work to correct it.
3.5.3 Inertia compensation
System deviations from angular synchronism, which can occur when the
master speed setpoint changes quickly, can be reduced using the ”inertia
compensation” function. The inertia compensation acts as pre-control
value for the speed controller.
The sources for the inertia compensation can be selected using
parameters H080 and H244.
The following drawing clearly illustrates the characteristics of the DT1
element and the influence of the parameters:
t
X(t)
Y(t)
XH083
H082
H082
Fig. 3-10 Step respons e of the DT1 element to illustrate the use of parameters H082
and H083
H082 generally lies in the range between 100 ms and 500 ms. The
magnitude of the differential element output quantity is set using
parameter H083.
Setting:
Function description
54 SPA440 angular synchronous control - SIMADYN D - Manual
6DD1903-0BB0 Edition 05.01
3.5.4 Speed controller Kp adaption
The speed controller is a PI controller. If extremely low speeds (n* < 0.05
nrated) are used, then we recommend a speed setpoint-dependent
adaption of the P gain. This can be implemented using an adjustable
polygon characteristic.
The characteristic is linearly interpolated between the corner points A and
B.
H144
n_KP_O
H143
n_KP
-H143 -H144
H142 KP
H141 KP_O
KP
n
A
B
Fig. 3-11 P gain adaption for the speed controller
The adaption values should be determined using the usual techniques
and using the following experiments:
1. Starting from the standard setting (no adaption), the lowest speed
should be determined, where the already optimized drive, manifests
the required control quality.
2. Then, for n_KP_0, the value n_KP_0 = n_KP/2 is approximately
defined.
3. The speed is entered as under 2. and approached. The closed-loop
control is then optimized with KP_0.
4. The values for KP_0 and n_KP_0 must still, if required, be varied.
3.5.5 Jogging
When jogging is enabled, a jog setpoint is added to the master setpoint.
This means that the slave speed can be changed with respect to the
master speed, and it is possible to take-up or slack-off with respect to the
master. Jogging is not practical in the closed-loop angular control
mode, except for test purposes, as the angular controller acts to oppose
the jog setpoint.
The jog setpoint is set as fixed value using parameter H130. The source
of the jog enable is defined using H171, H208 (refer to Chart 115).
Function description
SPA440 angular synchronous control - SIMADYN D - Manual 55
6DD1903-0BB0 Edition 05.01
3.5.6 Parameters to the speed controller
Param. Significance Explanation
H040 Multiplexer, ratio Only required due to compatibility to V2.01.
H048 Multiplexer, relative ratio Only required due to compatibility to V2.01.
H070 Multiplexer, master speed setpoint Only required due to compatibility to V2.01.
H072 Smoothing, master speed setpoint
H080 Multiplexer, inertia compensation Only required due to compatibility to V2.01.
H130 Jog setpoint Selectable supplementary speed value
H132 Speed setpoint limiting, positive
H133 Speed setpoint limiting, negative
H134 Speed controller output limiting, positive Reference to the speed controller on T400
H135 Speed controller output limiting, negative Reference to the speed controller on T400
H140 Speed controller calculated on T400 0/1 == no/yes
H141 KP: P gain At high speeds
n > n_KP
H142 KP_0: P gain At low speeds
H143 Limit value for KP Speed n_KP, from the P gain = KP
H144 Limit value for KP_0 Speed n_KP_0, up to the P gain = KP_0
H145 Integral action time, speed controller Default 200 ms
d150 Speed controller output Effective at H140=1
d152 Actual basic drive setpoint At H140=1, d152=d150
At H140=0, d152= speed setpoint
d153 KP speed controller
H171 Jog enable Only required due to compatibility to V2.01.
Table 3-15 Parameters t o t he speed controll ers
Function description
56 SPA440 angular synchronous control - SIMADYN D - Manual
6DD1903-0BB0 Edition 05.01
3.6 Open-loop control
In order to control open-loop angular synchronism, in addition to the
setpoint, five control signals have to be handled (the control signals in this
documentation are always written in italics):
displacement reset
reset position
angular controller enable
synchronizing commend
jog enable
The sources of these control signals can be selected per multiplexer
(refer to H170 to H174), or can be connected-up as required using BICO
connection.
Several options are possible to generate control words for the basic drive
or for output via the communications interface:
Fixed values can entered
Control words can be transferred from one interface to another (e. g.
control word 1 from CB to control word 1 CU)
The control word can be selected bit by bit (e. g. by combining a CB
control word with digital inputs)
Also refer to function charts 170 to 570.
3.7 Faults, alarm and status display
3.7.1 General information on faults and alarms
Fault- and alarm statuses contain various monitoring quantities (Table
3-16). The quantities, which are to be transferred to the basic drive as
alarm or fault are selected using the two masks H003 or H004.
If at least one of the bits, enabled per mask, is set to 1, then the
associated digital output is activated (fault, terminal 49; alarm, terminal
51).
In the factory setting, all faults and alarms are de-activated, i. e. H003 =
H004 = 0.
The basic drive is fault tripped if a bit is set in the fault word and it is
appropriately enabled with mask parameter H003 (behaves the same as
OFF2, i. e. the equipment is powered-down and the drive coasts-down).
The fault is saved in the basic drive. As soon as the cause has been
resolved, i.e. the associated bit has become 0, then the fault can be
acknowledged on the basic drive. The fault cannot be acknowledged as
long as a fault exists (=”1”), and is transferred to the basic drive via the
dual port RAM!
Fault
Function description
SPA440 angular synchronous control - SIMADYN D - Manual 57
6DD1903-0BB0 Edition 05.01
When appropriately enabled with mask parameter H004, alarms are
displayed as appropriate numbers on the operator panels. They do not
influence the drive. They cannot be acknowledged, but can be deleted
automatically when the cause has been removed, as soon as the
appropriate bit has become 0.
Bit Monitoring Fault Alarm
0 Time overflow COMBOARD (correct data have not been received) F116 A097
1 Time overflow peer-to-peer (correct data have not been received) F117 A098
2 Speed controller at its limit F118 A099
3 Angular controller at its limit F119 A100
4 External fault F120 A101
5 Master speed not plausible (deviation w. r. t. the master setpoint is too high) F121 A102
6 Slave speed not plausible (deviation w. r. t. the setpoint is too high) F122 A103
7 Error, speed sensing, master (illegal parameterization, refer to d021) F123 A104
8 Error, speed sensing, slave (illegal parameterization, refer to d120) F124 A105
Table 3-16 Monitoring functions and associ at ed faults and al arms
Fault- and alarm messages can be suppressed using selectable masks.
The appropriate monitoring function is evaluated if a bit in the mask is set
to 1.
Example: H003 = 16#0021 (input with CFC)
H003 = 0000 0000 0010 0001 (digital input with OP1S)
Bit 0 = 1 Þ
ÞÞ
Þ time monitoring COMBOARD (watchdog) can initiate a fault
Bit 4 = 1 Þ
ÞÞ
Þ external fault can initiate a fault
We recommend that when commissioning the basic drive, the fault- and
alarm messages of the T400 are de-activated using parameters H003
and H004. When the system is operated, these monitoring functions
should be re-enabled.
3.7.2 Monitoring the communication coupling
The communication monitoring function checks, whether in a definable
period, a valid telegram (and error-free) has been received. If this is not
the case, the associated error bit is set. If valid telegrams are again
received after an error, the error bit is again reset.
In order to make the first commissioning steps easier, so that they are not
hindered by non-relevant fault trips, when the angular synchronous
software package is supplied, the communication errors and alarms are
suppressed per mask (H003, H004).
If communications are used, the associated status bits to initiate a
fault must be re-enabled!
Alarms
Suppressing the
fault/alarm
message
Principle
Note
Power-on time limit
Function description
58 SPA440 angular synchronous control - SIMADYN D - Manual
6DD1903-0BB0 Edition 05.01
After power-up, it must be assumed that it will take several seconds until
the communication channels become operational. Thus, the so-called
power-on time limit is decisive for this particular phase (peer H360;
COMBOARD H462).
As soon as the initialization delay time after power-on has expired, or
already valid telegrams have been received, the cyclic monitoring time for
the telegram error identification becomes effective (watchdog). This is
defined using parameter H361 (peer), H496 (COMBOARD). For this
monitoring time, for CB1 (PROFIBUS), if necessary, the number of nodes
must be taken into account, as the reception of telegrams depends on the
number of nodes (stations) and the send clock cycle.
3.8 Application example
3.8.1 Synchronous operation and synchronizing using as an example a
gantry crane
The following traversing gear of a container crane can be used as a
specific example for the necessity of having synchronization.
Both sides of the crane traversing gear (fixed legs-master drive and
moving legs-slave drive) should operate with position synchronous control
and in synchronism. This prevents the crane running skew in the rails
along the quay.
Synchronization is required in this case, as the pulse encoders are
mounted on the motor and therefore do not directly represent the
movement of the crane (position actual value), but instead, the position of
the wheels (as a result of slip, wheel slip, etc.). If the wheels slip, then
errors can occur in the drive actual value sensing resulting in errors in the
position difference as controlled variable between the two drives.
The task of synchronization is to correct the above mentioned errors. The
position actual values of the two drives are set to defined, actual position
values when fixed synchronizing marks are passed. The difference
between the two drives, after the second drive has passed its mark, is
known as displacement. This displacement is the real position difference
between the two drives, which must be corrected.
As it involves a linear-axis application, synchronization is always realized
when the position value of the master and slave is approx. 0.0. Thus, in
this case, synchronization must always be enabled. This means that the
position-dependent synchronization must be de-activated (H105 = H107 =
0.0).
To realize this, the position actual value is set to zero on both sides when
the synchronizing mark is passed - Bero proximity switch 3. The position
marks are mechanically located and precisely aligned along the crane
track.
Time limit for cyclic
operation
Task description
Necessity
Task
Bero proximity
switch
Function description
SPA440 angular synchronous control - SIMADYN D - Manual 59
6DD1903-0BB0 Edition 05.01
If the crane traversing gear arrives at the synchronizing mark in a skew
position, then at first, the position actual value of side 1 is set to zero, and
then the position actual value of side 2. The position actual values of the
master and slave are therefore corrected.
The pulses, which are sensed between these two events, represent the
displacement. The displacement is added to the position difference (in
small steps), whereby the angular controller identifies a position
difference which is the same as the displacement. The skew position is
resolved after the position difference has been corrected.
3
Side 1
master drive
Side 2
slave drive
Crane traversing
gear in the skew
position
4
121
2
4
3
Fine signal
evaluation
Synchronizing marks
Coarse signal
evaluation
(BERO)
Coarse signal mark
Fine signal mark
Motion direction
Fig. 3-12 Clos ed-l oop synchronous operation of a crane t raversing gear
Displacement
Parameters and connectors
60 SPA440 angular synchronous control - SIMADYN D - Manual
6DD1903-0BB0 Edition 05.01
4 Parameters and connectors
4.1 Parameter handling
Parameters are used to
visualize internal quantities (monitoring parameters)
to change fixed values
to change connections (BICO parameters)
All of the parameters which refer to the function and setting of the
technology module are called technology parameters. The technology
parameters for the closed-loop synchronous control appear in the function
charts with the following symbols:
Offset actual value
d094
Parameter which can be changed Monitoring parameters
Display text
Pre-setting
Parameter number
Rated speed
(1500 RPM)
H123
Fig. 4-1 Representing parameters in the function charts
When changing parameters, it should be observed that there are
initialization parameters, which only become effective after the T400 has
re-started.
In addition to technology parameters, there are so-called basic drive
parameters for the drive converters used. These should be taken,
together with the associated function charts of the documentation of the
drive converter used.
It should be noted, that the parameters are selected by entering a number
(e.g. at the drive converter operator panel). However, for the display, the
most significant position is replaced by a letter, which is intended to
symbolize as to whether it involves a quantity which can be changed or
not changed.
Number “1956“ is entered to select technology parameter “H956“.
Value Significance Parameter display (example)
range can be changed cannot be
changed
0 ... 999 Lower parameter range of the drive
converter
P123 r123
1000 ... 1999 Lower parameter range of the T400 H123 d123
2000 ... 2999 Upper parameter range of the drive
converter
U123 n123
3000 ... 3999 Upper parameter range of the T400 L123 c123
Table 4-1 Parameter number s pecification
Definition
Example
Parameters and connectors
SPA440 angular synchronous control - SIMADYN D - Manual 61
6DD1903-0BB0 Edition 05.01
4.1.1 BICO parameters
Contrary to (value) parameters, BICO parameters define connections.
This means that parameters specify a fixed value at an input, and on the
other hand, BICO parameters select the signal source, which is
connected to the input. This signal source must be defined in the form of
a connector. The BICO parameter appears as a parameter in the symbol
of a BICO input (refer to Fig. 4-2). The source and target of a BICO
connection must have the same data type. This means that digital
quantities (BOOL) cannot, for example, be connected to floating-point
inputs. Thus, for the data type used, there are different symbols in the
function charts for connectors and BICO inputs.
Re-wiring work demands memory space if new connections are to be
generated, and if it involves connections between various time sectors. If
the available memory space can no longer accept connection changes,
then this can be identified when the required re-connection is no longer
possible (OP1S display jumps to the old connector value).
Rest the module (power OFF - ON). Memory space which is not used is
enabled when the module restarts.
Fig. 4-2 Symbols for connectors and BICO inputs
4.1.2 Resources to adapt the software and commissioning
Various resources are available to adapt the standard software package
to particular applications. The resources essentially differ by the
intervention possibilities, which are shown in the following table. The
parameter name, displayed at OP1S, is a maximum of 16 characters
long, and it is possible to toggle between German and English using
initialization parameter H000 (reset is required after a change has been
made!).
Changes not
possible
Remedy:
L430 (2541)
K (200,8)
S.control
word
KR3155 Speed
H681 (0123)
B (120,3)
S.enable
L321 (3155)
KR (330,1)
S.speed actual
value
B0123 Status
bit_XY
PZD_123
K2541
CU_DoppelXY
KK5021 P501 (5021)
KK (60,2)
S.double
word
Connecting:
BOOLean values
16-bit values
32-bit values
Floating-point values
Connector
name
Connector number BICO input name
Number of the
connected connector
(factory setting)
BICO parameter
BICO inputs
Connectors
Chart, sector of the
source for the factory
setting
Data type symbol
Parameters and connectors
62 SPA440 angular synchronous control - SIMADYN D - Manual
6DD1903-0BB0 Edition 05.01
Name Explanation
PMU Input field for all MASTERDRIVES- and DC Master units (with 4-digit display)
OP1S Operator device with numerical keypad and 4-line text display; can be directly connected to
the PMU.
SIMOVIS Start-up- and parameterizing software for the PC (Windows). It provides an oscilloscope
function for MASTERDRIVES MC.
CFC Graphic engineering tool which is used to generate the standard software package. It is
connected to the service interface of the T400.
Prerequisite: STEP 7; D7-SYS
Service-IBS
(Service-
start-up)
Simple start-up- and diagnostics tool for PC (DOS). It can also be used as Telemaster for
remote diagnostics.
Table 4-2 Adaption- and s tart-up tools
Intervention CFC PMU OP1S SIMOVIS Service-IBS
View value Any Parameter Parameter Parameter Any
Change value Any Parameter Parameter Parameter Any
Change connection Any BICO BICO BICO Any
Insert block Yes No No No No
Delete block Yes No No No No
Change execution
sequence
YesNoNoNo No
Change cycle time for
processing
YesNoNoNo No
Duplicate software Yes No No No No
Duplicate the complete
parameter set
No No No Yes (Macro)
Documentation Charts No No Parameter
lists
No
Table 4-3 Adaption- and s tart-up tools
For several parameter types, as a result of the limited resolution at input
or due to conversion operations, rounding-off errors can be expected.
Further, in some cases, more decimal places are offered than can
actually be set.
I/O can be read and changed using CFC online or the simple IBS
program (start-up program) (TELEMASTER) via the T400. This allows
parameters to be influenced.
If a connection between function blocks is required, which is not intended
as BICO connection, then this can be simply realized using the basic IBS
program (TELEMASTER). In this case, the complete path name (CFC
software package) of the source and target are required in the following
form:
CFC-chart name.Block name.Connector name
Changing
connections:
Parameters and connectors
SPA440 angular synchronous control - SIMADYN D - Manual 63
6DD1903-0BB0 Edition 05.01
To realize this, the parameter list, in addition to the parameter description,
contains the complete I/O designation, which can be used as source or
target for a connection.
If a connection is changed using the simple IBS, this is not identified as
a parameter change, and therefore cannot be read-out with SIMOVIS.
This means that it cannot be transferred to any other modules with
angular synchronism!
4.2 Parameter list
The parameters used in the standard angular synchronism software
package are listed on the following pages. The list has the following
format:
Parameter Description Data
Hxyz (Lxyz)
Parameter
designation
Initialization
parameter
Parameter description for a technology parameter which can be set
Parameter with the supplement ini t i al i zation parameter, means when this
parameter is changed, the change only becomes effective after the power
supply voltage has been powered-up again.
Chart name.Block name.Connection
Value, factory setting
type
Min lower limit
Max upper limit
Chart chart, sector
dxxx (cxyz)
Parameter
designation
Parameter description for a visualization parameter (cannot be set).
Letters ”d” or ”c” symbolize the displacement values
1000 (”d”) or 3000 (”c”). This should be taken into account when selecting
the parameter with OP1(S).
Chart name.Block name.Connection
Type
Chart chart, sector
Table 4-4 Listi ng t ype for input- or di splay parameters
Type
abbrev. Type Significance Example, display
on OP1S Value range,
OP1S
BO BOOL Logical quantity 0 0, 1
I INT Integer number; signed -12345 -32768 ...32767
W WORD Integer number; unsigned; hexadecimal and binary
displayed at OP1(S)
2F03hex
0010111100000011
0000 ... FFFF
(0 ... 65535)
DI DINT Double integer number (32 bit); signed 123456789 ±2147483647
R REAL Floating-point number. Input using OP1(S) is
restricted to 6 places before the decimal point and 3
places after the decimal point, whereby the range is
limited to 199999.999.
123456.789 ±2147483.647
SD SDTIME Time in [ms] 200.000 ms 0 ... 2147483.647
ms
N2 INT 16-bit fixed point quantity for drive converter comp.
Value range: -32768 ... 32767 => -200% ... 200%
N4 DINT As for N2; however 32-bit resolution:
16#40000000 = 1073741824 => 100%
Table 4-5 Data types and range for parameterization with OP 1S
Caution:
Parameters and connectors
64 SPA440 angular synchronous control - SIMADYN D - Manual
6DD1903-0BB0 Edition 05.01
Table 4-6 Parameters of the SPA440 standard software package
Parameter Description Data
H000
Language select
Initialization
parameter
0 = German
1 = English
IF_CU.DRIVE.PLA
Value: 0
Type: I
d001
Software Type
Identification of the angular synchronism, standard software package
on T400 = 440
PAR_GER.SW_TYP.Y
Type: I
Chart: 40, 3
d002
Software Version
Actual software version (2.020)
PAR_GER.SWVERS.Y
Type: R
Chart: 40, 3
H003
Error Mask
Fault messages are enabled bitwise
Bit 0 COMBOARD, receive faulted F116
Bit 1 Peer-to-peer, receive faulted F117
Bit 2 Speed controller at its limit F118
Bit 3 Angular controller at its limit F119
Bit 4 External fault (refer to H665) F120
Bit 5 Master speed outside the tolerance (refer to H119) F121
Bit 6 Slave speed outside the tolerance (refer to H118) F122
Bit 7 Error, speed sensing, master (refer to d020) F123
Bit 8 Error, speed sensing, slave (refer to d021) F124
Bits 9 ..15 can be optionally assigned. In the default setting, all of the error
messages are suppressed to facilitate commissioning. If communications are
used, the monitoring function must be re-enabled
CONTR.ErrorMask.I2
Value: 16#0000
Type: W
Chart: 160, 4
H004
Warning Mask
Warnings are enabled bitwise
Bit 0 COMBOARD, data receive faulted A097
Bit 1 Peer-to-peer, data receive faulted A098
Bit 2 Speed controller at its limit A099
Bit 3 Angular controller at its limit A100
Bit 4 External fault (refer to H665) A101
Bit 5 Master speed outside its tolerance (refer to H119) A102
Bit 6 Slave speed outside its tolerance (refer to H118) A103
Bit 7 Error, speed sensing, master (refer to d020) A104
Bit 8 Error, speed sensing, slave (refer to d021) A105
Bits 9 ..15 can be optionally assigned. The default suppresses all warning
messages!
CONTR.WarnMaske.I2
Value: 16#0000
Type: W
Chart: 160, 7
d005
State of Control
Status of the standard angular synchronous control software package
Bit 0 Angular controller enabled
Bit 1 Speed controller on T400 enabled
Bit 2 Synchronism reached
Bit 3 Angular controller at its limit
Bit 4 Speed controller at its limit
Bit 5 Master speed outside its tolerance (refer to H119)
Bit 6 Slave speed outside its tolerance (refer to H118)
Bit 7 Time overflow, basic drive
Bit 8 PROFIBUS, data receive faulted
Bit 9 Peer-to-peer, data receive faulted
Bit 10 Slave has synchronized (10 ms pulse)
Bit 11 Master has synchronized (10 ms pulse)
Bit 12 Position actual value slave > enable threshold
Bit 13 Status displacement determined
Bit 14 Warning active
Bit 15 Fault active
CONTR.Statuswort.QS
Value: 16#0000
Type: W
Chart: 40, 7
d006
Error Bits
Status of the monitored error sources. The assignment corresponds to the
mask in H003
CONTR.Fehlerzustand.QS
Type: W
Chart: 160, 4
Parameters and connectors
SPA440 angular synchronous control - SIMADYN D - Manual 65
6DD1903-0BB0 Edition 05.01
Parameter Description Data
d007
Warning Bits
Status of the monitored warning sources. The assignment corresponds to the
mask in H004
CONTR.Warnzustand.QS
Type: W
Chart: 160, 6
H008
TechBoard ParTyp
Initialization
parameter
H008 is used to define the data type which is used to transfer type R
parameters (real) via the USS slave interface. Generally, real parameters
must be converted into a 32-bit fixed-point value (e. g. for OP1S).
0: Transfer in the fixed-point format
1: Transfer in the floating-point format
IF_CU.DRIVE.TF
Value: 0
Type: BO
Chart: 40,1
H009
T400 = Baseboard
Initialization
parameter
Activates basic drive converter functions if the T400 is used in the SRT400
without a basic drive, and if it should behave with respect to an adjacent T400
just like a basic drive. In this case, all of the parameter numbers are shifted
(offset) by 1000. This means, that H123 becomes P123.
Caution: Only set H009 to 1, if parameterization is still possible, as it is
neither possible to operate in the basic drive nor parameterize via the PMU or
OP1(S)!
0 T400 operates as technology module (in the basic drive or SRT400)
1 T400 behaves just like a basic drive (in the SRT400 as basic drive)
IF_CU.DRIVE.BBF
Value: 0
Type: BO
Chart: 40,1
H010
Pulses Slave
Initialization
parameter
Number of pulses (of a track) per revolution of the incremental encoder at the
slave drive.
SYNCO2.SlavePulse.X
Value: 1024
Type: I
Chart: 60, 4
H011
Pulses Master
Initialization
parameter
Number of pulses (of a track) per revolution of the incremental encoder at the
master drive (=speed sensing 2);
SYNCO2.MasterPulse.X
Value: 1024
Type: I
Chart: 70, 4
H012
Nom. Speed Slave
Nominal (rated) speed of the slave drive in RPM. This is referred to speed
1.0. A sign reversal of the value corresponds to interchanging the pulse
encoder tracks. It is not permissible to use the value 0.
SYNCO2.SlaveNnenn.X
Value: 1500.0
Type: R
Chart: 60, 4
H013
Nom. Speed Master
Nominal (rated) speed of the master drive in RPM. This is referred to speed
1.0. A sign reversal of the value corresponds to interchanging the pulse
encoder tracks. It is not permissible to use the value 0.
It is especially important to enter the right value when using the master
encoder signal as master setpoint for the slave.
SYNCO2.MasterNnenn.X
Value: 1500.0
Type: R
Chart: 70, 4
d014
Speed Slave
Speed actual value of the slave in RPM; (normalization can be selected with
parameter H058)
SYNCO2.n_Slave.Y
Type: R
Chart: 60, 7
d015
Speed Master
Speed actual value of the master in RPM (normalization can be selected with
parameter H059)
SYNCO2.n_Master.Y
Type: R
Chart: 70, 7
d016
Slave Position
Number of quadrupled pulses of the slave drive since the last synchronizing
pulse. For a negative direction of rotation, the value is counted down
(decremented).
SYNCO2.Slave.YP
Type: R
Chart: 60, 7
d017
Master Position
Number of quadrupled pulses of the master drive since the last synchronizing
pulse. For a negative direction of rotation, the value is counted down
(decremented).
SYNCO2.Master.YP
Type: R
Chart: 70, 6
Parameters and connectors
66 SPA440 angular synchronous control - SIMADYN D - Manual
6DD1903-0BB0 Edition 05.01
Parameter Description Data
H018
Mode Slave Speed
Initialization
parameter
Slave speed sensing mode 1
The mode of the speed sensing block for the slave drive is selected using this
parameter; this especially involves the digital filter, the encoder type, the
coarse signal type selection and the direction of rotation dependency of the
synchronizing pulse (zero encoder pulse), as well as the source of the
encoder pulses.
The selected mode is highlighted (in bold letters). Refer to the SIMADYN D
Reference Manual for an additional description as well as the function block
library, function block NAVS, connection MOD.
- - - X: the last hexadecimal position = 2 has the following significance:
Bit 0
0 encoder 1: Two pulse tracks, offset through 90°
1 encoder 2: There is a dedicated track for each direction of rotation
Bit 3..1 digital filter with time constant/limiting frequency 500 ns / 2 MHz
000x no filter
001x 500 ns (encoder 1) 125 ns (encoder 2)
010x 2 µs (encoder 1) illegal (encoder 2)
011x 8 µs (encoder 1) illegal (encoder 2)
100x 16 µs (encoder 1) illegal (encoder 2)
Rest illegal
- - X -: the last but one position = E has the following significance:
Bit 4 setting mode for input S
0 set YP to S V
1 subtract SV from YP
Bit 5 setting mode for input SD
0 set YDP to SVD
1 subtract SV D from YDP
Bit 6 source of the encoder tracks (can only be selected for terminal XE1)
0 T400
1 from the BASEBOARD
Bit 7 source of the zero pulse (can only be selected for terminal XE1)
0 from terminal XE1 of the T400
1 from the BASEBOARD
XX - -: the two highest positions = 7F has the following significance:
Correcting the standstill limit for 127 sampling cycles
SYNCO2.Slave.MOD
Value: 16#7FE2
Type: W
Chart: 60, 2
Parameters and connectors
SPA440 angular synchronous control - SIMADYN D - Manual 67
6DD1903-0BB0 Edition 05.01
Parameter Description Data
H019
Mode MasterSpeed
Initialization
parameter
Operating mode of master speed sensing 2
For this particular software package, the only difference between H018 and
H019 is in the last but one position (refer below)
This parameter is used to set the speed sensing block mode for the master
drive, especially the digital filter, the encoder type, the coarse pulse version
and the source of the encoder pulses.
In the following text, only those operating modes will be described which are
possible when supplied from the factory. Refer to H018 for additional
information.
- - - X: last position = 2 has the following significance:
Digital filter with time constant/limiting frequency 500 ns / 2 MHz
Encoder type : pulse encoder with 2 tracks offset through 90 degrees
- - X -: last but one position = 0 has the following significance:
Zero- and incremental pulses from the terminal, encoder 2 of the T400
Setting mode S=0 : set YP to SV
Setting mode SD=0: set YDP to SVD (contrary to
parameter H018, however this is not relevant for this particular software
package, as YDP is not accessed by the master speed sensing block.)
XX - -: the two highest position = 7F have the following significance:
Correcting the standstill limit at 127 sampling cycles
SYNCO2.Master.MOD
Value: 16#7F02
Type: W
Chart: 70, 4
d020
Error Code Slave
Error code of the slave drive speed sensing. In order to use angular
synchronism, the value must be 0. If this value is not 0, an error has been
made when parameterizing the speed sensing.
The cases designated with *) can occur after the software package has been
modified in-line with application specific requirements.
Significance of the error bits
0 Parameters which may not be 0: H010, H012, H044
1 Sampling time > 20 ms *)
2 H018, illegal filter parameterization
3 Slave without master *)
4 Master and slave in various sampling times *)
5 Several masters use the same encoder *)
6 Master and slave use the same encoder *)
7 Pulse counter overflow
SYNCO2.Slave.YFC
Type: W
Chart: 60, 7
d021
ErrorCode Master
Error code of the master drive speed sensing. In order to use angular
synchronism, the value must be 0. If this value is not 0, an error has been
made when parameterizing the speed sensing.
The cases designated with *) can occur after the software package has been
modified in-line with application specific requirements.
Significance of the error bits
0 Parameters which may not be 0: H011, H013, H044
1 Sampling time > 20 ms *)
2 H018, illegal filter parameterization
3 Slave without master *)
4 Master and slave in various sampling times *)
5 Several masters use the same encoder *)
6 Master and slave use the same encoder *)
7 Pulse counter overflow
SYNCO2.Master.YFC
Type: W
Chart: 70, 6
Parameters and connectors
68 SPA440 angular synchronous control - SIMADYN D - Manual
6DD1903-0BB0 Edition 05.01
Parameter Description Data
H022
CoarsePulseSlave
Sets the synchronizing type of the slave speed sensing. The value has
several functions, however, only the coarse pulse evaluation selection can be
modified in this application (refer to Fig. 2-3 ).
Bit(s) Value Significance
0 0 Synchronization using the zero pulse
1 0 For the zero pulse, the pos. is set to the setting value 0.0
3...2 00 Not evaluated
6...4 XYZ Coarse pulse version number (refer to Doc. T400)
000 Example: No. 0 ( coarse pulse is not evaluated; as for
mode 1)
011 Example: No. 3 (mode 3; the zero pulse is always
evaluated if the coarse pulse has a high signal level)
15...7 any Not evaluated
SYNCO2.Slave.SYM
Value: 0
Type: W
Chart: 60, 3
H023
CoarsePulseMaster
Sets the synchronizing type of the master speed sensing. The value has
several functions, however, only the coarse pulse evaluation selection can be
modified in this application.
Significance, refer to H022.
SYNCO2.Master.SYM
Value: 0
Type: W
Chart: 70, 3
H024
COMBOARD ParTyp
Initialization
parameter
H024 is used to define the data type parameter type R (real = floating point)
which is transferred via the COMBOARD interface.
0: Transfer in the fixed-point format
1: Transfer in the floating-point format
IF_CU.DRIVE.CF1
Value: 0
Type: BO
Chart: 40, 1
d025
State dig. Inputs
Digital inputs 1 .. 8 and their inverse values, combined as a word:
0 BinInput 1 (terminal 53)
1 BinInput 2 (terminal 54)
2 BinInput 3 (terminal 55)
3 BinInput 4 (terminal 56)
4 BinInput 5 (terminal 57)
5 BinInput 6 (terminal 58)
6 BinInput 7 (terminal 59)
7 BinInput 8 (terminal 60)
8 BinInput 1 inverse (terminal 53)
9 BinInput 2 inverse (terminal 54)
10 BinInput 3 inverse (terminal 55)
11 BinInput 4 inverse (terminal 56)
12 BinInput 5 inverse (terminal 57)
13 BinInput 6 inverse (terminal 58)
14 BinInput 7 inverse (terminal 59)
15 BinInput 8 inverse (terminal 60)
T400_EA.Invert_Bin.QS
Type: W
Chart: 52, 7
d026
Control Word1 CU
Control word 1; is sent to the basic drive converter.
Bit Significance
0 On (main contactor) 1=ON
1 /OFF2 (voltage-free) 0=OFF
2 /OFF3 (fast stop) 0=OFF
3 Pulse enable
4 Ramp-function generator enable
5 Start ramp-function generator
6 Setpoint enable 1=enable
7 Acknowledge fault 1=acknowledge
8 Jogging 1
9 Jogging 2
10 Control requested
11 Enable positive direction of rotation
12 Enable negative direction of rotation
13 Motorized potentiometer, raise
14 Motorized potentiometer, lower
15 Fault, external 1 0 = fault
IF_CU.Steuerwort1.QS
Type W
Chart: 220, 4
Parameters and connectors
SPA440 angular synchronous control - SIMADYN D - Manual 69
6DD1903-0BB0 Edition 05.01
Parameter Description Data
d027
Control Word2 CU
2nd control word for the basic drive. Only bit 9 (enabling the speed controller
in the basic drive) is used.
IF_CU.Steuerwort2.QS
Type: W
Chart: 220, 8
d028 ... d031
Display R1 ...
Display R4
Four display parameters, type REAL (floating point) to display connectors
without their own display parameter. The source is selected using parameters
L028 ... L031.
Free_FBs.Display_R.Y1 ... Free_FBs.Display_R.Y4
Type: R
Chart: 470, 8
d032 ... d035
Display B1 ...
Display B4
Four display parameters, type BOOL to display connectors without their own
display parameter. The source is selected using parameters L032 ... L032.
Free_FBs.Display_BO.Q1 ... Free_FBs.Display_BO.Q4
Type: BO
Chart: 470, 8
d036, d037
Display I1 ...
Display I2
Two display parameters, type integer (16-bit) to display connectors without
their own display parameter. The source is selected using parameters L036
and L037.
Free_FBs.Display_I.Y1, Free_FBs.Display_I.Y2
Type: BO
Chart: 470, 8
d038, d039
Display W1 ...
Display W2
Two display parameters, type word (16-bit) to display connectors without their
own display parameter. The source is selected using parameters L038 and
L039.
Free_FBs.Display_W.Y1, Free_FBs.Display_W.Y2
Type: BO
Chart: 470, 8
H040
MUX ratio
Multiplexer selection of the source for the ratio:
0 Fixed value 0.0
1 Fixed value, parameter H043
2 Analog value 1, smoothed
3 Analog value 2, smoothed
4 Analog value 3, smoothed
5 Analog value 4, smoothed
6 Actual value1 from the basic drive
7 Actual value2 from the basic drive
8 Actual value3 from the basic drive
9 Setpoint1 from the COMBOARD
10 Setpoint2 from the COMBOARD
11 Setpoint3 from the COMBOARD
12 Setpoint4 from the COMBOARD
13 Peer Float1
14 Peer Float2
MUXsoll.MUX_Uebersetzung.XCS
Value: 1
Min: 0
Max: 14
Type: I
Chart: 500, 1
H041
S.Addition.Ratio
Source for the supplementary ratio.
SYNCO1.UE4PRO.X2
Value: 3047
Type: I
Chart: 80,2
H043
Constant Ratio
Fixed value for the ratio.
SYNCO1.CONST_UEB.X1
Value: 1.0
Type: R
Chart: 30,3
d044
Ratio
Actual ratio calculated from the fixed value and the relevant ratio
Actual ratio = (d060 * d061) + source (H041)
SYNCO1.UE4PRO.Y
Type: R
Chart: 80, 4
d045
Ratio Numerator
Actual value of the ratio numerator
SYNCO1.PNRAT.NM
Type: DI
Chart: 80, 5
d046
RatioDenominator
Actual value of the ratio denominator
SYNCO1.PNRAT.DN
Type: DI
Chart: 80, 5
H047
Addition. Ratio
Additional ratio: Summand to enter the ratio as follows:
ratio * rel.ratio + additional ratio
SYNCO1.CONST_UEB.X3
Value: 0.0
Type: R
Chart: 80, 1
Parameters and connectors
70 SPA440 angular synchronous control - SIMADYN D - Manual
6DD1903-0BB0 Edition 05.01
Parameter Description Data
H048
MUXrelativeRatio
Multiplexer selection of the source for the relative ratio
0 Fixed value 0.0
1 Fixed value, parameter H049
2 Analog value 1, smoothed
3 Analog value 2, smoothed
4 Analog value 3, smoothed
5 Analog value 4, smoothed
6 Actual value1 from the basic drive
7 Actual value2 from the basic drive
8 Actual value3 from the basic drive
9 Setpoint1 from the COMBOARD
10 Setpoint2 from the COMBOARD
11 Setpoint3 from the COMBOARD
12 Setpoint4 from the COMBOARD
13 Peer Float1
14 Peer Float2
MUXsoll.MUX_RelUebersetz.XCS
Value: 1
Min: 0
Max: 14
Type: I
Chart: 500, 4
H049
Rel. Ratio Const
Fixed value for a factor to relatively change the ratio
SYNCO1.CONST_UEB.X2
Value: 1.0
Type: R
Chart: 30, 3
H050
MUXdisplace.Setp
Multiplexer selection of the source for the displacement setpoint
0 Fixed value 0.0
1 Fixed value, parameter H066
2 Analog value 1, smoothed
3 Analog value 2, smoothed
4 Analog value 3, smoothed
5 Analog value 4, smoothed
6 Actual value1 from the basic drive
7 Actual value2 from the basic drive
8 Actual value3 from the basic drive
9 Setpoint1 from the COMBOARD
10 Setpoint2 from the COMBOARD
11 Setpoint3 from the COMBOARD
12 Setpoint4 from the COMBOARD
13 Peer Float1
14 Peer Float2
MUXsoll.MUX_Versatz.XCS
Value: 1
Min: 0
Max: 14
Type: I
Chart: 500, 1
H051
S.Displacem.Setp
Source for the displacement setpoint (angular controller).
SYNCO2.Q_Versatz.X
Value: 3050
Type: I
Chart: 110, 1
H052
RmpUp Displacem
H053
RampDownDisplace
Time, in which the displacement setpoint changes by 2048 quadrupled pulses
(2048 quadrupled pulses correspond to the maximum or minimum
displacement setpoint, i.e. half a revolution, also refer to H054 and H055).
SYNCO2.HLG_Versatz.TU
SYNCO2.HLG_Versatz.TD
Value: 2.5 ms
Min: 0 ms
Type: SD
Chart: 110, 2
H054
Max.Displacement
Upper displacement setpoint limit (pulses*4)
When the displacement calculation is in the retrigger mode (i. e. H091=1), the
maximum displacement setpoint should not exceed the ”half pulse number
(*4) value per revolution (i. e. half a revolution) of the parts to be
synchronized” (control margin)!
SYNCO2.HLG_Versatz.LU
Value: 2048
Min: 0
Type: R
Chart: 110, 3
H055
Min.Displacement
Lower displacement setpoint limit (pulses*4)
When the displacement calculation is in the retrigger mode (i. e. H091=1), the
maximum displacement setpoint should not exceed the ”half pulse number
(*4) value per revolution (i. e. half a revolution) of the parts to be
synchronized” (control margin).
SYNCO2.HLG_Versatz.LL
Value: -2048
Min: 0
Type: R
Chart: 110, 3
d056
DisplacementSetp
Displacement setpoint (pulses*4) at the ramp-function generator output
(angular controller)
SYNCO2.HLG_Versatz.Y
Type: R
Chart: 110, 4
H057
S.set Displ.Ramp
Source of the control signal to set the displacement ramp-function generator.
SYNCO2.HLG_Versatz.S
Value: 0175
Type: I
Chart: 110, 1
Parameters and connectors
SPA440 angular synchronous control - SIMADYN D - Manual 71
6DD1903-0BB0 Edition 05.01
Parameter Description Data
H058
Q.Norm. n_Slave
Source for the normalization factor to display the slave drive speed (d014). In
the factory setting, this is linked to the rated slave drive speed.
SYNCO2.n_Slave.X1
Value: 3012
Type: I
Chart: 60, 7
H059
Q.Norm. n_Master
Source for the normalization factor to display the master drive speed (d015).
In the factory setting, this is linked to the rated master drive speed.
SYNCO2.n_Master.X1
Value: 3013
Type: I
Chart: 60, 6
d060
Ratio 1
Actual ratio before being multiplied by the relative ratio.
SYNCO1.CONST_UEB.Y4
Type: R
Chart: 80, 2
d061
Ratio relative
Actual value for the relative ratio.
SYNCO1.CONST_UEB.Y5
Type: R
Chart: 80, 2
H062 - H065
DisplaceMas+Sla+
f(n)
Direction of rotation-dependent displacement of the synchronization.
This is only necessary, if different displacement values are required as a
function of the directions of rotation of the master and slave.
H062 Displacement setpoint for: n_Master > 0; n_Slave > 0
H063 Displacement setpoint for: n_Master < 0; n_Slave > 0
H064 Displacement setpoint for: n_Master > 0; n_Slave < 0
H065 Displacement setpoint for: n_Master < 0; n_Slave < 0
The displacement setpoints correspond to the number of pulses*4
SYNC01.DREFS1.X1 and .X2 SYNC01.DREFS2.X1 and .X2
Value: 0.0
Type: R
Chart: 100, 1
H066
Const.Displacem.
Fixed displacement setpoint (pulses*4)
SYNCO1.FixVersatz.X
Value: 0.0
Type: R
Chart: 30, 3
H067
S.Ratio
Source for the speed ratio before being multiplied by the relative ratio.
SYNCO1.CONST_UEB.X4
Value: 3040
Type: I
Chart: 80, 1
H068
S.relative Ratio
Source for the relative ratio before being multiplied by the ratio.
SYNCO1.CONST_UEB.X5
Type: I
Chart: 80, 1
H070
MUX Refer.speed
Multiplexer selection of the source for the master speed setpoint
0 Fixed value 0.0
1 Fixed value, parameter H073
2 Analog value 1, smoothed
3 Analog value 2, smoothed
4 Analog value 3, smoothed
5 Analog value 4, smoothed
6 Actual value1 from the basic drive
7 Actual value2 from the basic drive
8 Actual value3 from the basic drive
9 Setpoint1 from the COMBOARD
10 Setpoint2 from the COMBOARD
11 Setpoint3 from the COMBOARD
12 Setpoint4 from the COMBOARD
13 Peer Float1
14 Peer Float2
15 Speed, master
MUXsoll.MUX_Leitsollwert.XCS
Value: 15
Min: 0
Max: 15
Type: I
Chart: 500, 7
H071
S.ReferenceSpeed
Source for the master setpoint (speed setpoint for the master and slave)
SYNCO1.Leitsollwert.X
Value: 3070
Type: I
Chart: 115, 1
H072
Tfilt Ref. Speed
Smoothing time (PT1 element) for the master speed setpoint
SYNCO1.SREFSM.T
Value: 10 ms
Type: SD
Chart: 115, 2
H073
Const. Ref.Speed
Fixed value, master speed setpoint
SYNCO1.fixLeitsoll.X
Value: 0.0
Type: R
Chart: 30,3
d074
Refer.Speed filt
Actual value of the smoothed master speed setpoint
SYNCO1.SREFSM.Y
Type: R
Chart: 115, 3
d076
Reference Speed
Actual value of the master speed setpoint (before smoothing)
SYNCO1.Leitsollwert.Y
Type: R
Chart: 115, 2
Parameters and connectors
72 SPA440 angular synchronous control - SIMADYN D - Manual
6DD1903-0BB0 Edition 05.01
Parameter Description Data
H077
S.DisplaceNumer.
Source for the value of the ratio numerator for the displacement calculation.
SYNCO2.Displace.NM
Value: 5088
Type: I
Chart: 100, 4
H078
S.DisplaceDenom
Source for the value of the ratio denominator for the displacement
calculation.
SYNCO2.Displace.DN
Value: 5089
Type: I
Chart: 100, 4
H079
S.DT1 Acc. Comp.
Source for the input quantity of the high-pass filter to generate inertia
compensation.
SYNCO1.DT1_BAusgleich.X
Value: 3129
Type: I
Chart: 120, 6
H080
MUX Accel.Comp.
Selects the source for the inertia compensation (pre-control value for the
speed controller):
0 Fixed value 0.0
1 From dn/dt generated value
2 Analog value 1, smoothed
3 Analog value 2, smoothed
4 Analog value 3, smoothed
5 Analog value 4, smoothed
6 Actual value1 from the basic drive
7 Actual value2 from the basic drive
8 Actual value3 from the basic drive
9 Setpoint1 from the COMBOARD
10 Setpoint2 from the COMBOARD
11 Setpoint3 from the COMBOARD
12 Setpoint4 from the COMBOARD
13 Peer Float1
14 Peer Float2
MUXsoll.MUX_BAusgleich.XCS
Value: 1
Min: 0
Max: 14
Type: I
Chart: 500, 5
H082
Tfilt Acc.Comp.
Smoothing time constant of the derivative action element (DT1 element) to
generate the inertia compensation value; higher time values signify a lower
influence.
SYNCO1.DT1_BAusgleich.T1
Value: 100ms
Type: SD
Chart: 120, 7
H083
Tdif Accel.Comp.
Differentiating time constant of the DT1 element to generate the inertia
compensation value; higher values signify a higher influence.
SYNCO1.DT1_BAusgleich.TD
Value: 4 ms
Type: R
Chart: 120, 7
d085
DT1 (SpeedSetp.)
Actual value of the inertia compensation.
SYNCO1.DT1_BAusgleich.Y
Type: R
Chart: 120, 7
H086
Fine Ratio Numer
This is used to directly enter numerator and denominator of the ratio.
Constant.DINT_Const.X1
Value: 1000
Type: DI
Chart: 80, 3
H087
Fine Ratio Denom
Refer to H086
Constant.DINT_Const.X2
Value: 1000
Type: I
Chart: 80, 3
H088
enable FineRatio
The source of the ratio is changed-over using H088
0 The numerator and denominator are automatically calculated
1 Fine setting (H086, H087)
SYNCO1.FEINPZ.I1
Value: 0
Type: BO
Chart: 80, 6
H090
Pos.Correct Mode
H090 is used to define whether the position can always be corrected or only if
there is an active synchronizing command. The position correction is required
for a position reset and for the displacement correction. For H090=0, the
edge-controlled correction mode only works, if after passing the
synchronizing marks, the synchronizing command = 1.
0 Displacement correction or reset only as long as the synchronizing
command=1
1 Displacement correction is always possible
CONTR.LagekorrektLogik.I2
Value: 1
Type: BO
Chart: 60, 4
Parameters and connectors
SPA440 angular synchronous control - SIMADYN D - Manual 73
6DD1903-0BB0 Edition 05.01
Parameter Description Data
H091
SynchrRetrigMode
Selects whether synchronization (determining the displacement and
displacement correction) should be realized in the ”retrigger” mode or
”continuously”.
0 = Continuously
The displacement is sensed over several revolutions and corrected
(parameters H100 and H102 have to be set!)
1 = Retrigger
The displacement is only determined over 1 revolution and corrected.
Only
the actual position since the last synchronizing operation is evaluated.
(this may be recommendable for negative ratios and a
negative displacement setpoint)
SYNCO2.Displace.RTM
Value: 0
Type: BO
Chart: 100, 6
H092
Synchr.Edge Mode
Evaluation modes of the ”synchronizing command” (i. e. displacement
correction). The synchronizing command must be 1 while synchronizing.
H092 is used to define whether the displacement correction should be made
continuously or only once.
0 = Continuous (signal level-controlled)
1 = Once (edge controlled)
SYNCO2.Displace.ENM
Value: 0
Type: BO
Chart: 100, 6
H093
CorrectionPulses
Number of quadrupled pulses, which are fed to the angular controller to
correct the displacement for displacement correction per sampling time.
This generates a position difference, which the angular controller corrects.
A lower value (e.g. 1) is recommended in order to achieve low-oscillation
synchronization.
This value must be increased (e. g. to 10) if, for very low-frequency
synchronizing pulses (e. g. as a result of a high ratio or small speed), fast
synchronization is required
SYNCO2.Displace.CPN
Value: 1
Type: R
Chart: 100, 7
d094
act.Displacement
Displacement actual value in quadrupled slave pulses since the displacement
determination was enabled and after both synchronizing pulses have been
received. (Synchronizing command is not required.) It is the actual angular
difference between the synchronizing pulses.
It is only re-calculated at the instant in time that one (H91=0; setting of H100
and H102) or two (H091=1) synchronizing pulses occur.
It contains the set displacement- (d056) as well as the direction of rotation-
dependent synchronizing displacement setpoints (H062 - H065).
In the synchronous status, it is 0 or includes the displacement setpoint.
This status is signaled to terminal 46, taking into account a tolerance
bandwidth which can be set using H103.
SYNCO2.Displace.DV
Type: R
Chart: 100, 7
d095
Displ.-Pos.diff
Difference ”actual displacement minus the position difference actual value” in
quadrupled slave pulses. This value is zero (independent of a possibly
existing displacement setpoint) if the system is in the angular synchronous
status!
During synchronizing, this value is not equal to zero, and during
synchronization, is always less.
Update, as is described for d094.
The following is essentially valid: d095 = d094 - d124
SYNCO2.Displace.DVD
Type: R
Chart: 100, 7
d096
ErrorCode Displ.
Error IDs from the displacement sensing. The error ID is deleted when the
position difference is reset.
Bit Hex Significance
0 1 Overflow, number of synchronizing operations 1 ( more than 231 )
1 2 Overflow, number of synchronizing operations 2 ( more than 231 )
2 4 Number of synchronizing operations 1 * PR1 > 231
3 8 Number of synchronizing operations 1 * PR2 >231
If one of the bits 0-3 is set, then synchronization was probably erroneous.
8 100= Displacement position difference cannot be represented with 32 bit,
i. e. synchronization must be repeated.
SYNCO2.Displace.FC
Type: W
Chart: 100, 7
Parameters and connectors
74 SPA440 angular synchronous control - SIMADYN D - Manual
6DD1903-0BB0 Edition 05.01
Parameter Description Data
H097
S.Reset Pos_1
Source for the 2nd digital signal to reset the position and displacement.
CONTR.Zus_Lage-RS.I1
Value: 0108
Type: I
Chart: 90, 1
H098
S.Synchr.Command
Source for the 2nd digital signal to enable displacement correction.
CONTR.OR_Sync.I1
Value: 0173
Type: I
Chart: 90, 1
H100
SyncPulsesMaster
The synchronizing pulse number is set in the master drive, and corresponds
to one revolution in quadrupled pulses. The default for H100 is set for a pulse
encoder with 1024 pulses, and is 4 1024 = 4096.
SYNCO2.Displace.PR2
Value: 4096
Type: DI
Chart: 100, 5
H101
S.StopStartSynch
Source for the signal to end the start synchronizing (refer to H168).
CONTR.SyncFlipFlop.R
Value: 0105
Type: BI
Chart: 90,6
H102
SyncPulses Slave
The synchronizing pulse number is set to the slave drive and corresponds to
one revolution in quadrupled pulses. The default for H102 is set for a pulse
encoder with 1024 pulses, and is 4 1024 = 4096.
SYNCO2.Displace.PR1
Value: 4096
Type: DI
Chart: 100, 6
H103
Threshold Synchr
If the actual displacement is less than this response threshold, then the
”synchronism” reached status bit is set to 1. In the other case, it is reset to 0.
SYNCO2.CmpSynchr.L
Value: 20.0
Type: R
Chart: 100, 6
H104
S.Enable Control
Source for the control signal to enable the angular controller.
SYNCO2.AngleControl.EN
Value: 0109
Type: I
Chart: 110, 6
H105
Thresh.SyncSlave
Minimum number of quadrupled pulses, which must be received after an
effective synchronizing pulse, before a new synchronizing pulse may become
effective. This is used, for example, to suppress multiple edges due to switch
bounce.
Caution: The pulse number specified here must be greater than the number
of pulses, which are received while the synchronizing pulse is active (active
time). This threshold value is also effective for the first synchronization (after
power off,
power on / restart).
SYNCO2.CmpSPslave.X2
Value: 500
Unit: Pulse
Type: R
Chart: 60, 3
H107
Thresh.SyncMaster
Enable threshold, synchronizing, master. The function is as for H105 for the
master speed sensing.
SYNCO2.CmpSPmaster.X2
Value: 500
Type: R
Chart: 70, 2
H108
S.KP Pos.Contrl.
Source for the input quantity of the characteristic to adapt the P gain of the
angular controller.
SYNCO2.AngleKP.X
Value: 3044
Type: I
Chart: 110, 1
d109
enable Pos.Cntrl
Actual status of the angular controller enable
1: Angular controller enabled
0: Angular controller inhibited
CONTR.WR-Freigabe.Q
Value: 0
Type: BO
Chart: 90, 7
H110
Hold I-Component
The angular controller mode can be changed-over using this parameter:
0 = Controller operates as PI controller
1 = Controller operates as P controller (the I component is kept constant)
Caution: Only changeover from 0 to 1 when the controller is inhibited, as
otherwise the I component will not be cancelled!
SYNCO2.AngleControl.HI
Value: 1
Type: BO
Chart: 110, 7
H111
Tn Pos.Control
Integral action time of the angular controller (only relevant for H110 = 0)
The minimum integral action time corresponds to the sampling time, in which
the AngleControl block is configured.
SYNCO2.AngleControl.TN
Value: 500 ms
Type: SD
Chart: 110, 7
H112
Max. Position
Absolute value of the maximum output quantity of the angular controller
SYNCO2.SYNMAX.X
Value: 0.3
Type: R
Chart: 110, 5
Parameters and connectors
SPA440 angular synchronous control - SIMADYN D - Manual 75
6DD1903-0BB0 Edition 05.01
Parameter Description Data
H113
KP_UE Pos.Contrl
P gain (angular controller) without adaption or
P gain for the largest ratio ue_KP
SYNCO2.AngleKP.B2
Value: 1.0
Type: R
Chart: 110, 3
H114
KP_UE_0 PosCntrl
P gain (angular controller) for low ratios ue_KP_0
SYNCO2.AngleKP.B1
Value: 1.0
Type: R
Chart: 110, 2
H115
ue_KP Value
Limit of the ratio ü, which is linearly interpolated up to from ue_KP_0. For ü >
ue_KP, KP = KP_UE (angular controller).
SYNCO2.AngleKP.A2
Value: 0.0
Type: R
Chart: 110, 3
H116
ue_KP_0 Value
Limit of the ratio ü, from which is linearly interpolated up to ue_KP_0. For ü <
ue_KP_0, KP = KP_UE_0 (angular controller)
SYNCO2.AngleKP.A1
Value: 0.0
Type: R
Chart: 110, 3
H117
Tfilt Pos.Differ
Smoothing time constant (PT1 element) for the differential position actual
value
SYNCO2.LageDifferenz.T
Value: 4.0 ms
Type: SD
Chart: 60, 7
H118
dn enable Max.
Maximum system deviation between the speed setpoint and actual value of
the slave when the angular controller is enabled. The angular controller is
only enabled if the system deviation lies below the threshold (N_soll_slave
H136 - H118). A low value must be set for a low speed setpoint.
SYNCO2.dnFreigabe.X
Value 0.1
Type R
Chart: 75, 3
H119
dn Master Max.
Maximum deviation of the speed actual value of the master to its setpoint.
SYNCO2.dnMaster.X
Value 0.1
Type R
Chart: 75, 3
d120
Outp.Pos.Control
Angular controller output = supplementary speed setpoint
SYNCO2.PT_Angle.Y
Type: R
Chart: 110, 7
d121
Diff.Pos.Control
Actual angular deviation (referred to the slave pulses). A possibly existing
displacement setpoint is taken into account:
Angular controller, system deviation = displacement setpoint - differential
actual value.
(The differential position actual value includes the displacement setpoint as
”steady-state component”)
SYNCO2.AngleControl.YE
Type: R
Chart: 110, 5
d122
IntegralComp.Pos
Integral component of the angular controller output
SYNCO2.AngleControl.YI
Type: R
d123
KP Pos.Control
Actual P gain of the angular controller. This value must be multiplied by 104,
so that small KP values do not have to be entered using the OP1S.
SYNCO2.AngleKP.Y
Type: R
Chart: 110, 3
d124
Pos.Diff. filt
Smoothed differential angular actual value, smoothed with H117. This is
independent of the displacement determination or the synchronizing pulses;
this means that it provides no information about the position with respect to
one another (synchronism). On the other hand, d094 is the displacement
actual value between two synchronizing pulses.
After successful synchronization, this value is 0 or contains the selected
displacement setpoint!
SYNCO2.LageDifferenz.Y
Unit: Pulse
Type: R
Chart: 60, 8
H125
n_max Ramp Gen.
Upper limit of the speed setpoint at the ramp-function generator
SYNCO1.HLG_Speed.LU
Value: 1.0
Type R
Chart: 115, 5
H126
n_min Ramp Gen.
Lower limit of the speed setpoint at the ramp-function generator
SYNCO1.HLG_Speed.LL
Value: -1.0
Type R
Chart: 115, 5
H127
n Ramp Up Time
Time, in which the speed setpoint may change from 0 to rated speed.
SYNCO1.HLG_Speed.TU
Value: 0 ms
Type R
Chart: 115, 6
Parameters and connectors
76 SPA440 angular synchronous control - SIMADYN D - Manual
6DD1903-0BB0 Edition 05.01
Parameter Description Data
H128
n Ramp Down Time
Time, in which the speed setpoint may change from the rated speed to 0.
SYNCO1.HLG_Speed.TD
Value: 0 ms
Type R
Chart: 115, 6
H129
SpeedSetpRampOut
Speed setpoint after the ramp-function generator.
SYNCO1.HLG_Speed.Y
Value: 0 ms
Type R
Chart: 115, 7
H130
Jog Setpoint
Supplementary speed setpoint, which is added to the master setpoint in the
jog mode.
CONTR.TIPPEN.X
Value: 0.0
Type: R
Chart: 115, 1
H131
S.enablePosCtrll
Source for the 1st control signal to enable the angular controller.
CONTR.Steuerbits.I1
Value: 0172
Type: I
Chart: 90, 5
H132
Max. n_Setpoint
Upper speed setpoint limit for the speed controller on T400.
Caution: H132 must be > H133
SYNCO2.NsollLimit.LU
Value: 1.0
Type: R
Chart: 120, 2
H133
Min. n_Setpoint
Lower speed setpoint limit for the speed controller on T400
Caution: H132 must be > H133
SYNCO2.NsollLimit.LL
Value: -1.0
Type: R
Chart: 120, 2
H134
Max. n-Controller
Upper limit of the speed controller output on T400
Caution: H134 must be > H135
SYNCO2. SpeedControl.LU
Value: 1.0
Type: R
Chart: 120, 6
H135
Min. n-Controller
Lower limit of the speed controller output on T400
Caution: H134 must be > H135
SYNCO2.SpeedControl.LL
Value: -1.0
Type: R
Chart: 120, 6
d136
Speed Setpoint
Actual speed setpoint after smoothing and multiplication with the ratio.
SYNCO1.SREFR.Y
Type: R
Chart: 115, 3
d137
Speed Setp. ltd.
Actual speed setpoint sum after limiting (setpoint for the speed controller on
T400).
SYNCO2.NsollLimit.Y
Type: R
Chart: 120, 2
H138
Tfilt Pos.Cntrl
Smoothing time constant for the angular controller output
SYNCO2.PT_Angle.T
Value: 0 ms
Type R
Chart: 110, 7
H139
S.enablePosCtrl2
Source for the 2nd control signal to enable the angular controller.
CONTR.WR-Freigabe.I1
Value: 0193
Type: I
Chart: 90, 5
H140
ModeSpeedControl
The speed controller can be either computed on the T400 or in the basic
drive.
0 The T400 outputs the speed setpoint, taking into account the limits on
the basic drive. The speed controller blocks on the T400 are no longer
processed.
1 Speed controller is on the T400. The torque setpoint is transferred to the
basic drive.
CONTR.SCONI.I
Value: 0
Type: BO
Chart: 120, 5
H141
KP Speed Control
Upper Y value of the 2-point characteristic for the KP adaption of the speed
controller. P gain for large speed setpoints or if H143 = H144.
SYNCO2.SpeedKP.B2
Value: 10.0
Type: R
Chart: 120, 2
H142
KP_O SpeedContrl
Lower Y value of the 2-point characteristic for the KP adaption of the speed
controller. P gain for low speed setpoints.
SYNCO2.SpeedKP.B1
Value: 10.0
Type: R
Chart: 120, 2
H143
n_KP Threshold
Limit value of the speed setpoint which is interpolated up to, starting from
n_KP_0. The P gain = KP for n > n_KP
SYNCO2.SpeedKP.A2
Value: 0.0
Type: R
Chart: 120, 3
H144
n_KP_0 Threshold
Limit value of the speed setpoint which is interpolated from up to n_KP. For n
< n_KP_0, the P gain = n_KP_0
SYNCO2.SpeedKP.A1
Value: 0.0
Type: R
Chart: 120, 2
Parameters and connectors
SPA440 angular synchronous control - SIMADYN D - Manual 77
6DD1903-0BB0 Edition 05.01
Parameter Description Data
H145
Tn SpeedControl
Integral action time of the speed controller
SYNCO2. SpeedControl. TN
Value: 200ms
Type R
Chart: 120, 5
H146
Tfilt Speed
Smoothing time (PT1 element) for the slave speed actual value, which is
used for the closed-loop speed control
SYNCO2.NslaveFilter.T
Value: 4.0ms
Type: R
Chart: 60, 7
d147
Control Word 1
Control word 1 for the basic drive
IF_CU.Sammeln.Y1
Type: W
Chart: 230, 7
d148
Control Word 2
Control word 2 for the basic drive
IF_CU.Sammeln.Y4
Type: W
Chart: 230, 7
H149
T SyncPulsMaster
Pulse extension for the synchronizing pulse of the master-speed sensing. (for
diagnostics)
CONTR.Puls_SS_Master.T
Value: 10 ms
Type: SD
Chart: 70, 6
d150
Outp.SpeedContrl
Speed controller output
SYNCO2.SpeedControl.Y
Type: R
Chart: 120, 7
d151
DifferSpeedCntrl
Setpoint/actual value deviation of the speed controller
SYNCO2.SpeedControl.YE
Type: R
Chart: 120, 4
d152
SetpSpeed;Torque
Actual setpoint for the basic drive:
H140 = 1 torque setpoint (d150)
H140 = 0 speed setpoint
SYNCO2.SetpSwitch.Y
Type: R
Chart: 115, 7
d153
KP Speed Control
Effective P gain of the speed controller
SYNCO2.SpeedKP.Y
Type: R
Chart: 120, 3
H154
S.SlaveSynchrPos
Source for the slave position for synchronizing enable of the position sensing
of the slave drive.
SYNCO2.CmpSPslave.X1
Value: 3186
Type: I
Chart: 60, 3
H155
Ratio Resolution
Initialization
connection
Resolution when calculating the numerator- and denominator components
from the ratio. H155 specifies the numerator of the ratio. The value should
not exceed 100000. Examples:
H155 Ratio Numer. Denominator
10000 1.2351 10000 12351
10000 0.0333 10000 333
1000 0.0333 1000 33
SYNCO1.PNRAT.RR
Value: 10000
Type: R
Chart: 80, 4
H156
S.Ref_Pos_1
Source for the main setpoint of the angular controller.
SYNCO2.AngleControl.W1
Value: 3056
Type: I
Chart: 110, 5
H157
S.Ref_Pos_2
Source for the supplementary setpoint of the angular controller.
SYNCO2.AngleControl.W2
Value: 3000
Type: I
Chart: 110, 5
H158
S.Act_Pos_1
Source for the actual value of the angular controller.
SYNCO2.AngleControl.X1
Value: 3124
Type: I
Chart: 110, 5
H159
S.Act_Pos_2
Source for the supplementary actual value of the angular controller.
SYNCO2.AngleControl.X2
Value: 3000
Type: I
Chart: 110, 5
H160
Aout 1 Offset
Offset value of analog output 1 (terminal 97; also refer to H161)
T400_EA.AnaOut_1.OFF
Value: 0.0
Type: R
Chart: 51, 3
H161
Aout 1 Scalefact
Scaling factor for analog output 1 (terminal 97)
Output voltage = (input value + offset) * 5 V / scaling factor
T400_EA.AnaOut_1.SF
Value: 1.0
Type: R
Chart: 51, 4
H162
Aout 2 Offset
Offset value of analog output 2 (terminal 98; also refer to H163)
T400_EA.AnaOut_2.OFF
Value: 0.0
Type: R
Chart: 51, 3
Parameters and connectors
78 SPA440 angular synchronous control - SIMADYN D - Manual
6DD1903-0BB0 Edition 05.01
Parameter Description Data
H163
Aout 2 Scalefact
Scaling factor for analog output 2 (terminal 98)
Output voltage = (input value + offset) * 5 V / scaling factor
T400_EA.AnaOut_2.SF
Value: 1.0
Type: R
Chart: 51, 4
H164
Erase EEPROM
Task to re-establish the factory setting. All of the changes are deleted.
Beforehand, H165 must be set to 165. Deleting is started when H164 = 1. If
data is deleted, it cannot be re-done (retrieved)!
CONTR. EEPROM_T400. ERA
Value: 0
Type: BO
Chart: 40, 1
H165
Key EEPROM
Password to prevent the change memory being accidentally erased
(EEPROM). H165 must be set to 165 before erasing.
CONTR. EEPROM_T400. KEY
Value: 0
Type: I
Chart: 40, 1
d166
State EEPROM
Indicates whether the standard software package is unchanged (factory
settings), or whether parameters were changed (change memory not empty).
d166 = 1 change memory empty Þ
ÞÞ
Þ factory setting
CONTR. EEPROM_T400. EPE
Type: BO
Chart: 40, 3
H167
S.Pos.Reset_1
Source for the 1st digital signal to reset position and offset.
CONTR.Steuerbits.I3
Value: 0173
Type: I
Chart: 90, 1
H168
DelayStartSynchr
When the start synchronization is enabled (H169 = 1), after the power supply
is switched-on and after the power-on delay has expired (according to H168),
a synchronizing command is output once.
CONTR. Start_Sync. T
Value: 1000 ms
Type: SD
Chart: 90, 6
H169
EnableStartSynch
Enables start synchronization (refer to H168)
0 Not enabled
1 Enabled
CONTR.EnableAutoSync.I
Value: 0
Type: BO
Chart: 90,5
H170
MUX Displ.Reset
Multiplexer selection of the digital source to reset the displacement setpoint
0 Fixed value 0
1 Fixed value 1
2 Control word from CU bit 0
3 Digital input 3 (terminal 55)
4 Digital input 4 (terminal 56)
5 Digital input 5 (terminal 57)
6 Digital input 6 (terminal 58)
7 Digital input 7 (terminal 59)
8 Digital input 8 (terminal 60)
9 Control word 2 CB bit 0
10 Control word 2 CB bit 1
11 Control word 2 CB bit 2
12 Control word 2 CB bit 3
13 Control word 2 CB bit 4
14 Control word 2 CB bit 5
15 Control word 2 CB bit 6
16 Control word 2 CB bit 7
17 Control word, peer bit 0
18 Control word, peer bit 1
19 Control word, peer bit 2
20 Control word, peer bit 3
21 Control word, peer bit 4
22 Control word, peer bit 5
23 Control word, peer bit 6
24 Control word, peer bit 7
25 Control word 2 CB bit 0
26 Control word 2 CB bit 1
27 Control word 2 CB bit 2
28 Control word 2 CB bit 3
29 Control word 2 CB bit 4
30 Control word 2 CB bit 5
31 Control word 2 CB bit 6
32 Control word 2 CB bit 7
MUX_B.MUX_VersatzReset.XCS
Value: 0
Type: BO
Chart: 520, 2
Parameters and connectors
SPA440 angular synchronous control - SIMADYN D - Manual 79
6DD1903-0BB0 Edition 05.01
Parameter Description Data
H171
MUX enable Jog
Multiplexer selection of the digital source to enable jog operation.
Selected as for H170 except: 2 control word from the basic drive, bit
1
MUX_B.MUX_TippFreigabe.XCS
Value: 0
Type: BO
Chart: 520, 3
H172
MUX en.Pos.Cntrl
Multiplexer selection of the digital source to enable the angular controller.
Selected as for H170 except: 2 control word from the basic drive, bit
2
MUX_B.MUX_WReglerFreig.XCS
Value: 0
Type: BO
Chart: 520, 5
H173
MUX Reset Posit.
Multiplexer selection of the digital source to reset position and displacement.
Selected as for H170 except: 2 control word from the basic drive, bit
3
MUX_B.MUX_LageReset.XCS
Value: 0
Type: BO
Chart: 520, 6
H174
MUX Synchr.Cmd
Multiplexer selection of the digital source for the synchronizing command.
This enables displacement errors to be corrected.
Selected as for H170 except: 2 control word from the basic drive, bit
4
MUX_B.MUX_SyncSignal.XCS
Value: 0
Type: BO
Chart: 520, 8
d175
Displacem. Reset
Actual value for the control signal to reset the position difference.
CONTR.Steuerbits.Q4
Type: BO
Chart: 60, 2
d176
Enable Jog
Actual value for the control input j og enabl e
CONTR.Steuerbits.Q7
Type: BO
Chart: 115, 2
d177
EnableSpeedCntrl
Actual value for the control input angul ar controller enable
CONTR.Steuerbits.Q1
Type: BO
Chart: 90, 6
d178
Reset Position
Actual value for the control input reset position (H167)
CONTR.Steuerbits.Q3
Type: BO
Chart: 90, 2
d179
Synchron.Command
Actual value for the control input (H191) synchronizing command
CONTR.Steuerbits.Q2
Type: BO
Chart: 90, 2
H180
S.EnableSynSlave
Source for the digital signal to enable slave drive synchronization.
SYNCO2.Slave.SP
Value: 0154
Type: I
Chart: 60, 4
H181
S.ResetSlavePos.
Source for the digital signal to reset the slave drive position.
SYNCO2.Slave.R
Value: 0097
Type: I
Chart: 60, 4
H182
S.Slave Numerat.
Source for the numerator of the speed ratio.
SYNCO2.Slave.NM
Value: 5088
Type: I
Chart: 60, 4
H183
S.Slave Denomin.
Source for the denominator of the speed ratio.
SYNCO2.Slave.DN
Value: 5089
Type: I
Chart: 60, 4
H184
S.Corr.Pos.Diff.
Source for the digital signal to enable the differential position correction of the
slave drive. As long as the signal at this input is 1, the position difference is
corrected as follows at each processing cycle:
Position difference (new) = position difference (old) – position difference-
correction value
(prerequisite, H018 is in the factory setting)
CONTR.LagekorrektLogik.I1
Value: 0098
Type: I
Chart: 60, 4
H185
S.Reset PosDiff2
Source for the 2nd digital signal to reset the determined position difference
(slave drive).
CONTR.PosDiff_Reset.I1
Value: 0108
Type: I
Chart: 60, 1
H186
S.Abs.Pos.Slave
Source for the slave drive position to generate the absolute value and sign.
SYNCO2.Pos_Slave_Abs.X
Value: 3016
Type: I
Chart: 60, 1
Parameters and connectors
80 SPA440 angular synchronous control - SIMADYN D - Manual
6DD1903-0BB0 Edition 05.01
Parameter Description Data
H187
S.ResetPos.Diff1
Source for the 1st digital signal to reset the determined position difference
(slave drive).
CONTR.Steuerbits.I4
Value: 0170
Type: I
Chart: 60, 1
H188
S.EnableSynMaster
Source for the signal to enable synchronization of the master speed sensing.
SYNCO2.Master.SP
Value: 0190
Type: I
Chart: 70, 4
H189
S.ResetMasterPos
Source for the signal to set the master position actual value to zero.
SYNCO2.Master.R
Value: 0097
Type: I
Chart: 70, 4
H190
S.MasterSynchPos
Source for the position actual value to enable synchronization of the master
speed sensing.
SYNCO2.CmpSPmaster.X1
Value: 3017
Type: I
Chart: 70, 1
H191
S.Synchr.Comd2
Source for the control signal synchronizing command to enable the
displacement correction.
CONTR.Steuerbits.I2
Value: 0174
Type: I
Chart: 90, 1
H192
S.n_Slave Compar
Source for the input signal of the comparator to monitor the slave speed. If
the slave speed reaches the setpoint speed, then the angular controller can
be enabled.
SYNCO2.CMP_nSlave.X
Value: 3018
Type: I
Chart: 75, 2
H193
S.n_ref SlaveCmp
Source for the setpoint of the slave speed. (comparator to enable the angular
controller)
SYNCO2.CMP_nSlave.M
Value: 3136
Type: I
Chart: 75, 2
H195
S.n_MasterCompar
Source for the input signal of the comparator to monitor the master speed.
SYNCO2.CMP_nMaster.X
Value: 3019
Type: I
Chart: 75, 2
H196
S.n_ref MastComp
Source for the master speed setpoint. (comparator to check the plausibility of
the master speed)
SYNCO2.CMP_nMaster.M
Value: 3076
Type: I
Chart: 75, 2
H197
S.FineRatioNumer
Source for the numerator of the fine ratio.
SYNCO1.FEIN_NM.X2
Value: 5086
Type: I
Chart: 80, 5
H198
S.FineRatioDenom
Source for the denominator of the fine ratio.
SYNCO1.FEIN_DN.X2
Value: 5087
Type: I
Chart: 80, 5
H199
S.Abs.Pos.Master
Source for the position of the master drive to generate the absolute value and
sign.
SYNCO2.Pos_Master_Abs.X
Value: 3017
Type: I
Chart: 70, 6
H200
S.1 n(ref-act)
Source for the main setpoint of the speed controller (without limiting).
SYNCO2.SpeedControl.W1
Value: 3137
Type: I
Chart: 120, 3
H201
S.2 n(ref-act)
Source for the supplementary setpoint of the speed controller (without
limiting).
SYNCO2.SpeedControl.W2
Value: 3000
Type: I
Chart: 120, 3
H202
S.3 n(ref-act)
Source for the 1st actual value of the speed controller.
SYNCO2.SpeedControl.X1
Value: 3146
Type: I
Chart: 120, 3
H203
S.4 n(ref-act)
Source for the 2nd actual value of the speed controller.
SYNCO2.SpeedControl.X2
Value: 3000
Type: I
Chart: 120, 3
H204
S.KP (speedCtrl)
Source for the input quantity of the KP adaption characteristic of the speed
controller.
SYNCO2.SpeedKP.X
Value: 3129
Type: I
Chart: 120, 1
H205
S.n(ref,speed)
Source for the main setpoint of the speed controller (before limiting).
SYNCO2.SumNsoll.X1
Value: 3129
Type: I
Chart: 120, 1
Parameters and connectors
SPA440 angular synchronous control - SIMADYN D - Manual 81
6DD1903-0BB0 Edition 05.01
Parameter Description Data
H206
S.n(addit.)
Source for the supplementary setpoint of the speed controller (before
limiting).
SYNCO2.SumNsoll.X2
Value: 3120
Type: I
Chart: 120, 1
H207
S.Jog Ref.Speed
Source for the jog setpoint.
SYNCO1.Tippen-Schalter.X2
Value: 3120
Type: I
Chart: 115, 1
H208
S.enable Jog
Source for the signal to enable the jog setpoint. When enabled, the jog
setpoint is added to the speed setpoint.
CONTR.Steuerbits.I7
Value: 3120
Type: I
Chart: 115, 1
H209
T SyncPulseSlave
Pulse extension for the synchronizing pulse of the slave speed sensing. (for
diagnostics).
CONTR.Puls_SS_Slave.T
Value: 10 ms
Type: SD
Chart: 60, 7
H210
AI 1 Scalefactor
Scaling factor SF for analog input 1 (setting, refer to d212).
T400_EA.AnaIn_1.SF
Value: 1.0
Type: R
Chart: 50, 3
H211
AI 1 Offset
Offset for analog input 1 (setting, refer to d212).
T400_EA.AnaIn_1.OFF
Value: 0.0
Type: R
Chart: 50, 4
d212
AI 1 act. value
Actual measured value at the analog input 1 (AI1). This analog input is
sensed in the fastest time sector (T1). The measured value is obtained as
follows:
d212 = terminal voltage * scaling factor / 5 V + offset
d212 = terminal voltage * H210 / 5 V + H211
T400_EA.AnaIn_1.Y
Type: R
Chart: 50, 5
H213
AI 2 Scalefactor
Scaling factor SF for analog input 2 (setting, refer to d215).
T400_EA.AnaIn_2.SF
Value: 1.0
Type: R
Chart: 50, 3
H214
AI 2 Offset
Offset value for analog input 2 (setting, refer to d215).
T400_EA.AnaIn_2.OFF
Value: 0.0
Type: R
Chart: 50, 4
d215
AI 2 act. value
Actual measured value at analog input 2 (AI2). This analog input is sensed in
time sector T2. The measured value is obtained as follows:
d215 = terminal voltage * scaling factor / 5 V + offset
d215 = terminal voltage * H213 / 5 V + H214
T400_EA.AnaIn_2.Y
Type: R
Chart: 50, 5
H216
AI 3 Scalefactor
Scaling factor SF for analog input 3 (setting, refer to d218).
T400_EA.AnaIn_3.SF
Value: 1.0
Type: R
Chart: 50, 3
H217
AI 3 Offset
Offset value for analog input 3 (setting, refer to d218).
T400_EA.AnaIn_3.OFF
Value: 0.0
Type: R
Chart: 50, 4
d218
AI 3 act. value
Actual measured value at analog input 3 (AI3). This analog input is sensed in
time sector T2. The measured value is obtained as follows:
d218 = terminal voltage * scaling factor / 5 V + offset
d218 = terminal voltage * H216 / 5 V + H217
T400_EA.AnaIn_3.Y
Type: R
Chart: 50, 5
H219
AI 4 Scalefactor
Scaling factor SF for analog input 4 (setting, refer to d221).
T400_EA.AnaIn_4.SF
Value: 1.0
Type: R
Chart: 50, 3
H220
AI 4 Offset
Offset value for analog input 4 (setting, refer to d221).
T400_EA.AnaIn_4.OFF
Value: 0.0
Type: R
Chart: 50, 4
d221
AI 4 act. value
Actual measured value at analog input 4 (AI4). This analog input is sensed in
time sector T2. The measured value is obtained as follows:
d221 = terminal voltage * scaling factor / 5 V + offset
d221 = terminal voltage * H219 / 5 V + H220
T400_EA.AnaIn_4.Y
Type: R
Chart: 50, 5
Parameters and connectors
82 SPA440 angular synchronous control - SIMADYN D - Manual
6DD1903-0BB0 Edition 05.01
Parameter Description Data
H222
AI 1 Filter Time
Smoothing time constant for the 1st analog input. A value of 0 de-activates
the filter.
T400_EA.AE1_FILT.T
Value: 500
Type: R
Unit: ms
Chart: 50, 5
d223
AI 1 filtered
Analog value 1 after smoothing with smoothing time constant H222.
T400_EA.AE1_FILT.Y
Type: R
H224
AI 2 Filter Time
Smoothing time constant for the 2nd analog input. A value of 0 de-actives the
filter.
T400_EA.AE2_FILT.T
Value: 0.0
Type: R
Unit: ms
Chart: 50, 5
d225
AI 2 filtered
Analog value 2 after smoothing with the smoothing time constant H224.
T400_EA.AE2_FILT.Y
Type: R
H226
AI Filter Time
Smoothing time constant for the 3rd analog input. A value of 0 de-activates
the filter.
T400_EA.AE3_FILT.T
Value: 0.0
Type: R
Unit: ms
Chart: 50, 5
d227
AI 3 filtered
Analog value 3 after smoothing with the smoothing time constant H226.
T400_EA.AE3_FILT.Y
Type: R
Chart: 50, 6
H228
AI 4 Filter Time
Smoothing time constant for the 4th analog input. A value of 0 de-activates
the filter.
T400_EA.AE4_FILT.T
Value: 0.0
Type: R
Unit: ms
Chart: 50, 5
d229
AI 4 filtered
Analog value 4 after smoothing with the smoothing time constant H228.
T400_EA.AE4_FILT.Y
Type: R
Chart: 50, 6
H230 ... H233
S.set AE1 zero ...
S.set AE4 zero
4 sources for digital signals to set the 4 analog inputs to zero.
T400_EA.AE1_FILT.S ... T400_EA.AE4_FILT.S
Type: I
Value: 0000
Chart: 50, 4
H234
S.Position Diff1
Source for the position difference for the displacement calculation.
SYNCO2.Displ_Ist.X1
Value: 3118
Type: I
Chart: 80, 4
H235
S.Position Diff2
Source for a correction value of the position difference for the displacement
calculation.
SYNCO2.Displ_Ist.X2
Value: 3062
Type: I
Chart: 80, 4
H236
S.ResetDisplacem
Source for the signal to reset the displacement calculation.
SYNCO2.Displace.R
Value: 0097
Type: I
Chart: 80, 4
H237
S.Setp Displace1
Source for the displacement setpoint (this checks whether synchronism has
been reached).
SYNCO2.DisplacmentSetp.X1
Value: 3051
Type: I
Chart: 80, 4
H238
S.Setp Displace2
Source for the value to correct the displacement setpoint (this checks
whether synchronism has been reached).
SYNCO2.DisplacmentSetp.X2
Value: 3062
Type: I
Chart: 80, 4
H239
S.Ratio n_ref
Source for the ratio to calculate the slave setpoint speed from the master
setpoint.
SYNCO1.SREFR.X2
Value: 3044
Type: I
Chart: 115, 2
H240
S.Slave n_ref_1
1st source for the setpoint speed of the slave for the ramp-function generator.
SYNCO1.SSUM.X2
Value: 3136
Type: I
Chart: 115, 4
H241
S.Slave n_ref_2
2nd source for the setpoint speed of the slave for the ramp-function generator.
(this is used for the jog setpoint)
SYNCO1.SSUM.X1
Value: 3176
Type: I
Chart: 115, 4
H242
S.SV Int(speed)
Source for the setting value of the integral component of the speed controller.
SYNCO2.SpeedControl.SV
Value: 3137
Type: I
Chart: 120, 4
Parameters and connectors
SPA440 angular synchronous control - SIMADYN D - Manual 83
6DD1903-0BB0 Edition 05.01
Parameter Description Data
H243
S.Set Int(speed)
Source for the signal to set the integral component of the speed controller.
SYNCO2.SpeedControl.S
Value: 0000
Type: I
Chart: 120, 4
H244
S.Precontrol
Source for the pre-control value of the speed controller.
SYNCO2.EnVorstSpeed.X2
Value: 3080
Type: I
Chart: 120, 5
H245
S.enable PreCtrl
Source for the signal to enable the pre-control of the speed controller.
SYNCO2.EnVorstSpeed.I
Value: 0140
Type: I
Chart: 120, 5
d246
Status Word1 CU
Status word 1 from the basic drive (in the factory setting; i. e. at H558 =
2571).
IF_CU.Q_ZWort1.Y
Type: W
Chart: 180, 1
d300
Peer W1 send
Word 1 for output at the peer-to-peer interface.
IF_Peer.Peer_Zustand_W1.Y
Type: W
Chart: 300, 6
H303
MUX word 1 Peer
Multiplexer selection of the source for the value, output as PZD 1, at the peer-
to-peer interface
0 Fixed value 0
1 Fixed value H306
2 Status word 1 from peer-to-peer (refer to H310 ... H325)
3 Status word, angular synchronism
4 Control word 1 from the COMBOARD (PZD 1, receive)
5 Control word 2 from the COMBOARD (PZD 4, receive)
6 Status word 1 basic drive (PZD 1 receive)
7 Status word 2 basic drive (PZD 4 receive)
8 Control word 1 peer-to-peer (PZD 1 receive)
9 Control word 1 for the basic drive
10 Control word 2 for the basic drive
MUX_Peer.MUX_Peer_W1.XCS
Value: 2
Min: 0
Max: 10
Type: I
Chart: 570, 2
H304
MUX float1 Peer
Multiplexer selection of the source for output as 1st floating-point value at the
peer-to-peer interface
0 Fixed value 0.0
1 Actual setpoint for the basic drive (speed or torque)
2 Displacement setpoint
3Ratio
4 Master speed setpoint
5 Relative ratio
6 Inertia compensation
7 Speed setpoint (limited)
8 Slave speed (smoothed)
9 Speed controller output
10 System deviation, speed controller
11 KP speed controller
12 Speed setpoint after the ramp-function generator
13 Angular controller output
14 System deviation, angular controller
15 KP angular controller
16 Displacement actual value
17 Displacement – differential position actual value
18 Position difference (smoothed)
19 Speed actual value slave
20 Position actual value slave
21 Speed actual value master
22 Position actual value master
23 Actual value1 from the basic drive
24 Actual value2 from the basic drive
25 Actual value3 from the basic drive
26 Setpoint1 from the COMBOARD
27 Setpoint2 from the COMBOARD
28 Setpoint3 from the COMBOARD
29 Setpoint4 from the COMBOARD
30 Floating-point value1 from peer-to-peer
31 Floating-point value2 from peer-to-peer
32 Fixed value H307
MUX_Peer.MUX_Peer_W2.XCS
Value: 1
Min: 0
Max: 32
Type: I
Chart: 570, 6
Parameters and connectors
84 SPA440 angular synchronous control - SIMADYN D - Manual
6DD1903-0BB0 Edition 05.01
Parameter Description Data
H305
MUX float2 Peer
Multiplexer selection of the source for output as 2nd floating-point value at the
peer-to-peer interface.
0 .. 31 as for H304
32 Fixed value H308
MUX_Peer.MUX_Peer_W3.XCS
Value: 0
Min: 0
Max: 32
Type: I
Chart: 570, 7
H306
W1 Peer constant
Fixed value to output via peer-to-peer.
MUX_Peer.Festwert_Peer.X
Value 0
Type: W
Chart: 570, 1
H307
W2 Peer constant
Fixed value to output via peer-to-peer. (word1 + word2 as floating-point
value)
MUX_Peer.MUX_Peer_W2.X32
Value 0.0
Type: R
Chart: 570, 3
H308
W3 Peer constant
Fixed value to output via peer-to-peer. (word4 + word5 as floating-point
value)
MUX_Peer.MUX_Peer_W3.X32
Value 0.0
Type: R
Chart: 570, 6
H309
Peer enable
Initialization
parameter
Enables communications via the peer-to-peer interface and also its
monitoring.
0 Inhibited
1 Enabled
IF_Peer. Enable_Peer.I
Value: 1
Type: BO
Chart: 300, 1
H310 ... H325
S.PeerState1_B0 ...
S.PeerState1_B15
Select sources for the bits of status word 1 of the peer-to-peer interface.
H310 Bit 0 H318 Bit 8
H311 Bit 1 H319 Bit 9
H312 Bit 2 H320 Bit 10
H313 Bit 3 H321 Bit 11
H314 Bit 4 H322 Bit 12
H315 Bit 5 H323 Bit 13
H316 Bit 6 H324 Bit 14
H317 Bit 7 H325 Bit 15
IF_Peer.Zustandswort1.I1 ... I15
Type I
Chart: 310, 5 –
6
d327
Status Word Peer
Status word to output at the peer-to-peer interface. The status word is
combined by selecting sources H310 ... H325.
IF_Peer.Zustandswort1.QS
Type: W
Chart: 310, 7
d329 ... d333
PZD1 Peer ...
PZD5 Peer
5 process data from the peer-to-peer interface.
IF_Peer.Peer_Empf_W1.Y
IF_Peer.PZD2_PZD3.YWL ... YWH
IF_Peer.PZD4_PZD5.YWL ... YWH
Type: W
Chart: 300, 2
H334
S.ContrlWordPeer
Source for the control word for output at the peer-to-peer interface.
IF_Peer.STW_NOP.X
Type: I
Chart: 310, 1
H335
S.Peer PZD2
Source for the 2nd PZD for output at the peer-to-peer interface.
IF_Peer.PZD2_3_out.XWL
Type: I
Chart: 300, 5
H336
S.Peer PZD3
Source for the 3rd PZD for output at the peer-to-peer interface.
IF_Peer.PZD2_3_out.XWH
Type: I
Chart: 300, 5
H337
S.Peer DW1
Source for the 1st double word for output at the peer-to-peer interface (PZD2
+ PZD3).
IF_Peer.PZD2_3_out.XDI
Type: I
Chart: 300, 5
H338
S.Peer Float1
Source for the 1st floating-point value for output at the peer-to-peer interface
(PZD2 + PZD3).
IF_Peer.PZD2_3_out.XR
Value: 3304
Type: I
Chart: 300, 5
H339
Peer Sendtype1
Selects the data to be output as PZD2 + PZD3:
0: PZD2, PZD3 as single words
1: DW1 double word 1 (H337)
2: Float1 (H338)
IF_Peer.PZD2_3_out.SEL
Value: 0
Type: I
Chart: 300, 6
H340
S.Peer PZD4
Source for the 4th PZD for output at the peer-to-peer interface.
IF_Peer.PZD45_out.XWL
Type: I
Chart: 300, 5
Parameters and connectors
SPA440 angular synchronous control - SIMADYN D - Manual 85
6DD1903-0BB0 Edition 05.01
Parameter Description Data
H341
S.Peer PZD5
Source for the 5th PZD for output at the peer-to-peer interface.
IF_Peer.PZD45_out.XWH
Type: I
Chart: 300, 5
H342
S.Peer DW2
Source for the 2nd double word for output at the peer-to-peer interface (PZD4
+ PZD5).
IF_Peer.PZD45_out.XDI
Type: I
Chart: 300, 5
H343
S.Peer Float2
Source for the 2nd floating-point value for output at the peer-to-peer interface
(PZD4 + PZD5).
IF_Peer.PZD45_out.XR
Value: 3305
Type: I
Chart: 300, 5
H344
Peer Sendtype2
Selects the data to be output as PZD4 + PZD5:
0: PZD4, PZD5 as single words
1: DW2 double word 2 (H342)
2: Float2 (H343)
IF_Peer.PZD45_out.SEL
Value: 0
Type: I
Chart: 300, 6
H345
S.Peer PZD1
Source for the 1st PZD for output at the peer-to-peer interface.
IF_Peer.Peer_Zustand_W1.X
Value: 2303
Type: I
Chart: 300, 5
d346
Peer ControlWord
Receive data from the peer-to-peer interface, word 1.
IF_Peer.STW_NOP.Y
Type: W
Chart: 310, 1
H360
tmaxPeer PowerOn
Time in which a valid telegram must be received after the device has been
powered-up. If a telegram was not received after T > H360 has expired, fault
F117 is generated (if this was not suppressed using H003).
IF_Peer.StartTimeout.T
Value: 20 s
Type: SD
Chart: 300, 6
H361
tmax Peer OpMode
Monitoring time during operation. If no data are received within the time
interval, parameterized using H361, fault F117 is generated (if this is not
suppressed with H003).
IF_Peer. Empf_PEER.TMX
Value: 100 ms
Type: SD
Chart: 300, 1
H362
Mask Peer tmax
The status word of the receive block of the peer-to-peer interface is masked
using H362. If the result of this bitwise AND logic operation is not equal to 0,
then a communications error is assumed. If the error remains for longer than
the time parameterized in H360, the power-on monitoring signals a fault (refer
to H360).
IF_Peer.Filter.I2
Value 16#FFFF
Type: W
Chart: 300, 4
H363
Baud Rate Peer
Baud rate for peer-to-peer communications.
Permissible values: 9600, 19200, 38400, 93750, 187500
IF_Peer.PEER_Zentral.BDR
Value: 19200
Type: DI
Chart: 300, 1
d364
Peer RecStateYTS
Status output of the receive block CRV as information for the fault signal
‘F117’
IF_Peer.Empf_PEER.YTS
Type: W
Chart: 300, 4
H381 ... H388
S.PZD1 CU ...
S.PZD8 CU
Selects 8 sources for output as PZD to the basic drive converter. The source
must either be a word- or integer type. Factory setting:
H381 = 2026 Control word 1 (Chart220)
H382 = 2500 Setpoint1 CU N2
H383 = 2502 Setpoint2 CU N2
H384 = 2027 Control word 2 (Chart220)
H385 = 2504 Setpoint3 CU N2
H386 = 2506 Setpoint4 CU N2
H387 = 2510 Setpoint CU DW high
H388 = 2508 Setpoint5 CU N2
IF_CU.Sammeln.X1 ... X8
Type: I
Chart: 410, 5
H401
CB actval1 norm.
Normalization factor for the 1st actual value for output in the N2 format at the
communications interface.
Output value = 100% * source(H822) / H401
IF_COM.Istwert_W2.NF
Value 1.0
Type: R
Chart: 440, 2
Parameters and connectors
86 SPA440 angular synchronous control - SIMADYN D - Manual
6DD1903-0BB0 Edition 05.01
Parameter Description Data
H403
CB actval2 norm.
Normalization factor for the 2nd actual value for output in the N2 format at the
communications interface.
Output value = 100% * source(H823)/ H403
IF_COM.Istwert_W3.NF
Value 1.0
Type: R
H405
CB actval3 norm.
Normalization factor for the 3rd actual value for output in the N2 format at the
communications interface.
Output value = 100% * source(H824) / H405
IF_COM.Istwert_W5.NF
Value 1.0
Type: R
H407
CB actval4 norm.
Normalization factor for the 4th actual value for output in the N2 format at the
communications interface.
Output value = 100% * source(H825) / H407
IF_COM.Istwert_W6.NF
Value 1.0
Type: R
H409
ComBoard enable
Initialization
parameter
Enables communications via PROFIBUS and its monitoring.
0 Inhibited
1 Enabled
IF_COM.Enable_ComBoard.I
Value: 1
Type: BO
Chart: 400, 1
H410 ... H425
S.CB state1 B0 ...
S.CB state1 B15
Sources for the bits of status word 1 to output at COMBOARD. All of the
status bits are connected to constant 0 in the factory setting.
H410 Bit 0 H418 Bit 8
H411 Bit 1 H419 Bit 9
H412 Bit 2 H420 Bit 10
H413 Bit 3 H421 Bit 11
H414 Bit 4 H422 Bit 12
H415 Bit 5 H423 Bit 13
H416 Bit 6 H424 Bit 14
H417 Bit 7 H425 Bit 15
IF_COM.Zustandswort1.I1 ... I16
Value 0
Type BO
Chart: 430, 1 - 2
H426 ... H441
S.CB state2 B0 ...
S.CB state2 B15
Sources for the bits of status word 2 to output at COMBOARD. All of the
status bits are connected to constant 0 in the factory setting.
H426 Bit 0 H434 Bit 8
H427 Bit 1 H435 Bit 9
H428 Bit 2 H436 Bit 10
H429 Bit 3 H437 Bit 11
H430 Bit 4 H438 Bit 12
H431 Bit 5 H439 Bit 13
H432 Bit 6 H440 Bit 14
H433 Bit 7 H441 Bit 15
IF_COM.Zustandswort2.I1 ... I16
Value 0
Type BO
H442
MUX word1 CB
Multiplexer selection of the source for the value output, at the COMBOARD
interface as PZD 1
0 Fixed value 0
1 Fixed value H443
2 Status word 1 from the COMBOARD
3 Status word angular synchronism
4 Control word 1 from the COMBOARD (PZD 1, receive)
5 Control word 2 from the COMBOARD (PZD 4, receive)
6 Status word 1 basic drive (PZD 1, receive)
7 Status word 2 basic drive (PZD 4, receive)
8 Control word 1 peer-to-peer (PZD 1, receive)
9 Control word 1 for the basic drive
10 Control word 2 for the basic drive
MUX_CB.MUX_COM_W1.XCS
Value: 0
Min: 0
Max: 10
Type: I
Chart: 560, 3
H443
word1 CB constan
Fixed value for output at the communications interface as PZD1.
MUX_CB.Festwerte_CB.X1
Value: 0
Type: W
Chart: 560, 2
Parameters and connectors
SPA440 angular synchronous control - SIMADYN D - Manual 87
6DD1903-0BB0 Edition 05.01
Parameter Description Data
H444
MUX word4 CB
Multiplexer selection of the source for the value output, at the COMBOARD
interface as PZD 4
0 Fixed value 0
1 Fixed value H445
2 Status word 2 from the COMBOARD
3 Status word angular synchronism
4 Control word 1 from the COMBOARD (PZD 1, receive)
5 Control word 2 from the COMBOARD (PZD 4, receive)
6 Status word 1 basic drive (PZD 1, receive)
7 Status word 2 basic drive (PZD 4, receive)
8 Control word 1 peer-to-peer (PZD 1, receive)
9 Control word 1 for the basic drive
10 Control word 2 for the basic drive
MUX_CB.MUX_COM_W4.XCS
Value: 0
Min: 0
Max: 10
Type: I
Chart: 5600, 7
H445
word4 CB constan
Fixed value for output at the communications interface, as PZD 4.
MUX_CB.Festwerte_CB.X2
Value: 0
Type: W
Chart: 560, 6
H446
MUX word2 CB
Multiplexer selection of the source for the value output at COMBOARD,
as PZD 2.
0 .. 31 Refer to H304
32 Fixed value H470
MUX_CB.MUX_CB_W2.XCS
Value: 1
Min: 0
Max: 32
Type: I
Chart: 550, 3
H447
MUX word3 CB
Multiplexer selection of the source for the value output at COMBOARD,
as PZD 3.
0 .. 31 Refer to H304
32 Fixed value H471
MUX_CB.MUX_CB_W3.XCS
Value: 0
Min: 0
Max: 32
Type: I
Chart: 550, 4
H448
MUX word5 CB
Multiplexer selection of the source for the value output at COMBOARD,
as PZD 5.
0 .. 31 Refer to H304
32 Fixed value H472
MUX_CB.MUX_CB_W5.XCS
Value: 0
Min: 0
Max: 32
Type: I
Chart: 550, 6
H449
MUX word6 CB
Multiplexer selection of the source for the value output as PZD 6 at
COMBOARD.
0 .. 31 Refer to H304
32 Fixed value H473
MUX_CB.MUX_CB_W6 XCS
Value: 0
Min: 0
Max: 32
Type: I
Chart: 550, 7
d450
CB Setp_1 rec.
1st setpoint from the communications module.
IF_COM.Sollwert_W2.Y
Type: R
Chart: 410, 7
H451
CB Setp_1 norm.
Normalization factor for the 1st setpoint from the communications module.
d450 = H451 * source(H813) / 100%
IF_COM.Sollwert_W2.NF
Value 1.0
Type: R
Chart: 410, 6
d452
CB Setp_2 rec.
2nd setpoint from the communications module.
IF_COM.Sollwert_W3.Y
Type: R
Chart: 410, 7
H453
CB Set_2 norm.
Normalization factor for the 2nd setpoint from the communications module.
d452 = H453 * source(H814) / 100%
IF_COM.Sollwert_W3.NF
Value 1.0
Type: R
Chart: 410, 6
d454
CB Setp_3 rec.
3rd setpoint from the communications module.
IF_COM.Sollwert_W5.Y
Type: R
Chart: 410, 7
H455
CB Setp_3 norm.
Normalization factor for the 3rd setpoint from the communications module.
d454 = H455 * source(H815) / 100%
IF_COM.Sollwert_W5.NF
Value 1.0
Type: R
Chart: 410, 6
d456
CB Setp_4 rec.
4th setpoint from the communications module.
IF_COM.Sollwert_W6.Y
Type: R
Chart: 410, 7
Parameters and connectors
88 SPA440 angular synchronous control - SIMADYN D - Manual
6DD1903-0BB0 Edition 05.01
Parameter Description Data
H457
CB setp_4 norm.
Normalization factor for the 4th setpoint from the communications module.
d456 = H457 * source(H816) / 100%
IF_COM.Sollwert_W6.NF
Value 1.0
Type: R
Chart: 410, 6
d458
Word 1 CB Send
Send data of the communications interface, word 1
IF_COM.Sammeln2.Y3
Type: W
d459
Word 4 CB Send
Send data of the communications interface, word 4
IF_COM.Sammeln2.Y4
Type: W
d460
ControlWord 1 CB
Process data, which interprets control word1 from the communications
module. Connected with PZD1 from CB in the factory setting.
IF_COM.Verteil2.Y3
Type: W
Chart: 420, 1
d461
ControlWord 2 CB
Process data, which interprets control word1 from the communications
module. Connected with PZD4 from CB in the factory setting.
IF_COM.Verteil2.Y4
Type: W
Chart: 420, 5
H462
tmax CB PowerOn
Time, in which a valid telegram must be received after the device has been
powered-up. If a telegram was not received after T > H462 has expired, fault
F116 is generated (if this was not suppressed using H003).
IF_COM.StartTimeout.T
Value: 20000 ms
Type: SD
Chart: 400, 5
H463
tmax CB OpMode
Monitoring time during operation. If no data are received within the time
interval, parameterized using H463, fault F116 is generated (if this is not
suppressed with H003).
IF_COM. Empf-COM.TMX
Value: 100 ms
Type: SD
Chart: 400, 1
H464
Mask tmax CB
The status word of the receive block of the peer-to-peer interface is masked
using H464. If the result of this bitwise AND logic operation is not equal to 0,
then a communications error is assumed. If the error remains for longer than
the time parameterized in H462, the power-on monitoring signals a fault (refer
to H462).
IF_COM.Filter.I2
Value 16#FFFF
Type: W
Chart: 400, 4
d465
CB receive state
Status display of receive block CRV as information for the fault message
‘F116’
IF_COM.Empf-COM.YTS
Type: W
Chart: 400, 3
d466
Status Word1 CB
1st status word for the communications module (as PZD1).
IF_COM.Zustandswort1.QS
Type: W
Chart: 430, 4
d467
Status Word2 CB
2nd status word for the communications module (as PZD4).
IF_COM.Zustandswort2.QS
Type: W
Chart: 430, 7
H470
W2 CB constant
Fixed value for output via COMBOARD (as actual value1)
MUX_CB.MUX_CB_W2.X32
Value 0.0
Type: R
Chart: 550, 1
H471
W3 CB constant
Fixed value for output via COMBOARD (as actual value2)
MUX_CB.MUX_CB_W3.X32
Value 0.0
Type: R
Chart: 550, 3
H472
W5 CB constant
Fixed value for output via COMBOARD (as actual value3)
MUX_CB.MUX_CB_W5.X32
Value 0.0
Type: R
Chart: 550, 5
H473
W6 CB constant
Fixed value for output via COMBOARD (as actual value4)
MUX_CB.MUX_CB_W6.X32
Value 0.0
Type: R
Chart: 550, 7
H480
CB Slave address
Slave address of the COMBOARD.
This parameter is only relevant for operation without basic drive. For
operation with basic drive, the COMBOARD is parameterized from the basic
drive.
IF_COM.ComBoardConfig.MAA
Value 3
Type: I
Chart: 400, 6
Parameters and connectors
SPA440 angular synchronous control - SIMADYN D - Manual 89
6DD1903-0BB0 Edition 05.01
Parameter Description Data
H481 ... H493
CB Parameter 1 ....
CB Parameter 13
Parameterizing the COMBOARD. The settings are made depending on the
COMBOARD type used (refer to the User Documentation of the
COMBOARD; H482 = 2 sets PPO type 2 for Profibus)
These parameters are only relevant when using the system without basic
drive. When used with the basic drive, the COMBOARD is parameterized
from the basic drive.
IF_COM.ComBoardConfig. P01 ... P13
Value 0
except
H482 = 2
Type: I
Chart: 400, 6 - 8
H495
CB Param.valid
The COMBOARD settings are set valid. In operation, H495 must be set to 1.
After a parameter change (H480 .. H493), H495 is first set to 0 and then to 1,
in order to update the parameters on COMBOARD.
This parameter is only relevant for operation without a basic drive. When a
basic drive is used, the COMBOARD is parameterized from the basic drive.
IF_COM.ComBoardConfig.SET
Value 1
Type: BO
Chart: 400, 6
d496
CB state SRT400
Status of the COMBOARD. This is only relevant for operation without basic
drive. When used with the basic drive, 16#7CB3 is displayed (i.e. ”Basic drive
available”).
IF_COM.ComBoardConfig.YTS
Type: W
Chart: 400, 8
H498
S.Setp DW_CU
Source for the setpoint for output as double word (N4 normalization) at the
basic drive (normalization H499).
IF_CU.SollwertN4CU.X
Type: I
Chart: 230, 1
H499
CU DW norm.
Normalization factor for the setpoint for output as double word at the basic
drive. In the factory setting, the high word is output as PZD7:
Double word = 100 % * source(H498) / H499
IF_CU.SollwertN4CU.NF
Value 1.0
Type: R
Chart: 230, 2
H500
S.CU setp_1
Source for the 1st setpoint for output at the basic drive (normalization H501).
IF_CU.Sollwert_W2.X
Type: I
Chart: 230, 1
H501
CU setp_1 norm.
Normalization factor for the 1st setpoint for output at the basic drive. In the
factory setting, output as PZD2:
PZD2 = 100 % * source(H500) / H501
IF_CU.Sollwert_W2.NF
Value 1.0
Type: R
Chart: 230, 2
H502
S.CU setp_2
Source for the 2nd setpoint for output to the basic drive (normalization H503).
IF_CU.Sollwert_W3.X
Type: I
Chart: 230, 1
H503
CU setp_2 norm.
Normalization factor for the 2nd setpoint for output at the basic drive. In the
factory setting, output as PZD3:
PZD3 = 100 % * source(H502) / H503
IF_CU.Sollwert_W3.NF
Value 1.0
Type: R
Chart: 230, 2
H504
S.CU setp_3
Source for the 3rd setpoint for output at the basic drive (normalization H505).
IF_CU.Sollwert_W5.X
Type: I
Chart: 230, 1
H505
CU setp_3 norm.
Normalization factor for the 3rd setpoint for output at the basic drive. In the
factory setting, output as PZD5:
PZD5 = 100 % * source(H504) / H505
IF_CU.Sollwert_W5.NF
Value 1.0
Type: R
Chart: 230, 2
H506
S.CU setp_4
Source for the 4th setpoint for output at the basic drive (normalization H507).
IF_CU.Sollwert_W6.X
Type: I
Chart: 230, 1
H507
CU setp_4 norm.
Normalization factor for the 4th setpoint for output at the basic drive. In the
factory setting, output as PZD6:
PZD6 = 100 % * source(H506) / H507
IF_CU.Sollwert_W6.NF
Value 1.0
Type: R
Chart: 230, 2
H508
S.CU setp_5
Source for the 5th setpoint for output at the basic drive (normalization H509).
IF_CU.Sollwert_W8.X
Type: I
Chart: 230, 1
Parameters and connectors
90 SPA440 angular synchronous control - SIMADYN D - Manual
6DD1903-0BB0 Edition 05.01
Parameter Description Data
H509
CU setp_5 norm.
Normalization factor for the 5th setpoint for output at the basic drive. In the
factory setting, output as PZD8:
PZD8 = 100 % * source(H508) / H509
IF_CU.Sollwert_W8.NF
Value 1.0
Type: R
Chart: 230, 2
H510 ... H525
S.Bit0 CTW1 CU ...
S.Bit15 CTW1 CU
Sources for the bits of control word 1 for outputs at the basic drive.
Par. Bit Factory Significance
H510 Bit 0 0650 On (main contactor) 1=ON
H511 Bit 1 0651 /OFF2 (powered-down) 0=OFF
H512 Bit 2 0652 /OFF3 (fast stop) 0=OFF
H513 Bit 3 0653 Pulse enable
H514 Bit 4 0654 Ramp-function generator enable
H515 Bit 5 0655 Start, ramp-function generator
H516 Bit 6 0656 Setpoint enable 1=enable
H517 Bit 7 0657 Acknowledge fault 1=acknowledge
H518 Bit 8 0658 Jogging 1
H519 Bit 9 0659 Jogging 2
H520 Bit 10 0660 Control requested
H521 Bit 11 0661 Enable positive direction of rotation
H522 Bit 12 0662 Enable negative direction of rotation
H523 Bit 13 0663 Motorized potentiometer, raise
H524 Bit 14 0664 Motorized potentiometer, lower
H525 Bit 15 0665 Fault, external 1 0 = fault
IF_CU.Steuerwort1.I1 ... I15
IF_CU.Q_ext_Error.I
Type I
Chart: 220, 1...
2
H526 ... H541
S.Bit0 CTW2 ...
S.Bit15 CTW2
Sources for the bits of control word 2 for output at the basic drive. Only
bit 9 (speed controller enable) is used.
H526 Bit 0 H534 Bit 8
H527 Bit 1 H535 Bit 9 0546
H528 Bit 2 H536 Bit 10
H529 Bit 3 H537 Bit 11
H530 Bit 4 H538 Bit 12
H531 Bit 5 H539 Bit 13
H532 Bit 6 H540 Bit 14
H533 Bit 7 H541 Bit 15
IF_CU.Steuerwort2. I1 ... I16
Type I
Chart: 220, 5
H542
Mask CU ready
Using this mask, a bit of status word 1 from the basic drive can be selected,
which then signals the operational readiness of the basic drive. Status word 1
of the basic drive is AND'ed bitwise with H542. If at least the 1st bit of the
result word is set, the following is valid: ”Basic drive ready”. This is the
prerequisite for the speed controller enable.
IF_CU.BereitBitMaske.I2
Value 16#0004
Type: W
Chart: 90, 5
H543
TestEnable CU n
For test purposes, the speed controller can be enabled in the basic drive,
bypassing the enable logic.
IF_CU.n-Reg_Freigabe.I2
Value 0
Type: BO
Chart: 90, 7
H544
MUX Speed enable
Multiplexer selection of the source to enable the speed controller in the basic
drive. In order that the speed controller is enabled, the basic drive must be
ready (refer to H542)
0 Fixed value 0
1 Fixed value 1
2 Bit 9 from control word 2 from the COMBOARD
3 Bit 10 from control word 1 from the COMBOARD
4 Bit 9 from control word 1 from peer-to-peer
5 Digital input 8 (terminal 60)
6 Bit 15 from the control word from the basic drive
MUX_CU.Mux_Enable_nRegl.XCS
Value: 1
Min: 0
Max: 5
Type: BO
Chart: 560, 3
Parameters and connectors
SPA440 angular synchronous control - SIMADYN D - Manual 91
6DD1903-0BB0 Edition 05.01
Parameter Description Data
d545 ... d548
CPU load T1 to T4
d549
Total CPU load
Computer utilization level of the standard software package, assigned
according to time sectors. T1 is the fastest (highest priority), T5 is the slowest
time sector.
It is important that the total CPU load are not utilized more than 100% , as
otherwise they will not be processed in the configured time intervals.
d545 Utilization of T1
d546 Utilization of T2
d547 Utilization of T3
d548 Utilization of T4
d549 Total CPU load
IF_CU.LoadMeasure.YC1 ... YC4, IF_CU.LoadMeasure.Y
Type: R
Chart: 40, 7
H550
CU actval1 norm.
Normalization factor for the 1st actual value channel (factory setting: PZD2) of
the receive data from the basic drive
d551 = H550 * PZD2 / 100%
IF_CU.Istwert_W2.NF
Value 1.0
Type: R
Chart: 170, 7
d551
CU actval1
Actual value1 basic drive (factory setting: PZD2) after normalization
IF_CU.Istwert_W2.Y
Type: R
Chart: 170, 7
H552
CU actval2 norm.
Normalization factor for the 2nd actual value channel (factory setting: PZD3)
of the receive data from the basic drive
d553 = H552 * PZD3 / 100%
IF_CU.Istwert_W3.NF
Value 1.0
Type: R
Chart: 170, 7
d553
CU actval2
Actual value2 basic drive (factory setting: PZD3) after normalization
IF_CU.Istwert_W3.Y
Type: R
Chart: 170, 7
H554
CU actval3 norm.
Normalization factor for the 3rd actual value channel (factory setting: PZD5) of
the receive data from the basic drive
d555 = H554 * PZD5 / 100%
IF_CU.Istwert_W5.NF
Value 1.0
Type: R
Chart: 170, 7
d555
CU actval3
Actual value3 basic drive (factory setting: PZD5) after normalization
IF_CU.Istwert_W5.Y
Type: R
Chart: 170, 7
d556
CTW from CU
Optional control word; e.g. to control angular synchronism via SIMOLINK è
basic drive è T400.
IF_CU.STW_SPA.Y
Type: W
Chart: 180, 6
H557
S.CTW from CU
Source for an optional control word. Factory setting, PZD6 from the basic
drive. The selected source is split-up into status bits and inverse status bits
(connectors 0550 and onwards).
IF_CU.STW_SPA.X
Value: 2576
Type: I
Chart: 180, 1
H558
S.StatusWord1 CU
Source for status word1 from the basic drive. The selected source is split-up
into status bits and inverse status bits (connectors 0510 and onwards).
IF_CU.Q_ZWort1.X
Value: 2571
Type: I
Chart: 180, 1
H559
S.StatusWord2 CU
Source for the status word1 from the basic drive. The selected source is split-
up into status bits (connectors 0480 and onwards).
IF_CU.Zustand2CU.IS
Value: 2571
Type: I
Chart: 180, 1
d560
CU Status Word 1
Receive word 1 from the basic drive (PZD1) = status word 1
IF_CU.Verteilung.X1
Type: I
d561
CU Status Word 2
Receive word 4 from the basic drive (PZD4) = status word 2
IF_CU.Verteilung.X4
Type: I
d562
CU Rec.State
Status of the receive channel from the basic drive
IF_CU.Empf_BASE.YTS
Type: W
Chart: 150, 4
H563
S.actval_1 CU
Source of the 1st actual value from the basic drive, which should be converted
from the N2 format into the floating-point format (normalization factor H550).
IF_CU.Istwert_W2.X
Value: 2572
Type: I
Chart: 170, 4
Parameters and connectors
92 SPA440 angular synchronous control - SIMADYN D - Manual
6DD1903-0BB0 Edition 05.01
Parameter Description Data
H564
S.actval_2 CU
Source of the 2nd actual value from the basic drive, which should be
converted from the N2 format into the floating-point format (normalization
factor H552).
IF_CU.Istwert_W3.X
Value: 2573
Type: I
Chart: 170, 4
H565
S.actval_3 CU
Source of the 3rd actual value from the basic drive, which should be
converted from the N2 format into the floating-point format (normalization
factor H554).
IF_CU.Istwert_W5.X
Value: 2575
Type: I
Chart: 170, 4
H567
S.DW high CU
Source of the double word (high word) from the basic drive, which should be
converted from the N4 format into the floating-point format (normalization
factor H558).
IF_CU.W_DW.XWH
Value: 2582
Type: I
Chart: 170, 3
H568
S.DW low CU
Source of the double word (low word) from the basic drive, which should be
converted from the N4 format into the floating-point format (normalization
factor H558).
IF_CU.W_DW.XWL
Value: 2581
Type: I
Chart: 170, 3
H569
S.DW CU
Source of the double word from the basic drive, which is to be directly
converted into the floating-point format.
IF_CU.CU_DI_R.X
Value: 5567
Type: I
Chart: 170, 5
d570
CU DW_R
Result of the double word è floating-point conversion (received from the
basic drive)
IF_CU.CU_DI_R.Y
Type: R
Chart: 170, 7
d571 .. d584
PZD1 CU rec....
PZD14 CU rec.
Actual value of the first 14 process data from the basic drive. In the factory
setting, only PZD1 (status word 1) is evaluated.
IF_CU.Verteilung.Y1 ... Y8
IF_CU.Verteil2CU.Y1 ... Y6
Type: W
Chart: 170, 2
H587
S.N4 CU
Source of the double word from the basic drive, which is to be converted from
the N4 format into the floating-point format.
IF_CU.CU_N4_R.X
Value: 5567
Type: I
Chart: 170, 5
H588
CU N4 norm.
Normalization factor for the conversion from N4 into the floating-point format.
For H588 = 1.0, N4 = 100% (16#40000000) is emulated as 1.0.
IF_CU.CU_N4_R.NF
Value: 1.0
Type: R
Chart: 170, 7
d589
CU N4_R
Result of the double word (N4 normalization) -> floating-point conversion
(received from the basic drive)
IF_CU.CU_N4_R.Y
Type: R
Chart: 170, 7
H590
Q.CU_I_R
Source of the actual value from the basic drive which is to be directly
converted into the floating-point format (i.e. PZD= 1234 => d591 = 1234.0 ).
IF_CU.CU_I_R.X
Value: 2577
Type: I
Chart: 170, 4
d591
CU I_R
Actual value from the basic drive after conversion into a floating-point value.
IF_CU.CU_I_R.Y
Type: R
Chart: 170, 7
H592
S.en.Speed CU1
Source for the status word from the basic drive. From this, mask H542
selects a status bit, which is used to enable the speed controller.
IF_CU.BereitBitMaske.I1
Value: 2571
Type: I
Chart: 90, 5
H593
S.en.Speed CU2
Source for an additional condition to enable the speed controller.
IF_CU.Enable_n_Regler.I2
Value: 0547
Type: I
Chart: 90, 6
d601 ... d604
Pin46 input ...
Pin49 input
Input value of the bi-directional I/O of the T400. (For the case, where the
terminals are used as inputs; i.e. driver H637 ... H640 inactive)
Parameter T 400 terminal ´1´ s i gni f i es:
d601 Terminal 46 Synchronism reached
d602 Terminal 47 Angular controller at its limit
d603 Terminal 48 Angular controller enabled
d604 Terminal 49 Fault present
T400_EA.BinOut.Q1 ... Q4
Type: BO
Chart: 53, 3 .. 7
Parameters and connectors
SPA440 angular synchronous control - SIMADYN D - Manual 93
6DD1903-0BB0 Edition 05.01
Parameter Description Data
d607
Pin84 Coarse P1
Actual value of the 1st coarse pulse input (terminal 84) on the T400.
T400_EA.BinOut.Q7
Type: BO
Chart: 52, 7
d608
Pin65 Coarse P2
Actual value of the 2nd coarse pulse input (terminal 65) on the T400.
T400_EA.BinOut.Q8
Type: BO
Chart: 52, 7
H609
BinInp Inverters
This parameter is available, for compatibility reasons, to earlier software
releases. From version V2.02 onwards, the digital inputs are available
inverted and not inverted, and can be selected using BICO connections.
The digital inputs can be individually inverted using H609. In this case, every
bit from H609 is EXOR’d with the appropriate input bit.
1-bits result in an inversion.
For example: H609 = 16#0005 = 0000 0101b Þ
ÞÞ
Þ inputs 1 and 3 are inverted
T400_EA.Invert_BinInp.I2
Value 16#0000
Type: W
Not included in
the charts!
d610 ... d617
BinInput1 Pin53
Digital inputs of the T400.
d610 Input 1 (terminal 53)
d611 Input 2 (terminal 54)
d612 Input 3 (terminal 55)
d613 Input 4 (terminal 56)
d614 Input 5 (terminal 57)
d615 Input 6 (terminal 58)
d616 Input 7 (terminal 59)
d617 Input 8 (terminal 60)
T400_EA.BinInput.Q1 ... Q8
Type BO
Chart: 52, 3
H618
MUX AnalogOutp 1
Selects the source for the 1st analog output of the T400 (terminal 97).
0 .. 31 as for H304
32 DT1 (n_set) (inertia compensation from n_set)
MUX_AnaOut.MUX_DAC_1.XCS
Value: 1
Min: 0
Max: 31
Type: I
Chart: 510, 4
H619
MUX AnalogOutp 2
Selects the source for the 2nd analog output of the T400 (terminal 98).
0 .. 31 as for H304
32 DT1 (n_set) (inertia compensation from n_set)
MUX_AnaOut.MUX_DAC_2. XCS
Value: 0
Min: 0
Max: 31
Type: I
Chart: 510, 6
H620
S.Analog Outp1
Source for the signal for output at the 1st analog output of the T400.
T400_EA.Filt_DAC1.X
Value: 3618
Type: I
Chart: 51, 2
H621
S.set DAC1 zero
Source of the signal to set the output value to zero for the 1st analog output of
the T400. If H160 = 0.0 (DA1 offset), this allows the analog output to be
inhibited (output voltage = 0V) or enabled.
T400_EA.Filt_DAC1.S
Value: 0000
Type: I
Chart: 51, 2
H622
S.Analog Outp2
Source for the signal for output at the 2nd analog output of the T400.
T400_EA.Filt_DAC2.X
Value: 3619
Type: I
Chart: 51, 2
H623
S.set DAC2 zero
Source of the signal to set the output value to zero for the 2nd analog output
of the T400. If H162 = 0.0 (DA2 offset), this allows the analog output to be
inhibited (output voltage = 0V) or enabled.
T400_EA.Filt_DAC2.S
Value: 0000
Type: I
Chart: 51, 2
H631
S.BiDir Out1
Source for the digital signal for output at terminal 46. The output driver is
activated with H637 = 1.
T400_EA.BinOut.I1
Value: 0105
Type: I
Chart: 53, 1
H632
S.BiDir Out2
Source for the digital signal for output at terminal 47. The output driver is
activated with H638 = 1.
T400_EA.BinOut.I2
Value: 0116
Type: I
Chart: 53, 1
H633
S.BiDir Out3
Source for the digital signal for output at terminal 48. The output driver is
activated with H639 = 1.
T400_EA.BinOut.I3
Value: 0109
Type: I
Chart: 53, 5
Parameters and connectors
94 SPA440 angular synchronous control - SIMADYN D - Manual
6DD1903-0BB0 Edition 05.01
Parameter Description Data
H634
S.BiDir Out4
Source for the digital signal for output at terminal 49. The output driver is
activated with H640 = 1.
T400_EA.BinOut.I4
Value: 0003
Type: I
Chart: 53, 5
H635
S.Bin.Output1
Source for the digital signal for output at terminal 51.
T400_EA.BinOut.I6
Value: 0004
Type: I
Chart: 53, 1
H636
S.Bin.Output2
Source for the digital signal for output at terminal 52.
T400_EA.BinOut.I5
Value: 0000
Type: I
Chart: 53, 1
H637 ... H640
enable BiDir1 ...
enable BiDir4
Initialization
parameter
Activates the driver for the bi-directional I/O of the T400.
( 1: Driver active; 0: Only the input can be used)
H637: Terminal 46 H638: Terminal 47
H639: Terminal 48 H640: Terminal 49
T400_EA.BinOut.DI1 ... DI4
Type: BO
Chart: 53, 2 - 6
H650
MUX CTW1 Bit0
Selects the source for bit 0 in control word 1 to the basic drive
0 Fixed value 0
1 Fixed value 1
2 Bit 0 from control word 1 from the COMBOARD
3 Bit 0 from control word 1 of the peer-to-peer interface
4 Digital input 1 (terminal 53)
5 Control word from the basic drive, bit 5
MUX_CU.Mux_STW1_B0.XCS
Value: 0
Type: I
Chart: 530, 2
H651
MUX CTW1 Bit1
Selects the source for bit 1 in control word 1 to the basic drive
0 Fixed value 0
1 Fixed value 1
2 Bit 1 from control word 1 from the COMBOARD
3 Bit 1 from control word 1 of the peer-to-peer interface
4 Digital input 2 (terminal 54)
5 Control word from the basic drive, bit 6
MUX_CU.Mux_STW1_B1.XCS
Value: 1
Type: I
Chart: 530, 2
H652
MUX CTW1 Bit2
Selects the source for bit 2 in control word 1 to the basic drive
0 Fixed value 0
1 Fixed value 1
2 Bit 2 from control word 1 from the COMBOARD
3 Bit 2 from control word 1 of the peer-to-peer interface
4 Digital input 3 (terminal 55)
5 Control word from the basic drive, bit 7
MUX_CU.Mux_STW1_B2.XCS
Value: 1
Type: I
Chart: 530, 2
H653
MUX CTW1 Bit3
Selects the source for bit 3 in control word 1 to the basic drive
0 Fixed value 0
1 Fixed value 1
2 Bit 3 from control word 1 from the COMBOARD
3 Bit 3 from control word 1 of the peer-to-peer interface
4 Digital input 4 (terminal 56)
5 Control word from the basic drive, bit 8
MUX_CU.Mux_STW1_B3.XCS
Value: 1
Type: I
Chart: 530, 2
H654
MUX CTW1 Bit4
Selects the source for bit 4 in control word 1 to the basic drive
0 Fixed value 0
1 Fixed value 1
2 Bit 4 from control word 1 from the COMBOARD
3 Bit 4 from control word 1 of the peer-to-peer interface
4 Digital input 5 (terminal 57)
5 Control word from the basic drive, Bit 9
MUX_CU.Mux_STW1_B4.XCS
Value: 1
Type: I
Chart: 530, 6
Parameters and connectors
SPA440 angular synchronous control - SIMADYN D - Manual 95
6DD1903-0BB0 Edition 05.01
Parameter Description Data
H655
MUX CTW1 Bit5
Selects the source for bit 5 in control word 1 to the basic drive
0 Fixed value 0
1 Fixed value 1
2 Bit 5 from control word 1 from the COMBOARD
3 Bit 5 from control word 1 of the peer-to-peer interface
4 Digital input 6 (terminal 58)
5 Control word from the basic drive, Bit 10
MUX_CU.Mux_STW1_B5.XCS
Value: 1
Type: I
Chart: 530, 6
H656
MUX CTW1 Bit6
Selects the source for bit 6 in control word 1 to the basic drive
0 Fixed value 0
1 Fixed value 1
2 Bit 6 from control word 1 from the COMBOARD
3 Bit 6 from control word 1 of the peer-to-peer interface
4 Digital input 7 (terminal 59)
5 Control word from the basic drive, Bit 11
MUX_CU.Mux_STW1_B6.XCS
Value: 1
Type: I
Chart: 530, 6
H657
MUX CTW1 Bit7
Selects the source for bit 7 in control word 1 to the basic drive
0 Fixed value 0
1 Fixed value 1
2 Bit 7 from control word 1 from the COMBOARD
3 Bit 7 from control word 1 of the peer-to-peer interface
4 Digital input 8 (terminal 60)
5 Control word from the basic drive, Bit 12
MUX_CU.Mux_STW1_B7.XCS
Value: 0
Type: I
Chart: 530, 6
H658
MUX CTW1 Bit8
Selects the source for bit 8 in control word 1 to the basic drive
0 Fixed value 0
1 Fixed value 1
2 Bit 8 from control word 1 from the COMBOARD
3 Bit 8 from control word 1 of the peer-to-peer interface
4 Coarse pulse input, encoder 2 (terminal 84)
MUX_CU.Mux_STW1_B8.XCS
Value: 0
Type: I
Chart: 540, 2
H659
MUX CTW1 Bit9
Selects the source for bit 9 in control word 1 to the basic drive
0 Fixed value 0
1 Fixed value 1
2 Bit 9 from control word 1 from the COMBOARD
3 Bit 9 from control word 1 of the peer-to-peer interface
4 Coarse pulse input, encoder 1 (terminal 65)
MUX_CU.Mux_STW1_B9.XCS
Value: 0
Type: I
Chart: 540, 2
H660
MUX CTW1 Bit10
Selects the source for bit 10 in control word 1 to the basic drive
0 Fixed value 0
1 Fixed value 1
2 Bit 10 from control word 1 from the COMBOARD
3 Bit 10 from control word 1 of the peer-to-peer interface
MUX_CU.Mux_STW1_B10.XCS
Value: 1
Type: I
Chart: 540, 2
H661
MUX CTW1 Bit11
Selects the source for bit 11 in control word 1 to the basic drive
0 Fixed value 0
1 Fixed value 1
2 Bit 11 from control word 1 from the COMBOARD
3 Bit 11 from control word 1 of the peer-to-peer interface
4 Word 6 bit 13 from the basic drive
MUX_CU.Mux_STW1_B11.XCS
Value: 1
Type: I
Chart: 540, 2
H662
MUX CTW1 Bit12
Selects the source for bit 12 in control word 1 to the basic drive
0 Fixed value 0
1 Fixed value 1
2 Bit 12 from control word 1 from the COMBOARD
3 Bit 12 from control word 1 of the peer-to-peer interface
4 Word 6 bit 14 from the basic drive
MUX_CU.Mux_STW1_B12.XCS
Value: 1
Type: I
Chart: 540, 6
Parameters and connectors
96 SPA440 angular synchronous control - SIMADYN D - Manual
6DD1903-0BB0 Edition 05.01
Parameter Description Data
H663
MUX CTW1 Bit13
Selects the source for bit 13 in control word 1 to the basic drive
0 Fixed value 0
1 Fixed value 1
2 Bit 13 from control word 1 from the COMBOARD
3 Bit 13 from control word 1 of the peer-to-peer interface
MUX_CU.Mux_STW1_B13.XCS
Value: 0
Type: I
Chart: 540, 6
H664
MUX CTW1 Bit14
Selects the source for bit 14 in control word 1 to the basic drive
0 Fixed value 0
1 Fixed value 1
2 Bit 14 from control word 1 from the COMBOARD
3 Bit 14 from control word 1 of the peer-to-peer interface
MUX_CU.Mux_STW1_B14.XCS
Value: 0
Type: I
Chart: 540, 6
H665
MUX CTW1 Bit15
(external fault)
Selects the source for bit 15 (external fault) in control word 1 to the basic
drive (‘1’ = no fault)
0 Fixed value 0
1 Fixed value 1
2 Bit 15 from control word 1 from the COMBOARD
3 Bit 15 from control word 1 of the peer-to-peer interface
4 Fault (refer to H003)
5 Alarm (refer to H004)
6 Digital input 8 (terminal 60)
MUX_CU.Mux_STW1_B15.XCS
Value: 1
Type: I
Chart: 540, 6
d666
Analog output 1
Value, which is output at analog output 1.
T400_EA.Filt_DAC1.Y
Type: R
Chart: 51, 3
d667
Analog output 2
Value, which is output at analog output 2.
T400_EA.Filt_DAC2.Y
Type: R
Chart: 51, 3
H668
T_Filter_DAC1
Smoothing time constant for analog output 1
T400_EA.Filt_DAC1.T
Value: 0 ms
Type: R
Chart: 51, 2
H669
T_Filter_DAC2
Smoothing time constant for analog output 2
T400_EA.Filt_DAC2.T
Value: 0 ms
Type: R
Chart: 51, 2
H700
USS enable
Enables the serial interface 1 of the T400 for operation as USS slave.
Further, switch S1/8 should be set into the ON position. Online operation with
CFC or with the basic IBS (start-up) is then no longer possible!
USS slave is only required for operator control and visualization, if the T400
is to be operated without basic drive (in the SRT400).
Prerequisite for OP1S : Software version from V2.2
IF_USS.Enable.I
Value: 1
Type: BO
Chart: 450, 1
H701
Baud rate USS
Data transfer rate for the USS interface.
Example OP1S: 9600 or 19200
IF_USS.Slave_ZB.BDR
Value: 9600
Type: DI
Chart: 450, 1
H703
USS Address
Station address, USS interface.
IF_USS.Slave_ZB.MAA
Value: 0
Type: I
Chart: 450, 1
H704
USS 4-Wire
Difference between 2-wire (half duplex) and 4-wire operation (full duplex) for
the USS interface.
Value Significance Required for
0 RS485 2-wire (half duplex) for OP1S
1 RS232 4-wire (full duplex) for SIMOVIS
For end nodes on the USS bus (RS485), terminating resistors must be used
to terminate the bus. The appropriate resistors are switched-in using switches
S1/1 and S1/2 on the T400; the resistors are switched-in in the ON setting.
IF_USS.Slave_ZB. WI4
Value: 0
Type: BO
Chart: 450, 1
Parameters and connectors
SPA440 angular synchronous control - SIMADYN D - Manual 97
6DD1903-0BB0 Edition 05.01
Parameter Description Data
d705
USS rec. state
Status of the central block of the USS interface (@USS_S).
This value is only of significance, if the T400 is operated without basic drive,
and parameterization should be realized via the serial interface 1 of the T400
in the USS protocol (refer to H700 to H704).
IF_USS.Slave_ZB.YTS
Type: W
Chart: 450, 4
d706 ... d707
PZD1 USS ...
PZD2 USS
Two pieces of process data, received from the USS interface.
IF_USS.USS_Dummy.Y1 ... Y2
Type: W
Chart: 450, 6
H708 ... H709
S.PZD1 USS Slave
...
S.PZD2 USS Slave
Sources for 2 words, which are output at the USS interface.
IF_USS.USS_Dummy.X1 ... X2
Value: 2000
Type: I
Chart: 450, 5
d801 ... d810
PZD1 CB rec. ...
PZD10 CB rec.
10 process data when receiving data from the communications module.
Depending on the PPO type used, not all PZD are used. These values are
then undefined!
IF_COM.Verteilung.Y1 ... Y8
IF_COM.Verteil2.Y1 ... Y2
Type: W
Chart: 410, 3
H811
S.Control W1 CB
Selects the source for the 1st control word from the communications module.
IF_COM.Verteil2.X3
Value: 2801
Type: I
Chart: 420, 1
H812
S.Control W2 CB
Selects the source for the 2nd control word from the communications module.
IF_COM.Verteil2.X4
Value: 2804
Type: I
Chart: 420, 1
H813 ... H816
S.setp_1 CB ...
S.setp_4 CB
Selects, from 4 sources, for setpoints from the communications interface,
those which are to be converted from the N2 format into the floating-point
format. Factory setting:
H813 = 2802 PZD2
H814 = 2803 PZD3
H815 = 2805 PZD5
H816 = 2806 PZD6
IF_COM.Sollwert_W2.X, _W3.X, _W5.X, _W6.X
Type: I
Chart: 410, 5
H817
S.setp. I_R CB
Selects the source, which is to be converted from integer to floating-point.
IF_COM.Sollw_IR.X
Value: 2807
Type: I
Chart: 410, 1
H818
Setp. I_R CB
Result of the conversion from integer to floating-point (refer to H817).
IF_COM.Sollw_IR.Y
Type: R
Chart: 410, 2
H819 ... H820
S.DW high CB ...
S.DW low CB
Selects from high and low word, a double word (format N4), which is to be
converted into the floating-point-format. Normalization using H841.
Factory setting:
H819 = 2809 PZD9 IF_COM.Sollw_DW.XWH
H820 = 2810 PZD10 IF_COM.Sollw_DW.XWL
Type: I
Chart: 410, 4
H821
CB setp. DW
Result of the N4 to floating-point conversion (refer to H818, H819, H841).
IF_COM.Sollw_N4.Y
Type: R
Chart: 410, 7
H822 ... H825
S.actval_1 CB ...
S.actval_4 CB
Selects from 4 sources, which are output at the communications interface as
actual values. They are converted from the floating-point format into the N2
format.
Factory setting:
H822 = 3446 Output, multiplexer MuxWord2 CB
H823 = 3447 Output, multiplexer MuxWord3 CB
H824 = 3448 Output, multiplexer MuxWord5 CB
H825 = 3449 Output, multiplexer MuxWord6 CB
IF_COM.Istwert_W2.X, _W3.X, _W5.X, _W6.X
Type: I
Chart: 440, 1
H826
S.actval R_I CB
Selects the source, which should be converted from floating-point to integer.
IF_COM.Ist_RI.X
Value: 3000
Type: I
Chart: 440, 6
H828
S.actval_5 CB
Selects the source, which should be converted from floating-point to double
word.
IF_COM.Ist_R_N4.X
Value: 3000
Type: I
Chart: 440, 1
Parameters and connectors
98 SPA440 angular synchronous control - SIMADYN D - Manual
6DD1903-0BB0 Edition 05.01
Parameter Description Data
H829
Actval5 CB norm.
Normalization for H828. For H829 = 1.0, the input value is emulated as 1.0
for 100% in the N4 format.
IF_COM.Ist_R_N4.NF
Value: 1.0
Type: R
Chart: 440, 2
H831 ... H840
S.PZD1 CB ...
S.PZD10 CB
Selects from 10 sources for output as PZD via the communications interface.
The source must be a word or integer type. Only as many PZD are
transferred as the selected PPO type makes provision for!
Factory setting:
H831 = 2442 Multiplexer Mux Word1 CB (chart 560)
H832 = 2822 Actual value1 CB
H833 = 2823 Actual value2 CB
H834 = 2444 Multiplexer Mux Word4 CB (chart 560)
H835 = 2824 Actual value3 CB
H836 = 2825 Actual value4 CB
H837 = 2827 Actual value R_I CB
H838 = 2000 Constant 0
H839 = 2828 Actual value5 high CB
H840 = 2829 Actual value5 low CB
IF_COM.Sammeln.X1 ... X8
IF_COM.Sammeln2.X1 ... X2
Type: I
Chart: 410, 5
H841
CB DW norm.
Normalization factor for the N4 to floating-point conversion (refer to H818,
H819, H821). For H841, 100% (16#40000000) is converted into 1.0.
IF_COM.Sollw_N4.NF
Value: 1.0
Type: R
Chart: 410, 6
H900 ... H913
S.F125 ... S.F131
S.A106 ... S.A112
Sources for optional digital quantities, which should initiate a fault or alarm in
the basic drive.
Source Fault Source Alarm
H900 F125 H907 A106
H901 F126 H908 A107
H902 F127 H909 A108
H903 F128 H910 A109
H904 F129 H911 A110
H905 F130 H912 A111
H906 F131 H913 A112
CONTR.Fehlerzustand.I10 ... I16
CONTR.Warnzustand.I10 ... I16
Type: I
Chart: 160, 1
160, 4
d921 ... d930
PZD1 CB out ...
PZD10 CB out
Actual value which should output up to 10 process data via the
communications module.
IF_COM.Sammeln.Y1 ... Y8
IF_COM.Sammeln2.Y1 ... Y2
Type: W
Chart: 440, 6
H960 ... H965
Constant I1 ...
Constant I6
6 fixed values, integer type (16 bit, signed)
Constant.INT_Const.X1 ... X6
Value: 0
Type: I
Chart: 30,6
H971 ... H974
Constant W1 ...
Constant W4
4 fixed value, word type (16 bit)
Constant.WORD_Const.X1 ... X4
Value: 16#0000
Type: W
Chart: 30,6
H981 ... H984
Constant DI1 ...
Constant DI4
4 fixed values, double word type (32 bit signed).
Constant.DINT_Const.X3 ... X6
Value: 0
Type: DI
Chart: 30,8
H990 ... H997
Constant R1 ...
Constant R8
8 fixed values, floating-point type.
Constant.Const_Float.X1 ... X8
Value: 0.0
Type: R
Chart: 30,5
d998, d999
SIMADYN D,
SIMOVIS SW ID
Identification parameters for SIMOVIS to identify the standard software
package.
Constant.SIMADYN_D.Y
Chart: 40,3
L028 ... L031
S.Display R1 ...
S.Display R4
Four sources for display parameters, REAL type (floating-point) to display
connectors without their own display parameters. The display is realized
using parameters d028 ... d031.
Free_FBs.Display_R.X1 ... Free_FBs.Display_R.X4
Type: I
Chart: 470, 7
Parameters and connectors
SPA440 angular synchronous control - SIMADYN D - Manual 99
6DD1903-0BB0 Edition 05.01
Parameter Description Data
L032 ... L035
S.Display B1 ...
S.Display B4
Four sources for display parameters, BOOL type to display connectors
without their own display parameters. The display is realized using
parameters d032 ... d035.
Free_FBs.Display_BO.I1 ... Free_FBs.Display_BO.I4
Type: BO
Chart: 470, 7
L036, L037
S.Display I1,
S.Display I2
Two sources for display parameters, type integer (16 bit) to display
connectors without their own display parameters. The display is realized
using parameters d036 and d037.
Free_FBs.Display_I.X1, Free_FBs.Display_I.X2
Type: BO
Chart: 470, 7
L038, L039
S.Display W1,
S.Display W2
Two sources for display parameters, type word (16 bit) to display connectors
without their own display parameters. The display is realized using
parameters d038 and d039.
Free_FBs.Display_W.X1, Free_FBs.Display_W.X2
Type: BO
Chart: 470, 7
L098 Enables position sensing via pulse encoder (NAVS).
Reset required after value change!
Value !
Type BO
Chart 60, 5
L099 Enables position sensing via absolute value encoder (AENC).
Reset required after value change!
Value 0
Type BO
Chart 60, 7
L100 – L302 Differential position sensing with absolute value encoder:
Setting parameters for the absolute value encoder and
diagnostic parameters. Detailed description,
refer to Section 3.2.3.
L400 Length buffer
Length of Trace-buffer (in double words) for offline-trace with
“symTrace-D7”
TRACE.Trace_Kopplung.TBL
Value: 2048
Min. 0
Max. 256000
Type I
c401 Coupling Trace
0: No interconnection to the trace blocks
1: Interconnection to the trace blocks is activ.
TRACE.Trace_Kopplung.QTS
Typ: B
c402 Status Trace
Status-word of trace. Description in “symTrace-D7” (Help->
Help subjects->Function blocks error messages)
TRACE.Trace_Kopplung.YTS
Typ: W
L605
S.DW_W1
Sources for a double word quantity, which should be split-up into two words.
Free_FBs.DW_W1.X
Value 5000
Type I
Chart 490, 4
L606, L607
S.ADDI_1 X1
S.ADDI_1 X2
Sources for the summands of the 1st integer adder.
Free_FBs.ADDI_1.X1
Value 2000
Type I
Chart 470, 1
L608, L609
S.SUBI_1 X1
S.SUBI_1 X2
Sources for the inputs of the 1st integer subtractor.
Free_FBs.SUBI_1.X1 ... X2
Value 2000
Type I
Chart 470, 1
L646
S.I_R_1
Sources for an integer quantity, which should be converted into floating-point.
Free_FBs.I_R1.X
Value 2000
Type I
Chart 490, 4
L647
S.R_I1
Sources for a floating-point quantity, which should be converted into integer.
Free_FBs.R_I1.X
Value 3000
Type I
Chart 490, 4
L698, L699
S.S RS-FlipFlop1
S.R RS-FlipFlop1
Sources for the setting- and reset input of an RS flipflop (R dominant).
(free block).
Free_FBs.RS_FF2.S ... R
Type I
Chart 460, 1
Parameters and connectors
100 SPA440 angular synchronous control - SIMADYN D - Manual
6DD1903-0BB0 Edition 05.01
Parameter Description Data
L700 ... L702
S.AND1_I1 ...
S.AND1_I3
Three sources for the inputs of the 1st free AND block.
Free_FBs.AND1.I1 ... I3
Type I
Chart 460, 1
L703 ... L705
S.AND2_I1 ...
S.AND2_I3
Three sources for the inputs of the 2nd free AND block.
Free_FBs.AND2.I1 ... I3
Type I
Chart 460, 4
L706 , L707
S.Switch1_0 ...
S.Switch1_1
2 sources for the inputs of the 1st free changeover. The output is selected
using L708.
Free_FBs.Switch1.X1 ... X2
Type I
Chart 460, 1
L708
S.Switch1_sel
Source for the signal to a signal.
0: Source(L706) 1: Source(L707)
Free_FBs.Switch1.I
Type I
Chart 460, 1
L709
S.Edge1
Source for the 1st free edge detecting block.
Free_FBs.Edge1.I
Value I
Chart 430, 6
L710 ... L712
S.OR1_I1 ...
S.OR1_I3
3 sources for the inputs of the 1st free OR block.
Free_FBs.OR1.I1 ... I3
Type I
Chart 460, 1
L713 ... L715
S.OR2_I1 ...
S.OR2_I3
3 sources for the inputs of the 2nd free OR block.
Free_FBs.OR2.I1 ... I3
Type I
Chart 460, 4
L716 , L717
S.Switch2_0 ...
S.Switch2_1
2 sources for the inputs of the 2nd free changeover. The output is selected
using L718.
Free_FBs.Switch2.X1 ... X2
Type I
Chart 460, 4
L718
S.Switch2_sel
Source for the signal to a signal.
0: Source(L716) 1: Source(L717)
Free_FBs.Switch2.I
Value 0000
Type I
Chart 460, 4
L728
S.OnDelay1
Source for the 1st power-on delay.
Free_FBs.OnDelay1.I
Value 0000
Type I
Chart 490, 7
L729
T_OnDelay1
1st power-on delay time.
Free_FBs.OnDelay1.T
Value 100 ms
Type SD
Chart 490, 7
L730
S.OffDelay1
Source for the 1st power-off delay time.
Free_FBs.OffDelay1.I
Value 0000
Type I
Chart 490, 7
L731
T_OffDelay1
1st power-off delay time.
Free_FBs.OffDelay1.T
Value 100 ms
Type SD
Chart 490, 7
L732, L733
S.Not1, S.Not2
Sources for the 2nd logical inverter.
Free_FBs.Not1.I ... Not2.I
Type I
Chart 460, 7
L734, L735
S.S RS-FlipFlop2
S.R RS-FlipFlop2
Sources for the setting- and reset input of an RS flipflop (R dominant).
(free block).
Free_FBs.RS_FF1.S ... R
Type I
Chart 460, 4
L738
S.set_PT1_zero
Source for the digital signal to set the output of the free lowpass filter to zero.
Behavior of the setting function:
Setting 0 è1: Output is immediately set to zero
Setting 1 è0: Output goes to the input value corresponding to L741
Free_FBs.FreePT1.S
Value 0000
Type I
Chart 480, 1
L739
QualityFact.Filt
Quality of the bandstop filter. Practical values lie in the range 1.0 ... 10.0.
Free_FBs.SperrFilt.Q
Value 2.0
Type I
Chart 480, 4
L740
S.PT1_input
Source of the input signal for the lowpass 1st order filter (free block).
Free_FBs.FreePT1.X
Value 3000
Type I
Chart 480, 2
Parameters and connectors
SPA440 angular synchronous control - SIMADYN D - Manual 101
6DD1903-0BB0 Edition 05.01
Parameter Description Data
L741
Tfilt PT1
Filter time constant of the 1st order lowpass filter.
Free_FBs.FreePT1.T
Value 20 ms
Type SD
Chart 480, 2
L742
S.Band-Stop filt
Source of the input signal for a bandstop filter (free block).
Free_FBs.SperrFilt.X
Value 3000
Type I
Chart 480, 3
L743
S.FilterFrequenc
Source of the input signal for the bandstop frequency (in Hz) of the bandstop
filter.
Free_FBs.SperrFilt.FG
Value 3002
Type I
Chart 480, 3
L744, L745
S.Compare_X,
S.Compare_Y
Sources for the input signals of a comparator.
Free_FBs.Compare.X1 ... X2
Type I
Chart 480, 6
L746
S.Limit_max
Source for the upper limit of a free limiting block.
Free_FBs.Begrenzer.LU
Value 3001
Type I
Chart 480, 6
L747
S.Limit_input
Source for the signal to be limited of a free limiting block.
Free_FBs.Begrenzer.X
Value 3000
Type I
Chart 480, 6
L748
S.Limit_min
Source for the lower limit of a free limiting block.
Free_FBs.Begrenzer.LL
Value 3000
Type I
Chart 480, 6
L749
S.Compare2
Source for the input signal of a comparator with hysteresis (free block).
Free_FBs.Comp2.X
Value 3000
Type I
Chart 480, 1
L750
S.Compare2 Range
Source for the range limit of the comparator with hysteresis (free block).
Free_FBs.Comp2.L
Value 3001
Type I
Chart 480, 1
L751
Compare2 Hyst
Hysteresis of the comparator with hysteresis (free block).
Free_FBs.Comp2.HY
Value 0.1
Type I
Chart 480, 2
L752
S.Compare2 Mid
Source for the comparator center of range with hysteresis (free block).
Free_FBs.Comp2.M
Value 3003
Type I
Chart 480, 1
L753
S.Curve_X
Source for the input signal of a characteristic with 2 points. If the signal is
less than X1, the output = Y1; if it is greater than X2, the output = Y2. The
characteristic is approximately linear between these two points.
Free_FBs.Kennlin.X
Value 3000
Type I
Chart 480, 1
L754, L755
Curve_X1,
Curve_Y1
Value pair for the lefthand characteristic point (lower X coordinate).
Free_FBs.Kennlin.A1 ... B1
Value 0.0
Type I
Chart 480, 2 – 3
L756, L757
Curve_X2,
Curve_Y2
Value pair for the righthand characteristic point (higher X coordinate).
Free_FBs.Kennlin.A2 ... B2
Value 1.0
Type I
Chart 480, 2 - 3
L760
S.FreeWord
Source for a 16-bit value, which is to be split-up into individual bits
(connectors 0760 to 0775)
Free_FBs.Free_W_B_1.IS
Value 2000
Type I
Chart 490, 1
L761... L763
S.DW_high,
S.DW_low,
DW norm.
2 sources for a double word, which are to be converted into a floating-point
value. L763 is the normalization; i. e. the output value for an input value of
16#40000000.
Free_FBs.DW_inp.XWH ... XWL
Free_FBs.Free_N4_R.NF
Type I
Chart 490, 5 - 7
L764, L765
S.Word
Word norm.
Source and normalization for a 16-bit value, which is to be converted into a
floating-point value. L765 is the normalization; i. e. the output value for input
value 16#4000.
Free_FBs.Free_N2_R.X, Free_FBs.Free_N2_R.NF
Type I
Chart 490, 4 - 5
Parameters and connectors
102 SPA440 angular synchronous control - SIMADYN D - Manual
6DD1903-0BB0 Edition 05.01
Parameter Description Data
L766, L767
S.Float
Float norm.
Source for a floating-point value, which is to be converted into type N2. L767
is the normalization; i. e. the input value for output = 16#4000.
Free_FBs.Float_N2.X, Free_FBs.Float_N2.NF
Type I
Chart 490, 6 - 7
L786 ... L788
S.ADD1 X1 ...
S.ADD1 X3
Source for the summands of a free adder.
Free_FBs.ADD1.X1 ... X3
Value 3000
Type I
Chart 470, 3
L789 ... L791
S.ADD2 X1 ...
S.ADD2 X3
Source for the summands of a free adder.
Free_FBs.ADD2.X1 ... X3
Value 3000
Type I
Chart 470, 3
L792 ... L793
S.SUB1 X1 ...
S.SUB1 X2
Source for the inputs of a free subtractor (X1 – X2).
Free_FBs.SUB1.X1 ... X3
Value 3000
Type I
Chart 470, 3
L794 ... L795
S.SUB2 X1 ...
S.SUB2 X2
Source for the inputs of a free subtractor (X1 – X2).
Free_FBs.SUB2.X1 ... X3
Value 3000
Type I
Chart 470, 3
L796 ... L798
S.MUL1 X1 ...
S.MUL1 X3
Source for the inputs of a free multiplier.
Free_FBs.MUL1.X1 ... X3
Value 3001
Type I
Chart 470, 5
L799 ... L801
S.MUL2 X1 ...
S.MUL2 X3
Source for the inputs of a free multiplier.
Free_FBs.MUL2.X1 ... X3
Value 3001
Type I
Chart 470, 5
L802 ... L803
S.DIV1 X1 ...
S.DIV1 X2
Source for the inputs of a free divider (X1 / X2).
Free_FBs.DIV1.X1 ... X2
Value 3001
Type I
Chart 470, 5
L804 ... L805
S.DIV2 X1 ...
S.DIV2 X2
Source for the inputs of a free divider (X1 / X2).
Free_FBs.DIV2.X1 ... X2
Value 3001
Type I
Chart 470, 5
L810
S.Free_W_B_2
Source for free word-to-binary converter.
Free_FBs.Free_W_B_2.IS
Value 2000
Type I
Chart 490, 1
L812 ... L813
S.DIVI_1 X1 ...
S.DIVI_1 X2
Source for the inputs of a free integer divider (X1 / X2).
Free_FBs.DIVI_1.X1 ... X2
Value 2001
Type I
Chart 470, 1
L814 ... L815
S.MULI_1 X1 ...
S.MULI_1 X2
Source for the inputs of a free integer multiplier.
Free_FBs.MULI_1.X1 ... X2
Value 2001
Type I
Chart 470, 1
L816, L817
S.W_DW1 high
S.W_DW1 low
Source for free word-to-double-word converter.
Free_FBs.WDW1.XWH ... XWL
Value 2000
Type I
Chart 490, 4
L818
S.Integrator X
Source of the input quantity of the freely available integrator.
Free_FBs.Integrator.X
Value 3000
Type I
Chart 480, 5
L819
Integrator LU
Upper limit value of the freely available integrator
Free_FBs.Integrator.LU
Value 1.0
Type R
Chart 480, 6
L820
Integrator LL
Lower limit value of the freely available integrator
Free_FBs.Integrator.LL
Value -1.0
Type R
Chart 480, 6
L821
S.Integrator SV
Source for the setting value of the freely available integrator
Free_FBs.Integrator.SV
Value 3000
Type R
Chart 480, 5
L822
Integrator T
Integration time constant of the freely available integrator
Free_FBs.Integrator.TI
Value 1000 ms
Type SD
Chart 480, 6
Parameters and connectors
SPA440 angular synchronous control - SIMADYN D - Manual 103
6DD1903-0BB0 Edition 05.01
Parameter Description Data
L823
S.Integrator set
Source for the setting signal of the freely available integrator.
Free_FBs.Integrator.S
Value 0000
Type I
Chart 480, 5
L824 , L825
S.Switch3_0 ...
S.Switch3_1
2 sources for the inputs of the 3rd free changeover switch. The output is
selected using L826.
Free_FBs.Switch3.X1 ... X2
Type I
Chart 460, 5
L826
S.Switch3_sel
Source for the signal to a signal.
0: Source(L824) 1: Source(L825)
Free_FBs.Switch3.I
Value 0000
Type I
Chart 460, 5
L827, L828
S.Switch4_0 ...
S.Switch4_1
2 sources for the inputs of the 4th free changeover switch. The output is
selected using L829.
Free_FBs.Switch4.X1 ... X2
Type I
Chart 460, 7
L829
S.Switch4_sel
Source for the signal to a signal.
0: Source(L827) 1: Source(L828)
Free_FBs.Switch4.I
Value 0000
Type I
Chart 460, 7
L830 ... .L832
S.AND_OR1_1 ...
S.AND_OR1_3
Sources of the 1st AND-OR logic in Chart 425. Output is B1830.
Free_FBs.andOR1.I1
Free_FBs.ANDor1.I1 ... I2
Type I
Chart 460, 6
L833 ... .L835
S.AND_OR2_1 ...
S.AND_OR2_3
Sources of the 2nd AND-OR logic in Chart 425. Output is B1833.
Free_FBs.andOR2.I1
Free_FBs.ANDor2.I1 ... I2
Type I
Chart 460, 6
Parameters and connectors
104 SPA440 angular synchronous control - SIMADYN D - Manual
6DD1903-0BB0 Edition 05.01
4.3 Connector list
TC Chart Path Name Significance
0000 30,2 Constant.FALSE.Q BOOL constant FALSE
0001 30,2 Constant.TRUE.Q BOOL constant TRUE
0003 160,7 CONTR.ErrorMask.Q Fault
0004 160,8 CONTR.WarnMaske.Q Alarm
0005 160,7 CONTR.Stoerung.Q No fault
0020 60,8 CONTR.ErrorNAVSslave.Q Error, speed sensing slave
0021 70,7 CONTR.ErrorNAVSMaster.Q Error, speed sensing master
0097 90,3 CONTR.Zus_Lage-RS.Q Position reset
0098 90,3 CONTR.OR_Sync.Q Synchronizing command
0100 90,7 CONTR.SyncFlipFlop.QN Automatic start synchronization, inverse
0101 90,7 CONTR.SyncFlipFlop.Q Automatic start synchronization
0102 100.7 SYNCO2.CmpSynchr.QU Displacement > synchronism threshold (H103)
0103 100.7 SYNCO2.CmpSynchr.QM Displacement within threshold range
0104 100.7 SYNCO2.CmpSynchr.QL Displacement < synchronism threshold (H103) (negative)
0105 100,8 SYNCO2.DisplValid.Q Synchronism reached
0106 100,8 SYNCO2.Displace.DC Displacement determined
0108 90,7 CONTR.Lage_RS.Q Angular controller inhibit
0109 90,7 CONTR.WR-Freigabe.Q Status of the angular controller enable
0110 100,3 SYNCO1.SignNmaster.QU n_slave > 0
0111 100,3 SYNCO1.SignNmaster.QE n_slave = 0
0112 100,3 SYNCO1.SignNmaster.QL n_slave < 0
0113 100,3 SYNCO1.SignNslave.QU n_master > 0
0114 100,3 SYNCO1.SignNslave.QE n_master = 0
0115 100,3 SYNCO1.SignNslave.QL n_master < 0
0116 110,7 SYNCO2.AngleLimit.Q Angular controller at its limit
0134 120,8 SYNCO2.SpeedCtrlLimit.Q Speed controller at its limit
0140 120,5 CONTR.SCONI.Q Speed controller enable
0148 70,7 SYNCO2.Master.SS Position master drive set when synchronized
0149 70,7 CONTR.Puls_SS_Master.Q Pulse extension, position master set when synchronized
0150 60,7 SYNCO2.Slave.SS Slave position set when synchronized
0152 60,4 SYNCO2.CmpSPslave.QL Position, slave < 0
0153 60,4 SYNCO2.CmpSPslave.QE 0 < slave position < threshold
0154 60,4 SYNCO2.CmpSPslave.QU Slave position > threshold (H105)
0160 75,6 SYNCO2.dnErrSlave.Q Speed deviation, slave
0161 75,6 SYNCO2.dnError.Q Speed deviation
0162 75,6 SYNCO2.dnErrMaster.Q Speed deviation, master
0170 520,2 MUX_B.MUX_VersatzReset.Q Output, multiplexer displacement reset
0171 520,4 MUX_B.MUX_TippFreigabe.Q Output, multiplexer jog enable
0172 520,5 MUX_B.MUX_WReglerFreig.Q Output, multiplexer angular controller enable
0173 520,7 MUX_B.MUX_LageReset.Q Output, multiplexer reset position
0174 520,8 MUX_B.MUX_SyncSignal.Q Output, multiplexer synchronizing command
0175 60,2 CONTR.Steuerbits.Q4 Reset position difference
0176 115,3 CONTR.Steuerbits.Q7 Jog enable
0177 90,6 CONTR.Steuerbits.Q1 Inverter enable
0179 90,2 CONTR.Steuerbits.Q2 Sync command
0186 60,2 SYNCO2.Pos_Slave_Abs.SN Slave position negative
0188 70,3 SYNCO2.CmpSPmaster.QL Position master < 0
0189 70,3 SYNCO2.CmpSPmaster.QE 0 < position master threshold (H107)
0190 70,3 SYNCO2.CmpSPmaster.QU Position master > threshold (H107)
0192 75,4 SYNCO2.CMP_nSlave.QU nslave > range
0193 75,5 SYNCO2.CMP_nSlave.QM Slave speed within the permissible range
0194 75,4 SYNCO2.CMP_nSlave.QL nslave < range
0195 75,4 SYNCO2.CMP_nMaster.QU nmaster > range
Parameters and connectors
SPA440 angular synchronous control - SIMADYN D - Manual 105
6DD1903-0BB0 Edition 05.01
TC Chart Path Name Significance
0196 75,5 SYNCO2.CMP_nMaster.QM Master speed in the permissible range
0197 75,4 SYNCO2.CMP_nMaster.QL nmaster < range
0199 70,8 SYNCO2.Pos_Master_Abs.SN Position master negative
0209 60,7 CONTR.Puls_SS_Slave.Q Extended pulse, slave position set when synchronized
0211 72,2 IN_AENC.S_AENC.QF Fault word of the absolute value encoder sensing, slave
0212 72,2 IN_AENC.M_AENC.QF Fault word of the absolute value encoder sensing, master
0300 310,4 IF_Peer.Steuerwort1.Q1 Peer CTW.0
0301 310,4 IF_Peer.Steuerwort1.Q2 Peer CTW.1
0302 310,4 IF_Peer.Steuerwort1.Q3 Peer CTW.2
0303 310,4 IF_Peer.Steuerwort1.Q4 Peer CTW.3
0304 310,4 IF_Peer.Steuerwort1.Q5 Peer CTW.4
0305 310,4 IF_Peer.Steuerwort1.Q6 Peer CTW.5
0306 310,4 IF_Peer.Steuerwort1.Q7 Peer CTW.6
0307 310,4 IF_Peer.Steuerwort1.Q8 Peer CTW.7
0308 310,4 IF_Peer.Steuerwort1.Q9 Peer CTW.8
0309 310,4 IF_Peer.Steuerwort1.Q10 Peer CTW.9
0310 310,4 IF_Peer.Steuerwort1.Q11 Peer CTW.10
0311 310,4 IF_Peer.Steuerwort1.Q12 Peer CTW.11
0312 310,4 IF_Peer.Steuerwort1.Q13 Peer CTW.12
0313 310,4 IF_Peer.Steuerwort1.Q14 Peer CTW.13
0314 310,4 IF_Peer.Steuerwort1.Q15 Peer CTW.14
0315 310,4 IF_Peer.Steuerwort1.Q16 Peer CTW.15
0320 310,4 IF_Peer.invSteuerwort.Q1 Peer CTW.0 inverse
0321 310,4 IF_Peer.invSteuerwort.Q2 Peer CTW.1 inverse
0322 310,4 IF_Peer.invSteuerwort.Q3 Peer CTW.2 inverse
0323 310,4 IF_Peer.invSteuerwort.Q4 Peer CTW.3 inverse
0324 310,4 IF_Peer.invSteuerwort.Q5 Peer CTW.4 inverse
0325 310,4 IF_Peer.invSteuerwort.Q6 Peer CTW.5 inverse
0326 310,4 IF_Peer.invSteuerwort.Q7 Peer CTW.6 inverse
0327 310,4 IF_Peer.invSteuerwort.Q8 Peer CTW.7 inverse
0328 310,4 IF_Peer.invSteuerwort.Q9 Peer CTW.8 inverse
0329 310,4 IF_Peer.invSteuerwort.Q10 Peer CTW.9 inverse
0330 310,4 IF_Peer.invSteuerwort.Q11 Peer CTW.10 inverse
0331 310,4 IF_Peer.invSteuerwort.Q12 Peer CTW.11 inverse
0332 310,4 IF_Peer.invSteuerwort.Q13 Peer CTW.12 inverse
0333 310,4 IF_Peer.invSteuerwort.Q14 Peer CTW.13 inverse
0334 310,4 IF_Peer.invSteuerwort.Q15 Peer CTW.14 inverse
0335 310,4 IF_Peer.invSteuerwort.Q16 Peer CTW.15 inverse
0360 300,7 IF_Peer.Timeout_Peer.Q Timeout peer
0361 300,4 IF_Peer.Empf_PEER.QTS Peer receive initialized
0362 300,4 IF_Peer.Send_PEER.QTS Peer send initialized
0400 400,4 IF_COM.Empf-COM.QTS CB receive initialized
0401 400,4 IF_COM.E_init_inv.Q CB receive not initialized
0402 400,4 IF_COM.Send_COM.QTS CB send initialized
0403 400,4 IF_COM.S_init_inv.Q CB send not initialized
0405 400,7 IF_COM.Timeout_CB.Q Timeout CB
0480 180,8 IF_CU.Zustand2CU.Q1 CU status2.0
0481 180,8 IF_CU.Zustand2CU.Q2 CU status2.1
0482 180,8 IF_CU.Zustand2CU.Q3 CU status2.2
0483 180,8 IF_CU.Zustand2CU.Q4 CU status2.3
0484 180,8 IF_CU.Zustand2CU.Q5 CU status2.4
0485 180,8 IF_CU.Zustand2CU.Q6 CU status2.5
0486 180,8 IF_CU.Zustand2CU.Q7 CU status2.6
0487 180,8 IF_CU.Zustand2CU.Q8 CU status2.7
0488 180,8 IF_CU.Zustand2CU.Q9 CU status2.8
Parameters and connectors
106 SPA440 angular synchronous control - SIMADYN D - Manual
6DD1903-0BB0 Edition 05.01
TC Chart Path Name Significance
0489 180,8 IF_CU.Zustand2CU.Q10 CU status2.9
0490 180,8 IF_CU.Zustand2CU.Q11 CU status2.10
0491 180,8 IF_CU.Zustand2CU.Q12 CU status2.11
0492 180,8 IF_CU.Zustand2CU.Q13 CU status2.12
0493 180,8 IF_CU.Zustand2CU.Q14 CU status2.13
0494 180,8 IF_CU.Zustand2CU.Q15 CU status2.14
0495 180,8 IF_CU.Zustand2CU.Q16 CU status2.15
0500 150,5 IF_CU.Empf_BASE.QTS CU receive initialized
0501 150,5 IF_CU.Send_BASE.QTS CU send initialized
0502 150,5 IF_CU.Empf_BASE.QT CU timeout
0503 150,5 IF_CU.DRIVE.BS CU in operation
0504 150,5 IF_CU.CU_Einit_inv.Q CU receive not initialized
0505 150,5 IF_CU.CU_Sinit_inv.Q CU send not initialized
0506 150,5 IF_CU.CU_Timeout_inv.Q CU no timeout
0507 150,5 IF_CU.CU_RDY_INV.Q CU not operational
0510 180,4 IF_CU.Zustandswort1.Q1 CU status1.0
0511 180,4 IF_CU.Zustandswort1.Q2 CU status1.1
0512 180,4 IF_CU.Zustandswort1.Q3 CU status1.2
0513 180,4 IF_CU.Zustandswort1.Q4 CU status1.3
0514 180,4 IF_CU.Zustandswort1.Q5 CU status1.4
0515 180,4 IF_CU.Zustandswort1.Q6 CU status1.5
0516 180,4 IF_CU.Zustandswort1.Q7 CU status1.6
0517 180,4 IF_CU.Zustandswort1.Q8 CU status1.7
0518 180,4 IF_CU.Zustandswort1.Q9 CU status1.8
0519 180,4 IF_CU.Zustandswort1.Q10 CU status1.9
0520 180,4 IF_CU.Zustandswort1.Q11 CU status1.10
0521 180,4 IF_CU.Zustandswort1.Q12 CU status1.11
0522 180,4 IF_CU.Zustandswort1.Q13 CU status1.12
0523 180,4 IF_CU.Zustandswort1.Q14 CU status1.13
0524 180,4 IF_CU.Zustandswort1.Q15 CU status1.14
0525 180,4 IF_CU.Zustandswort1.Q16 CU status1.15
0526 220,3 IF_CU.Q_ext_Error.Q External fault in control word for CU
0530 180,4 IF_CU.Zustand1_inv.Q1 CU status1.0 inverse
0531 180,4 IF_CU.Zustand1_inv.Q2 CU status1.1 inverse
0532 180,4 IF_CU.Zustand1_inv.Q3 CU status1.2 inverse
0533 180,4 IF_CU.Zustand1_inv.Q4 CU status1.3 inverse
0534 180,4 IF_CU.Zustand1_inv.Q5 CU status1.4 inverse
0535 180,4 IF_CU.Zustand1_inv.Q6 CU status1.5 inverse
0536 180,4 IF_CU.Zustand1_inv.Q7 CU status1.6 inverse
0537 180,4 IF_CU.Zustand1_inv.Q8 CU status1.7 inverse
0538 180,4 IF_CU.Zustand1_inv.Q9 CU status1.8 inverse
0539 180,4 IF_CU.Zustand1_inv.Q10 CU status1.9 inverse
0540 180,4 IF_CU.Zustand1_inv.Q11 CU status1.10 inverse
0541 180,4 IF_CU.Zustand1_inv.Q12 CU status1.11 inverse
0542 180,4 IF_CU.Zustand1_inv.Q13 CU status1.12 inverse
0543 180,4 IF_CU.Zustand1_inv.Q14 CU status1.13 inverse
0544 180,4 IF_CU.Zustand1_inv.Q15 CU status1.14 inverse
0545 180,4 IF_CU.Zustand1_inv.Q16 CU status1.15 inverse
0546 90,8 IF_CU.n-Reg Freigabe.Q Speed controller CU; enabling the speed controller in the basic
drive
0547 560,4 MUX_CU.Mux_Enable_nRegl.Q Output, multiplexer speed controller enable for the basic drive
0550 180,7 IF_CU.SteuerwortSPA440.Q1 CTW from CU.0
0551 180,7 IF_CU.SteuerwortSPA440.Q2 CTW from CU.1
0552 180,7 IF_CU.SteuerwortSPA440.Q3 CTW from CU.2
0553 180,7 IF_CU.SteuerwortSPA440.Q4 CTW from CU.3
Parameters and connectors
SPA440 angular synchronous control - SIMADYN D - Manual 107
6DD1903-0BB0 Edition 05.01
TC Chart Path Name Significance
0554 180,7 IF_CU.SteuerwortSPA440.Q5 CTW from CU.4
0555 180,7 IF_CU.SteuerwortSPA440.Q6 CTW from CU.5
0556 180,7 IF_CU.SteuerwortSPA440.Q7 CTW from CU.6
0557 180,7 IF_CU.SteuerwortSPA440.Q8 CTW from CU.7
0558 180,7 IF_CU.SteuerwortSPA440.Q9 CTW from CU.8
0559 180,7 IF_CU.SteuerwortSPA440.Q10 CTW from CU.9
0560 180,7 IF_CU.SteuerwortSPA440.Q11 CTW from CU.10
0561 180,7 IF_CU.SteuerwortSPA440.Q12 CTW from CU.11
0562 180,7 IF_CU.SteuerwortSPA440.Q13 CTW from CU.12
0563 180,7 IF_CU.SteuerwortSPA440.Q14 CTW from CU.13
0564 180,7 IF_CU.SteuerwortSPA440.Q15 CTW from CU.14
0565 180,7 IF_CU.SteuerwortSPA440.Q16 CTW from CU.15
0570 180,7 IF_CU.STWSPAibit.Q1 CTW from CU.0 inverse
0571 180,7 IF_CU.STWSPAibit.Q2 CTW from CU.1 inverse
0572 180,7 IF_CU.STWSPAibit.Q3 CTW from CU.2 inverse
0573 180,7 IF_CU.STWSPAibit.Q4 CTW from CU.3 inverse
0574 180,7 IF_CU.STWSPAibit.Q5 CTW from CU.4 inverse
0575 180,7 IF_CU.STWSPAibit.Q6 CTW from CU.5 inverse
0576 180,7 IF_CU.STWSPAibit.Q7 CTW from CU.6 inverse
0577 180,7 IF_CU.STWSPAibit.Q8 CTW from CU.7 inverse
0578 180,7 IF_CU.STWSPAibit.Q9 CTW from CU.8 inverse
0579 180,7 IF_CU.STWSPAibit.Q10 CTW from CU.9 inverse
0580 180,7 IF_CU.STWSPAibit.Q11 CTW from CU.10 inverse
0581 180,7 IF_CU.STWSPAibit.Q12 CTW from CU.11 inverse
0582 180,7 IF_CU.STWSPAibit.Q13 CTW from CU.12 inverse
0583 180,7 IF_CU.STWSPAibit.Q14 CTW from CU.13 inverse
0584 180,7 IF_CU.STWSPAibit.Q15 CTW from CU.14 inverse
0585 180,7 IF_CU.STWSPAibit.Q16 CTW from CU.15 inverse
0601 53,4 T400_EA.BinOut.Q1 Terminal 46
0602 53,4 T400_EA.BinOut.Q2 Terminal 47
0603 53,8 T400_EA.BinOut.Q3 Terminal 48
0604 53,8 T400_EA.BinOut.Q4 Terminal 49
0607 52,8 T400_EA.BinOut.Q7 Coarse pulse 1 (terminal 84)
0608 52,8 T400_EA.BinOut.Q8 Coarse pulse 2 (terminal 65)
0610 52,4 T400_EA.BinInput.Q1 BinInput 1 (terminal 53)
0611 52,4 T400_EA.BinInput.Q2 BinInput 2 (terminal 54)
0612 52,4 T400_EA.BinInput.Q3 BinInput 3 (terminal 55)
0613 52,4 T400_EA.BinInput.Q4 BinInput 4 (terminal 56)
0614 52,4 T400_EA.BinInput.Q5 BinInput 5 (terminal 57)
0615 52,4 T400_EA.BinInput.Q6 BinInput 6 (terminal 58)
0616 52,4 T400_EA.BinInput.Q7 BinInput 7 (terminal 59)
0617 52,4 T400_EA.BinInput.Q8 BinInput 8 (terminal 60)
0620 52,4 T400_EA.BinInput.Q9 BinInput 1 (terminal 53) inverse
0621 52,4 T400_EA.BinInput.Q10 BinInput 2 (terminal 54) inverse
0622 52,4 T400_EA.BinInput.Q11 BinInput 3 (terminal 55) inverse
0623 52,4 T400_EA.BinInput.Q12 BinInput 4 (terminal 56) inverse
0624 52,4 T400_EA.BinInput.Q13 BinInput 5 (terminal 57) inverse
0625 52,4 T400_EA.BinInput.Q14 BinInput 6 (terminal 58) inverse
0626 52,4 T400_EA.BinInput.Q15 BinInput 7 (terminal 59) inverse
0627 52,4 T400_EA.BinInput.Q16 BinInput 8 (terminal 60) inverse
0631 53,4 T400_EA.Klemme46inv.Q Terminal 46 inverse
0632 53,4 T400_EA.Klemme47inv.Q Terminal 47 inverse
0633 53,8 T400_EA.Klemme48inv.Q Terminal 48 inverse
0634 53,8 T400_EA.Klemme49inv.Q Terminal 49 inverse
0635 52,8 T400_EA.Klemme84inv.Q Coarse pulse 1 (terminal 84) inverse
Parameters and connectors
108 SPA440 angular synchronous control - SIMADYN D - Manual
6DD1903-0BB0 Edition 05.01
TC Chart Path Name Significance
0636 52,8 T400_EA.Klemme65inv.Q Coarse pulse 2 (terminal 65) inverse
0650 530,3 MUX_CU.Mux_STW1_B0.Q Output multiplexer, control word1 bit 0
0651 530,3 MUX_CU.Mux_STW1_B1.Q Output multiplexer, control word1 bit1
0652 530,3 MUX_CU.Mux_STW1_B2.Q Output multiplexer, control word1 bit2
0653 530,3 MUX_CU.Mux_STW1_B3.Q Output multiplexer, control word1 bit3
0654 530,7 MUX_CU.Mux_STW1_B4.Q Output multiplexer, control word1 bit4
0655 530,7 MUX_CU.Mux_STW1_B5.Q Output multiplexer, control word1 bit5
0656 530,7 MUX_CU.Mux_STW1_B6.Q Output multiplexer, control word1 bit6
0657 530,7 MUX_CU.Mux_STW1_B7.Q Output multiplexer, control word1 bit7
0658 540,3 MUX_CU.Mux_STW1_B8.Q Output multiplexer, control word1 bit8
0659 540,3 MUX_CU.Mux_STW1_B9.Q Output multiplexer, control word1 bit9
0660 540,3 MUX_CU.Mux_STW1_B10.Q Output multiplexer, control word1 bit10
0661 540,3 MUX_CU.Mux_STW1_B11.Q Output multiplexer, control word1 bit11
0662 540,7 MUX_CU.Mux_STW1_B12.Q Output multiplexer, control word1 bit12
0663 540,7 MUX_CU.Mux_STW1_B13.Q Output multiplexer ,control word1 bit13
0664 540,7 MUX_CU.Mux_STW1_B14.Q Output multiplexer, control word1 bit14
0665 540,7 MUX_CU.Mux_STW1_B15.Q Output multiplexer, control word1 bit15
0698 460,2 Free_FBs.RS_FF2.Q RSFF1_Q (output, free RS flipflop)
0699 460,2 Free_FBs.RS_FF2.QN RSFF1_QN (inv. output free RS flipflop)
0700 460,2 Free_FBs.AND1.Q AND1_Q (output, free AND logic gate)
0703 460,5 Free_FBs.AND2.Q AND2_Q (output, free AND logic gate)
0708 490,8 Free_FBs.Edge1.QN Edge detector: falling edge identified
0709 490,8 Free_FBs.Edge1.QP Edge detector: rising edge identified
0710 460,2 Free_FBs.OR1.Q Q_OR1 (output, free OR logic gate)
0713 460,5 Free_FBs.OR2.Q Q_OR2 (output, free OR logic gate)
0728 490,8 Free_FBs.OnDelay1.Q Output, power-on delay
0730 490,8 Free_FBs.OffDelay1.Q Output, power-off delay
0732 460,8 Free_FBs.Not1.Q Not1_Q (output, free inverter)
0733 460,8 Free_FBs.Not2.Q Not2_Q (output, free inverter)
0734 460,5 Free_FBs.RS_FF1.Q RSFF2_Q (output, free RS flipflop)
0735 460,5 Free_FBs.RS_FF1.QN RSFF2_QN (inv. output free RS flipflop)
0743 480,8 Free_FBs.Compare.QE Output, free comparator: X = Y
0744 480,8 Free_FBs.Compare.QU Output, free comparator: X > Y
0745 480,8 Free_FBs.Compare.QL Output, free comparator: X < Y
0746 480,8 Free_FBs.Begrenzer.QU Output, free limiter: upper limit reached
0748 480,8 Free_FBs.Begrenzer.QL Output, free limiter: lower limit reached
0749 480,3 Free_FBs.Comp2.QU Output, free comparator: input quantity > range
0750 480,3 Free_FBs.Comp2.QM Output, free comparator: input quantity in range
0751 480,3 Free_FBs.Comp2.QL Output, free comparator: input quantity < range
0760 490,2 Free_FBs.Free_W_B_1.Q1 FreeWord_0
0761 490,2 Free_FBs.Free_W_B_1.Q2 FreeWord_1
0762 490,2 Free_FBs.Free_W_B_1.Q3 FreeWord_2
0763 490,2 Free_FBs.Free_W_B_1.Q4 FreeWord_3
0764 490,2 Free_FBs.Free_W_B_1.Q5 FreeWord_4
0765 490,2 Free_FBs.Free_W_B_1.Q6 FreeWord_5
0766 490,2 Free_FBs.Free_W_B_1.Q7 FreeWord_6
0767 490,2 Free_FBs.Free_W_B_1.Q8 FreeWord_7
0768 490,2 Free_FBs.Free_W_B_1.Q9 FreeWord_8
0769 490,2 Free_FBs.Free_W_B_1.Q10 FreeWord_9
0770 490,2 Free_FBs.Free_W_B_1.Q11 FreeWord_10
0771 490,2 Free_FBs.Free_W_B_1.Q12 FreeWord_11
0772 490,2 Free_FBs.Free_W_B_1.Q13 FreeWord_12
0773 490,2 Free_FBs.Free_W_B_1.Q14 FreeWord_13
0774 490,2 Free_FBs.Free_W_B_1.Q15 FreeWord_14
0775 490,2 Free_FBs.Free_W_B_1.Q16 FreeWord_15
Parameters and connectors
SPA440 angular synchronous control - SIMADYN D - Manual 109
6DD1903-0BB0 Edition 05.01
TC Chart Path Name Significance
0800 420,3 IF_COM.Steuerwort1.Q1 CB control W1.0
0801 420,3 IF_COM.Steuerwort1.Q2 CB control W1.1
0802 420,3 IF_COM.Steuerwort1.Q3 CB control W1.2
0803 420,3 IF_COM.Steuerwort1.Q4 CB control W1.3
0804 420,3 IF_COM.Steuerwort1.Q5 CB control W1.4
0805 420,3 IF_COM.Steuerwort1.Q6 CB control W1.5
0806 420,3 IF_COM.Steuerwort1.Q7 CB control W1.6
0807 420,3 IF_COM.Steuerwort1.Q8 CB control W1.7
0808 420,3 IF_COM.Steuerwort1.Q9 CB control W1.8
0809 420,3 IF_COM.Steuerwort1.Q10 CB control W1.9
0810 420,3 IF_COM.Steuerwort1.Q11 CB control W1.10
0811 420,3 IF_COM.Steuerwort1.Q12 CB control W1.11
0812 420,3 IF_COM.Steuerwort1.Q13 CB control W1.12
0813 420,3 IF_COM.Steuerwort1.Q14 CB control W1.13
0814 420,3 IF_COM.Steuerwort1.Q15 CB control W1.14
0815 420,3 IF_COM.Steuerwort1.Q16 CB control W1.15
0817 480,7 Free_FBs.Integrator.QU Free integrator at the upper limit value
0818 480,7 Free_FBs.Integrator.QL Free integrator at the lower limit value
0820 420,7 IF_COM.Steuerwort2.Q1 CB control W2.0
0821 420,7 IF_COM.Steuerwort2.Q2 CB control W2.1
0822 420,7 IF_COM.Steuerwort2.Q3 CB control W2.2
0823 420,7 IF_COM.Steuerwort2.Q4 CB control W2.3
0824 420,7 IF_COM.Steuerwort2.Q5 CB control W2.4
0825 420,7 IF_COM.Steuerwort2.Q6 CB control W2.5
0826 420,7 IF_COM.Steuerwort2.Q7 CB control W2.6
0827 420,7 IF_COM.Steuerwort2.Q8 CB control W2.7
0828 420,7 IF_COM.Steuerwort2.Q9 CB control W2.8
0829 420,7 IF_COM.Steuerwort2.Q10 CB control W2.9
0830 420,7 IF_COM.Steuerwort2.Q11 CB control W2.10
0831 420,7 IF_COM.Steuerwort2.Q12 CB control W2.11
0832 420,7 IF_COM.Steuerwort2.Q13 CB control W2.12
0833 420,7 IF_COM.Steuerwort2.Q14 CB control W2.13
0834 420,7 IF_COM.Steuerwort2.Q15 CB control W2.14
0835 420,7 IF_COM.Steuerwort2.Q16 CB control W2.15
0840 420,3 IF_COM.STW1_inv.Q1 CB CTW1.0 inverse
0841 420,3 IF_COM.STW1_inv.Q2 CB CTW1.1 inverse
0842 420,3 IF_COM.STW1_inv.Q3 CB CTW1.2 inverse
0843 420,3 IF_COM.STW1_inv.Q4 CB CTW1.3 inverse
0844 420,3 IF_COM.STW1_inv.Q5 CB CTW1.4 inverse
0845 420,3 IF_COM.STW1_inv.Q6 CB CTW1.5 inverse
0846 420,3 IF_COM.STW1_inv.Q7 CB CTW1.6 inverse
0847 420,3 IF_COM.STW1_inv.Q8 CB CTW1.7 inverse
0848 420,3 IF_COM.STW1_inv.Q9 CB CTW1.8 inverse
0849 420,3 IF_COM.STW1_inv.Q10 CB CTW1.9 inverse
0850 420,3 IF_COM.STW1_inv.Q11 CB CTW1.10 inverse
0851 420,3 IF_COM.STW1_inv.Q12 CB CTW1.11 inverse
0852 420,3 IF_COM.STW1_inv.Q13 CB CTW1.12 inverse
0853 420,3 IF_COM.STW1_inv.Q14 CB CTW1.13 inverse
0854 420,3 IF_COM.STW1_inv.Q15 CB CTW1.14 inverse
0855 420,3 IF_COM.STW1_inv.Q16 CB CTW1.15 inverse
0860 420,7 IF_COM.STW2_inv.Q1 CB CTW2.0 inverse
0861 420,7 IF_COM.STW2_inv.Q2 CB CTW2.1 inverse
0862 420,7 IF_COM.STW2_inv.Q3 CB CTW2.2 inverse
0863 420,7 IF_COM.STW2_inv.Q4 CB CTW2.3 inverse
0864 420,7 IF_COM.STW2_inv.Q5 CB CTW2.4 inverse
Parameters and connectors
110 SPA440 angular synchronous control - SIMADYN D - Manual
6DD1903-0BB0 Edition 05.01
TC Chart Path Name Significance
0865 420,7 IF_COM.STW2_inv.Q6 CB CTW2.5 inverse
0866 420,7 IF_COM.STW2_inv.Q7 CB CTW2.6 inverse
0867 420,7 IF_COM.STW2_inv.Q8 CB CTW2.7 inverse
0868 420,7 IF_COM.STW2_inv.Q9 CB CTW2.8 inverse
0869 420,7 IF_COM.STW2_inv.Q10 CB CTW2.9 inverse
0870 420,7 IF_COM.STW2_inv.Q11 CB CTW2.10 inverse
0871 420,7 IF_COM.STW2_inv.Q12 CB CTW2.11 inverse
0872 420,7 IF_COM.STW2_inv.Q13 CB CTW2.12 inverse
0873 420,7 IF_COM.STW2_inv.Q14 CB CTW2.13 inverse
0874 420,7 IF_COM.STW2_inv.Q15 CB CTW2.14 inverse
0875 420,7 IF_COM.STW2_inv.Q16 CB CTW2.15 inverse
1810 490,2 Free_FBs.Free_W_B_2.Q1 FreeWord2_0
1811 490,2 Free_FBs.Free_W_B_2.Q2 FreeWord2_1
1812 490,2 Free_FBs.Free_W_B_2.Q3 FreeWord2_2
1813 490,2 Free_FBs.Free_W_B_2.Q4 FreeWord2_3
1814 490,2 Free_FBs.Free_W_B_2.Q5 FreeWord2_4
1815 490,2 Free_FBs.Free_W_B_2.Q6 FreeWord2_5
1816 490,2 Free_FBs.Free_W_B_2.Q7 FreeWord2_6
1817 490,2 Free_FBs.Free_W_B_2.Q8 FreeWord2_7
1818 490,2 Free_FBs.Free_W_B_2.Q9 FreeWord2_8
1819 490,2 Free_FBs.Free_W_B_2.Q10 FreeWord2_9
1820 490,2 Free_FBs.Free_W_B_2.Q11 FreeWord2_10
1821 490,2 Free_FBs.Free_W_B_2.Q12 FreeWord2_11
1822 490,2 Free_FBs.Free_W_B_2.Q13 FreeWord2_12
1823 490,2 Free_FBs.Free_W_B_2.Q14 FreeWord2_13
1824 490,2 Free_FBs.Free_W_B_2.Q15 FreeWord2_14
1825 490,2 Free_FBs.Free_W_B_2.Q16 FreeWord2_15
1830 460,8 Free_FBs.andOR1.Q AND_OR1 (output, AND-OR logic)
1833 460,8 Free_FBs.andOR2.Q AND_OR2 (output, AND-OR logic)
2000 30,2 Constant.INT_Const.Y7 Constant, word 0
2001 30,2 Constant.INT_Const.Y8 Constant, word 1
2002 30,2 Constant.WORD_Const.Y5 Constant, word 16#FFFF
2003 160,6 CONTR.ErrorMask.QS Error status (for the basic drive)
2004 160,8 CONTR.WarnMaske.QS Alarm status (for the basic drive)
2005 40,7 CONTR.Statuswort.QS Status word, angular synchronism
2006 160,4 CONTR.Fehlerzustand.QS Error bits
2007 160,6 CONTR.Warnzustand.QS Alarm bits
2010 60,4 SYNCO2.SlavePulse.Y Encoder pulses, slave
2011 70,5 SYNCO2.MasterPulse.Y Encoder pulses, master
2020 60,7 SYNCO2.Slave.YFC Error code, slave-speed sensing
2021 70,7 SYNCO2.Master.YFC Error code, master
2025 52,8 T400_EA.Invert_Bin.QS Status binary input (binary inputs and inverse values)
2026 220,4 IF_CU.Steuerwort1.QS Control word1 CU
2027 220,8 IF_CU.Steuerwort2.QS Control word2 CU
2096 100.8 SYNCO2.Displace.FC Error identification, displacement calculation
2246 180,2 IF_CU.Q_ZWort1.Y Status word 1CU
2303 570,3 MUX_Peer.MUX_Peer_W1.Y Output, multiplexer for 1st PZD send peer-to-peer
2306 570,2 MUX_Peer.Festwert_Peer.Y Fixed value for PZD1 send peer-to-peer
2327 310,8 IF_Peer.Zustandswort1.QS Status word, peer
2329 300,7 IF_Peer.Peer_Empf_W1.Y PZD1 from peer
2330 300,7 IF_Peer.PZD2_PZD3.YWL PZD2 from peer
2331 300,7 IF_Peer.PZD2_PZD3.YWH PZD3 from peer
2332 300,7 IF_Peer.PZD4_PZD5.YWL PZD4 from peer
2333 300,7 IF_Peer.PZD4_PZD5.YWH PZD5 from peer
2346 310,2 IF_Peer.STW_NOP.Y Control word peer
Parameters and connectors
SPA440 angular synchronous control - SIMADYN D - Manual 111
6DD1903-0BB0 Edition 05.01
TC Chart Path Name Significance
2442 560,4 MUX_CB.MUX_COM_W1.Y Output, multiplexer word1 CB
2443 560,2 MUX_CB.Festwerte_CB.Y1 Fixed value for CB word 1
2444 560,7 MUX_CB.MUX_COM_W4.Y Output, multiplexer word4 CB
2445 560,6 MUX_CB.Festwerte_CB.Y2 Fixed value for CB word 4
2460 420,2 IF_COM.Verteil2.Y3 CB CTW1 (control word1 from CB)
2461 420,6 IF_COM.Verteil2.Y4 CB CTW2 (control word2 from CB)
2466 430,4 IF_COM.Zustandswort1.QS Status word1 CB
2467 430,8 IF_COM.Zustandswort2.QS Status word2 CB
2500 230,4 IF_CU.Sollwert_W2.Y Setpoint1 CU N2
2502 230,4 IF_CU.Sollwert_W3.Y Setpoint2 CU N2
2504 230,4 IF_CU.Sollwert_W5.Y Setpoint3 CU N2
2506 230,4 IF_CU.Sollwert_W6.Y Setpoint4 CU N2
2508 230,4 IF_CU.Sollwert_W8.Y Setpoint5 CU N2
2509 230,5 IF_CU.DW_W_CU.YWL Setpoint6 low CU
2510 230,5 IF_CU.DW_W_CU.YWH Setpoint6 high CU
2571 170,7 IF_CU.Verteilung.Y1 PZD1 from CU
2572 170,7 IF_CU.Verteilung.Y2 PZD2 from CU
2573 170,7 IF_CU.Verteilung.Y3 PZD3 from CU
2574 170,7 IF_CU.Verteilung.Y4 PZD4 from CU
2575 170,7 IF_CU.Verteilung.Y5 PZD5 from CU
2576 170,7 IF_CU.Verteilung.Y6 PZD6 from CU
2577 170,7 IF_CU.Verteilung.Y7 PZD7 from CU
2578 170,7 IF_CU.Verteilung.Y8 PZD8 from CU
2579 170,7 IF_CU.VerteilCU_CB.Y1 PZD9 from CU
2580 170,7 IF_CU.VerteilCU_CB.Y2 PZD10 from CU
2581 170,7 IF_CU.VerteilCU_CB.Y3 PZD11 from CU
2582 170,7 IF_CU.VerteilCU_CB.Y4 PZD12 from CU
2583 170,7 IF_CU.VerteilCU_CB.Y5 PZD13 from CU
2584 170,7 IF_CU.VerteilCU_CB.Y6 PZD14 from CU
2605 490,6 Free_FBs.DW_W1.YWH DW_W1 high (output, double word Þ
ÞÞ
Þ word converter high word)
2606 490,6 Free_FBs.DW_W1.YWL DW_W1 low (output, double word Þ
ÞÞ
Þ word converter low word)
2607 470,2 Free_FBs.ADDI_1.Y ADDI_Y (output, free adder type int)
2608 470,2 Free_FBs.SUBI_1.Y SUBI_Y (output, free subtractor type int)
2647 490,5 Free_FBs.R_I1.Y R_I1 (output, floating-point Þ
ÞÞ
Þ integer converter)
2706 450,7 IF_USS.USS_Dummy.Y1 PZD1 USS
2707 450,7 IF_USS.USS_Dummy.Y2 PZD2 USS
2766 490,8 Free_FBs.Float_N2.Y R_N2 (output, floating-point Þ
ÞÞ
Þ N2 converter)
2801 410,7 IF_COM.Verteilung.Y1 PZD1 from CB
2802 410,7 IF_COM.Verteilung.Y2 PZD2 from CB
2803 410,7 IF_COM.Verteilung.Y3 PZD3 from CB
2804 410,7 IF_COM.Verteilung.Y4 PZD4 from CB
2805 410,7 IF_COM.Verteilung.Y5 PZD5 from CB
2806 410,7 IF_COM.Verteilung.Y6 PZD6 from CB
2807 410,7 IF_COM.Verteilung.Y7 PZD7 from CB
2808 410,7 IF_COM.Verteilung.Y8 PZD8 from CB
2809 410,7 IF_COM.Verteil2.Y1 PZD9 from CB
2810 410,7 IF_COM.Verteil2.Y2 PZD10 from CB
2812 470,2 Free_FBs.DIVI_1.Y DIVI_1 Y (output, free divider type int)
2813 470,2 Free_FBs.DIVI_1.MOD DIVI_1 (modulo output, free divider type int)
2814 470,2 Free_FBs.MULI_1.Y MULI_1Y (output, free multiplier type int)
2822 440,3 IF_COM.Istwert_W2.Y Actual value1 CB
2823 440,3 IF_COM.Istwert_W3.Y Actual value2 CB
2824 440,3 IF_COM.Istwert_W5.Y Actual value3 CB
2825 440,3 IF_COM.Istwert_W6.Y Actual value4 CB
2827 440,7 IF_COM.Ist_RI.Y Actual value R_I CB
Parameters and connectors
112 SPA440 angular synchronous control - SIMADYN D - Manual
6DD1903-0BB0 Edition 05.01
TC Chart Path Name Significance
2828 440,4 IF_COM.Ist_DW_W.YWH Actual value5 high CB
2829 440,4 IF_COM.Ist_DW_W.YWL Actual value5 low CB
2960 30,6 Constant.INT_Const.Y1 Fixed value I1 (16 bit, signed)
2961 30,6 Constant.INT_Const.Y2 Fixed value I2
2962 30,6 Constant.INT_Const.Y3 Fixed value I3
2963 30,6 Constant.INT_Const.Y4 Fixed value I4
2964 30,6 Constant.INT_Const.Y5 Fixed value I5
2965 30,6 Constant.INT_Const.Y6 Fixed value I6
2971 30,6 Constant.WORD_Const.Y1 Fixed value W1 (16 bit, unsigned)
2972 30,6 Constant.WORD_Const.Y2 Fixed value W2
2973 30,6 Constant.WORD_Const.Y3 Fixed value W3
2974 30,6 Constant.WORD_Const.Y4 Fixed value W4
3000 30,2 Constant.Float_Const.Y1 Floating-point constant 0.0
3001 30,2 Constant.Float_Const.Y2 Floating-point constant 1.0
3002 30,2 Constant.Float_Const.Y3 Floating-point constant 2.0
3003 30,2 Constant.Float_Const.Y4 Floating-point constant 0.5
3004 30,2 Constant.Float_Const.Y5 Floating-point constant -1.0
3012 60,5 SYNCO2.SlaveNnenn.Y Rated speed, slave
3013 70,4 SYNCO2.MasterNnenn.Y Rated speed, master
3014 60,8 SYNCO2.n_Slave.Y Speed, slave
3015 60,7 SYNCO2.Master.Y Speed, master
3016 60,8 SYNCO2.Slave.YP Position, slave
3017 60,8 SYNCO2.Master.YP Position, master
3018 60,8 SYNCO2.Slave.Y Speed, slave normalized
3019 60,7 SYNCO2.Master.Y Speed, master normalized
3040 500,3 MUXsoll.MUX_Uebersetzung.Y Output multiplexer ratio
3043 30,7 SYNCO1.CONST_UEB.Y1 Fixed value ratio
3044 80,4 SYNCO1.UE4PRO.Y Ratio with supplementary ratio and relative ratio
3047 80,1 SYNCO1.CONST_UEB.Y3 Fixed value supplementary ratio
3048 500,5 MUXsoll.MUX_RelUebersetz.Y Output multiplexer relative ratio
3049 30,7 SYNCO1.CONST_UEB.Y2 Fixed value relative ratio
3050 500,4 MUXsoll.MUX_Versatz.Y Output multiplexer displacement setpoint
3051 110,2 SYNCO2.Q_Versatz.Y Displacement setpoint before the ramp-function generator
3056 110,4 SYNCO2.HLG_Versatz.Y Displacement setpoint after the ramp-function generator
3060 80,2 SYNCO1.CONST_UEB.Y4 Value for ratio (without rel. ratio; without supplementary ratio)
3061 80,2 SYNCO1.CONST_UEB.Y5 Value for relative ratio
3062 100,7 SYNCO1.DREFSS.Y Direction of rotation-dependent displacement
3066 30,7 SYNCO1.FixVersatz.Y Fixed value displacement
3070 500,8 MUXsoll.MUX_Leitsollwert.Y Output, multiplexer master setpoint
3073 30,7 SYNCO1.fixLeitsoll.Y Fixed value, master setpoint
3074 115,7 SYNCO1.SREFSM.Y Master setpoint, smoothed
3076 115,2 SYNCO1.Leitsollwert.Y Master setpoint
3080 500,7 MUXsoll.MUX_BAusgleich.Y Output, multiplexer inertia compensation
3085 120,8 SYNCO1.DT1_BAusgleich.Y DT1 (n_set)
3091 100,8 SYNCO2.Displace.CVP Correction pulses (to correct the position difference)
3094 100,8 SYNCO2.Displace.DV Displacement actual value
3095 100,8 SYNCO2.Displace.DVD Displacement - position difference
3117 60,8 SYNCO2.Slave.YDP Inverse position difference
3118 60,8 SYNCO2.YDP_neg.Y Position difference
3120 110,8 SYNCO2.PT_Angle.Y Angular controller output
3121 110,5 SYNCO2.AngleControl.YE System deviation of the angular controller
3122 110,7 SYNCO2.AngleControl.YI I component of the angular controller
3123 110,4 SYNCO2.AngleKP.Y KP angular controller
3124 60,8 SYNCO2.LageDifferenz.Y Position difference smoothed
3129 115,7 SYNCO1.HLG_Speed.Y speed septpoint after the ramp-function generator
Parameters and connectors
SPA440 angular synchronous control - SIMADYN D - Manual 113
6DD1903-0BB0 Edition 05.01
TC Chart Path Name Significance
3130 115,2 CONTR.TIPPEN.Y Jog setpoint (fixed value)
3136 115,4 SYNCO1.SREFR.Y Setpoint speed, slave
3137 120,2 SYNCO2.NsollLimit.Y Speed setpoint limited
3145 120,6 SYNCO2.SpeedControl.YI Integral component of the speed controller
3146 60,8 SYNCO2.NslaveFilter.Y Speed, slave smoothed
3150 120,8 SYNCO2.SpeedControl.Y Speed controller output
3151 120,4 SYNCO2.SpeedControl.YE Speed controller system deviation
3152 115,8 SYNCO2.SetpSwitch.Y Setpoint for the basic drive (n_set or Mset)
3153 120,7 SYNCO2.SpeedKP.Y KP speed controller
3176 115,7 SYNCO1.Tippen-Schalter.Y Jog setpoint
3186 60,2 SYNCO2.Pos_Slave_Abs.Y Absolute position actual value of the slave
3199 70,8 SYNCO2.Pos_Master_Abs.Y Absolute value (position, master)
3223 50,6 T400_EA.AE1_FILT.Y AE1 smoothed
3225 50,6 T400_EA.AE2_FILT.Y AE2 smoothed
3227 50,6 T400_EA.AE3_FILT.Y AE3 smoothed
3229 50,6 T400_EA.AE4_FILT.Y AE4 smoothed
3234 100,5 SYNCO2.Displ_Ist.Y Differential position value to determine the displacement
3304 570,6 MUX_Peer.MUX_Peer_W2.Y Output multiplexer for 1st floating-point value, send peer
3305 570,8 MUX_Peer.MUX_Peer_W3.Y Output multiplexer for 2nd floating-point value, send peer
3330 300,3 IF_Peer.PZD2_PZD3.YR Peer float 1 (receive)
3332 300,3 IF_Peer.PZD4_PZD5.YR Peer float 2 (receive)
3446 550,3 MUX_CB.MUX_CB_W2.Y Output, multiplexer word2 CB
3447 550,5 MUX_CB.MUX_CB_W3.Y Output, multiplexer word3 CB
3448 550,6 MUX_CB.MUX_CB_W5.Y Output, multiplexer word5 CB
3449 550,8 MUX_CB.MUX_CB_W6.Y Output, multiplexer word6 CB
3450 410,7 IF_COM.Sollwert_W2.Y Setpoint1 CB
3452 410,7 IF_COM.Sollwert_W3.Y Setpoint2 CB
3454 410,7 IF_COM.Sollwert_W5.Y Setpoint3 CB
3456 410,7 IF_COM.Sollwert_W6.Y Setpoint4 CB
3551 170,7 IF_CU.Istwert_W2.Y Actual value1 CU
3553 170,7 IF_CU.Istwert_W3.Y Actual value2 CU
3555 170,7 IF_CU.Istwert_W5.Y Actual value3 CU
3570 170,7 IF_CU.CU_DI_R.Y CU DW_R (double word as floating-point value)
3589 170,7 IF_CU.CU_N4_R.Y CU N4_R (double word in the N4 normalization Þ
ÞÞ
Þ floating-point)
3591 170,7 IF_CU.CU_I_R.Y CU actual value_I_R
3604 490,5 Free_FBs.I_R1.Y I_R1 (output, integer Þ
ÞÞ
Þ floating-point converter)
3618 510,4 MUX_AnaOut.MUX_DAC_1.Y Output, multiplexer DAC1
3619 510,7 MUX_AnaOut.MUX_DAC_2.Y Output, multiplexer DAC2
3666 51,3 T400_EA.Filt_DAC1.Y Analog output 1
3667 51,3 T400_EA.Filt_DAC2.Y Analog output 2
3706 460,2 Free_FBs.Switch1.Y Switch1 (output, free changeover switch)
3716 460,4 Free_FBs.Switch2.Y Switch2 (output, free changeover switch)
3740 480,2 Free_FBs.FreePT1.Y PT1_out (output, free lowpass filter)
3742 480,5 Free_FBs.SperrFilt.Y Output, bandstop
3747 480,8 Free_FBs.Begrenzer.Y Output, free limiter
3753 480,3 Free_FBs.Kennlin.Y Output, free 2-point characteristic
3763 490,7 Free_FBs.Free_N4_R.Y DW_float (output, double word Þ
ÞÞ
Þ floating-point converter)
3765 490,5 Free_FBs.Free_N2_R.Y Word_float (output, word Þ
ÞÞ
Þ floating-point converter)
3786 470,4 Free_FBs.ADD1.Y ADD_1 (output, free adder)
3789 470,4 Free_FBs.ADD2.Y ADD_2 (output, free adder)
3792 470,2 Free_FBs.SUB1.Y SUB_1 (output, free subtractor)
3794 470,4 Free_FBs.SUB2.Y SUB_2 (output, free subtractor)
3796 470,6 Free_FBs.MUL1.Y MUL_1 (output, free multiplier)
3799 470,6 Free_FBs.MUL2.Y MUL_2 (output, free multiplier)
3802 470,6 Free_FBs.DIV1.Y DIV_1 (output, free divider)
Parameters and connectors
114 SPA440 angular synchronous control - SIMADYN D - Manual
6DD1903-0BB0 Edition 05.01
TC Chart Path Name Significance
3804 470,6 Free_FBs.DIV2.Y DIV_2 (output, free divider)
3818 410,7 IF_COM.Sollw_IR.Y Setpoint I_R CB
3819 480,7 Free_FBs.Integrator.Y Output, free integrator
3821 410,7 IF_COM.Sollw_N4.Y Setpoint DW CB
3825 460,6 Free_FBs.Switch3.Y Switch3 (output, free changeover switch)
3827 460,8 Free_FBs.Switch4.Y Switch4 (output, free changeover switch)
3990 30,5 Constant.Const_Float.Y1 Fixed value1 R1 (floating-point)
3991 30,5 Constant.Const_Float.Y2 Fixed value1 R2 (floating-point)
3992 30,5 Constant.Const_Float.Y3 Fixed value1 R3 (floating-point)
3993 30,5 Constant.Const_Float.Y4 Fixed value1 R4 (floating-point)
3994 30,5 Constant.Const_Float.Y5 Fixed value1 R5 (floating-point)
3995 30,5 Constant.Const_Float.Y6 Fixed value1 R6 (floating-point)
3996 30,5 Constant.Const_Float.Y7 Fixed value1 R7 (floating-point)
3997 30,5 Constant.Const_Float.Y8 Fixed value1 R8 (floating-point)
4114 72,2 IN_AENC.S_AENC.Y Speed actual value AENC1, slave
4115 72,2 IN_AENC.S_AENC.YP Position counter AENC1, slave
4116 72,2 IN_AENC.S_AENC.YRC Revolution counter AENC1, slave
4125 72,2 IN_AENC.S_POS.Y Position actual value AENC1, slave [length units]
4214 72,2 IN_AENC.M_AENC.Y Speed actual value AENC2, master
4215 72,2 IN_AENC.M_AENC.YP Position counter AENC2, master
4216 72,2 IN_AENC.M_AENC.YRC Revolution counter AENC2, master
4225 72,2 IN_AENC.M_POS.Y Position actual value AENC2, master [length units]
4300 72,5 IN_AENC.DELTA_Pos.Y Differential position master – slave [length units]
5000 30,2 Constant.DINT_Const.Y8 Double word, constant 0
5001 30,2 Constant.DINT_Const.Y7 Double word, constant 1
5086 80,4 Constant.DINT_Const.Y1 Fixed value fine ratio, numerator
5087 80,4 Constant.DINT_Const.Y2 Fixed value fine ratio, denominator
5088 80,7 SYNCO1.FEIN_NM.Y Ratio, numerator
5089 80,7 SYNCO1.FEIN_DN.Y Ratio, denominator
5330 300,7 IF_Peer.PZD2_PZD3.YDI Peer DW1 (receive)
5332 300,7 IF_Peer.PZD4_PZD5.YDI Peer DW2 (receive)
5567 170,6 IF_CU.W_DW.Y Output of the word Þ
ÞÞ
Þ double word conversion for PZD from the
CU
5814 470,2 Free_FBs.MULI_1.YDI MULI_1 (double word output, free multiplier type int)
5816 490,6 Free_FBs.WDW1.Y W_DW1 (output, word Þ
ÞÞ
Þ double word converter)
5981 30,8 Constant.DINT_Const.Y3 Fixed value DI1 (double word)
5982 30,8 Constant.DINT_Const.Y4 Fixed value DI2
5983 30,8 Constant.DINT_Const.Y5 Fixed value DI3
5984 30,8 Constant.DINT_Const.Y6 Fixed value DI4
Start-up
SPA440 angular synchronous control - SIMADYN D - Manual 115
6DD1903-0BB0 Edition 05.01
5 Start-up
WARNING
Only start to commission the system, if adequate and effective measures have
been made to ensure that the system and drive can be safely electrically and
mechanically used.
Ensure that all of the safety- and EMERGENCY OFF signals are connected
and effective and that the drive can be powered-down at any time.
5.1 Commissioning, general
The principal commissioning sequence is shown as follows:
Commissioning the basic drive
Parameterization, basic drive f. oper. w/ the T400
Commission the open-loop control
Parameterize the setpoint input
Commission the closed-loop technology control
Fig. 5-1 Commissioni ng sequence
We recommend that the sequence, shown in Fig. 5-1, is maintained when
starting-up the equipment, so that possible problems which occur, can be
more easily pinpointed.
The basic drive should be commissioned according to the Operating
Instructions of the drive converter (e.g. Lit.[1]).
In order to be able to use the SPA440 standard software package, the
parameters, listed in Table 2-1 and Table 2-2 must be set on the basic
drive for the setpoint/actual value channels and for the CU control.
All of the enable signals, used in the standard software package, are
listed in Table 5-1, and should be switched-in or set according to the
particular application.
Commissioning,
basic drive
Parameterization,
basic drive for use
with T400
Start-up
116 SPA440 angular synchronous control - SIMADYN D - Manual
6DD1903-0BB0 Edition 05.01
Control Parameter Explanation
Enable:
Synchronizing H174
Angular controller H172, H118 External and internal enable
Speed controller
COMBOARD
Peer-to-peer
Jog
H140 = 1
H409
H309
H171
Speed controller activated on T400
Enable COMBOARD communications
Enable peer communications
Enable Jog
Reset:
Position
(master/slave)
Displacement
calculation
H173
H170
Table 5-1 Control signal s
The enabling and appropriate input for particular functions must be set.
An oscilloscope should be used to evaluate the control quality and, if
required, to check the pulse encoder signals. Further, the displacement
can be easily visualized by plotting the synchronizing marks (zero pulses)
in 2 channels. When setting displacement values, a storage oscilloscope
or a stroboscope is extremely helpful.
The flowcharts in Fig. 5-1 show the sequence when commissioning the
three main functions - speed controller, angular controller and
synchronization.
Information on the following flowcharts:
n
Signficance:
Additional information under n) at the
transition to the particular flowchart
Notes
Flowcharts
Start-up
SPA440 angular synchronous control - SIMADYN D - Manual 117
6DD1903-0BB0 Edition 05.01
5.2 Commissioni ng, closed-loop speed control
Start
First time that the basic driveis commissioned
- motor data, drive converter data
- if required, log-on the T400
CU signals an error?
F080, F070
Speed sensing
- H010 encoder pulses, slave
- H011 encoder pulses, master
- H012 rated speed, slave
- H013 rated speed, master
- H018 operating mode, slave speed sensing
- H019 operating mode, master speed sensing
- H022 coarse pulse mode, slave
- H023 coarse pulse mode, master
Power-down the equipment and power-up again
(accept initialization parameter)
Enable errors and alarms
- H003 fault mask
- H004 alarm mask
Basic drive interface
- setpoint channels according to Table 2.1
- actual value channels according to Table 2.2
Define sources for setpoints
- H040 speed ratio
- H048 relative ratio
- H050 offset setpoint
- H070 master setpoint
- H080 inertia compensation
Define sources for control signals
- H170 offset reset
- H171 jog enable
- H172 ang. controller enable = 0 (actually, inhibit)
- H173 reset position
- H174 synchronizing command
Select process data to the basic drive
- H510 ... H525 control word 1
- H526 ... H544 control word 2
- H501 ... H509 normalization PZD1, 2, 3, 5 and 8
Scaling of the analog inputs used
- H210 ... H220 scaling and offsets
- H222 ... H228 smoothing times
Check hardware Power-down equipment
ab
ja
A
Fig. 5-2 Start-up, cl osed-loop speed control (start-A): Speed actual value sensing, setpoi nt
Start-up
118 SPA440 angular synchronous control - SIMADYN D - Manual
6DD1903-0BB0 Edition 05.01
Drive rotates?
Enter master setpoint, approx. 0.05
(e.g. via fixed value)
e
A
ON
Speed actual value
present? (d014)
Speed and torque
sign the same?
Drive rotates in the
required direction?
Setpoint, ON command, all
enable signals available?
CU torque limits high enough?
Drive overloaded,
locked, blocked?
Slowly increase the torque limi
t
until the drive rotates or the
maximum value is reached
Check tracks A, B ; if
required interchange
Speed sign
correct?
Yes
No
Yes
Yes
Yes
No
Yes
Yes
A
OFF
No
f
A
OFF
No
B
ja
g
A
OFF
No
Power-down unit
d
No
Power down
Remove cause
A
e
No
No
Yes
Fig. 5-3 Commissioning the c l osed-loop speed control (A-B): Dri ve rotates , torque
Start-up
SPA440 angular synchronous control - SIMADYN D - Manual 119
6DD1903-0BB0 Edition 05.01
Increase the speed
setpoint by 0.05 .. 0.1
up to max. speed
B
OFF
Does the
speed actual value
d014 and setpoint
d136 coincide?
h
Setpoint
limiting?
Does the slave drive
run smoothly ?
Required torque
selected?
Increase the torque limits by
between 5% to 10% until the
required torque is reached
Rated or maximum speed
reached?
Set the ramp-up and ramp-down
times of the speed ramp-function
generator of the basic drive
(e.g. CUMC: P462, P464)
Optimize the speed
controller
Satisfactory result
attainable ?
i
C
Check:
pulse encoder setting;
torque limits
No
Yes
Yes
No
Yes
No
No
No
Yes
No
Yes
Yes
Fig. 5-4 Commissioning the c l osed-loop speed control (B-C): Speed controller optimization, torque limit
Start-up
120 SPA440 angular synchronous control - SIMADYN D - Manual
6DD1903-0BB0 Edition 05.01
C
Speed control
subsequently optimized?
k
Does jog function ?
Optimize controller
Yes
Setpoints, check ON/OFF
control
Fixed ratio?
For each requested ratio, approach the maximum
demanded operating speed
Master speed = slave speed
d015 = ü · d014 ?
Sources for
the ratio correct?
(H040, H048)
Setpoint speed = master setpoint / ü
d136 = d076 / d044 ?
Is synchronism used at very low
speeds?
For safety, check the pulse encoder
signals
Speed control start-up completed
No
No
Yes
No
No
Yes
ja
Yes
Yes
Setpoints, check ON/OFF
control
No Yes
Change the ratio or reduce
the master setpoint
No
Refer to the KP adaption,
speed controller
(Section 3.5.4)
Fig. 5-5 Commissi oni ng the closed-l oop speed control (C-end): Ratio
Start-up
SPA440 angular synchronous control - SIMADYN D - Manual 121
6DD1903-0BB0 Edition 05.01
The fault/error causes specified here represent help when troubleshooting
the closed-loop speed control; however, other causes are conceivable.
The following table provides an overview of frequently required basic drive
parameters when troubleshooting. Also refer to the setpoint- and actual
value channels in Table 2-1 and Table 2-2.
Parameter CU 2 CU MC CU VC DC-Master
T400 log-on P090 Automatic
COMBOARD log-on P091 Automatic
Configuration, serial interface P682 ... P700 ...
Configuration, CB1 /CBP P695 ... P711 ...
Control word 1 r550 r550 r650
Control word 2 r551 r551 r652
Status word 1 r552 r552 r653
Status word 2 r553 r553 r654
Closed-loop control mode (V/Hz, ..) P163 P367
Speed limit values n_max
n_min
P452
P453,P457
P452
P453
P642, P632
P643, P633
Torque limit values M_max / M1
M_min / M2
P492
P498
P263
P264
Maximum current P128
Speed ramp-funct. gener. ramp-up time
ramp-down time
P462
P464
P462
P464
Reference speed P353
Reference torque P485 P354
Establish factory setting P052
Motor identification routine P052
Table 5-2 List of i mport ant paramet ers for troubles hooting in the bas i c drive
a) Basic drive signals fault F080:
T400 correctly inserted, correct slot? T400 defective? SPA440 standard
software package on T400? Does T400 have to be logged-on? CB
correctly inserted, correct slot? CB defective?
b) Basic drive signals fault F070:
If parameterized (P91=3), correct interface module type? SCB1/2 inserted
correctly for the selected protocol (P682)? Correct slot? Hardware
defective? If required, replace the module
c) Drive does not rotate when an ON command is output and a setpoint
is present:
Check whether all of the required control word enable signals are present
(setpoint-, inverter-, ramp-function generator enabled, clockwise/counter-
clockwise direction of rotation, etc.): Control word =
16#9C7F
Setpoint available (d074)? Ratio correctly entered (d136)? Setpoint
channel correctly set in the basic drive? Correct frequency limits?
d) Drive does not rotate, although all of the enable signals present:
Can the drive be operated V/Hz-controlled or closed-loop frequency
controlled?
Start-up
122 SPA440 angular synchronous control - SIMADYN D - Manual
6DD1903-0BB0 Edition 05.01
If required, establish the factory setting and carry-out a motor
identification routine.
e) No speed actual value:
Wiring correct (ground connections)?
For the slave drive: Are the speed encoder cables correctly connected
to the CU (for VC: Connector X132)?
For the master drive: T400 connecting cables O.K.?
Power supply voltage at the pulse encoder?
Are all of the signals available with respect to ground and do they have
the correct phase position (oscilloscope!)?
Yes: Defective technology module? Replace the technology
module
No: Check the pulse encoder and cables
f) Polarity of the torque setpoint- and speed actual value different:
Prerequisite: The motor is not driven:
If the drive converter and pulse encoder are correctly connected, for a
positive torque setpoint, the motor must turn clockwise (when viewing the
drive side), and a positive speed actual value must be obtained.
Otherwise, tracks A and B of the pulse encoder must be interchanged
(slave), or a negative value entered at H012 (rated speed, slave) (this is
accepted by powering-down and powering-up the unit!).
Note: For motors running under no-load conditions or under low
conditions, fluctuations can occur, also in the polarity (sign).
g) The drive does not rotate in the required direction:
Power-down the unit, change the phase sequence at the motor/drive
converter (point f) check!),
Reverse the direction of rotation, speed actual value by
- interchanging pulse encoder track A/B or,
- reverse the polarity at H012 (rated speed, slave)
h) Setpoint limiting is effective:
The quotient of the master setpoint (d074) and the ratio (d044) may not
exceed or fall below the setpoint limits, min/max frequency.
i) Poor optimization:
Execute the motor identification run and optimize the speed controller.
Are all of the units which are used O.K.?
Have all of the cables (especially the pulse encoder cables) been carefully
routed and shielded, especially the long encoder cables?
Does the subordinate (lower level) closed-loop torque control operate
perfectly (test parameterization, motor data, etc.)?
Is the driven load mechanically O.K. (no play, elasticity, etc.)?
Is the pulse encoder mechanically O.K.?
k) Checking the pulse encoder signals:
The pulse encoder signals must be perfectly received (no noise) when
using the angular synchronous control. We therefore urgently recommend
that the following measurements are made using an oscilloscope (directly
at the terminals of the T400; refer to Function Charts 60 and 70):
1) At all speeds, the phase shift between tracks A and B of an encoder
must be 1 µs.
2) Noise spikes (duration > 0.5 µs) may not be present in the vicinity of
the switching threshold of the pulse encoder input circuit, i.e. not in the
Start-up
SPA440 angular synchronous control - SIMADYN D - Manual 123
6DD1903-0BB0 Edition 05.01
range B:
10
3
U / V
B
Fig. 5-6: Signals of an incremental enc oder with HTL si gnal l evel
3) If a synchronizing pulse is used, we recommend that an oscillogram
plot is made of it.
5.3 Commissioni ng the angul ar control
The fault causes, specified here are intended to help troubleshoot the
angular control; however, other causes are conceivable.
a) The differential position actual value quickly moves away from 0 after
the actual value sensing has been enabled (angular controller):
The pre-control has been correctly set, if the differential position actual
value only very slowly drifts away from zero without the angular controller
intervening. The prerequisites for this are:
- the master drive runs smoothly (speed controller optimization),
- the master setpoint corresponds to the master drive speed,
- the slave drive runs smoothly (speed controller optimization),
- when the master setpoint is entered as analog signal, the adaption is
correct
b) If the differential position actual value is too high, possible causes
could be:
- Speed controller goes to its limit?
Yes: Þ
ÞÞ
Þ correctly select the torque limits, remove the overload
condition
- Angular controller goes to its limit?
Yes: Þ
ÞÞ
Þ ensure that
frequency limit > [speed setpoint (d136) + angular controller limit
(H112)] !
- If required adapt the enable threshold of the angular controller,
H118
c) Check the ratio which has been set and the data on the present ratio.
If possible, check, for example, the synchronizing pulses and a connected
process or material web. For example, does it continually move away
from the required position?
Start-up
124 SPA440 angular synchronous control - SIMADYN D - Manual
6DD1903-0BB0 Edition 05.01
A
The position difference
d124 only drifts slowly away?
Set the largest ratio which is used (or fixed)
Start
Set the angular controller limit to H112 = 0.0
Set "reset position" constant to 0 ;
source H173 = 0
ON
Enter the largest possible speed master setpoint
Enable the angular controller: H173 = 1
Pre-control has been optimized
Inhibit the angular controller, H173 = 0
Set the angular controller limit H112 to the
required value (generally between 0.1 and 0.3)
Switch the angular controller into the P controller
mode: H110 = 1
Set the KP gain H113 to 0.0
Position difference smoothing, H117 = 4 ms
Inhibit the ang.controller, H173 = 0
No
Yes
a
Fig. 5-7: Commissioning t he angul ar control (start-A): Basi c setting
Start-up
SPA440 angular synchronous control - SIMADYN D - Manual 125
6DD1903-0BB0 Edition 05.01
Position difference
d124 within the required
tolerance?
Enable angular controller: H173 = 1
a
A
Optimize the angular controller
(as PI controller:
H110 = 0)
- KP: H113
- integral action time Tn: H111
(refer to the next section)
Are different ratios used?
P-gain adaption (ratio)
- enter the largest/smallest ratio in H115 / H116
- after optimization, enter the associated KP values in H113 /
H114
All of the different ratios
can be set?
Position difference
d124 within the required
tolerance?
All
required speeds can
be set?
Define the "reset position" source, H173
Angular controller
commissioning completed
No
a
Yes
Yes
Yes
No
No
Yes
Yes
No
No
Fig. 5-8 Commissi oni ng the angular control (A-end): Ratio
Start-up
126 SPA440 angular synchronous control - SIMADYN D - Manual
6DD1903-0BB0 Edition 05.01
5.3.1 Information regarding optimizing the angular controller
Procedure:
1. If there are low to average demands placed on the control quality:
Set the experience value:
A KP of between 2 and 6 provides, for many applications, adequate
precision and dynamic performance.
2. For average up to high demands on the dynamic performance, or if
the experience value does not result in a satisfactory result:
- Enter a master setpoint of 0
- Increase the P gain in steps of 2 until the slave drive starts to oscillate.
The speed actual value can be monitored at analog output 1 (terminals 97
/ 99). If the slave drive remains absolutely steady for a P gain > 2, then it
is necessary to excite oscillation by deflecting the motor from its quiescent
position. This can be realized, for example, by entering a jog setpoint
(H130, approx. 0.01; enable H171).
- Reduce the P gain H113 in steps of between 0.5 to 1 until oscillation
stops. Then multiply the value which was reached, by 0.5 to 0.7 and save
H113.
3. For high demands placed on the control quality:
- For high demands placed on the control quality, the speed actual
value must be extremely accurate, e. g. via analog output 1 (terminals 97
/ 99) trace the signal using a fast plotter or a storage oscilloscope. In this
case, the speed actual value is compensated by offset value H160 and
the analog output gain can be adapted using H161 so that the speed
ripple can be easily monitored.
- For average slave drive speeds, excite using the jog setpoint
(parameter H130 = 0.01), and monitor the transfer characteristic. The
simplest solution is to write an enable signal using a switch connected to
a digital input. Vary the P gain until a good result is achieved.
- Under certain circumstances, the optimization result can be improved
by increasing the position differe nce smoothing (H117). However,
generally the default value of 4 ms should be used.
4. Angular errors
- If the master setpoint is inaccurate, (e. g. if fed via an analog input or if
incorrectly adapted (rated speed)), the P control results in an angular
error which is dependent on the P gain. If this error causes disturbances,
the angular controller must be parameterized as PI controller (H110 = 0).
The integral action time should be set using parameter H111. Starting
with high values of Tn (approx. 5 s), the system should be optimized and
Tn changed towards lower values.
- If the ratio was incorrectly set, an enabled integral component would
”drift away”, i. e. would go to its limit.
Start-up
SPA440 angular synchronous control - SIMADYN D - Manual 127
6DD1903-0BB0 Edition 05.01
5.4 Commissioning synchronization
When commissioning the synchronization, the speed- and angular control
must have been completely commissioned. The synchronizing function
must be inhibited (H174 = 0) if synchronization is not required.
Number of
synchronizing pulses the same
(do they slowly drift
apart)?
Offset setpoint = 0.0 (H050 = 0)
a
Start
Set parameters
(refer to Section 3.3.1)
- H091 ... H093 offset modes and correction pulse No.
- H100, H102 pulse numbers, master and slave
- H103 threshold for synchronism reached
- H174 source for synchronizing command
No
A
Inhibit synchronizing (H174 = 0)
ON
Enable the speed- and angular controllers
Operate the master- and slave drive at approx.
30% of the rated speed
Inhibit synchronizing (H174 = 1)
Slave drive runs smoothly?
Inhibit speed- and angular controlle
r
OFF
b
Yes
No
Fig. 5-9 Commissi oni ng synchronizing (start-A )
Prerequisite
Start-up
128 SPA440 angular synchronous control - SIMADYN D - Manual
6DD1903-0BB0 Edition 05.01
The synchronizing function is only possible when the synchronizing
pulses are perfect (e. g. zero pulses). The cable routing should be
checked so that it provides immunity against noise and disturbances, and
is sufficiently shielded; the synchronizing pulse shapes must be checked
using an oscilloscope.
Enter offset values
(refer to Section 3.4.2)
Start
Wait,
if required increase the
correction pulse number
H093
(e. g. from 1 to 2)
If synchronizing hasn't been realized
after approx. 30 s (|d095|>32765),
then an excessive system deviation
has built-up
Wait
End
Number of
synchronizing pulses the same
and they do no drift
apart (1) ?
Offset value
d094 in the required range?
Are
offset values
required ?
Are the
offset values
reached (1) ?
|d095|
Offset - position difference < 32765
?
e
d
c
Yes
No
No
Yes
Yes
No
Yes
Yes
No
(1) Monitor the signals using an oscilloscope
or connect the synchronizing pulses to a
stroboscope
Fig. 5-10 Commissioning s ynchronizing (A-end)
The synchronizing troubleshooting information represents a help when
troubleshooting; however, other causes are conceivable.
a) The number of synchronizing pulses from the master and slave are
not equal in any time unit:
- Check the master setpoint
- Check the ratio (ü nset slave nact
Caution
Start-up
SPA440 angular synchronous control - SIMADYN D - Manual 129
6DD1903-0BB0 Edition 05.01
master d015)
- Check the synchronizing pulses/signal encoder
b) The slave drive does not run smoothly after synchronizing has been
enabled:
- If possible, reduce the correction pulse number H093 (minimum = 1),
- Check the synchronizing pulse trains
- Check the speed- and angular controller optimization; if required, re-
optimize.
- Check the master drive; if required, re-optimize the master drive
- Investigate the mechanical system for play, torsional oscillations etc.
c) The number of synchronizing pulses from the master and slave are
not equal after synchronizing has been enabled, in any time unit:
- Check the synchronizing pulses/signal encoder
- Check the displacement parameters (H050 to H067 and H090 to
H107) Especially check the synchronizing pulse numbers
d) Synchronization has not been completed (absolute displacement
actual value - position difference > 32765)
- Refer to c)
- If displacement d094 has an increasing trend, then the correcting
influence of the synchronizing is probably too low Þ
ÞÞ
Þ slightly
increase H093 (e.g. from 1 to 2); commence again at the start
e) Displacement setpoints are not reached:
- Check the parameterization (H050 to H067 and H090 to H107)
(displacement setpoint limiting reached?)
- Check the mechanical design and if required change
- Check the response threshold H103
5.5 Tr ace function with “symTrace-D7”
With “symTrace-D7”, a product from the company “sympat”, it is possible
to establish a connection to an application based on D7-SYS (e.g. the
axial winder SPW420). With “symTrace-D7” you are able to trace every
value in your CFC-application.The trace offers you two different options:
online and offline trace. With the online trace you can trace values in
intervals of a few ten-milliseconds. This is only practical for slowly
changing values, e.g. the diameter actual value.
If you want to trace quickly-changing values you need the offline trace.
With this option you can trace values within the shortest cycle-time.
Therefore the values must be saved in a buffer. Some special function
blocks have been placed in the project for that reason. You will find them
in the plan “TRACE”.
With the parameter L400 you are able to change the length of the trace-
buffer. The standard setting is 2048 (double words). Furtheron with the
c401 and c402 two display parameters show you the state of the trace
coupling (-> see parameter list).
For more information please read the online help in “symTrace-D7”.
Literature
130 SPA440 angular synchronous control - SIMADYN D - Manual
6DD1903-0BB0 Edition 05.01
6 Literature
1. Instruction Manual for SIMOVERT Master Drives -- Vector Control
(VC), types of construction A to D, Order No.: 6SE7080-0Ad20, 1995.
2. Instruction Manual for SIMOVERT Master Drives -- Communications
module CB1, Order No.: 6SE7087-6CX84-0AK0, 1994.
3. Configuring Communications D7-SYS- SIMADYN D Manual, Order
No. 6DD1987-1AA1, Oct. 1997.
4. Hardware - SIMADYN D Manual, Order No. 6DD1987-1BA1, 1997.
5. SIMADYN D, Function Block Library, Reference Manual, Order No.
6DD1987-1CA1, October 97.
Appendix
SPA440 angular synchronous control - SIMADYN D - Manual 131
6DD1903-0BB0 Edition 05.01
7 Appendix
Para. Factory set Units Start-up val ue Significance Type
H000 0 Language selection I
d001 440 Software type (identification) i
d002 2.1 Software version I
H003 16#0000 Fault message enable W
H004 16#0000 Alarm message enable W
d005 Status word, angular synchronism W
d006 Error bits W
d007 Alarm bits W
H008 0 TechBoard parameter type (1= floating point) BO
H009 0 T400 = baseboard BO
H010 1024 Pulse Encoder pulse number, slave (pulse number) I
H011 1024 Pulse Encoder pulse number, master (pulse number) I
H012 1500.0 RPM Rated speed, slave R
H013 1500.0 RPM Rated speed, master R
d014 Speed actual value, slave / H012 R
d015 Speed actual value, master / H013 R
d016 Pulse Position actual value, slave R
d017 Pulse Position actual value, master R
H018 16#7FE2 Slave speed sensing mode W
H019 16#7F02 Master speed sensing mode W
d020 Error code, slave speed sensing W
d021 Error code, master speed sensing W
H022 16#0000 Coarse pulse mode, slave sensing W
H023 16#0000 Coarse pulse mode, master sensing W
H024 0 COMBOARD parameter type (1= floating point) BO
d025 Status of the digital inputs W
d026 Control word1 for the basic drive converter W
d027 Control word2 for the basic drive converter W
d028 ..
d039
Free visualization parameter. Selecting the source using
parameters L028 .. L039
I
H040 1 Multiplexer selection, ratio I
H041 3047 Source for the supplementary ratio I
H043 1.0 Fixed value, ratio R
d044 Actual ratio R
d045 Pulse Ratio, numerator R
d046 Pulse Ratio, denominator R
H047 0.0 Fixed value, supplementary ratio R
H048 1 Multiplexer, relative ratio I
H049 1.0 Fixed value, relative ratio R
H050 1 Multiplexer, displacement setpoint I
H051 3050 Source for the displacement setpoint I
H052 2.5 ms Ramp-up time, displacement setpoint SD
H053 2.5 ms Ramp-down time, displacement setpoint SD
H054 +2048 Pulse Maximum value, displacement setpoint (positive) R
H055 -2048 Pulse Maximum value, displacement setpoint (negative) R
d056 Pulse Actual displacement setpoint R
H057 0175 Source, setting signal for the displacem.ramp-function
gener.
I
Appendix
132 SPA440 angular synchronous control - SIMADYN D - Manual
6DD1903-0BB0 Edition 05.01
Para. Factory set Units Start-up val ue Significance Type
H058 3012 Source for the normalization factor, slave speed I
H059 3013 Source for the normalization factor, master speed I
d060 Ratio_1 (refer to Chart 80) R
d061 Relative ratio R
H062 0.0 Pulse Synchronizing displacem. setpoint n_master 0, n_slave
0
R
H063 0.0 Pulse Synchronizing displacem. setpoint n_master < 0, n_slave
0
R
H064 0.0 Pulse Synchronizing displacem. setpoint n_master 0, n_slave <
0
R
H065 0.0 Pulse Synchronizing displacem. setpoint n_master < 0, n_slave <
0
R
H066 0.0 Pulse Fixed value, displacement setpoint R
H067 3040 Source for the ratio I
H068 3048 Source for the relative ratio I
H070 15 Multiplexer for the master speed setpoint R
H071 3070 Source for the master speed setpoint I
H072 10 ms Smoothing, master speed setpoint SD
H073 0.0 Fixed value, master speed setpoint R
d074 Actual master speed setpoint, smoothed R
d076 Master speed setpoint (before smoothing) R
H077 5088 Source for numerator (ratio to determine the displacement) I
H078 5089 Source for the denominator (ratio to determine the
displacement)
I
H079 3129 Source for input DT1 (inertia compensation) I
H080 1 Multiplexer selection, inertia compensation I
H082 100 ms Smoothing time, inertia compensation SD
H083 4 ms Differentiating time, inertia compensation R
d085 Output DT1 (inertia compensation) R
H086 1000 Fine setting, ratio, numerator DI
H087 1000 Fine setting, ratio, denominator DI
H088 0 Enable fine setting, ratio BO
H090 1 Position correction mode BO
H091 0 RETRIGGER synchronizing BO
H092 0 Synchronizing command, edge-controlled BO
H093 1.0 Pulse Correction pulse number R
d094 Pulse Displacement actual value R
d095 Pulse Displacement actual value - differential position actual
value
R
d096 Error identification, displacement sensing W
H097 0108 Source 2 for reset, position and displacement I
H098 0101 Source for the synchronizing command 2 I
H100 4096 Pulse Synchronizing pulse number, master DI
H101 0105 Source to end start synchronization I
H102 4096 Pulse Synchronizing pulse number, slave DI
H103 20.0 Pulse Response threshold ”synchronism reached” R
H104 0109 Source for controller enable I
H105 500 Pulse Enable threshold, synchronizing, slave R
H107 500 Pulse Enable threshold, synchronizing, master R
H108 3044 Source for the input KP characteristic angular controller I
d109 Angular controller enable status BO
H110 1 Angular controller as P controller BO
Appendix
SPA440 angular synchronous control - SIMADYN D - Manual 133
6DD1903-0BB0 Edition 05.01
Para. Factory set Units Start-up val ue Significance Type
H111 500 ms Integral action time, angular controller SD
H112 0.3 Limit value, angular controller R
H113 1.0 P gain, angular controller KP_UE R
H114 1.0 P gain, angular controller KP_UE_0 R
H115 0.0 Limit value ue_KP R
H116 0.0 Limit value ue_KP_0 R
H117 4.0 ms Smoothing, differential position actual value SD
H118 0.1 Source for the angular controller enable (n_slave) R
H119 0.1 Source for monitoring the master speed R
d120 Output, angular controller R
d121 Pulse System deviation, angular controller R
d122 I component, angular controller R
d123 KP angular controller R
d124 Pulse Differential position actual value, smoothed R
H125 1.0 Upper limit, speed ramp-function generator R
H126 -1.0 Lower limit, speed ramp-function generator R
H127 0 ms Ramp-up time, speed setpoint R
H128 0 ms Ramp-down time, speed setpoint R
d129 ms Speed setpoint after the ramp-function generator R
H130 0.0 Jog setpoint (fixed value) R
H131 0172 Source, angular controller enable 1 I
H132 1.0 Speed setpoint limiting positive R
H133 -1.0 Speed setpoint limiting negative R
H134 1.0 Speed controller output limiting positive R
H135 -1.0 Speed controller output limiting negative R
d136 Actual speed setpoint R
d137 Speed setpoint limited R
H138 0 ms Smoothing time constant, angular controller output R
H139 0193 Source, angular controller enable 2 I
H140 0 Compute speed controller on T400 BO
H141 10.0 P gain, speed controller KP R
H142 10.0 P gain, speed controller KP_O R
H143 0.0 Limit value n_KP R
H144 0.0 Limit value n_KP_0 R
H145 200 ms Integral action time, speed controller R
H146 4.0 ms Smoothing, speed actual value R
d147 Control word 1 for the basic drive W
d148 Control word 2 for the basic drive W
H149 10 ms Pulse extension, synchronizing pulse master SD
d150 Speed controller output R
d151 System deviation, speed controller R
d152 Actual basic drive setpoint (n or M) R
d153 KP speed controller R
H154 3186 Source, slave position (synchronizing enable) I
H155 10000 Resolution for the ratio R
H156 3056 Source, actual value1 for the angular controller I
H157 3000 Source, actual value2 for the angular controller I
H158 3124 Source, setpoint1 for the angular controller I
H159 3000 Source, setpoint2 for the angular controller I
H160 0.0 Offset, analog output 1 R
Appendix
134 SPA440 angular synchronous control - SIMADYN D - Manual
6DD1903-0BB0 Edition 05.01
Para. Factory set Units Start-up val ue Significance Type
H161 1.0 Scaling, analog output 1 R
H162 0.0 Offset, analog output 2 R
H163 1.0 Scaling, analog output 2 R
H164 0 Erase change memory BO
H165 0 Key, change memory I
d166 Status, change memory BO
H167 0173 Source, position reset 1 I
H168 1000 ms Delay start synchronization SD
H169 0 Enable start synchronization BO
H170 0 Multiplexer, displacement reset I
H171 0 Multiplexer, jog enable I
H172 0 Multiplexer, angular controller enable I
H173 0 Multiplexer, reset position I
H174 0 Multiplexer, synchronizing command I
d175 Actual value, displacement reset BO
d176 Actual value, jog enable BO
d177 Actual value, angular controller enable (control signal) BO
d178 Actual value, reset position BO
d179 Actual value, synchronizing command BO
H180 0154 Source, enable synchronization, slave I
H181 0097 Source, reset the slave position I
H182 5088 Source, numerator of the ratio (slave) I
H183 5089 Source, denominator of the ratio (slave) I
H184 0098 Source, enable position difference correction I
H185 0108 Source to reset, position difference 1 I
H186 3016 Source, slave position for absolute value I
H187 0170 Source to reset, position difference 2 I
H188 0190 Source, enable synchronization, master I
H189 0097 Source, reset the master position actual value I
H190 3199 Source, position (synchronizing enable, master) I
H191 0174 Source, synchronizing command I
H192 3014 Source, actual speed (plausibility, slave speed) I
H193 3136 Source, setpoint speed (plausibility, slave speed) I
H195 3015 Source, actual speed (plausibility, master speed) I
H196 3076 Source, setpoint speed (plausibility, master speed) I
H197 5086 Source, fine ratio, numerator I
H198 5087 Source, fine ratio, denominator I
H199 3017 Source, position (absolute position, master) I
H200 3137 Source, setpoint speed 1 (speed controller) I
H201 3000 Source, setpoint speed 2 (speed controller) I
H202 3146 Source, actual speed 1 (speed controller) I
H203 3000 Source, actual speed 2 (speed controller) I
H204 3129 Source, input KP characteristic (speed controller) I
H205 3129 Source, setp. speed 1, ramp-funct.gen. (speed controller) I
H206 3120 Source, setp. speed 2, ramp-funct.gen. (speed controller) I
H207 3130 Source, jog setpoint I
H208 0171 Source, jog enable I
H209 10.0 ms Pulse extension, slave synchronizing pulse I
H210 1.0 Scaling, analog input 1 R
H211 0.0 Offset, analog input 1 R
Appendix
SPA440 angular synchronous control - SIMADYN D - Manual 135
6DD1903-0BB0 Edition 05.01
Para. Factory set Units Start-up val ue Significance Type
d212 Actual value, analog input 1 R
H213 1.0 Scaling, analog input 2 R
H214 0.0 Offset, analog input 2 R
d215 Actual value, analog input 2 R
H216 1.0 Scaling, analog input 3 R
H217 0.0 Offset, analog input 3 R
d218 Actual value, analog input 3 R
H219 1.0 Scaling, analog input 4 R
H220 0.0 Offset, analog input 4 R
d221 Actual value, analog input 4 R
H222 500 ms Smoothing time, analog input 1 SD
d223 Actual value, analog input 1, smoothed R
H224 0 ms Smoothing time, analog input 2 SD
d225 Actual value, analog input 2, smoothed R
H226 0 ms Smoothing time, analog input 3 SD
d227 Actual value, analog input 3, smoothed R
H228 0 ms Smoothing time, analog input 4 SD
d229 Actual value, analog input 4, smoothed R
H230 0000 Source, zero setting function, analog input 1 I
H231 0000 Source, zero setting function, analog input 2 I
H232 0000 Source, zero setting function, analog input 3 I
H233 0000 Source, zero setting function, analog input 4 I
H234 3118 Source, position difference (displacement calculation) I
H235 3062 Source, position difference correction (displacem.
calculation)
I
H236 0097 Source, resetting the displacement calculation I
H237 3051 Source, displacement setpoint 1 I
H238 3062 Source, displacement setpoint 2 I
H239 3044 Source, ratio (n_set) I
H240 3136 Source, slave setpoint speed 1 I
H241 3176 Source, slave setpoint speed 2 I
H242 3137 Source f.the setting value of the I comp.(speed controller) I
H243 0000 Source, setting signal I component of the speed controller I
H244 3080 Source for the pre-control value of the speed controller I
H245 0140 Source, enable pre-control (speed controller) I
d246 Status word 1 CU
d300 Peer word 1 send W
H303 2 Multiplexer for peer word 1 send I
H304 1 Multiplexer for peer float 1 send I
H305 0 Multiplexer for peer float 2 send I
H306 0 Fixed value for peer word 1 send W
H307 0.0 Fixed value for peer float 1 send R
H308 0.0 Fixed value for peer float 2 send R
H309 1 Enable peer-to-peer BO
H310-
H325
Sources for status word1, bits 0-15 BO
d327 Status word1 peer W
d329-
d333
PZD1 peer to PZD5 peer W
H334 2329 Source for control word (send peer) I
H335 2000 Source PZD2 (send peer) I
Appendix
136 SPA440 angular synchronous control - SIMADYN D - Manual
6DD1903-0BB0 Edition 05.01
Para. Factory set Units Start-up val ue Significance Type
H336 2000 Source PZD3 (send peer) I
H337 5000 Source, double word 1(send peer) I
H338 3304 Source, float 1 (send Peer) I
H339 2 Send type for PZD2 + PZD3 (send peer) I
H340 2000 Source PZD4 (send peer) I
H341 2000 Source PZD5 (send peer) I
H342 5000 Source, double word 2 (send peer) I
H343 3305 Source, float 2 (send peer) I
H344 2 Send type for PZD4 + PZD5 (send peer) I
H345 2303 Source PZD1 (send peer) I
d346 Peer control word (receive) W
H360 20000 ms Power-on no time limit peer SD
H361 100 ms Time limit peer in operation SD
H362 16#FFFF Mask peer status W
H363 19200 Baud Baud rate peer-to-peer DI
d364 Peer status, receive block W
H381 2026 Source, PZD1 for the basic drive I
H382 2500 Source, PZD2 for the basic drive I
H383 2502 Source, PZD3 for the basic drive I
H384 2027 Source, PZD4 for the basic drive I
H385 2504 Source, PZD5 for the basic drive I
H386 2506 Source, PZD6 for the basic drive I
H387 2510 Source, PZD7 for the basic drive I
H388 2508 Source, PZD8 for the basic drive I
H401 1.0 Normalization, COMBOARD actual value1 send R
H403 1.0 Normalization, COMBOARD actual value2 send R
H405 1.0 Normalization, COMBOARD actual value3 send R
H407 1.0 Normalization, COMBOARD actual value4 send R
H409 1 Enable COMBOARD communications BO
H410-
H425
0 Status word 1 bits 0-15 fixed values BO
H426-
H441
0 Status word 2 bits 0-15 fixed values BO
H442 0 Multiplexer COMBOARD word 1 send I
H443 0 Fixed value COMBOARD word 1 send W
H444 0 Multiplexer COMBOARD word 4 send I
H445 0 Fixed value COMBOARD word 4 send W
H446 1 Multiplexer COMBOARD word 2 send I
H447 0 Multiplexer COMBOARD word 3 send I
H448 0 Multiplexer COMBOARD word 5 send I
H449 0 Multiplexer COMBOARD word 6 send I
d450 COMBOARD setpoint1 receive R
H451 1.0 COMBOARD normalization setpoint1 receive R
d452 COMBOARD setpoint2 receive R
H453 1.0 COMBOARD normalization setpoint2 receive R
d454 COMBOARD setpoint3 receive R
H455 1.0 COMBOARD normalization setpoint3 receive R
d456 COMBOARD setpoint4 receive R
H457 1.0 COMBOARD normalization setpoint4 receive R
d458 COMBOARD word 1 send W
d459 COMBOARD word 4 send W
Appendix
SPA440 angular synchronous control - SIMADYN D - Manual 137
6DD1903-0BB0 Edition 05.01
Para. Factory set Units Start-up val ue Significance Type
d460 COMBOARD control word 1 receive W
d461 COMBOARD control word 2 receive W
H462 20000 ms Power-on time limit COMBOARD SD
H463 100 ms Time limit COMBOARD operational SD
H464 16#FFFF Mask COMBOARD receive status W
d465 Receive status COMBOARD W
d466 Status word1 COMBOARD W
d467 Status word2 COMBOARD W
H470 0.0 Fixed value, COMBOARD send word 2 R
H471 0.0 Fixed value, COMBOARD send word 3 R
H472 0.0 Fixed value, COMBOARD send word 5 R
H473 0.0 Fixed value, COMBOARD send word 6 R
H480 3 Slave address COMBOARD (only for SRT400) I
H481 0 COMBOARD parameter 1 (only for SRT400) I
H482 2 COMBOARD parameter 2 (only for SRT400) I
H483..
H493
0 COMBOARD parameter 3..13 (only for SRT400) I
H495 1 COMBOARD parameters valid (only for SRT400) BO
d496 Status COMBOARD for operation in the SRT400 W
H498 3000 Source, setpoint for double word output I
H499 1.0 Setpoint normalization according to H498 R
H500 3152 Source for the 1st setpoint to the basic drive I
H501 1.0 Normalization, 1st setpoint for the basic drive R
H502 3000 Source for the 2nd setpoint for the basic drive I
H503 1.0 Normalization, 2nd setpoint for the basic drive R
H504 3120 Source for the 3rd setpoint for the basic drive I
H505 1.0 Normalization, 3rd setpoint for the basic drive R
H506 3153 Source for the 4th setpoint for the basic drive I
H507 1.0 Normalization, 4th setpoint for the basic drive R
H508 3080 Source for the 5th setpoint for the basic drive I
H509 1.0 Normalization, 5th setpoint for the basic drive R
H510 0650 Source, control word 1 for the basic drive, bit0 BO
H511 0651 Source, control word 1 for the basic drive, bit1 BO
H512 0652 Source, control word 1 for the basic drive, bit2 BO
H513 0653 Source, control word 1 for the basic drive, bit3 BO
H514 0654 Source, control word 1 for the basic drive, bit4 BO
H515 0655 Source, control word 1 for the basic drive, bit5 BO
H516 0656 Source, control word 1 for the basic drive, bit6 BO
H517 0657 Source, control word 1 for the basic drive, bit7 BO
H518 0658 Source, control word 1 for the basic drive, bit8 BO
H519 0659 Source, control word 1 for the basic drive, bit9 BO
H520 0660 Source, control word 1 for the basic drive, bit10 BO
H521 0661 Source, control word 1 for the basic drive, bit11 BO
H52 0662 Source, control word 1 for the basic drive, bit12 BO
H523 0663 Source, control word 1 for the basic drive, bit13 BO
H524 0664 Source, control word 1 for the basic drive, bit14 BO
H525 0665 Source, control word 1 for the basic drive, bit15 BO
H526-
H541
0 Source, control word 2 for the basic drive, bits0 .. 15
(with the exception of H535)
BO
H535 0546 Source, control word 2 for the basic drive, bit9 BO
H542 16#0004 Mask to identify CU operational readiness W
Appendix
138 SPA440 angular synchronous control - SIMADYN D - Manual
6DD1903-0BB0 Edition 05.01
Para. Factory set Units Start-up val ue Significance Type
H543 0 Test enable for the speed controller in the basic drive BO
H544 1 Multiplexer for speed controller enable I
d545 Computation utilization for T1 (fastest time sector) R
d546 Computation utilization for T2 R
d547 Computation utilization for T3 R
d548 Computation utilization for T4 R
d549 Computation utilization for total CPU load R
H550 1.0 Normalization actual value1, receive from the basic drive R
d551 Actual value1, receive from the basic drive R
H552 1.0 Normalization actual value2, receive from the basic drive R
d553 Actual value2, receive from the basic drive R
H554 1.0 Normalization actual value3, receive from the basic drive R
d555 Actual value3, receive from the basic drive R
d556 Control word from the basic drive W
H557 Source, control word from the basic drive W
H558 2571 Source for status word 1 from the basic drive I
H559 2574 Source for status word 2 from the basic drive I
d560 Status word 1 from the basic drive W
d561 Status word 2 from the basic drive W
d562 Receive status, basic drive interface W
H563 2572 Source for actual value1 from the basic drive I
H564 2573 Source for actual value2 from the basic drive I
H565 2575 Source for actual value3 from the basic drive I
H567 2582 Source for double word (high) from the basic drive I
H568 2581 Source for double word (low) from the basic drive I
H569 5567 Source for double word from the basic drive I
d570 Double word from the basic drive, normalized R
d571-
d585
14 process data from the basic drive W
H587 5567 Source for double word for type conversion (N4 èR) I
H588 1.0 Normalization factor for H587 R
d589 Double word from CU after type conversion (N4èR) R
H590 2577 Source for PZD for type conversion (IèR) I
d591 Result of type conversion (IèR) from H590 R
H592 2571 Source to evaluate the operational readiness I
H593 0547 Source for operational readiness, basic drive I
d601 Digital output, terminal 46 ”synchronism reached” BO
d602 Digital output, terminal 47 ”angular controller at its limit BO
d603 Digital output, terminal 48 ”angular controller enabled” BO
d604 Digital output, terminal 49 ”fault” BO
d607 Coarse pulse input 1, terminal 84 BO
d608 Coarse pulse input 2, terminal 65 BO
H609 16#0000 Mask to invert digital inputs W
d610 Digital input 1, terminal 53 BO
d611 Digital input 2, terminal 54 BO
d612 Digital input 3, terminal 55 BO
d613 Digital input 4, terminal 56 BO
d614 Digital input 5, terminal 57 BO
d615 Digital input 6, terminal 58 BO
d616 Digital input 7, terminal 59 BO
d617 Digital input 8, terminal 60 BO
Appendix
SPA440 angular synchronous control - SIMADYN D - Manual 139
6DD1903-0BB0 Edition 05.01
Para. Factory set Units Start-up val ue Significance Type
H618 1 Multiplexer for analog output 1 I
H619 0 Multiplexer for analog output 2 I
H620 3618 Source for analog output 1 I
H621 0000 Source to inhibit, analog output 1 I
H622 3619 Source for analog output 2 I
H623 0000 Source to inhibit, analog output 2 I
H631 0105 Source for the bi-directional digital output 1 I
H632 0116 Source for the bi-directional digital output 2 I
H633 0109 Source for the bi-directional digital output 3 I
H634 0003 Source for the bi-directional digital output 4 I
H635 0004 Source for the digital output 1 I
H636 0000 Source for the digital output 2 I
H637 1 Enable bi-directional digital output 1 I
H638 1 Enable bi-directional digital output 2 I
H639 1 Enable bi-directional digital output 3 I
H640 1 Enable bi-directional digital output 4 I
H650 0 Multiplexer for control word 1, bit 0 I
H651 1 Multiplexer for control word 1, bit 1 I
H652 1 Multiplexer for control word 1, bit 2 I
H653 1 Multiplexer for control word 1, bit 3 I
H654 1 Multiplexer for control word 1, bit 4 I
H655 1 Multiplexer for control word 1, bit 5 I
H656 1 Multiplexer for control word 1, bit 6 I
H657 0 Multiplexer for control word 1, bit 7 I
H658 0 Multiplexer for control word 1, bit 8 I
H659 0 Multiplexer for control word 1, bit 9 I
H660 1 Multiplexer for control word 1, bit 10 I
H661 1 Multiplexer for control word 1, bit 11 I
H662 1 Multiplexer for control word 1, bit 12 I
H663 0 Multiplexer for control word 1, bit 13 I
H664 0 Multiplexer for control word 1, bit 14 I
H665 1 Multiplexer for control word 1, bit 15 I
d666 Analog output 1 R
d667 Analog output 2 R
H668 0 ms Smoothing time constant, analog output 1 R
H669 0 ms Smoothing time constant, analog output 2 R
H700 1 Enable USS slave BO
H701 9600 Baud rate USS slave DI
H703 0 Address USS slave I
H704 0 USS slave, 4-wire operation BO
d705 Status USS slave W
d706 PZD1 receive USS W
d707 PZD2 receive USS W
H708 2000 Source for 1st PZD send USS I
H709 2000 Source for 2nd PZD send USS I
d801 –
d810
PZD1 to PZD10 from COMBOARD W
H811 2801 Source for control word 1 from CB I
H812 2804 Source for control word 2 from CB I
H813 2802 Source for setpoint 1 from CB I
H814 2803 Source for setpoint 2 from CB I
Appendix
140 SPA440 angular synchronous control - SIMADYN D - Manual
6DD1903-0BB0 Edition 05.01
Para. Factory set Units Start-up val ue Significance Type
H815 2805 Source for setpoint 3 from CB I
H816 2806 Source for setpoint 4 from CB I
H817 2807 Source for setpoint integer è REAL from CB I
d818 Result integer è REAL from CB R
H819 2809 Source, high word of the double word from CB I
H820 2810 Source, low word of the double word from CB I
d821 Double word from CB (N4 format) as REAL value R
H822 3446 Source for the 1st actual value at CB I
H823 3447 Source for the 2nd actual value at CB I
H824 3448 Source for the 3rd actual value at CB I
H825 3449 Source for the 4th actual value at CB I
H826 3000 Source for the actual value (REAL è integer) at CB I
H828 3000 Source for the 5th actual value at CB(word o.double word) I
H829 1.0 Normalization for H828 (REAL è N4) R
H831 2442 Source for PZD1 at CB I
H832 2822 Source for PZD2 at CB I
H833 2823 Source for PZD3 at CB I
H834 2444 Source for PZD4 at CB I
H835 2824 Source for PZD5 at CB I
H836 2825 Source for PZD6 at CB I
H837 2827 Source for PZD7 at CB I
H838 2000 Source for PZD8 at CB I
H839 2828 Source for PZD9 at CB I
H840 2829 Source for PZD10 at CB I
H841 1.0 Normalization for double word from CB R
H900 0000 Source for fault message F125 I
H901 0000 Source for fault message F126 I
H902 0000 Source for fault message F127 I
H903 0000 Source for fault message F128 I
H904 0000 Source for fault message F129 I
H905 0000 Source for fault message F130 I
H906 0000 Source for fault message F131 I
H907 0000 Source for alarm A106 I
H908 0000 Source for alarm A107 I
H909 0000 Source for alarm A108 I
H910 0000 Source for alarm A109 I
H911 0000 Source for alarm A110 I
H912 0000 Source for alarm A111 I
H913 0000 Source for alarm A112 I
d921 –
d930
PZD1 to PZD10 for output at CB W
H960 0 Fixed value 1, integer type I
H961 0 Fixed value 2, integer type I
H962 0 Fixed value 3, integer type I
H963 0 Fixed value 4, integer type I
H964 0 Fixed value 5, integer type I
H965 0 Fixed value 6, integer type I
H971 16#0000 Fixed value 1, word type W
H972 16#0000 Fixed value 2, word type W
H973 16#0000 Fixed value 3, word type W
H974 16#0000 Fixed value 4, word type W
Appendix
SPA440 angular synchronous control - SIMADYN D - Manual 141
6DD1903-0BB0 Edition 05.01
Para. Factory set Units Start-up val ue Significance Type
H981 0 Fixed value 1, double word type W
H982 0 Fixed value 2, double word type W
H983 0 Fixed value 3, double word type W
H984 0 Fixed value 4, double word type W
H990 0.0 Fixed value 1, REAL type R
H991 0.0 Fixed value 2, REAL type R
H992 0.0 Fixed value 3, REAL type R
H993 0.0 Fixed value 4, REAL type R
H994 0.0 Fixed value 5, REAL type R
H995 0.0 Fixed value 6, REAL type R
H996 0.0 Fixed value 7, REAL type R
H997 0.0 Fixed value 8, REAL type R
d998 134 Identification of SIMADYN D components I
d999 121 Identification of software for SIMOVIS I
L028 3234 Source for the 1st display parameter, REAL type (d028) I
L029 3330 Source for the 2nd display parameter, REAL type (d029) I
L030 3332 Source for the 3rd display parameter, REAL type (d030) I
L031 3819 Source for the 4th display parameter, REAL type (d031) I
L032 0193 Source for the 1st display parameter, BOOL type (d032) I
L033 0196 Source for the 2nd display parameter, BOOL type (d033) I
L034 0105 Source for the 3rd display parameter, BOOL type (d034) I
L035 0116 Source for the 4th display parameter, BOOL type (d035) I
L036 2500 Source for the 1st display parameter, integer type (d036) I
L037 2502 Source for the 2nd display parameter, integer type (d037) I
L038 2605 Source for the 1st display parameter, word type (d038) I
L039 2606 Source for the 2nd display parameter, word type (d039) I
L098-
L112,
c114-
c119,
L120-
L123,
c125,
L200-
L212,
c214-
c219,
L220-
L223,
c225,
c300,
L301-
L302
new parameters, refers to Chapter 3.2.3
L400 2048 Length buffer I
c401 Coupling Trace BO
c402 Status Trace W
L605 5000 Source, double word quantity (conversion into 2 words) I
L606 2000 Source, input 1 for integer adder 1 I
L607 2000 Source, input 2 for integer adder 1 I
L608 2000 Source, input 1 for integer subtractor 1 I
L609 2000 Source, input 2 for integer subtractor 1 I
L646 2000 Source for integer è REAL conversion I
L647 3000 Source for REAL è integer conversion I
L698 0000 Source for setting input; flipflop 1 I
L699 0000 Source for reset input; flipflop 1 I
Appendix
142 SPA440 angular synchronous control - SIMADYN D - Manual
6DD1903-0BB0 Edition 05.01
Para. Factory set Units Start-up val ue Significance Type
L700 0001 Source, 1st input AND logic gate 1 I
L701 0001 Source, 2nd input AND logic gate 1 I
L702 0001 Source, 3rd input AND logic gate 1 I
L703 0001 Source, 1st input AND logic gate 2 I
L704 0001 Source, 2nd input AND logic gate 2 I
L705 0001 Source, 3rd input AND logic gate 2 I
L706 3000 Source, input 0 of changeover switch 1 I
L707 3000 Source, input 1 of changeover switch 1 I
L708 0000 Source, select input of changeover switch 1 I
L709 0000 Source of the 1st edge evaluation block I
L710 0000 Source, 1st input OR logic gate 1 I
L711 0000 Source, 2nd input OR logic gate 1 I
L712 0000 Source, 3rd input OR logic gate 1 I
L713 0000 Source, 1st input OR logic gate 2 I
L714 0000 Source, 2nd input OR logic gate 2 I
L715 0000 Source, 3rd input OR logic gate 2 I
L716 3000 Source, input 0 of changeover switch 2 I
L717 3000 Source, input 1 of changeover switch 2 I
L718 0000 Source, select input of changeover switch 2 I
L728 0000 Source, power-on delay 1 I
L729 100.0 ms Duration, power-on delay 1 SD
L730 0000 Source, power-off delay 1 I
L731 100.0 ms Duration, power-off delay 1 SD
L732 0000 Source for the 1st inverter I
L733 0000 Source for the 2nd inverter I
L734 0000 Source for setting input; flipflop 2 I
L735 0000 Source for reset input; flipflop 2 I
L738 0000 Source to inhibit the 1st PT1 element I
L739 2.0 Quality of the bandstop filter R
L740 3000 Source for the 1st PT1 element I
L741 20.0 ms Filter time constant for the 1st PT1 element SD
L742 3000 Source for the input signal of the bandstop filter I
L743 3002 Source for the bandstop frequency of the bandstop filter I
L744 3000 Source for the X input of the comparator I
L745 3000 Source for the Y input of the comparator I
L746 3001 Source for the upper limit value of the limiter I
L747 3000 Source for the input quantity of the limiter I
L748 3001 Source for the lower limit value of the limiter I
L749 3000 Source for the input, comparator with hysteresis I
L750 3001 Source for the range, comparator with hysteresis I
L751 0.1 Hysteresis of the comparator with hysteresis R
L752 3003 Source for comparison value comparator with hysteresis I
L753 3000 Source for input, free 2-point characteristic I
L754 0.0 X1 value 2-point characteristic R
L755 0.0 Y1 value 2-point characteristic R
L756 1.0 X2 value 2-point characteristic R
L757 1.0 Y2 value 2-point characteristic R
L760 2000 Source for word 1 (word è bits) I
L761 2000 Source for high word (double word è REAL) I
L762 2000 Source for low word (double word è REAL) I
Appendix
SPA440 angular synchronous control - SIMADYN D - Manual 143
6DD1903-0BB0 Edition 05.01
Para. Factory set Units Start-up val ue Significance Type
L763 1.0 Normalization factor for L761, L762 R
L764 2000 Source for word è REAL conversion I
L765 1.0 Normalization to L764 R
L766 3000 Source for REAL è N2 conversion I
L767 1.0 Normalization to L766 R
L786 3000 Source, 1st input, REAL adder 1 I
L787 3000 Source, 2nd input, REAL adder 1 I
L788 3000 Source, 3rd input, REAL adder 1 I
L789 3000 Source, 1st input, REAL adder 2 I
L790 3000 Source, 2nd input, REAL adder 2 I
L791 3000 Source, 3rd input, REAL adder 2 I
L792 3000 Source, 1st input, REAL subtractor 1 I
L793 3000 Source, 2nd input, REAL subtractor 1 I
L794 3000 Source, 1st input, REAL subtractor 2 I
L795 3000 Source, 2nd input, REAL subtractor 2 I
L796 3001 Source, 1st input, REAL multiplier 1 I
L797 3001 Source, 2nd input, REAL multiplier 1 I
L798 3001 Source, 3rd input, REAL multiplier 1 I
L799 3001 Source, 1st input, REAL multiplier 2 I
L800 3001 Source, 2nd input, REAL multiplier 2 I
L801 3001 Source, 3rd input, REAL multiplier 2 I
L802 3001 Source, 1st input, REAL divider 1 I
L803 3001 Source, 2nd input, REAL divider 1 I
L804 3001 Source, 1st input, REAL divider 2 I
L805 3001 Source, 2nd input, REAL divider 2 I
L810 2000 Source for word 2 (word è bits) I
L812 2001 Source, 1st input, integer divider 1 I
L813 2001 Source, 2nd input, integer divider 1 I
L814 2001 Source, 1st input, integer multiplier 1 I
L815 2001 Source, 2nd input, integer multiplier 1 I
L816 2000 Source, high word (word è double word) I
L817 2000 Source, low word (word è double word) I
L818 3000 Source, input free integrator I
L819 1.0 Upper limit, integrator R
L820 -1.0 Lower limit, integrator R
L821 3000 Source, setting value integrator I
L822 1000 ms Integration time, integrator SD
L823 0000 Source for the integrator setting signal I
L824 3000 Source, input 1 of the changeover switch 3 I
L825 3000 Source, input 2 of the changeover switch 3 I
L826 0000 Source, select input of changeover switch 3 I
L827 3000 Source, input 1 of the changeover switch 4 I
L828 3000 Source, input 2 of the changeover switch 4 I
L829 0000 Source, select input of changeover switch 4 I
L830 0000 Source, AND-OR logic 1 (OR) I
L831 0000 Source, AND-OR logic 1 (AND 1) I
L832 0001 Source, AND-OR logic 1 (AND 2) I
L833 0000 Source, AND-OR logic 2 (OR) I
L834 0000 Source, AND-OR logic 2 (AND 1) I
L835 0001 Source, AND-OR logic 2 (AND 2) I
Appendix
144 SPA440 angular synchronous control - SIMADYN D - Manual
6DD1903-0BB0 Edition 05.01
Changes
SPA440 angular synchronous control - SIMADYN D - Manual 145
6DD1903-0BB0 Edition 05.01
8 Changes
1. Parameters d129, H138, H668, H669 supplemented in the
Documentation
2. Factory setting, parameters H544, H651-H656, H660-H662
3. Pulse ratio no longer used (this is now automatically generated)
4. Definition, speed ratio inverted
1. Can be freely wired using BICO technology (many new parameters!).
2. Digital input quantities, also available inverted.
3. Bi-directional outputs can be de-activated.
4. Possible to inhibit analog inputs and outputs.
5. Freely-available blocks.
6. The ratio resolution can be changed.
7. Different data types for the peer-to-peer interface.
8. Double words can be received and sent.
9. Monitoring parameters are not identical with version 2.01 (are in some
instances used as parameter which can be changed).
1. For release V2.1: Angular synchronism can also be implemented
using 2 absolute value encoders by comparing the two position
actual values
Edition 11/98
Edition 06/99
Edition 05/01
Function diagram
87654321
FPlan_english.vsd
Angular Synchr. Control SPA44005.01
Function charts for the standard software package Angular Synchronous Control SPA440
General
Contents
General symbols
Control symbols
Constants
General parameter and status word
T400
Analog inputs
Analog outputs
Binary inputs
Binary outputs and bidirectional I/O
Speed and position sensing
Slave drive
Master drive
Absolut encoders
Plausibility check
Speed ratio
Control
Control bits
Displacement (offset) calculation
Angle controller
Master speed setpoint
Speed controller on T400
Inverter interface
Communication status
Faults and alarms
Process data receiption
Status words
Control words
Process data transmission
10
20
25
30
40
50
51
52
53
60
70
72
75
80
90
100
110
115
120
150
160
170
180
220
230
Communication
Peer to peer settings and PZD
Peer to peer control and status word
COMBOARD general settings
COMBOARD reception
COMBOARD control words
COMBOARD status words
COMBOARD transmission
USS slave
Free function blocks
Logical gates
Arithmetic and display parameter
Miscellaneous functions
Type conversion
Multiplexer
setpoint channels
Analog outputs
Binary control
Control word 1 (part 1)
Control word 1 (part 2)
CB actual values
CB status words
Peer to peer
300
310
400
410
420
430
440
450
460
470
480
490
500
510
520
530
540
550
560
570
Contents Chart Contents Chart
- 10 -
General
Contents
Function diagram
87654321
FPlan_english.vsd
Angular Synchr. Control SPA44005.01
- 20 -
Allgemeines
Allgemeine Symbole
0
1
2
3
4
Parameter name
(factory setting)
Hxyz
Parameter Name
dxyz
H234 (fact.)
B (chart)
Parametername
+
-
1
0
-1
Technology parameters
1
1
0
&
technology parameter
e.g. H231
dsiplay parameter
e.g. d123
Connection to a floating-
point source (fact.) which
can be modified with
H123
H123 (fact.)
K (chart)
Parameter name
Logic and arithmetic
Y
X2
X1
Logical inversion
AND operation
Inputs and outputs may
be of binary or vector data
type
Multiplication
Y = X1 * X2
X1
X2
Y
Dividor
Y =
X1
X2
X Y
Absolute value
Y = | X |
X Y
Negation
Y = - X
Adder
Y = X1 + X2
X2
X1 Y
Miscellaneous
Multiplexer
e.g. with 5 inputs
Selection
Operational amplifier
Switch selection with 2
inputs
Sign determination
Y = sign ( X )
Selection
X Y
Symbol ExplanationsExplanationsExplanations SymbolSymbol
A+
coarse
pulse
A-
B+
B-
N+
N-
Pluse encoder
Here: 2 tracks A, B and
zero pulse N;
interface RS422
Edge detector
Generats a pulse for the
positive edge of X
YX
H123 (fact.)
KR (chart)
Parameter name
R-S-Flip-Flop
set
reset
R
S
¾
Q
Q
1
H123 (3412)
KR (120,7)
S.Setpoint speed
Excample:
parameter name (factory setting)
(chart, sector) for
the factory setting
Data type symbol:
B BOOL
K 16bit
KK 32bit
KR floating point
parameter
number
Connection to a integer
source (fact.) which can
be modified with H123
Connection to a boolean
source (fact.) which can
be modified with H234
OR operation
Inputs and outputs may
be of binary or vector data
type
Function diagram
87654321
FPlan_english.vsd
Angular Synchr. Control SPA44005.01
- 25 -
Allgemeines
Regelungstechnische Symbole
PT1
DT1
Xmin
Xmax
x
y
T0
Kp Tn
Y
X
X<Y
X>Y
Y=X
Low pass filter
T time constant
T
TdT
High pass filter
T = smoothing time
constant
Td = derivative action
time constant
Limiter function
Xmin <= X <= Xmax
X
Switch on delay T1
T1
Converter
here: fixed point to
floationg point
(100% converted to 1.0)
hysteresis
1.0
100 %
Limiter
signalling if the input
quantity exceeds the limits
interval limit
average interval value
X > Y
Y < X
X = Y
upper
limit
lower
limit input at the
lower limit
input at the
upper limit
input output
input
Limit value monitor with
hysteresis
proportional gain integral action time
enable
system
deviation output
integrator
value
PI controller
Curve defined by 2 points
(X1,Y1) and (X2,Y2)
symmetrical to the Y-axis
Ramp function with
setting function
input output
X1
X2
Y1
Y2
Y
ramp-up time
input output
ramp-down
time
setting value set
ExplanationsSymbol ExplanationsSymbol Symbol Explanations
Switch off delay T1
T1
0T
Function diagram
87654321
FPlan_english.vsd
Angular Synchr. Control SPA44005.01
- 30 -
General
Constants
Constants
B0000 Logisch 00
B0001 Logisch 11
Wort 0
K20000
Wort 1
K20011
Doppelwort 0
KK50000
Doppelwort 1
KK50011
Real 0.0
KR30000.0
Real 1.0
KR30011.0
Real 2.0
KR30022.0
Wort 16#FFFF
K200216#FFFF
Real 0.5
KR30030.5
Real -1.0
KR3004-1.0
Setpoints fixed values
Const.Displacem.
(0.0)
H066
Constant Ratio
(1.0)
H043
Rel.Ratio Const
(1.0)
H049
Const. Ref.Speed
(0.0)
H073
KR3066
KR3049
KR3043
KR3073
Fixed values for free usage
Constant R1
(0.0)
H990
Constant R2
(0.0)
H991
Constant R3
(0.0)
H992
Constant R4
(0.0)
H993
Constant R5
(0.0)
H994
Constant R6
(0.0)
H995
Constant R7
(0.0)
H996
Constant R8
(0.0)
H997
KR3990
KR3991
KR3992
KR3993
KR3994
KR3995
KR3996
KR3997
Constant I1
(0)
H960
Constant I2
(0)
H961
Constant I3
(0)
H962
Constant I4
(0)
H963
Constant I5
(0)
H964
Constant I6
(0)
H965
ConstantW1
(0)
H971
Constant W2
(0)
H972
Constant W3
(0)
H973
Constant W4
(0)
H974
K2960
Floating point (R) 16bit integer (I, W)
K2961
K2962
K2963
K2964
K2965
K2971
K2972
K2973
K2974
32bit integer (DI)
Constant DI1
(0)
H981
ConstantDI2
(0)
H982
Constant DI3
(0)
H983
Constant DI4
(0)
H984
KK5981
KK5982
KK5983
KK5984
Function diagram
87654321
FPlan_english.vsd
Angular Synchr. Control SPA44005.01
Restore factory setting
Timeout CB (B0405) [400,6]
Status word angular
synchronous control
Timeout Peer (B0360) [300,7]
Speed controller limitation (B0134) [120,8]
Angle controller limitation (B0116) [110,8]
Fault (B0003) [160,6]
Speed deviation master (B0162) [75,6]
Speed deviation slave (B0160) [75,6]
Enable speed controller (B0140) [120,5]
Warning (B0004) [160,8]
- 40 -
General
General parameter and status word
Status of angle controller (B0109) [90,7]
Running synchron (B0105) [100,8]
Bit 0
Bit 6
Bit 1
Bit 2
Bit 3
Bit 4
Bit 5
Bit 7
Bit 8
Bit 9
Bit 12
Bit 10
Bit 11
Bit 13
Bit 14
Bit 15
State of Control
d005
Timeout inverter (B0502) [150,5]
General settings
Language select
(0)
H000
Sofware Version
d002
Software Type
d001
0 german
1 english
CPU load
CPU load T1
d545
CPU load T2
d546
CPU load T3
d547
CPU load T4
d548
CPU load T5
d549
Erase EEPROM
(0)
H164
Key EEPROM
(0)
H165
State EEPROM
d166
Restore factory settings:
Set
H165 = 165
H164 = 1
All parameter changes are deleted and set to the
original factory setting.
This operation can not be canceled !
T400 = Baseboard
(0)
H009
Use T400 as Baseboard
(operation without inverter with
additional T400; parameter
numbers differ!
H
®
P; L
®
U)
TechBoard ParTyp
(0)
H008
COMBOARD ParTyp
(0)
H024
Select the data type for the
transmission of floating-
point parameters
Synchr. pulse Slave (10ms) (B0209) [60,8]
Synchr. pulse Master (10ms) (B0149) [70,7]
Slaveposition > enable threshold (B0154) [60,3]
Displacement updated (B0106) [100,8]
Status word angular synchr.K2005
SIMADYN D
d998
SIMOVIS SW ID
d999
Function diagram
87654321
FPlan_english.vsd
Angular Synchr. Control SPA44005.01
- 50 -
T400
Analog inputs
PT1
Hardware filter
500 µs
A
DPT1
12 bit
5 V
AE1 Scalefactor
(1.0)
H210
AE1 Offset
(0.0)
H211
AE1 Filter Time
(500 ms)
H222
AE1 act. value
d212 AE1 smoothed
d223
set output zero
PT1
Hardware filter
500 µs
A
DPT1
12 bit
5 V
AE2 Scalefactor
(1.0)
H213
AE2 Offset
(0.0)
H214
AE2 Filter Time
(0 ms)
H224
AE2 Iact. value
d215 AE2 smoothed
d225
PT1
Hardware filter
500 µs
A
DPT1
12 bit
5 V
AE4 Scalefactor
(1.0)
H219
AE4 Offset
(0.0)
H220
AE4 Filter Time
(0 ms)
H228
AE4 act. value
d221 AE4 smoothed
d229
PT1
Hardware filter
500 µs
A
DPT1
12 bit
5 V
AE3 Scalefactor
(1.0)
H216
AE3 Offset
(0.0)
H217
AE3 Filter Time
(0 ms)
H226
AE3 act. value
d218 AE3 smoothed
d227
Terminal 95
Terminal 94
Terminal 92
Terminal 93
Terminal 90
Terminal 91
+
-
+
-
+
-
+
-
±10 V
±10 V
±10 V
±10 V
Task cycle time:
Input Task cykle time
AE1 T1 1,2 ms
AE2 T2 4,8 ms
AE3 T2 4,8 ms
AE4 T2 4,8 ms
H230 (0000)
B (30,2)
Q.setAE1_Null
AE1 smoothedKR3223
set output zero
H231 (0000)
B (30,2)
Q.setAE2_Null
AE2 smoothedKR3225
AE3 smoothed
KR3227
set output zero
H232 (0000)
B (30,2)
Q.setAE3_Null
set output zero
H233 (0000)
B (30,2)
Q.setAE4_Null
AE4 smoothedKR3229
Function diagram
87654321
FPlan_english.vsd
Angular Synchr. Control SPA44005.01
- 51 -
T400
Analog outputs
D
A
H160
(0.0)
Aout 1 Offset
H161
(1.0)
Aout 1 Scalefact
12 Bit
Terminal 97
Terminal 99
D
A
H162
(0.0)
Aout 2 Offset
H163
(1.0)
Aout 2 Scalefact
12 Bit
Terminal 98
Terminal 99
±10 V
±10 V
10 V
-10 V
10 V
-10 V
H620 (3618)
KR (510,4)
S. Analog Outp1
H622 (3619)
KR (510,7)
S.Analog Outp2
Analog output 1
d666
Analog output 2
d667
5 V
5 V
PT1
T_Filter_DAC1
(0 ms)
H668
PT1
T_Filter_DAC2
(0 ms)
H669
set output zero
H621 (0000)
B (30,2)
S.set DAC1 zero
KR3666
set output zero
H623 (0000)
B (30,2)
S.set DAC2 zero
KR3667
Function diagram
87654321
FPlan_english.vsd
Angular Synchr. Control SPA44005.01
- 52 -
T400
Binary inputs
5V
24V
Terminal 54
BinInput2 Pin54
d611
5V
24V
Terminal 60
5V
24V
Terminal 59
5V
24V
Terminal 58
5V
24V
Terminal 57
5V
24V
Terminal 56
5V
24V
Terminal 55
5V
24V
Terminal 53
BinInput1 Pin53
d610 Pin84 Coarse P1
d607
Pin65 Coarse P2
d608
Coarse pulse inputs (T3)Binary inputs (T3)
B0610 BinInput 1
B0620 BinInput 1 inv.
B0611 BinInput 2
B0621 BinInput 2 inv.
BinInput3 Pin55
d612
B0612 BinInput 3
B0622 BinInput 3 inv.
BinInput4 Pin56
d613
B0613 BinInput 4
B0623 BinInput 4 inv.
BinInput5 Pin57
d614
B0614 BinInput 5
B0624 BinInput 5 inv.
BinInput6 Pin58
d615
B0615 BinInput 6
B0625 BinInput 6 inv.
BinInput7 Pin59
d616
B0616 BinInput 7
B0626 BinInput 7 inv.
BinInput8 Pin60
d617
B0617 BinInput 8
B0627 BinInput 8 inv.
5V
24V
Terminal 65
5V
24V
Terminal 84
B0607 Coarse pulse 1
B0635 Coarse pulse 1 inv.
B0608 Coarse pulse 2
B0636 Coarse pulse 2 inv.
1
1
1
1
1
1
1
1
1
1
Bit 0 BinInput 1
Bit 6 BinInput 7
Bit 1 BinInput 2
Bit 2 BinInput 3
Bit 3 BinInput 4
Bit 4 BinInput 5
Bit 5 BinInput 6
Bit 7 BinInput 8
Bit 8 BinInput 1 inv
Bit 9 BinInput 2 inv
Bit 12 BinInput 5 inv
Bit 10 BinInput 3 inv
Bit 11 BinInput 4 inv
Bit 13 BinInput 6 inv
Bit 14 BinInput 7 inv
Bit 15 BinInput 8 inv
K2025
State dig.Inputs
d025
Function diagram
87654321
FPlan_english.vsd
Angular Synchr. Control SPA44005.01
- 53 -
T400
Binayry outputs and bidirectional outputs
Terminal 51
Terminal 45
24V
Pin46 Input
d601
Bidirectional input/output
Terminal 46
B0631 Terminal 46 inv
B0601 Terminal 46
H631 (0105)
B (100,8)
S.BiDir Out 1
enable BiDir1
(1)
H637
Pin47 Input
d602
Terminal 47
B0632 Terminal 47 inv
B0602 Terminal 47
H632 (0116)
B (110,7)
S.BiDir Out 2
enable BiDir2
(1)
H638
Pin48 Input
d603
Terminal 48
B0633 Terminal 48 inv
B0603 Terminal 48
H633 (0109)
B (90,7)
S.BiDir Out 3
enable BiDir3
(1)
H639
Pin49 Input
d604
Terminal 49
B0634 Terminal 49 inv
B0604 Terminal 49
H634 (0003)
B (160,6)
S.BiDir Out 4
enable BiDir4
(1)
H640
H635 (0004)
B (160,8)
S.Bin.Output1
H636 (0000)
B (30,2)
S.Bin.Output2
Terminal 52
Supply voltage for output
drivers
Binary outputs
1
1
1
1
Warning:
H637 ... H640 are initialization parameters.
Modification takes places after the next
power on.
If bidirectional outputs are enabled as
output the corresponding input value is
inverted!
E.g.: H640 = 1
®
d604 displays the inverse
level to terminal 49
Function diagram
87654321
FPlan_english.vsd
Angular Synchr. Control SPA44005.01
- 60 -
Speed and position sensing
Slave
1
0
81
from inverter
82
83
84
1
0
Mode Slave Speed
Bit 7 (1)
H018
Mode Slave Speed
Bit 6 (11)
H018
Coarse
pulses
handling
CoarsePulsSlave
(0)
H022
Mode
Pulses
Synchronization
Nominal speed
Slave Position
d016
Speed Slave
d014
Error Code Slave
d020
x
y
Enable
synchronization
Mode Slave Speed
Bits 0..5, 8..15
H018
Nom. Speed Slave
(1500.0)
H012
0.0
Position sensing slave
drive
Speed
Actual value
position
Error code
Pulses Slave
(1024)
H010
Pulses per
revolution
Speed ratio
Numerator
Denominator
Track A
Track B
Zero pulse
incremental
encoder
A
B
N
Coarse pulse
Position
difference
-1
Position set for
synchr. pulse
PT1
PT1
d124
Pos.Diff. filt
actual value displacement [100, 5]
position difference [60.8]
1
0
correction pulses [100, 6]
Position difference correcting value
H187 (0170)
B (520,2)
S.ResetPos.Diff1
Correct position difference
Position difference
calculation
Position sensing
Reset
1
1
Displacem. Reset
d175
1
pulses slave
K2010
H181 (0097)
B (90,3)
S.ResetSlavePos.
H180 (0154)
B (60,4)
S.EnableSynSlave
K2020
B0020 Error position
sensing slave
n_Slave norm.KR3018
Speed slave
smoothed
KR3146
Tfilt Speed
(4.0ms)
H146
Position slave
KR3016
B0150 SyncImpuls Slave
0T B0209 SyncSlave 10ms
T SyncPulseSlave
(10 ms)
H209
position differenceKR3118
inv. position difference
KR3117
position
difference
smoothed
KR3124
H154 (3186)
KR (60,2)
S.SlaveSynchrPos B0154
position > threshold
B0152
position < 0
B0153
H182 (5088)
KK (80,7)
S.Slave Numerat.
H183 (5089)
KK (80,7)
S.Slave Denomin
H185 (0108)
B (90,7)
S.Reset PosDiff2
H184 (0098)
B (90,3)
S.Corr.Pos.Diff.
B0175
Pos.Correct Mode
(1)
H090
H058 (3012)
KR (60,5)
S.Norm. n_Slave
Absolut pos. slave
KR3186
H186 (3016)
KR (60,7)
S.Abs.Pos.Slave
B0186 slave position
negativ
Thresh.SyncSlave
(500.0)
H105
Speed slaveKR3014
KR3012
Enable, position
sensing with
incr. encoders
L098=1
1
0
L099=0
Enable, abs. enc
Position difference from absolut encoders [72,8]
Tfilt Pos.Differ
(4 ms)
H117
Function diagram
87654321
FPlan_english.vsd
Angular Synchr. Control SPA44005.01
- 70 -
Speed and position sensing
Master
62
Coarse pulse
handling
H023
(0)
CoarsePulsMaster
x
y
0.0
+
-
A+
Coarse
pulse
A-
B+
B-
N+
N-
+
-+
-
Mode
Pulses
Synchronization
Nominal speed
Master Position
d017
Speed Master
d015
Errorcode master
d021
Enable
synchronization
Mode MasterSpeed
(16#7F02)
H019
Nom.Speed Master
(1500.0)
H013
Position sensing
master drive
Speed
Position
Error code
Pulses per revolution
63
64
65
86
87
88
Pulses Master
(1024)
H011
Terminal
Position set for
synchronization
Example: RS422 encoder
Reset
1
n_Master normalizedKR3019
Position master
KR3017
Abs. value master position
KR3199
B0199 Position master negativ
H199 (3017)
KR (70,7)
S.Abs.Pos.Master
B0148 SyncImpuls master
0T B0149 SyncMaster 10ms
T SyncPulsMaster
(10 ms)
H149
B0021 Error position sensing master
Error code master
K2021
H190 (3017)
KR (70,7)
S.MasterSynchPos
ThreshSyncMaster
(500.0)
H107
B0190
master pos > threshold
B0188
Position master < 0
B0189 H188 (0190)
B (70,3)
S.EnablSynMaster
H189 (0097)
B (90,3)
S.ResetMasterPos
Pulses master
K2011
Enable synchronization
depending on the master
position
H059 (3013)
KR (70,4)
Q.Norm. n_Master
Speed masterKR3015
KR3013
Function diagram
87654321
FPlan_english.vsd
Angular Synchr. Control SPA44005.01
Master and Slave
Sensing, absolut encoders
- 72 -
Sensing
Absolut
encoder
SLAVE
Terminals
76 - 79
Y
YP
YRC
YSP
c114
c116
c115
L208
...
L212
Y
YP
YRC
YSP
c214
c216
c215
L120
*1
0
L121 L122
+
+
L123
c125
-
+
L220
*1
0
L221 L222
+
+
L223
c225
*
c300
L301 L302
PT1
d124
Pos.Diff. filt
Tfilt position diff. (4 ms)
H117
Position diff.
KR3118
Position diff..
filtered
KR3124
0
1
L099
Enable Abs-Enc
Position difference from incremental encoders [60, 7]
QF
c118
c119
QF
c218
c219
YFC
YF
YF
YFC
L200
...
L206
L108
...
L112
L100
...
L106
Sensing
Absolut
encoder
MASTER
Terminals
72 -75
Slave Master
L100 L200 Resolution per turn
L101 L201 Number of turns
L102 L202 Preceding z ero bits
L103 L203 Alarm bit position
L104 L204 Clock frequency
L105 L205 Encoder type
L106 L206 Data coding
L107 L207 Control w ord
L108 L208 Gearbox ratio
L109 L209 Normaliz ation position
L110 L210 Normalization speed
L 111 L211 Posi ti on offse t
L112 L212 U pper limit speed
L120 L220 Offset, number of rotations
L121 L221 Scaling, positon actual value
L122 L222 Selection MUL/DI V
L123 L223 Scaling, positon actual value
Slave Master
c114 c214 Speed actual value
c115 c215 Positi on cou n ter
c116 c216 Nu mb e r of r ota tions
c118 c218 E r r or cod e
c119 c219 E r r or sta tu s
Settings, absolut encoders
Only useful for linear axis!
(no range overflow)
B0211
B0212
Enable absolut encoders:
L098=0 and L099=1
KR4300
KR4125
KR4225
KR4114
KR4115
KR4116
KR4214
KR4215
KR4216
Function diagram
87654321
FPlan_english.vsd
Angular Synchr. Control SPA44005.01
- 75 -
Speed and position sensing
Plausibility check
0.1
dn enable Max.
(0.1)
H118
0.1
dn Master Max.
(0.1)
H119
1
Y
X
X<Y
X>Y
X=Y
Y
X
X<Y
X>Y
X=Y
H192 (3018)
KR (60,8)
S.n_Slave Compar
H193 (3136)
KR (115,4)
S.n_ref SlaveCmp
H195 (3019)
KR (70,7)
S.n_Master Compar
H196 (3076)
KR (115,2)
S.n_ref MastComp
B0192
nSlave > Range
B0194
nSlave < Range
B0193 Slave speed within enable range
B0160 Speed deviation Slave
B0195
nMaster > Range
B0197
nMaster < Range
B0196 Master speed within enable range
B0162 Speed deviation Master
B0161 Speed deviation
Function diagram
87654321
FPlan_english.vsd
Angular Synchr. Control SPA44005.01
- 80 -
Speed and position sensing
Speed ratio
Addition. Ratio
(0.0)
H047
Ratio
d044
Calculation of
speed ratio
components
1
0
enable FineRatio
(0)
H088
Ratio Numerator
d045
d046
RatioDenominator
H067 (3040)
KR (500,3)
S.Ratio
H068 (3048)
KR (500,5)
S.relative Ratio Ratio relative
d061
Ratio 1
d060
KR3060
KR3047 H041 (3047)
KR (80,1)
S. Addition.Ratio
actual ratioKR3044
Ratio Resolution
(10000)
H155
Fine Ratio Numer
(1000.0)
H086 fixed value numerator
KK5086
Fine Ratio Denom
(1000.0)
H087 fixed value denominator
KK5087
H197 (5086)
KK (80,4)
S.FineRatioNumer
H198 (5087)
KK (80,4)
S.FineRatioDenom
Ratio numeratorKK5088
Ratio denominatorKK5089
relative ratio
KR3061
Function diagram
87654321
FPlan_english.vsd
Angular Synchr. Control SPA44005.01
- 90 -
Control
Conrol bits
Automatic
synchronization after
power on
H191 (0174)
B (520,8)
S.Synchr.Comd2
T0
1
DelayStartSynchr.
(1000ms)
H168
EnableStartSynch
(0)
H169
Synchron.Command
d179
R
S Q
Q
Enable displacement correction
B0179
H101 (0105)
B (100,8)
S.StopStartSynch
B0098 synchroning command
B0101 StartSynchr
B0100 inv.StartSynchr
H098 (0101)
B (90,7)
S.Synchr.Command
1
H167 (0173)
B (520,7)
S.Pos.Reset_1 Reset Position
d178
H097 (0108)
B (90,7)
S.Pos.Reset_2 B0097 Position + displacement reset
Reset position and displacement
&
enable Pos.Cntrl
d109
H131 (0172)
B (520,5)
S.enablePosCtr11
EnableSpeedCntrl
d177
H139 (0193)
B (75,5)
S.enablePosCTR12
B0177
B0109 status of angle controller
B0108 angle controller inhibit
Enable angle controller
&
1
bitwise ANDed
(at least one bit = 1 of the
AND operation)
TestEnable CU n
(0)
H543
Mask CU ready
(16#0004)
H542
16 bit
&
Enable inverter speed controller
H592 (2571)
K (170,3)
S.en.Speed CU1
H593 (0547)
B (560,4)
S.en.Speed CU2
B0546
n-controller CU
Function diagram
87654321
FPlan_english.vsd
Angular Synchr. Control SPA44005.01
- 100 -
Control
Displacement (offset) calculation
SyncPulsesMaster
(4096)
H100
SyncPulses Slave
(4096)
H102
CorrectionPulses
(1.0)
H093
H091
(0)
SynchrRetrigMode
H092
(0)
Synchr.Edge Mode
Position slave [60,8]
Position master [70,8]
Synchronization command [90,8]
SyncImpuls Master[70,8]
SyncImpuls Slave [60,7]
Reset displacement
Displacement calculation
Threshold Synchr
(20.0)
H103 0.0
act.Displacement
d094
Displ.- Pos.diff
d095
Correction pulses
Displacement
- position difference
actual value
position difference
Master has synchronized
Slave has synchronized
Y
X
X<Y
X>Y
X=Y
H235 (3062)
KR (100,3)
S.Position Diff2
H234 (3118)
KR (60,7)
S.Position Diff1
Enable displacement correction
H236 (0097)
B (90,3)
S.ResetDisplacem
Correction pulses
KR3091
Displacement - position
difference
KR3095
ErrorCode Displ.
d096 Error code displacem.
K2096
Actual value displacement Actual value
displacement
KR3094
H237 (3051)
KR (110,2)
S.Setp Displace1
H238 (3062)
KR (100,3)
S.Setp Displace2
B0102 Displacement > setpoint
B0104 Displacement < setpoint
B0103 Displacement within threshold
Direction depending displacement
n_Master
normalized [70,8]
n_Slave norm.
[60,8]
1
0
1
0
DisplaceMas+Sla+
H062 (0.0)
DisplaceMas-Sla+
H063 (0.0)
DisplaceMas+Sla-
H064 (0.0)
DisplaceMas- Sla-
H065 (0.0)
x
y
x
y
B0110 n_Slave > 0
B0111 n_Slave = 0
B0112 n_Slave < 0
B0113 n_Master > 0
B0114 n_Master = 0
B0115 n_Master < 0
direction depending
displacement
KR3062
Actual value displacement [100,8]
B0106 Displacement
determined
Displacement determined
&
B0105
Synchronism reached
KR3234
H077 (5088)
KK (80,7)
S.DisplaceNumer.
H078 (5089)
KK (80,7)
S.DisplaceDenom Ratio denominator
Ratio numerator
Function diagram
87654321
FPlan_english.vsd
Angular Synchr. Control SPA44005.01
Kp Tn
- 110 -
Control
Angle controller
set value
x
y
Tn Pos.Control
(500ms)
H111
Max. Position
(0.3)
H112
KP_UE Pos.Contrl
(1.0)
H113
KP_UE_0 PosCntrl
(1.0)
H114 KP Pos.Control
d123
H110
(1)
Hold I-Component
1
enable
ue_KP_0 Value
(0.0)
H116
H115
(0.0)
ue_KP Value
Set
KP adaption
angle controller
Diff.Pos.Control
d121
H051 (3050)
KR (500,4)
S.Displacem.Setup
-1
10
-4
PT1
Tfilt Pos.Cntrl
(0 ms)
H138
H108 (3044)
KR (80,4)
S.KP Pos.Contrl.
Max.Displacement
(2048.0)
H054
H055
(-2048.0)
Min.Displacement
RmpUp Displacem
(2.5 ms)
H052
RmpUp Displacem
(2.5 ms)
H052
KR3051
H057 (0175)
B (60,2)
S.set Displ.Ramp
KR3056
DisplacementSetp
d056
H156 (3056)
KR (110,4)
S.Ref_Pos_1
H157 (3000)
KR (30,2)
S.Ref_Pos_2
H158 (3124)
KR (60,8)
S.Act_Pos_1
H159 (3000)
KR (30,2)
S.Act_Pos_2
H104 (0109)
B (90,7)
S.Enable Control
Integrator comp.
angle controller
KR3122
IntegralComp.Pos
d122
KP angle controller
KR3123
Output angle
controller
KR3120
Outp.Pos.Control
d120
B0116 Angle controller
limitation active
Ramp generator displacement setpoint
KP normalized
The input values of the angle controller use the normalization
1.0 = a quarter of a speed sensor pulse.
This normalization results in very small proportional gains for
the angle controller which can not be entered with OP1S.
The factor 10
-4
allows to work with bigger values.
KP normiert
[110,4]
Deviation angle
controller
KR3121
Function diagram
87654321
FPlan_english.vsd
Angular Synchr. Control SPA44005.01
PT1
Tfilt Ref. Speed
(10ms)
H072 Refer.Speed filt
d074
Reference Speed
d076
1
0
H208 (0171)
B (520,4)
S.enable Jog
Jog Setpoint
(0.0)
H130
0.0
H127
(0.0ms)
n Ramp Up
Time
H128
(0.0ms)
n Ramp Down
Time
n_max Ramp Gen.
(1.0)
H125
H126
(-1.0)
n_min Ramp Gen.
- 115 -
Control
Master speed setpoint
1
0
SetpSpeed;Torque
d152
Output speed controller [120, 8]
Enable speed
controller [120, 5]
Speed controller on CU
H071 (3070)
KR (500,8)
S.ReferenceSpeedt SpeedSetpRampOut
d129
Enable Jog
d176
KR3076 KR3074
Speed Setpoint
d136
KR3136
H239 (3044)
KR (80,4)
S.Ratio n_ref
H240 (3136)
KR (115,4)
S.Slave n_ref_1
H241 (3176)
KR (115,3)
S.Slave n_ref_2
Jog setpointKR3176
n setpoint after rampKR3129
Setpoint for
inverter
KR3152
B0176 Jog enable
Fixed value joggingKR3130
H207 (3130)
KR (115,2)
S.Jog Ref.Speed
Setpoint for the inverter (CU)
Mode
Speed controller on T400
Speed setpoint
Torque setpoint
Function diagram
87654321
FPlan_english.vsd
Angular Synchr. Control SPA44005.01
- 120 -
Control
Speed controller on T400
Kp Tn
x
y
Tn SpeedControl
(200ms)
H145
Max n-Controller
(1.0)
H134
H135
(-1.0)
Min n-Controller
1
Outp.SpeedContrl
d150
precontrol
Max. n_Setpoint
(1.0)
H132
H133
(-1.0)
Min n_Setpoint
DifferSpeedCntrl
d151
KP Speed Control
(10.0)
H141
KP_0 SpeedContrl
(10.0)
H142
n_KP_0 Threshold
(0.0)
H144
H143
(0.0)
n_KP Threshold
KP Speed Control
d153
Speed Setp. ltd.
d137
DT1
H082
(100ms)
Tfilt Acc.Comp.
Tdif Accel.Comp.
(4 ms)
H083
H140
(0)
ModeSpeedControl
enable
KP adaption
speed controller
DT1 (SpeedSetp.)
d085
H205 (3129)
KR (115,7)
S.n(ref,speed)
H206 (3120)
KR (110,8)
S.n(addit.)
H200 (3137)
KR (120,2)
S.1 n(ref-act)
H201 (3000)
KR (30,2)
S.2 n(ref-act)
H202 (3146)
KR (60,8)
S.3 n(ref-act)
H203 (3000)
KR (30,2)
S.4 n(ref-act) H242 (3137)
KR (120,2)
S.SV Int(speed)
H243 (0000)
B (30,2)
S.Set Int(speed)
set value set
B0140 enable speed controller
H204 (3129)
KR (115,7)
S.KP(speedCtrl) KP speed controller
KR3153
0
1
H245 (0140)
B (120,5)
S.enable PreCtrl
H244 (3080)
KR (500,7)
S.Precontrol
0.0
Output speed
controller
KR3150
B0134 Speed controller
limitation active
H079 (3129)
KR (115,7)
S.DT1 Acc. Comp.
DT1 (n setp)KR3085
Inertia compensation / precontrol
Integral comp. speed controllerKR3145
Speed setpoint
limited
KR3137
Deviation
speed
controller
KR3051
Function diagram
87654321
FPlan_english.vsd
Angular Synchr. Control SPA44005.01
- 150 -
Inverter interface
Communication status
maximum
time interval
between 2
telegrams
Timeout
receive initialized
Control and monitoring functions
for the inverter interface
100 ms
B0502 CU Timeout
inverter in operation B0503 CU in operation
B0500 CU receive init.
B0504 CU receive not init.
1
1
1
B0506 CU no Timeout
send initialized B0501 CU send init.
B0505 CU send not init.
1
CU Rec.State
d562
B0507 CU not operational
Status receive
Function diagram
87654321
FPlan_english.vsd
Angular Synchr. Control SPA44005.01
- 160 -
Inverter interface
Errors and alarms
&
bitwise ANDed
Error Mask
(0)
H003
16 bit
(send to the inverter)
&
bitwise ANDed
Warning Mask
(0)
H004
16 bit
(send to inverter)
Bit 0
Bit 6
Timeout CB [400,7] Bit 1
Bit 2
Bit 3
Bit 4
Bit 5
Bit 7
Bit 8
Bit 9
Bit 12
Bit 10
Bit 11
Bit 13
Bit 14
Bit 15
Alarm status word
Timeout Peer [300,7]
Speed controller limitation [120,8]
Angle controller limitation [110,8]
Extern fault [220,3]
Speed deviation master [75,6]
Speed deviation slave [75,6]
Error position sensing master [70,7]
Error position sensing slave [60,8]
A103
A097
A098
A099
A100
A101
A102
A104
A105
A106
A107
A108
A109
A110
A111
A112
Bit 0
Bit 6
Timeout CB [400,7] Bit 1
Bit 2
Bit 3
Bit 4
Bit 5
Bit 7
Bit 8
Bit 9
Bit 12
Bit 10
Bit 11
Bit 13
Bit 14
Bit 15
Error status word
Timeout Peer [300,7]
Speed controller limitation [120,8]
Angle controller limitation [110,8]
Extern fault [220,3]
Speed deviation master [75,6]
Speed deviation slave [75,6]
Error position sensing master [70,7]
Error position sensing slave [60,8]
F122
F116
F117
F118
F119
F120
F121
F123
F124
F125
F126
F127
F128
F129
F130
F131
1
16 bit
1
16 bit
at least 1 bit set of the
Alarm status
at least 1 bit of the error
status set
Error Bits
d006
Warning Bits
d007
H900 (0000)
B (30,2)
S.F125
H901 (0000)
B (30,2)
S.F126
H902 (0000)
B (30,2)
S.F127
H903 (0000)
B (30,2)
S.F128
H904 (0000)
B (30,2)
S.F129
H905 (0000)
B (30,2)
S.F130
H906 (0000)
B (30,2)
S.F131
H907 (0000)
B (30,2)
S.A106
H908 (0000)
B (30,2)
S.A107
H909 (0000)
B (30,2)
S.A108
H910 (0000)
B (30,2)
S.A109
H911 (0000)
B (30,2)
S.A110
H912 (0000)
B (30,2)
S.A111
H913 (0000)
B (30,2)
S.A112
Error statusK2003
B0003 Fault
Errorbits
K2006
AlarmsbitsK2007 B0004 Alarm
Alarm statusK2004
B0005 no fault
1
Function diagram
87654321
FPlan_english.vsd
Angular Synchr. Control SPA44005.01
- 170 -
Inverter interface
Process data reception
PZD1 (status word1)
1.0
100 %
CU actval1 norm.
(1.0)
H550 CU actval1
d551
PZD 2
Receive process data
from inverter
PZD 3
PZD4 (status word2)
PZD 5
CU actval2 norm
(1.0)
H552 CU actval2
d553
CU actval3 norm
(1.0)
H554 CU actval3
d555
PZD 6
1.0
100 %
1.0
100 %
PZD1 from CUK2571
d571 d584
PZD1 .. PZD14 CU rec.
PZD2 from CU
K2572
PZD3 from CUK2573
PZD4 from CUK2574
PZD5 from CUK2575
PZD6 from CUK2576
PZD 7
PZD7 from CUK2577
PZD 8
PZD8 from CUK2578
PZD 9
PZD9 from CUK2579
PZD 10
PZD10 from CUK2580
PZD 11
PZD11 from CUK2581
PZD 12
PZD12 from CUK2582
PZD 13
PZD13 from CUK2583
PZD 14
PZD14 from CUK2584
H563 (2572)
K (170,3)
S.actval_1 CU
Actual value1 CUKR3551
H564 (2573)
K (170,3)
S.actval_2 CU
Actual value2 CUKR3553
H565 (2575)
K (170,3)
S.actval_3 CU
Actual value3 CUKR3555
CU N4 norm.
(1.0)
H588 CU N4_R
d589
1.0
100 %
H568 (2581)
K (170,3)
S.DW low CU CU N4_R
KR3589
H567 (2582)
K (170,3)
S.DW high CU
Four 16bit process data word are converted to floating-point
Convert a double word to floating-point
W
DW
high
low
CU I_R
d591
R
I
H590 (2577)
K (170,3)
S.CU I_R
CU Actual value_I_RKR3591
. . .
R
DW
CU DW_RKR3570
CU DW_R
d570
KK5567 H587 (5567)
KK (170,5)
S.N4 CU
H569 (5567)
KK (170,5)
S.DW CU
Function diagram
87654321
FPlan_english.vsd
Angular Synchr. Control SPA44005.01
- 180 -
Inverter interface
Status words
CU status word 1 CU status word 2
H558 (2571)
K (170,3)
S.StatusWord1 CU
Bit 0 Ready to switch on
Bit 6 Switch-on inhibit
Bit 1 Ready for operation
Bit 2 Run
Bit 3 Fault active
Bit 4 OFF2 active
Bit 5 OFF3 active
Bit 7 Warning active
Bit 8 no setp./act.value deviation
Bit 9 PcD-control requested
Bit 12 req.energ. main conta.
Bit 10 Comp. value reached
Bit 11 Low voltage fault
Bit 13 Ramp funct.gen. active
Bit 14 positve speed setpoint
Bit 15
B0510 CU status1.0
B0511 CU status1.1
B0512 CU status1.2
B0513 CU status1.3
B0514 CU status1.4
B0515 CU status1.5
B0516 CU status1.6
B0517 CU status1.7
B0518 CU status1.8
B0519 CU status1.9
B0520 CU status1.10
B0521 CU status1.11
B0522 CU status1.12
B0523 CU status1.13
B0524 CU status1.14
B0525 CU status1.15
B0480 CU status2.0
B0481 CU status2.1
B0482 CU status2.2
B0483 CU status2.3
B0484 CU status2.4
B0485 CU status2.5
B0486 CU status2.6
B0487 CU status2.7
B0488 CU status2 .8
B0489 CU status2 .9
B0490 CU status2.10
B0491 CU status2.11
B0492 CU status2.12
B0493 CU status2.13
B0494 CU status2.14
B0495 CU status2.15
H559 (2574)
K (170,3)
S.StatusWord2 CU
B0545 CU status1.15 inv
B0530 CU status1.0 inv
.....
...
...
inverted status sbits
Status Word1 CU
d246
K2246
H557 (2576)
K (170,3)
S.CTW from CU B0550 CTW from CU.0
B0565 CTW from CU.15
B0570 CTW from CU.0 inv
B0585 CTW from CU.15 inv
...
...
CTW from CU
d556
H557 can be used to select any communication
PZD to control the angle synchronism software.
Control bits are B0550 ... B0565 (inverted bits
B0570 .. B0585)
Bit 0 Flying restart/exitation
Bit 6 Fault overtemperature
Bit 1
Bit 2 Overspeed
Bit 3 ext. fault 1 active
Bit 4 ext. fault 2 active
Bit 5 Alarm overload
Bit 7 Alarm overtemperature
Bit 8 Alarm overtemp. motor
Bit 9 Fault overtemp. motor
Bit 12 Bypass contactor enable
Bit 10
Bit 11 Fault motor blocked
Bit 13
Bit 14
Bit 15 Pre-charging active
Function diagram
87654321
FPlan_english.vsd
Angular Synchr. Control SPA44005.01
- 220 -
Inverter interface
Control words
Control word 1
for the inverter
H510 (0650)
B (530,3)
S.Bit0 CTW1 CU... Bit15 CTW1 CU
Bit 0 ON
Bit 6 Setpoint enable
Bit 1 /OFF2
Bit 2 /OFF3
Bit 3 Inverter enable
Bit 4 Ramp funct.gen enable
Bit 5 Start ramp funct.gen.
Bit 7 Edge fault acknowledge
Bit 8 Jogging 1
Bit 9 Jogging 2
Bit 12 counter clockw. enable
Bit 10 Control requested
Bit 11 Clochwise seq. enable
Bit 13 Raise motor potentiom
Bit 14 Lower motor
potentiom
Bit 15 0= extern fault
B (530,3)
H512 (0652) B (530,3)
H511 (0651)
B (530,3)
H513 (0653)
B (530,7)
H514 (0654)
B (530,7)
H515 (0655)
B (530,7)
H516 (0656)
B (530,7)
H517 (0657)
B (540,3)
H518 (0658)
B (540,3)
H519 (0659)
B (540,3)
H520 (0660)
B (540,3)
H521 (0661)
B (540,7)
H522 (0662)
B (540,7)
H523 (0663)
B (540,7)
H524 (0664)
B (540,7)
H525 (0665)
Control word1 CU
K2026
Control word 2
for the inverter
H526 (0000)
B (30,2)
S.Bit0 CTW2 CU ... Bit15 CTW2 CU
Bit 0
Bit 6
Bit 1
Bit 2
Bit 3
Bit 4
Bit 5
Bit 7
Bit 8
Bit 9 Enable speed cntrl.
Bit 12
Bit 10
Bit 11
Bit 13
Bit 14
Bit 15
B (30,2)
H528 (0000) B (30,2)
H527 (0000)
B (30,2)
H529 (0000)
B (30,2)
H530 (0000)
B (30,2)
H531 (0000)
B (30,2)
H532 (0000)
B (30,2)
H533 (0000)
B (30,2)
H534 (0000)
B (90,8)
H535 (0546)
B (30,2)
H536 (0000)
B (30,2)
H537 (0000)
B (30,2)
H538 (0000)
B (30,2)
H539 (0000)
B (30,2)
H540 (0000)
B (30,2)
H541 (0000)
Control word2 CU
K2027
Control Word1 CU
d026
Control Word2 CU
d027
B0526 ext. Fault
Function diagram
87654321
FPlan_english.vsd
Angular Synchr. Control SPA44005.01
- 230 -
Inverter interface
Process data transmission
100 %
1.0
H501
(1.0)
CU setp_1 norm.
H505
(1.0)
CU setp_3 norm.
100 %
1.0
100 %
1.0
H503
(1.0)
CU setp_2 norm.
100 %
1.0
H509
(1.0)
CU setp_5 norm.
100 %
1.0
H507
(1.0)
CU setp_4 norm.
Process data
transmission to
inverter
PZD 1
Control word 1
PZD 2
setpoint
PZD 3
PZD 4
Control word 2
PZD 5
add. setp. speed
PZD 6
KP adaption
PZD 7
PZD 8
Inertia compens.
H381 (2026)
K (220,4)
S. PZD1 CU
Control Word 1
d147
H382 (2500)
K (230,4)
S. PZD2 CU
H383 (2502)
K (230,4)
S. PZD3 CU
H384 (2027)
K (220,8)
S. PZD4 CU
H385 (2504)
K (230,4)
S. PZD5 CU
H386 (2506)
K (230,4)
S. PZD6 CU
H387 (2510)
K (230,5)
S. PZD7 CU
H388 (2508)
K (230,4)
S. PZD8 CU
Control Word 2
d148
H500 (3152)
KR (115,8)
S.CU setp_1
setpoint1 CU N2K2500
H502 (3000)
KR (30,2)
S.CU setp_2
setpoint2 CU N2K2502
H504 (3120)
KR (110,8)
S.CU setp_3
setpoint3 CU N2K2504
H506 (3153)
KR (120,3)
S.CU setp_4
setpoint4 CU N2K2506
H508 (3080)
KR (500,7)
S.CU setp_5
setpoint5 CU N2K2508
H499
(1.0)
CU DW norm.
100 %
1.0
H498 (3000)
KR (30,2)
S.Setp DW_ CU
W
DW
high
low
setpoint6 high CUK2510
setpoint6 low CUK2509
Function diagram
87654321
FPlan_english.vsd
Angular Synchr. Control SPA44005.01
- 300 -
Communication
Peer to peer settings and PZD
Peer enable
(1)
H309
tmax Peer OpMode
(100ms)
H361
maximum time
interval between 2
telegrams Timeout
receive status
Enable
&
Peer RecStateYTS
d364
1
bitwise ANDed
at least 1 bit set T0
tmaxPeer PowerOn
(20000 ms)
H360
Control and monitoring functions for
the peer to peer interface
Mask Peer tmax
(16#FFFF)
H362
16 bit
Baud Rate Peer
(19200)
H363 Baud rate
B0360 Timeout Peer
B0361 Peer receive initialized
B0362 Peer send initialized
Process data
receiption
PZD1 from PeerK2329
PZD1 Peer
d329
PZD2 from Peer
K2330
PZD3 from Peer
K2331
PZD4 from Peer
K2332
PZD5 from Peer
K2333
Peer DW1KK5330
Peer Float1
KR3330
Peer DW2KK5332
Peer Float2
KR3332
PZD 2 + PZD 3
PZD 4 + PZD 5
PZD 1
W
DW
W
DW
Process data words PZD2, PZD3 and PZD4, PZD5 may be
transmitted as word, double word or floating point values.
The
floating-point
connectors KR3330 and KR3332 must not
be used if there is no floating point value transmission!
Process data
transmission
peer to peer
H345 (2303)
K (30,2)
S.Peer PZD1
H335 (2000)
K (30,2)
S.Peer PZD2
H336 (2000)
K (30,2)
S.Peer PZD3
H340 (2000)
K (30,2)
S.Peer PZD4
H341 (2000)
K (30,2)
S.Peer PZD5
2
1
0
H338 (3304)
KR (570,6)
S.Peer Float1
H337 (5000)
K (30,2)
S.Peer DW1
Peer Sendtype1
(2)
H339
2
1
0
Peer Sendtype2
(2)
H344
H343 (3305)
KR (570,8)
S.Peer Float2
H342 (5000)
K (30,2)
S.Peer DW2
W
DW
W
DW
PZD 2 + PZD 3
PZD 4 + PZD 5
PZD 1
PZD5 Peer
d333
....
Peer W1 send
d300
Function diagram
87654321
FPlan_english.vsd
Angular Synchr. Control SPA44005.01
- 310 -
Communication
Peer to peer control and status word
Status word peer
H310 (0000)
B (30,2)
S.PeerState1_B0 ... S.PeerState1_B15
Bit 0
Bit 6
Bit 1
Bit 2
Bit 3
Bit 4
Bit 5
Bit 7
Bit 8
Bit 9
Bit 12
Bit 10
Bit 11
Bit 13
Bit 14
Bit 15
B (30,2)
H312 (0000) B (30,2)
H311 (0000)
B (30,2)
H313 (0000)
B (30,2)
H314 (0000)
B (30,2)
H315 (0000)
B (30,2)
H316 (0000)
B (30,2)
H317 (0001)
B (30,2)
H318 (0001)
B (360,7)
H319 (0666)
B (30,2)
H320 (0001)
B (30,2)
H321 (0000)
B (30,2)
H322 (0001)
B (30,2)
H323 (0001)
B (30,2)
H324 (0000)
B (30,2)
H325 (0000)
status word peer
K2327
Status Word Peer
d327
Control word peer
H334 (2329)
K (300,3)
S.ContrlWordPeer
Bit 0
Bit 6
Bit 1
Bit 2
Bit 3
Bit 4
Bit 5
Bit 7
Bit 8
Bit 9
Bit 12
Bit 10
Bit 11
Bit 13
Bit 14
Bit 15
B0300 Peer CTW.0
B0301 Peer CTW.1
B0302 Peer CTW.2
B0303 Peer CTW.3
B0304 Peer CTW.4
B0305 Peer CTW.5
B0306 Peer CTW.6
B0307 Peer CTW.7
B0308 Peer CTW.8
B0309 Peer CTW.9
B0310 Peer CTW.10
B0311 Peer CTW.11
B0312 Peer CTW.12
B0313 Peer CTW.13
B0314 Peer CTW.14
B0315 Peer CTW.15
B0335 Peer CTW.15 inv
B0320 Peer CTW.0 inv
.....
...
...
inverted control bits
Peer ControlWord
d346
K2346
Function diagram
87654321
FPlan_english.vsd
Angular Synchr. Control SPA44005.01
- 400 -
Communication
COMBOARD general settings
ComBoard enable
(1)
H409
tmax CB OpMode
(100ms)
H463
Maximun time
interval between 2
telegrams
Timeout
Receives status
Enable
&
CB receive state
d465
1
T0
tmax CB PowerOn
(20000 ms)
H462
Timeout CB
Control and monitoring functions of
the communication board
(COMBOARD)
CB Parameter 1
(0)
H481
CB Parameter 2
(2)
H482
CB Parameter 3
(0)
H483
CB Parameter 4
(0)
H484
CB Parameter 5
(0)
H485
CB Parameter 6
(0)
H486
CB Parameter 7
(0)
H487
CB Parameter 8
(0)
H488
CB Parameter 9
(0)
H489
CB Parameter 10
(0)
H490
CB Parameter 13
(0)
H493
CB Parameter 11
(0)
H491
CB Parameter 12
(0)
H492
CB Param.valid
(1)
H495
CB Slave address
(3)
H480
CB state SRT400
d496
Configuration valid
Slave address of the
COMBOARDs
Parameter setting for the
COMBOARD
(depending on the type of
COMBOARD)
State of
Configuration
Configuration of the COMBOARD:
These parameters are reserved for a
COMBOARD in SRT400 applications.
If the T400 is placed in the electronic
box of the inverter the configuration of
the COMBOARD is done by inverter
parameters (e.g. P918 for the bus
address with Masterdrives MC).
Mask tmax CB
(16#FFFF)
H464
Configuration COMBOARD
16 bit
Receive initialized B0400 CB receive init.
B0401 CB receive not init.
1
send initialized B0402 CB send init.
B0403 CB send not init.
1
B0405 Timeout CB
bitwise ANDed
at least 1 bit set
Function diagram
87654321
FPlan_english.vsd
Angular Synchr. Control SPA44005.01
- 410 -
Communication
COMBOARD receiption
PZD 1
Control word
1.0
100 %
CB Setp_1 norm
(1.0)
H451 CB Setp_1 rec.
d450
PZD 2
Process data
receiption from
COMBOARD
PZD 3
PZD 4
PZD 5
CB Setp_2 norm
(1.0)
H453 CB Setp_2 rec.
d452
PZD 6
1.0
100 %
PZD1 from CBK2801
d801 d810
PZD1 CB rec. ...
PZD10 CB rec.
PZD2 from CBK2802
PZD3 from CBK2803
PZD4 from CBK2804
PZD5 from CBK2805
PZD6 from CBK2806
PZD 7
PZD7 from CBK2807
PZD 8
PZD8 from CBK2808
PZD 9
PZD9 from CBK2809
PZD 10
PZD10 from CBK2810
H813 (2802)
K (410,3)
S.setp_1 CB
setpoint1 CBKR3450
H814 (2803)
K (410,3)
S.setp_2 CB
setpoint2 CBKR3452
CB DW norm.
(1.0)
H841 CB setp. DW
d821
1.0
100 %
H820 (2810)
K (410,3)
S.DW low CB setpoint DW CB
KR3821
H819 (2809)
K (410,3)
S.DW high CB
Conversion of 16bit process data to floating point
Conversion of double word to floating point
. . . .
W
DW
high
low
CB Setp_3 norm
(1.0)
H455 CB Setp_3 rec.
d454
1.0
100 %
H815 (2805)
K (410,3)
S.setp_3 CB
setpoint3 CBKR3454
CB Setp_4 norm
(1.0)
H457 CB Setp_4 rec.
d456
1.0
100 %
H816 (2806)
K (410,3)
S.setp_4 CB
setpoint4 CBKR3456
The maximum number of
PZD depends on the actual
PPO type.
R
I
H817 (2807)
K (410,3)
S.setp. I_R CB
setpoint I_R CBKR3818
Setp. I_R CB
d818
Function diagram
87654321
FPlan_english.vsd
Angular Synchr. Control SPA44005.01
- 420 -
Communication
COMBOARD control words
CB Control word 1
Bit 0 OFF1 = 0
Bit 6 Setpoint enable
Bit 1 OFF2 = 0
Bit 2 OFF3 = 0
Bit 3 Inverter enable
Bit 4 Ramp funct.gen. enable
Bit 5 Start ramp funtion gen.
Bit 7 Fault acknowledge
Bit 8 Jogging 1
Bit 9 Jogging 2
Bit 12 Counter clockw. enable
Bit 10 Control requested
Bit 11 Clockwise seq. enable
Bit 13 Raise motor potentiom.
Bit 14 Lower motor potent.
Bit 15 External fault = 0
B0800 CB Control W1.0
B0801 CB Control W1.1
B0802 CB Control W1.2
B0803 CB Control W1.3
B0804 CB Control W1.4
B0805 CB Control W1.5
B0806 CB Control W1.6
B0807 CB Control W1.7
B0808 CB Control W1.8
B0809 CB Control W1.9
B0810 CB Control W1.10
B0811 CB Control W1.11
B0812 CB Control W1.12
B0813 CB Control W1.13
B0814 CB Control W1.14
B0815 CB Control W1.15
B0855 CB CTW1.15 inv
B0840 CB CTW1.0 inv
.....
...
...
inverted bits of the control word
ControlWord 1 CB
d460
H811 (2801)
K (410,3)
S.Control W1 CB
CB CTW1K2460
CB Control word 2
Bit 0
Bit 6
Bit 1
Bit 2
Bit 3
Bit 4
Bit 5
Bit 7
Bit 8
Bit 9 Enable speed controller
Bit 12
Bit 10
Bit 11
Bit 13
Bit 14
Bit 15
B0820 CB Control W2.0
B0821 CB Control W2.1
B0822 CB Control W2.2
B0823 CB Control W2.3
B0824 CB Control W2.4
B0825 CB Control W2.5
B0826 CB Control W2.6
B0827 CB Control W2.7
B0828 CB Control W2.8
B0829 CB Control W2.9
B0830 CB Control W2.10
B0831 CB Control W2.11
B0832 CB Control W2.12
B0833 CB Control W2.13
B0834 CB Control W2.14
B0835 CB Control W2.15
B0875 CB CTW2.15 inv
B0860 CB CTW2.0 inv
.....
...
...
inverted bits of the control word
ControlWord 2 CB
d461
H812 (2804)
K (410,3)
S.Control W2 CB
CB CTW2K2461
Function diagram
87654321
FPlan_english.vsd
Angular Synchr. Control SPA44005.01
- 430 -
Communication
COMBOARD status words
Status word 1
for COMBOARD
H410 (0000)
B (30,2)
S.CB state1 B0 ... S.CB state1 B15
Bit 0
Bit 6
Bit 1
Bit 2
Bit 3
Bit 4
Bit 5
Bit 7
Bit 8
Bit 9
Bit 12
Bit 10
Bit 11
Bit 13
Bit 14
Bit 15
B (30,2)
H412 (0000) B (30,2)
H411 (0000)
B (30,2)
H413 (0000)
B (30,2)
H414 (0000)
B (30,2)
H415 (0000)
B (30,2)
H416 (0000)
B (30,2)
H417 (0000)
B (30,2)
H418 (0000)
B
H419 (0000)
B (330,3)
H420 (0000)
B (30,2)
H421 (0000)
B (30,2)
H422 (0000)
B (30,2)
H423 (0000)
B (30,2)
H424 (0000)
B (30,2)
H425 (0000)
Status word 1 CBK2466
Status Word1 CB
d466
Status word 2
for COMBOARD
H426 (0000)
B (30,2)
S.CB state2 B0 ... S.CB state2 B15
Bit 0
Bit 6
Bit 1
Bit 2
Bit 3
Bit 4
Bit 5
Bit 7
Bit 8
Bit 9
Bit 12
Bit 10
Bit 11
Bit 13
Bit 14
Bit 15
B (30,2)
H428 (0000) B (30,2)
H427 (0000)
B (30,2)
H429 (0000)
B (30,2)
H430 (0000)
B (30,2)
H431 (0000)
B (240,8)
H432 (0548)
B (30,2)
H433 (0000)
B (30,2)
H434 (0000)
B (30,2)
H435 (0000)
B (30,2)
H436 (0000)
B (30,2)
H437 (0000)
B (30,2)
H438 (0000)
B (30,2)
H439 (0000)
B (30,2)
H440 (0000)
B (30,2)
H441 (0000)
Status word 2 CBK2467
Status Word2 CB
d467
Function diagram
87654321
FPlan_english.vsd
Angular Synchr. Control SPA44005.01
- 440 -
Communication
COMBORAD transmission
100 %
1.0
Process data
transmission
COMBOARD
H401
(1.0)
CB actval1 norm.
H405
(1.0)
CB actval3 norm.
100 %
1.0
100 %
1.0
H403
(1.0)
CB actval2 norm.
100 %
1.0
H829
(1.0)
Actval5 CB norm.
100 %
1.0
H407
(1.0)
CB actval4 norm.
Conversion to double word
H822 (3446)
KR (550,3)
S.actval_1 CB
Actual value1 CBK2822
H823 (3447)
KR (550,5)
S.actval_2 CB
Actual value2 CBK2823
H824 (3448)
KR (550,6)
S.actval_3 CB
Actual value3 CBK2824
H825 (3449)
KR (550,8)
S.actval_4 CB
Actual value4 CBK2825
H828 (3000)
KR (30,2)
S.actval_1 CB
W
DW
high
low
Actual value5 high CBK2828
Actual value5 low CBK2829
H831 (2442)
K (560,4)
S. PZD1 CB
PZD1 CB out
d921
H832 (2822)
K (440,3)
S. PZD2 CB
H833 (2823)
K (440,3)
S. PZD3 CB
H834 (2444)
K (560,7)
S. PZD4 CB
H835 (2824)
K (440,3)
S. PZD5 CB
H836 (2825)
K (440,3)
S. PZD6 CB
H837 (2827)
K (440,7)
S. PZD7 CB
H838 (2000)
K (30,2)
S. PZD8 CB
PZD10 CB out
d930
. . . . . .
PZD 1
Status word 1
PZD 2
PZD 3
PZD 4
PZD 5
PZD 6
PZD 7
PZD 8
PZD 9
PZD 10
H839 (2828)
K (440,4)
S. PZD9 CB
H840 (2829)
K (440,4)
S. PZD10 CB
I
R
H826 (3000)
KR (30,2)
S.actval R_I CB
Actual value R_I CBK2827
Function diagram
87654321
FPlan_english.vsd
Angular Synchr. Control SPA44005.01
USS unable
(1)
H700
Baud rate USS
(9600)
H701
Baud rate
(OP1S: 9600 bps or 19200 bps)
USS bus address
Receives statusEnable
USS slave operation
The USS slave coupling is required for visualizing or changing
parameters using OP1S or SIMOVIS only if the T400 is working
stand alone in the SRT400 rack.
For enabling set T400 switch S1/8 = ON. The switching
becomes valid after the next power on. Online communication
with other service tools using the same interface (e.g. CFC) will
be disabled!
If there is no access with OP1S caused by not supported
parameter setting (e.g. wrong baud rate) set S1/8 = OFF and
use the Service-IBS program to correct the parameters.
- 450 -
Communication
USS slave
USS Address
(0)
H703
USS 4-Wire
(0)
H704
USS rec. state
d705
Duplex / half duplex operation
0: RS485 (2 wires)
1: RS232 (4 wires)
Receive
H708 (2000)
K (30,2)
S.PZD1 USS Slave
PZD1
PZD2
PZD1
PZD2
Transmit
PZD1 USSK2706
PZD2 USS
K2707
H709 (2000)
K (30,2)
S.PZD2 USS Slave
PZD1 USS
d706 PZD2 USS
d707
Function diagram
87654321
FPlan_english.vsd
Angular Synchr. Control SPA44005.01
- 460 -
Free function blocks
Logical gates
0
1
&
1 1
1
R
S
¾
Q
Q
L699 (0000)
B (30,2)
S.R RS-FlipFlop1
L698 (0000)
B (30,2)
S.S RS-FlipFlop1
B0698 RSFF1_Q
B0699 RSFF1_QN
L700 (0001)
B (30,2)
S.AND1_I1
L701 (0001)
B (30,2)
S.AND1_I2
L702 (0001)
B (30,2)
S.AND1_I3
B0700 AND1_Q
&
L703 (0001)
B (30,2)
S.AND2_I1
L704 (0001)
B (30,2)
S.AND2_I2
L705 (0001)
B (30,2)
S.AND2_I3
B0703 AND2_Q
R
S
¾
Q
Q
L735 (0000)
B (30,2)
S.R RS-FlipFlop2
L734 (0000)
B (30,2)
S.S RS-FlipFlop2
B0734 RSFF2_Q
B0735 RSFF2_QN
L710 (0000)
B (30,2)
S.OR1_I1
L711 (0000)
B (30,2)
S.OR1_I2
L712 (0000)
B (30,2)
S.OR1_I3
B0710 Q_OR1
L713 (0000)
B (30,2)
S.OR2_I1
L714 (0000)
B (30,2)
S.OR2_I2
L715 (0000)
B (30,2)
S.OR2_I3
B0713 Q_OR2
L708 (0000)
B (30,2)
S.Switch1_sel
L706 (3000)
KR (30,2)
S.Switch1_0
L707 (3000)
KR (30,2)
S.Switch1_1 Switch1
KR3706
0
1
L718 (0000)
B (30,2)
S.Switch2_sel
L716 (3000)
KR (30,2)
S.Switch2_0
L717 (3000)
KR (30,2)
S.Switch2_1 Switch2
KR3716
L732 (0000)
B (30,2)
S.Not1
B0732 Not1_Q
1
L733 (0000)
B (30,2)
S.Not2
B0733 Not2_Q
0
1
L826 (0000)
B (30,2)
S.Switch3_sel
L824 (3000)
KR (30,2)
S.Switch3_0
L825 (3000)
KR (30,2)
S.Switch3_1 Switch3
KR3825
0
1
L829 (0000)
B (30,2)
S.Switch4_sel
L827 (3000)
KR (30,2)
S.Switch4_0
L828 (3000)
KR (30,2)
S.Switch4_1 Switch4
KR3827
L830 (0000)
B (30,2)
S.AND_OR1_1
L831 (0000)
B (30,2)
S.AND_OR1_2
L832 (0001)
B (30,2)
S.AND_OR1_3
B1830
AND_OR1
&
1
L833 (0000)
B (30,2)
S.AND_OR2_1
L834 (0000)
B (30,2)
S.AND_OR2_2
L835 (0001)
B (30,2)
S.AND_OR2_3
B1833
AND_OR2
&
1
Function diagram
87654321
FPlan_english.vsd
Angular Synchr. Control SPA44005.01
- 470 -
Free function blocks
Arithmetic and display parameters
L606 (2000)
K (30,2)
S.ADDI_1 X1
L607 (2000)
K (30,2)
S.ADDI_1 X2
ADDI_YK2607
L608 (2000)
K (30,2)
S.SUBI_1 X1
L609 (2000)
K (30,2)
S.SUBI_1 X2
SUBI_YK2608
L812 (2001)
K (30,2)
S.DIVI_1 X1
L813 (2001)
K (30,2)
S.DIVI_1 X2
DIVI_1 Y
K2812
DIVI_1 (MOD)K2813
X1 modulo X2
L814 (2001)
K (30,2)
S.MULI_1 X1
L815 (2001)
K (30,2)
S.MULI_1 X2
MULI_1 Y
K2814
MULI_1 (DW)KK5814
double word result
L786 (3000)
KR (30,2)
S.ADD1 X1
L787 (3000)
KR (30,2)
S.ADD1 X2
L788 (3000)
KR (30,2)
S.ADD1 X3
ADD_1KR3786
L789 (3000)
KR (30,2)
S.ADD2 X1
L790 (3000)
KR (30,2)
S.ADD2 X2
L791 (3000)
KR (30,2)
S.ADD2 X3
ADD_2KR3789
L792 (3000)
KR (30,2)
S.SUB1 X1
L793 (3000)
KR (30,2)
S.SUB1 X2
SUB_1KR3792
L794 (3000)
KR (30,2)
S.SUB2 X1
L795 (3000)
KR (30,2)
S.SUB2 X2
SUB_2KR3794
L796 (3001)
KR (30,2)
S.MUL1 X1
L797 (3001)
KR (30,2)
S.MUL1 X2
L798 (3001)
KR (30,2)
S.MUL1 X3
MUL_1KR3796
L799 (3001)
KR (30,2)
S.MUL2 X1
L800 (3001)
KR (30,2)
S.MUL2 X2
L801 (3001)
KR (30,2)
S.MUL2 X3
MUL_2KR3799
L802 (3001)
KR (30,2)
S.DIV1 X1
L803 (3001)
KR (30,2)
S.DIV1 X2
DIV_1KR3802
L804 (3001)
KR (30,2)
S.DIV2 X1
L805 (3001)
KR (30,2)
S.DIV2 X2
DIV_2KR3804
L028 (3234)
KR (100,5)
S.Display R1 Display R1
d028
L029 (3330)
KR (300,3)
S.Display R2 Display R2
d029
L030 (3332)
KR (300,3)
S.Display R3 Display R3
d030
L031 (3819)
KR (480,7)
S.Display R4 Display R4
d031
L032 (0193)
B (75,5)
S.Display B1 Display B1
d032
L033 (0196)
B (75,5)
S.Display B2 Display B2
d033
L034 (0105)
B (100,8)
S.Display B3 Display B3
d034
L035 (0116)
B (110,7)
S.Display B4 Display B4
d035
Display I1
d036
L036 (2500)
K (230,4)
S.Display I1
Display I2
d037
L037 (2502)
K (230,4)
S.Display I2
Display W1
d038
L038 (2605)
K (490,5)
S.Display W1
Display W2
d039
L039 (2606)
K (490,5)
S.Display W2
Word parameters
Integer parameters
BOOL parameters
Floating point parameters
Display parameters
Function diagram
87654321
FPlan_english.vsd
Angular Synchr. Control SPA44005.01
- 480 -
Free function blocks
Miscellaneous functions
PT1
x
y
Y
X
X<Y
X>Y
X=Y
Comparator
Y
X
X > Y
X = Y
X < Y
L740 (3000)
KR (30,2)
S.PT1_input
PT1_outKR3740
Tfilt PT1
(20ms)
L741
L742 (3000)
KR (30,2)
S.Band-Stop filt
Band stopKR3742
L743 (3002)
KR (30,2)
S.FilterFrequenc
L744 (3000)
KR (30,2)
S.Compare_X
L745 (3000)
KR (30,2)
S.Compare_Y
B0744 Compare X>Y
B0745 Compare X<Y
B0743 Compare X=Y
L746 (3001)
KR (30,2)
S.Limit_max
L748 (3000)
KR (30,2)
S.Limit_min
L747 (3000)
KR (30,2)
S.Limit_input
B0748 Limit_min
B0746 Limit_max
Limit_outKR3747
1
B0747
Limit_aktiv
Band stop filter
Low pass filter
1. order
Limiter
L749 (3000)
KR (30,2)
S.Compare2
Compare2 Hyst
(0.1)
L751
B0749 Compare2 X>Y
B0750 Compare2 X=Y
B0751 Compare2 X<Y
L756
(1.0)
Curve_X2
Curve_X1
(0.0)
L754
Curve_Y1
(0.0)
L755
Curve_Y2
(1.0)
L757
L753 (3000)
KR (30,2)
S.Curve_X characteristic_Y
KR3753
2 point
characteristic
QualityFact.Filt
(2.0)
L739
Comparator
with
Hysteresis
Integrator LU
(1.0)
L819
L820
(-1.0)
Integrator LL
L823 (0000)
B (30,2)
S.Integrator set
L818 (3000)
KR (30,2)
S.Integrator X
L821 (3000)
KR (30,2)
S.Integrator SV
Integrator T
(1000 ms)
L822
x
y
KR3819
B0817 at upper limit
B0818 at lower limit
L752 (3003)
KR (30,2)
S. Compare2 Mid
L738 (0000)
B (30,2)
S.set_PT1_zero
L750 (3001)
KR (30,2)
S.Compare2 Range
Function diagram
87654321
FPlan_english.vsd
Angular Synchr. Control SPA44005.01
- 490 -
Free function blocks
Type conversion
Bit 0
Bit 6
Bit 1
Bit 2
Bit 3
Bit 4
Bit 5
Bit 7
Bit 8
Bit 9
Bit 12
Bit 10
Bit 11
Bit 13
Bit 14
Bit 15
B0760 FreeWord_0
B0761 FreeWord_1
B0762 FreeWord_2
B0763 FreeWord_3
B0764 FreeWord_4
B0765 FreeWord_5
B0766 FreeWord_6
B0767 FreeWord_7
B0768 FreeWord_8
B0769 FreeWord_9
B0770 FreeWord_10
B0771 FreeWord_11
B0772 FreeWord_12
B0773 FreeWord_13
B0774 FreeWord_14
B0775 FreeWord_15
L760 (2000)
K (30,2)
S.FreeWord DW norm.
(1.0)
L763
1.0
100 %
L762 (2000)
K (30,2)
S.DW_low
L761 (2000)
K (30,2)
S.DW_high
W
DW
high
low
Word norm.
(1.0)
L765
1.0
100 %
L764 (2000)
K (30,2)
S.Word
DW_floatKR3763
Word_Float
KR3765
100 %
1.0
L767
(1.0)
Float norm.
L766 (3000)
KR (30,2)
S.Float Float_N2
K2766
Bit 0
Bit 6
Bit 1
Bit 2
Bit 3
Bit 4
Bit 5
Bit 7
Bit 8
Bit 9
Bit 12
Bit 10
Bit 11
Bit 13
Bit 14
Bit 15
B1810 FreeWord2_0
B1811 FreeWord2_1
B1812 FreeWord2_2
B1813 FreeWord2_3
B1814 FreeWord2_4
B1815 FreeWord2_5
B1816 FreeWord2_6
B1817 FreeWord2_7
B1818 FreeWord2_8
B1819 FreeWord2_9
B1820 FreeWord2_10
B1821 FreeWord2_11
B1822 FreeWord2_12
B1823 FreeWord2_13
B1824 FreeWord2_14
B1825 FreeWord2_15
L810 (2000)
K (30,2)
S.Free_W_B_2
R
I
L646 (2000)
K (30,2)
S.I_R_1
I_R1KR3604
W
DW
high
low
DW_W1 high
K2605
DW_W1 lowK2606
L605 (5000)
KK (30,2)
S.DW_W1
L817 (2000)
K (30,2)
S.W_DW1 low
L816 (2000)
K (30,2)
S.W_DW1 high
W
DW
high
low W_DW1
KK5816
I
R
L647 (3000)
KR (30,2)
S.R_I1
R_I1K2647
T0
0T
L728 (0000)
B (30,2)
S.OnDelay1
T_OnDelay1
(100ms)
L729
B0728 OnDelay1_Q
L730 (0000)
B (30,2)
S.OffDelay1
T_OffDelay1
(100ms)
L731
B0730 OffDelay1_Q
L709 (0000)
B (30,2)
S.Edge1
B0709 Edge1_Q
B0708 Edge1_QN
Function diagram
87654321
FPlan_english.vsd
Angular Synchr. Control SPA44005.01
- 500 -
Multiplexer
Setpoint channels
AE1 filtered [50,6]
Actual value1 CU [170,7]
AE3 filtered [50,6]
AE2 filtered [50,6]
AE4 filtered [50,6]
Setpoint1 CB [410,7]
Peer Float1 [300,4]
Peer Float2 [300,4]
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
0.0
MUX displace.Setp
(1)
H050
Fixed value displacement [30,3]
Actual value2 CU [170,7]
Actual value3 CU [170,7]
Setpoint2 CB [410,7]
Setpoint3 CB [410,7]
Setpoint4 CB [410,7]
The input assignment for inputs 2 to
14 is identical with each multiplexer
on this page
1)
DT1(n_setp) [120,8] 0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
0.0
1)
MUX Accel.Comp.
(1)
H080
Fixed value ration [30,3]
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
0.0
1)
MUX ratio
(1)
H040
Fixed value rel. ration [30,3]
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
0.0
1)
MUXrelativeRatio
(1)
H048
Fixed value reference speed [30,3]
0.0
1)
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15n_Master normalized[70,7]
MUX Refer.speed
(15)
H070
Mux displacement
setpoint
KR3050 Mux inertia compensationKR3080
Mux ratio
KR3040 Mux relative ratioKR3048
Mux reference
speed
KR3070
Function diagram
87654321
FPlan_english.vsd
Angular Synchr. Control SPA44005.01
- 510 -
Multiplexer
Analog outputs
MUX AnalogOutp 1
(1)
H618
0.0
Setpoint for inverter [115,8]
Displacement setpoint [110,1]
Ratio[80,4]
Reference speed setpoint [115,2]
Relative ratio [80,2]
Mux inertia compensation [500,7]
Output speed controller [120,8]
Speed setpoint limited [120,2]
Speed slave filtered [60,8]
Deviation speed controller [120,4]
KP speed controller [120,3]
n setpoint after ramp [115,7]
Deviation angle controller [110,5]
KP angle controller [110,4]
Displacement actual value [100,8]
Displacement - position difference [100,8]
position deviation filtered [60,8]
n_Slave norm. [60,8]
Position slave [60,8]
n_Master normalized [70,7]
Position master [70,7]
Actual value1 CU [170,7]
setpoint1 CB [410,7]
setpoint2 CB [410,7]
setpoint3 CB [410,7]
setpoint4 CB [410,7]
Peer Float1 [300,3]
Peer Float2 [300,3]
MUX AnalogOutp 2
(0)
H619
The input assignment
for both multiplexers
on this page is
identical
Output angle controller [110,8]
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32DT1(n setp) [120,8]
Mux DAC1KR3618 Mux DAC2KR3619
Actual value2 CU [170,7]
Actual value3 CU [170,7]
Function diagram
87654321
FPlan_english.vsd
Angular Synchr. Control SPA44005.01
- 520 -
Multiplexer
Binary control
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
0
MUX Displ.Reset
(0)
H170
BinInput 3 [52,4]
BinInput 4 [52,4]
BinInput 5 [52,4]
BinInput 6 [52,4]
BinInput 7 [52,4]
BinInput 8 [52,4]
CB Control W2.0 [420,7]
Peer CTW.0 [310,4]
1
MUX enable Jog
(0)
H171
MUX en.Pos.Cntrl
(0)
H172
MUX Reset Posit.
(0)
H173
MUX Synchr.Cmd
(0)
H174
Identical input
assignment for all
multiplexers of this
chart (except input 2)
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
CTW from CU.0[180,7]
0
10
1 1 1
0 0
CTW from CU.1
[180,7] CTW from CU.2
[180,7]
CB Control W2.1 [420,7]
CB Control W2.2 [420,7]
CB Control W2.3 [420,7]
CB Control W2.4 [420,7]
CB Control W2.5 [420,7]
CB Control W2.6 [420,7]
CB Control W2.7 [420,7]
Peer CTW.1 [310,4]
Peer CTW.2 [310,4]
Peer CTW.3 [310,4]
Peer CTW.4 [310,4]
Peer CTW.5 [310,4]
Peer CTW.6 [310,4]
Peer CTW.7 [310,4]
CB Control W1.0 [420,4]
CB Control W1.1 [420,4]
CB Control W1.2 [420,4]
CB Control W1.3 [420,4]
CB Control W1.4 [420,4]
CB Control W1.5 [420,4]
CB Control W1.6 [420,4]
CB Control W1.7 [420,4]
B0170
Mux displacement
reset B0171
Mux jog enable
B0172
Mux enable angle
controller B0173
Mux reset position
B0174
Mux synchronizing
command
CTW from CU.3
[180,7] CTW from CU.4
[180,7]
Function diagram
87654321
FPlan_english.vsd
Angular Synchr. Control SPA44005.01
- 530 -
Multiplexer
Control word (part 1)
0
1
2
3
4
5
CB Control W1.0 [420,4]
Peer CTW.0 [310,4]
BinInput 1 [52,4]
0
1
MUX CTW1 Bit0
(0)
H650
CTW from CU.5[180,7]
0
1
2
3
4
5
CB Control W1.1 [420,4]
Peer CTW.1 [300,7]
BinInput 2 [52,4]
0
1
MUX CTW1 Bit1
(1)
H651
CTW from CU.6 [180,7]
0
1
2
3
4
5
CB Control W1.2 [420,4]
Peer CTW.2 [310,4]
BinInput 2 [52,4]
0
1
MUX CTW1 Bit2
(1)
H652
CTW from CU.7 [180,7]
0
1
2
3
4
5
CB Control W1.3 [420,4]
Peer CTW.3 [310,4]
BinInput 3 [52,4]
0
1
MUX CTW1 Bit3
(1)
H653
CTW from CU.8 [180,7]
0
1
2
3
4
5
CB Control W1.7 [420,4]
Peer CTW.7 [310,4]
BinInput 8 [52,4]
0
1
MUX CTW1 Bit7
(0)
H657
CTW from CU.12 [180,7]
0
1
2
3
4
5
CB Control W1.4 [420,4]
Peer CTW.4 [310,4]
BinInput 5 [52,4]
0
1
MUX CTW1 Bit4
(1)
H654
CTW from CU.9 [180,7]
0
1
2
3
4
5
CB Control W1.5 [420,4]
Peer CTW.5 [310,4]
BinInput 6 [52,4]
0
1
MUX CTW1 Bit5
(1)
H655
CTW from CU.10 [180,7]
0
1
2
3
4
5
CB Control W1.6 [420,4]
Peer CTW.6 [310,4]
BinInput 7 [52,4]
0
1
MUX CTW1 Bit6
(1)
H656
CTW from CU.11 [180,7]
ON (/OFF1)
not OFF2
not OFF3
Inverter enable
Ramp function
generator enable
Start ramp function
generator
Setpoint enable
Edge fault
acknowlege
B0650
Bit0 Control word1
B0651
Bit1 Control word1
B0652
Bit2 Control word1
B0653
Bit3 Control word1
B0654
Bit4 Control word1
B0655
Bit5 Control word1
B0656
Bit6 Control word1
B0657
Bit7 Control word1
Function diagram
87654321
FPlan_english.vsd
Angular Synchr. Control SPA44005.01
- 540 -
Multiplexer
Control word 1 (part 2)
0
1
2
3
4
CB Control W1.8 [420,4]
Peer CTW.8 [310,4]
Coarse pulse 1 [52,8]
0
1
MUX CTW1 Bit8
(0)
H658
0
1
2
3
4
CB Control W1.9 [420,4]
Peer CTW.9 [310,4]
Coarse pulse 2 [52,8]
0
1
MUX CTW1 Bit9
(0)
H659
0
1
2
3
4
CB Control W1.10 [420,4]
Peer CTW.10 [310,4]
0
1
MUX CTW1 Bit10
(1)
H660
0
1
2
3
4
CB Control W1.11 [420,4]
Peer CTW.11 [310,4]
0
1
MUX CTW1 Bit11
(1)
H661
CTW from CU.13 [180,7]
0
1
2
3
4
CB Control W1.12 [420,4]
Peer CTW.12 [310,4]
0
1
MUX CTW1 Bit12
(1)
H662
CTW from CU.14 [180,7]
0
1
2
3
4
CB Control W1.13 [420,4]
Peer CTW.13 [310,4]
0
1
MUX CTW1 Bit13
(0)
H663
0
1
2
3
4
CB Control W1.14 [420,4]
Peer CTW.14 [310,4]
0
1
MUX CTW1 Bit14
(0)
H664
0
1
2
3
4
CB Control W1.15 [420,4]
Peer CTW.15 [310,4]
BinInput 8 [52,4]
0
1
MUX CTW1 Bit15
(1)
H665
Fault [200,6]
Warning [200,8] 5
6
No external fault
Lower motor
potentiometer
Raise motor
potentiometer
Counter clockwise
phase sequence
enable
Clockwise phase
sequence enable
Control requested
Jogging 2
Jogging 1
B0658
Bit8 Control word1
B0659
Bit9 Control word1
B0660
Bit10 Control word1
B0661
Bit11 Control word1
B0662
Bit12 Control word1
B0663
Bit13 Control word1
B0664
Bit14 Control word1
B0665
Bit15 Control word1
Function diagram
87654321
FPlan_english.vsd
Angular Synchr. Control SPA44005.01
- 550 -
Multiplexer
CB actual values
Mux word2 CB
(1)
H446
0.0
Speed slave filtered [60,8]
position deviation filtered [60,8]
W2 CB constant
(0.0)
H470
Mux word3 CB
(0)
H447
Mux word5 CB
(0)
H448
Mux word6 CB
(0)
H449
W3 CB constant
(0.0)
H471
W5 CB constant
(0.0)
H472
W6 CB constant
(0.0)
H473
Input assignment for each
multiplexer of this chart;
except input 32
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
Actual value1 CU [170,7]
setpoint1 CB [410,7]
setpoint2 CB [410,7]
setpoint3 CB [410,7]
setpoint4 CB [410,7]
Peer Float1 [300,3]
Peer Float2 [300,3]
Actual value2 CU [170,7]
Actual value3 CU [170,7]
Mux word2 CB
KR3446 Mux word3 CB
KR3447 Mux word5 CB
KR3448 Mux word6 CB
KR3449
Setpoint for inverter [115,8]
Displacement setpoint [110,1]
Ratio[80,4]
Reference speed setpoint [115,2]
Relative ratio [80,2]
Mux inertia compensation [500,7]
Output speed controller [120,8]
Speed setpoint limited [120,2]
Deviation speed controller [120,4]
KP speed controller [120,3]
n setpoint after ramp [115,7]
Deviation angle controller [110,5]
KP angle controller [110,4]
Displacement actual value [100,8]
Displacement - position differ. [100,8]
n_Slave norm. [60,8]
Position slave [60,8]
n_Master normalized [70,7]
Position master [70,7]
Output angle controller [110,8]
Function diagram
87654321
FPlan_english.vsd
Angular Synchr. Control SPA44005.01
- 560 -
Multiplexer
CB status words
word1 CB constan
(0)
H443
0
Status word1 CB [430,4]
Status word angle synchr.[40,7]
PZD1 from CB [410,3]
PZD4 from CB [410,3]
PZD1 from CU [170,3]
PZD1 from Peer [300,3]
MUX word1 CB
(0)
H442
word4 CB constan
(0)
H445
0
Statusword2 CB [430,8]
MUX word4 CB
(0)
H444
0
1
2
3
4
5
6
7
8
9
10
Control word 1 CU [220,4]
Control word 2 CU [220,8]
0
1
2
3
4
5
6
7
8
9
10
CB Control W2.10 [420,8]
Peer CTW.10 [300,4]
BinInput 8 [52,4]
0
1
MUX Speed enable
(1)
H544
0
1
2
3
4
5
6CTW from CU.15 [180,7]
PZD4 from CU [170,3]
Status word angle synchr.[40,7]
PZD1 from CB [410,3]
PZD4 from CB [410,3]
PZD1 from CU [170,3]
PZD1 from Peer [300,3]
Control word 1 CU [220,4]
Control word 2 CU [220,8]
PZD4 from CU [170,3]
Mux word1 CBK2442 Mux word4 CBK2444
CB Control W1.11 [420,4]
B0547 Mux enable speed controller
K2443 K2445
Function diagram
87654321
FPlan_english.vsd
Angular Synchr. Control SPA44005.01
W1 Peer constant
(0)
H306
0
Status word Peer [310,8]
Status word angle synchr. [40,7]
MUX word 1 Peer
(2)
H303
- 570 -
Multiplexer
Peer to peer
MUX float1 Peer
(1)
H304
0.0
Speed slave filtered [60,8]
position deviation filtered [60,8]
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
W2 Peer constant
(0.0)
H307
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
MUX float2 Peer
(0)
H305
W3 Peer constant
(0.0)
H308
0
1
2
3
4
5
6
7
8
9
10
PZD1 from CB [410,3]
PZD4 from CB [410,3]
PZD1 from CU [170,3]
PZD1 from Peer [300,3]
Control word 1 CU [220,4]
Control word 2 CU [220,8]
PZD4 from CU [170,3]
Mux word1 Peer
K2303
Actual value1 CU [170,7]
setpoint1 CB [410,7]
setpoint2 CB [410,7]
setpoint3 CB [410,7]
setpoint4 CB [410,7]
Peer Float1 [300,3]
Peer Float2 [300,3]
Actual value2 CU [170,7]
Actual value3 CU [170,7]
Mux word2 Peer
KR3304
Mux word3 Peer
KR3305
K2306
Setpoint for inverter [115,8]
Displacement setpoint [110,1]
Ratio[80,4]
Reference speed setpoint [115,2]
Relative ratio [80,2]
Mux inertia compensation [500,7]
Output speed controller [120,8]
Speed setpoint limited [120,2]
Deviation speed controller [120,4]
KP speed controller [120,3]
n setpoint after ramp [115,7]
Deviation angle controller [110,5]
KP angle controller [110,4]
Displacement actual value [100,8]
Displacement - position difference [100,8]
n_Slave norm. [60,8]
Position slave [60,8]
n_Master normalized [70,7]
Position master [70,7]
Output angle controller [110,8]
The input assignment
for both multiplexers is
identical