HEXFET® Power MOSFET plus Schottky Diode
Applicable DirectFET Outline and Substrate Outline (see p.7,8 for details)
Fig 1. Typical On-Resistance vs. Gate Voltage
Typical values (unless otherwise specified)
Fig 2. Typical Total Gate Charge vs. Gate-to-Source Voltage
Click on this section to link to the appropriate technical paper.
Click on this section to link to the DirectFET Website.
Surface mounted on 1 in. square Cu board, steady state.
TC measured with thermocouple mounted to top (Drain) of part.
Repetitive rating; pulse width limited by max. junction temperature.
Starting TJ = 25°C, L = 0.83mH, RG = 25, IAS = 25A.
Notes:
DirectFET ISOMETRIC
MX
SQ SX ST MQ MX MT MP
Description
The IRF8302MPbF combines the latest HEXFET® Power MOSFET Silicon technology with the advanced DirectFET® packaging to achieve
the lowest on-state resistance in a package that has the footprint of a SO-8 and only 0.7 mm profile. The DirectFET® package is compatible
with existing layout geometries used in power applications, PCB assembly equipment and vapor phase, infra-red or convection soldering
techniques. Application note AN-1035 is followed regarding the manufacturing methods and processes. The DirectFET® package allows dual
sided cooling to maximize thermal transfer in power systems, improving previous best thermal resistance by 80%.
The IRF8302MPbF balances industry leading on-state resistance while minimizing gate charge along with ultra low package inductance to
reduce both conduction and switching losses. This part contains an integrated Schottky diode to reduce the Qrr of the body drain diode further
reducing the losses in a Synchronous Buck circuit. The reduced losses make this product ideal for high frequency/high efficiency DC-DC
converters that power high current loads such as the latest generation of microprocessors. The IRF8302MPbF has been optimized for
parameters that are critical in synchronous buck converter’s Sync FET sockets.
l RoHs Compliant and Halogen-Free
l Integrated Monolithic Schottky Diode
l Low Profile (<0.7 mm)
l Dual Sided Cooling Compatible
l Ultra Low Package Inductance
l Optimized for High Frequency Switching
lIdeal for CPU Core DC-DC Converters
l Optimized for Sync. FET socket of Sync. Buck Converter
l Low Conduction and Switching Losses
l Compatible with existing Surface Mount Techniques
l 100% Rg tested
0246810 12 14 16 18 20
VGS, Gate -to -Source Voltage (V)
0
1
2
3
4
5
6
Typical RDS(on) (m)
ID = 31A
TJ = 25°C
TJ = 125°C
V
DSS
V
GS
R
DS(on)
R
DS(on)
30V max ±20V max 1.4m@ 10V 2.2m@ 4.5V
Absolute Maximum Ratin
g
s
Parameter Units
V
DS
Drain-to-Source Voltage V
V
GS
Gate-to-Source Voltage
I
D
@ T
A
= 25°C Continuous Drain Current, V
GS
@ 10V
e
I
D
@ T
A
= 70°C Continuous Drain Current, V
GS
@ 10V
e
A
I
D
@ T
C
= 25°C Continuous Drain Current, V
GS
@ 10V
f
I
DM
Pulsed Drain Current
g
E
AS
Single Pulse Avalanche Energy
h
mJ
I
AR
Avalanche Current
g
A
25
Max.
25
190
250
±20
30
31
260
0 102030405060708090100
QG Total Gate Charge (nC)
0.0
2.0
4.0
6.0
8.0
10.0
12.0
14.0
VGS, Gate-to-Source Voltage (V)
VDS= 24V
VDS= 15V
VDS= 6.0V
ID= 25A
Q
g tot
Q
gd
Q
gs2
Q
rr
Q
oss
V
gs(th)
35nC 8.9nC 5.1nC 40nC 29nC 1.8V
IRF8302MPbF
1www.irf.com © 2014 International Rectifier Submit Datasheet Feedback February 17, 2014
Orderable Part Number
Form Quantity
IRF8302MPbF DirectFET MX Tape and Reel 4800 IRF8302MTRPbF
Base Part number Package Type Standard Pack
IRF8302MPbF
www.irf.com © 2014 International Rectifier Submit Datasheet Feedback February 17, 2014
2
Pulse width 400µs; duty cycle 2%.
Notes:
Static @ T
J
= 25°C (unless otherwise specified)
Parameter Min. Typ. Max. Units
BV
DSS
Drain-to-Source Breakdown Voltage 30 ––– ––– V
∆ΒV
DSS
/T
J
Breakdown Voltage Temp. Coefficient ––– 4.0 ––– mV/°C
R
DS(on)
Static Drain-to-Source On-Resistance ––– 1.4 1.8 m
––– 2.2 2.7
V
GS(th)
Gate Threshold Voltage 1.35 1.8 2.35 V
V
GS(th)
/T
J
Gate Threshold Voltage Coefficient ––– -4.2 ––– mV/°C
I
DSS
Drain-to-Source Leakage Current ––– ––– 100 µA
––– ––– 5.0 mA
I
GSS
Gate-to-Source Forward Leakage ––– ––– 100 nA
Gate-to-Source Reverse Leakage ––– ––– -100
gfs Forward Transconductance 120 ––– ––– S
Q
g
Total Gate Charge ––– 35 53
Q
gs1
Pre-Vth Gate-to-Source Charge ––– 11 –––
Q
gs2
Post-Vth Gate-to-Source Charge ––– 5.1 ––– nC
Q
gd
Gate-to-Drain Charge ––– 8.9 –––
Q
godr
Gate Charge Overdrive ––– 10 ––– See Fig. 15
Q
sw
Switch Charge (Q
gs2
+ Q
gd
)––– 14 –––
Q
oss
Output Charge ––– 29 ––– nC
R
G
Gate Resistance ––– 1.3 2.2
t
d(on)
Turn-On Delay Time ––– 22 –––
t
r
Rise Time ––– 37 ––– ns
t
d(off)
Turn-Off Delay Time ––– 20 –––
t
f
Fall Time ––– 15 –––
C
iss
Input Capacitance ––– 6030 –––
C
oss
Output Capacitance ––– 1360 ––– pF
C
rss
Reverse Transfer Capacitance ––– 560 –––
Diode Characteristics
Parameter Min. Typ. Max. Units
I
S
Continuous Source Current ––– ––– 31
(Body Diode) A
I
SM
Pulsed Source Current ––– ––– 250
(Body Diode)
g
V
SD
Diode Forward Voltage ––– ––– 0.80 V
t
rr
Reverse Recovery Time ––– 30 45 ns
Q
rr
Reverse Recovery Charge ––– 40 60 nC di/dt = 300A/µs
i
T
J
= 25°C, I
S
= 25A, V
GS
= 0V
i
showing the
integral reverse
p-n junction diode.
V
GS
= 4.5V, I
D
= 25A
i
V
DS
= V
GS
, I
D
= 10mA
V
DS
= V
GS
, I
D
= 150µA
T
J
= 25°C, I
F
= 25A
V
GS
= 4.5V
I
D
= 25A
V
GS
= 0V
V
DS
= 15V
I
D
= 25A
V
DD
= 15V, V
GS
= 4.5V
i
Conditions
V
GS
= 0V, I
D
= 1.0mA
Reference to 25°C, I
D
= 10mA
V
GS
= 10V, I
D
= 31A
i
V
GS
= 20V
V
GS
= -20V
V
DS
= 24V, V
GS
= 0V
V
DS
= 15V
V
DS
= 24V, V
GS
= 0V, T
J
= 125°C
MOSFET symbol
R
G
= 1.8
V
DS
= 15V, I
D
= 25A
Conditions
See Fig. 17
ƒ = 1.0MHz
V
DS
= 16V, V
GS
= 0V
IRF8302MPbF
www.irf.com © 2014 International Rectifier Submit Datasheet Feedback February 17, 20143
Fig 3. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient
(At lower pulse widths ZthJA & ZTHJC are combined)
Used double sided cooling , mounting pad with large heatsink.
Mounted on minimum footprint full size board with metalized
back and with small clip heatsink.
Notes:
Rθ is measured at TJ
of approximately 90°C.
Surface mounted on 1 in. square Cu
(still air).
Mounted to a PCB with
small clip heatsink (still air)
Mounted on minimum
footprint full size board with
metalized back and with small
clip heatsink (still air)
1E-005 0.0001 0.001 0.01 0.1 110 100
t1 , Rectangular Pulse Duration (sec)
0.01
0.1
1
10
100
Thermal Response ( Z thJA )
0.20
0.10
D = 0.50
0.02
0.01
0.05
SINGLE PULSE
( THERMAL RESPONSE )
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthja + Tc
Ri (°C/W) τi (sec)
14.507 12.335077
8.742 0.1865935
18.806 1.9583548
2.945 0.0065404
τJ
τJ
τ1
τ1
τ2
τ2τ3
τ3
R1
R1R2
R2R3
R3
Ci= τi/Ri
Ci= τi/Ri
τA
τA
τ4
τ4
R4
R4
Absolute Maximum Ratin
g
s
Parameter Units
P
D
@T
A
= 25°C Power Dissipation
e
W
P
D
@T
A
= 70°C Power Dissipation
e
P
D
@T
C
= 25°C Power Dissipation
f
T
P
Peak Soldering Temperature °C
T
J
Operating Junction and
T
STG
Storage Temperature Range
Thermal Resistance
Parameter Typ. Max. Units
R
θJA
Junction-to-Ambient
el
––– 45
R
θJA
Junction-to-Ambient
jl
12.5 –––
R
θJA
Junction-to-Ambient
kl
20 ––– °C/W
R
θJC
Junction-to-Case
fl
––– 1.2
R
θJ-PCB
Junction-to-PCB Mounted 1.0 –––
Linear Derating Factor
e
W/°C
0.022
270
-40 to + 150
Max.
104
2.8
1.8
IRF8302MPbF
www.irf.com © 2014 International Rectifier Submit Datasheet Feedback February 17, 2014
4
Fig 5. Typical Output Characteristics
Fig 4. Typical Output Characteristics
Fig 6. Typical Transfer Characteristics Fig 7. Normalized On-Resistance vs. Temperature
Fig 8. Typical Capacitance vs.Drain-to-Source Voltage Fig 9. Typical On-Resistance vs.
Drain Current and Gate Voltage
0.1 110 100
VDS, Drain-to-Source Voltage (V)
0.01
0.1
1
10
100
1000
ID, Drain-to-Source Current (A)
VGS
TOP 10V
5.0V
4.5V
4.0V
3.5V
3.0V
2.8V
BOTTOM 2.5V
60µs PULSE WIDTH
Tj = 25°C
2.5V
0.1 110 100
VDS, Drain-to-Source Voltage (V)
1
10
100
1000
ID, Drain-to-Source Current (A)
2.5V
60µs PULSE WIDTH
Tj = 150°C
VGS
TOP 10V
5.0V
4.5V
4.0V
3.5V
3.0V
2.8V
BOTTOM 2.5V
1234
VGS, Gate-to-Source Voltage (V)
0.1
1
10
100
1000
ID, Drain-to-Source Current (A)
TJ = 150°C
TJ = 25°C
TJ = -40°C
VDS = 15V
60µs PULSE WIDTH
-60 -40 -20 020 40 60 80 100 120 140 160
TJ , Junction Temperature (°C)
0.5
1.0
1.5
2.0
Typical RDS(on) (Normalized)
ID = 31A
VGS = 10V
VGS = 4.5V
110 100
VDS, Drain-to-Source Voltage (V)
100
1000
10000
100000
C, Capacitance(pF)
VGS = 0V, f = 1 MHZ
Ciss = C gs + Cgd, C ds SHORTED
Crss = Cgd
Coss = Cds + Cgd
Coss
Crss
Ciss
050 100 150 200
ID, Drain Current (A)
0
2
4
6
8
10
Typical RDS(on) (m)
TJ = 25°C Vgs = 3.5V
Vgs = 4.0V
Vgs = 4.5V
Vgs = 5.0V
Vgs = 10V
IRF8302MPbF
www.irf.com © 2014 International Rectifier Submit Datasheet Feedback February 17, 20145
Fig 13. Typical Threshold Voltage vs. Junction
Temperature
Fig 12. Maximum Drain Current vs. Case Temperature
Fig 10. Typical Source-Drain Diode Forward Voltage Fig11. Maximum Safe Operating Area
Fig 14. Maximum Avalanche Energy vs. Drain Current
25 50 75 100 125 150
TC , Case Temperature (°C)
0
50
100
150
200
ID, Drain Current (A)
25 50 75 100 125 150
Starting TJ , Junction Temperature (°C)
0
200
400
600
800
1000
1200
EAS , Single Pulse Avalanche Energy (mJ)
ID
TOP 1.3A
2.2A
BOTTOM 25A
0.01 0.10 1.00 10.00 100.00
VDS, Drain-to-Source Voltage (V)
0.1
1
10
100
1000
ID, Drain-to-Source Current (A)
OPERATION IN THIS AREA LIMITED
BY R
DS(on)
TA = 25°C
TJ = 150°C
Single Pulse
100µsec
1msec
10msec
DC
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
VSD, Source-to-Drain Voltage (V)
0
1
10
100
1000
ISD, Reverse Drain Current (A)
TJ = 150°C
TJ = 25°C
TJ = -40°C
VGS = 0V
-75 -50 -25 025 50 75 100 125 150
TJ , Temperature ( °C )
1.4
1.6
1.8
2.0
2.2
2.4
Typical VGS(th) Gate threshold Voltage (V)
ID = 10mA
IRF8302MPbF
www.irf.com © 2014 International Rectifier Submit Datasheet Feedback February 17, 2014
6
Fig 15a. Gate Charge Test Circuit Fig 15b. Gate Charge Waveform
Fig 16b. Unclamped Inductive Waveforms
tp
V
(BR)DSS
I
AS
Fig 16a. Unclamped Inductive Test Circuit
Fig 17b. Switching Time Waveforms
Fig 17a. Switching Time Test Circuit
R
G
I
AS
0.01
t
p
D.U.T
L
VDS
+
-V
DD
DRIVER
A
15V
20V
VGS
Vds
Vgs
Id
Vgs(th)
Qgs1
Qgs2QgdQgodr
1K
VCC
DUT
0
L
S
20K
VDS
90%
10%
VGS
t
d(on) trtd(off) tf
VDS
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1 %
RD
VGS
RG
D.U.T.
VGS
+
-
VDD
IRF8302MPbF
www.irf.com © 2014 International Rectifier Submit Datasheet Feedback February 17, 20147
Fig 18. Diode Reverse Recovery Test Circuit for HEXFET® Power MOSFETs
Circuit Layout Considerations
Low Stray Inductance
Ground Plane
Low Leakage Inductance
Current Transformer
P.W. Period
di/dt
Diode Recovery
dv/dt
Ripple 5%
Body Diode Forward Drop
Re-Applied
Voltage
Reverse
Recovery
Current
Body Diode Forward
Current
V
GS
=10V
V
DD
I
SD
Driver Gate Drive
D.U.T. I
SD
Waveform
D.U.T. V
DS
Waveform
Inductor Curent
D = P. W .
Period
*** VGS = 5V for Logic Level Devices
***
+
-
+
+
+
-
-
-
RGVDD
dv/dt controlled by RG
Driver same type as D.U.T.
ISD controlled by Duty Factor "D"
D.U.T. - Device Under Test
D.U.T
**
*
* Use P-Channel Driver for P-Channel Measurements
** Reverse Polarity for P-Channel
DirectFET® Board Footprint, MX Outline
(Medium Size Can, X-Designation).
Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET.
This includes all recommendations for stencil and substrate designs.
G
S
G=GATE
D=DRAIN
S=SOURCE
S
D
DD
D
IRF8302MPbF
www.irf.com © 2014 International Rectifier Submit Datasheet Feedback February 17, 2014
8
DirectFET® Part Marking
DirectFET® Outline Dimension, MX Outline
(Medium Size Can, X-Designation).
Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET. This includes
all recommendations for stencil and substrate designs.
CODE
A
B
C
D
E
F
G
H
J
K
L
M
P
0.017
0.007
0.039
0.095
0.156
0.028
0.018
0.028
MAX
0.250
0.38
0.08
0.88
2.28
3.85
0.68
0.35
0.68
MIN
6.25
4.80
0.42
0.17
1.01
2.41
3.95
0.72
0.45
0.72
MAX
6.35
5.05
0.015
0.003
0.090
0.035
0.152
0.027
0.027
0.014
MIN
0.189
0.246
METRIC IMPERIAL
DIMENSIONS
1.38 1.42
0.80 0.84
0.0560.054
0.0330.032
R 0.020 0.080 0.0008 0.0031
0.0280.59 0.70 0.023
0.199
GATE MARKING
PART NUMBER
LOGO
BATCH NUMBER
DATE CODE
Line above the last character of
the date code indicates "Lead-Free"
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/
IRF8302MPbF
www.irf.com © 2014 International Rectifier Submit Datasheet Feedback February 17, 20149
DirectFET® Tape & Reel Dimension (Showing component orientation).
LOADED TAPE FEED DIRECTION
NOTE: CONTROLLING
DIMENSIONS IN MM CODE
A
B
C
D
E
F
G
H
IMPERIAL
MIN
0.311
0.154
0.469
0.215
0.201
0.256
0.059
0.059
MAX
8.10
4.10
12.30
5.55
5.30
6.70
N.C
1.60
MIN
7.90
3.90
11.90
5.45
5.10
6.50
1.50
1.50
METRIC
DIMENSIONS
MAX
0.319
0.161
0.484
0.219
0.209
0.264
N.C
0.063
IR WORLD HEADQUARTERS: 101 N. Sepulveda Blvd., El Segundo, California 90245, USA
To contact International Rectifier, please visit http://www.irf.com/whoto-call/
NOTE: Controlling dimensions in mm
Std reel quantity is 4800 parts. (ordered as IRF8302MTRPBF). For 1000 parts on 7"
reel, order IRF8302MTR1PBF
CODE MIN MAX MIN MAX
A 330 N.C 12.992 N.C
B 20.2 N.C 0.795 N.C
C 12.8 13.2 0.504 0.520
D 1.5 N.C 0.059 N.C
E 100.0 N.C 3.937 N.C
F N.C 18.4 N.C 0.724
G 12.4 14.4 0.488 0.567
H 11.9 15.4 0.469 0.606
ME TRIC IMP E RIA L
STANDARD OPTION
(
QTY 4800
)
REEL DIMENSIONS
Date Comments
2/17/2014 Added the orgering information table, on page 1.
Updated data sheet with new IR corporate template.
Revision History