*R oH S CO M PL IA NT TISP4070M3AJ THRU TISP4115M3AJ, TISP4125M3AJ THRU TISP4220M3AJ, TISP4240M3AJ THRU TISP4395M3AJ BIDIRECTIONAL THYRISTOR OVERVOLTAGE PROTECTORS TISP4xxxM3AJ Overvoltage Protector Series 4 kV 10/700, 100 A 5/310 ITU-T K.20/21 rating SMAJ Package (Top View) SMA (DO-214AC) Package 25% Smaller Placement Area than SMB Low Differential Capacitance ........................................... 39 pF R (B) 1 Ion-Implanted Breakdown Region Precise and Stable Voltage Low Voltage Overshoot under Surge VDRM V(BO) V V `4070 58 70 `4080 65 80 `4090 68 90 `4095 75 95 `4115 90 115 `4125 100 125 `4145 120 145 `4165 135 165 `4180 145 180 `4200 155 200 `4220 160 220 `4240 180 240 `4250 190 250 `4265 200 `4290 220 `4300 Device 2 T (A) MDXXCCE Device Symbol T SD4XAA R T erminals T and R correspond to the alternative line designators of A and B Rated for International Surge Wave Shapes ITSP Wave Shape Standard 2/10 s GR-1089-CORE 300 265 8/20 s IEC 61000-4-5 220 290 10/160 s FCC Part 68 120 230 300 10/700 s ITU-T K.20/21/45 100 `4320 240 320 10/560 s FCC Part 68 75 `4350 275 350 10/1000 s GR-1089-CORE 50 `4360 290 360 `4395 320 395 A ............................................ UL Recognized Components How To Order Device Package Order As Carrier TISP 4xxxM3AJ AJ (J-Bend DO-214AC/SMA) Embossed Tape Reeled TISP4xxxM3AJR-S Insert xxx value corresponding to protection voltages of 070, 080, 095, etc. Description These devices are designed to limit overvoltages on the telephone line. Overvoltages are normally caused by a.c. power system or lightning flash disturbances which are induced or conducted on to the telephone line. A single device provides 2-point protection and is typically used for the protection of 2-wire telecommunication equipment (e.g. between the Ring and Tip wires for telephones and modems). Combinations of devices can be used for multi-point protection (e.g. 3-point protection between Ring, Tip and Ground). The protector consists of a symmetrical voltage-triggered bidirectional thyristor. Overvoltages are initially clipped by breakdown clamping until the voltage rises to the breakover level, which causes the device to crowbar into a low-voltage on state. This low-voltage on state causes the current resulting from the overvoltage to be safely diverted through the device. The high crowbar holding current helps prevent d.c. latchup as the diverted current subsides. *RoHS Directive 2002/95/EC Jan 27 2003 including Annex AUGUST 2001 - REVISED JANUARY 2007 Specifications are subject to change without notice. Customers should verify actual device performance in their specific applications. TISP4xxxM3AJ Overvoltage Protector Series Description (continued) The TISP4xxxM3AJ range consists of twenty voltage variants to meet various maximum system voltage levels (58 V to 320 V). They are guaranteed to voltage limit and withstand the listed international lightning surges in both polarities. These medium (M) current protection devices are in a plastic package SMAJ (JEDEC DO-214AC with J-bend leads) and supplied in embossed tape reel pack. For alternative voltage and holding current values, consult the factory. For higher rated impulse currents, the 100 A 10/1000 TISP4xxxH3BJ series in the SMB (JEDEC DO-214AA) package is available. Absolute Maximum Ratings, TA = 25 C (Unless Otherwise Noted) Rating Repetitive peak off-state voltage, (see Note 1) Symbol `4070 `4080 `4090 `4095 `4115 `4125 `4145 `4165 `4180 `4200 `4220 `4240 `4250 `4265 `4290 `4300 `4320 `4350 `4360 `4395 VDRM Value 58 65 68 75 90 100 120 135 145 155 160 180 190 200 220 230 240 Unit V 275 290 320 Non-repetitive peak on-state pulse current (see Notes 2, 3 and 4) 2/10 s (GR-1089-CORE, 2/10 s voltage wave shape) 300 8/20 s (IEC 61000-4-5, combination wave generator, 1.2/50 voltage, 8/20 current) 220 10/160 s (FCC Part 68, 10/160 s voltage wave shape) 120 5/200 s (VDE 0433, 10/700 s voltage wave shape) 110 ITSP A 0.2/310 s (I3124, 0.5/700 s voltage wave shape) 100 5/310 s (ITU-T K.20/21/45, K.44 10/700 s voltage wave shape) 100 5/310 s (FTZ R12, 10/700 s voltage wave shape) 100 10/560 s (FCC Part 68, 10/560 s voltage wave shape) 75 10/1000 s (GR-1089-CORE, 10/1000 s voltage wave shape) 50 Non-repetitive peak on-state current (see Notes 2, 3 and 5) 20 ms (50 Hz) full sine wave 23 ITSM 16.7 ms (60 Hz) full sine wave 24 A 1000 s 50 Hz/60 Hz a.c. 1.6 Initial rate of rise of on-state current, Exponential current ramp, Maximum ramp value < 100 A di T/dt 300 A/s Junction temperature TJ -40 to +150 C Storage temperature range Tstg -65 to +150 C NOTES: 1. See Applications Information and Figure 10 for voltage values at lower temperatures. 2. Initially, the TISP4xxxM3AJ must be in thermal equilibrium with TJ = 25 C. 3. The surge may be repeated after the TISP4xxxM3AJ returns to its initial conditions. 4. See Applications Information and Figure 11 for current ratings at other temperatures. 5. EIA/JESD51-2 environment and EIA/JESD51-3 PCB with standard footprint dimensions connected with 5 A rated printed wiring track widths. See Figure 9 for the current ratings at other durations. Derate current values at -0.61 %/C for ambient temperatures above 25 C. AUGUST 2001 - REVISED JANUARY 2007 Specifications are subject to change without notice. Customers should verify actual device performance in their specific applications. TISP4xxxM3AJ Overvoltage Protector Series Electrical Characteristics, TA = 25 C (Unless Otherwise Noted) IDRM V(BO) V(BO) I(BO) VT IH dv/dt Parameter Repetitive peak offstate current Breakover voltage Impulse breakover voltage Breakover current On-state voltage Holding current Critical rate of rise of off-state voltage Test Conditions VD = VDRM dv/dt = 250 V/ms, R SOURCE = 300 dv/dt 1000 V/s, Linear voltage ramp, Maximum ramp value = 500 V di/dt = 20 A/s, Linear current ramp, Maximum ramp value = 10 A dv/dt = 250 V/ms, R SOURCE = 300 I T = 5 A, t W = 100 s I T = 5 A, di/dt = +/-30 mA/ms Linear voltage ramp, Maximum ramp value < 0.85V DRM AUGUST 2001 - REVISED JANUARY 2007 Specifications are subject to change without notice. Customers should verify actual device performance in their specific applications. TA = 25 C TA = 85 C `4070 `4080 `4090 Min Max 5 10 70 80 90 `4095 `4115 `4125 `4145 `4165 `4180 `4200 `4220 `4240 `4250 `4265 `4290 `4300 `4320 95 115 125 145 165 180 200 220 240 250 265 290 300 320 `4350 `4360 `4395 `4070 `4080 `4090 350 360 395 78 88 98 `4095 `4115 `4125 `4145 `4165 `4180 `4200 `4220 `4240 `4250 `4265 `4290 `4300 `4320 102 122 132 151 171 186 207 227 247 257 272 298 308 328 `4350 `4360 `4395 359 370 405 0.15 0.15 5 Typ 0.6 3 0.35 Unit A V V A V A kV/s TISP4xxxM3AJ Overvoltage Protector Series Electrical Characteristics, TA = 25 C (Unless Otherwise Noted) Parameter ID Test Conditions Off-state current Min VD = 50 V 4070 thru `4115 `4125 thru `4220 `4240 thru `4400 `4070 thru `4115 `4125 thru `4220 `4240 thru `4395 `4070 thru `4115 `4125 thru `4220 `4240 thru `4395 `4070 thru `4115 `4125 thru `4220 `4240 thru `4400 `4125 thru `4220 `4240 thru `4395 f = 1 MHz, Vd = 1 V rms, VD = -1 V Off-state capacitance f = 1 MHz, Vd = 1 V rms, VD = -2 V f = 1 MHz, Vd = 1 V rms, VD = -50 V f = 1 MHz, Vd = 1 V rms, VD = -100 V (see Note 6) NOTE Max Unit 10 A 83 62 50 78 56 45 72 52 42 36 26 19 21 15 100 74 60 94 67 54 87 62 50 44 31 22 25 18 pF Typ Max Unit TA = 85 C f = 1 MHz, Vd = 1 V rms, VD = 0, Coff Typ 6: To avoid possible voltage clipping, the `4125 is tested with V D = -98 V. Thermal Characteristics Parameter RJA NOTE Junction to free air thermal resistance Test Conditions Min EIA/JESD51-3 PCB, IT = ITSM(1000), TA = 25 C, (see Note 7) 265 mm x 210 mm populated line card, 4-layer PCB, IT = ITSM(1000), TA = 25 C 115 C/W 52 7: EIA/JESD51-2 environment and PCB has standard footprint dimensions connected with 5 A rated printed wiring track widths. AUGUST 2001 - REVISED JANUARY 2007 Specifications are subject to change without notice. Customers should verify actual device performance in their specific applications. TISP4xxxM3AJ Overvoltage Protector Series Parameter Measurement Information +i Quadrant I ITSP Switching Characteristic ITSM IT V(BO) VT I(BO) IH V DRM -v IDRM ID VD ID IDRM VD VDRM +v IH I(BO) V(BO) VT IT ITSM I Quadrant III ITSP Switching Characteristic -i Figure 1. Voltage-Current Characteristic for T and R Terminals All Measurements are Referenced to the R Terminal AUGUST 2001 - REVISED JANUARY 2007 Specifications are subject to change without notice. Customers should verify actual device performance in their specific applications. PMXXAAB TISP4xxxM3AJ Overvoltage Protector Series Typical Characteristics OFF-STATE CURRENT vs JUNCTION TEMPERATURE 1.10 TCMAG 100 NORMALIZED BREAKOVER VOLTAGE vs JUNCTION TEMPERATURE TC4MAF Normalized Breakover Voltage VD = 50 V |I D| - Off-State Current - A 10 1 0*1 0*01 0*001 1.05 1.00 0.95 -25 0 25 50 75 100 TJ - Junction Temperature - C 125 150 -25 ON-STATE CURRENT vs ON-STATE VOLTAGE 50 40 30 TA = 25 C t W = 100 s 10 5 4 3 2 1.5 1 0.7 '4125 THRU '4200 '4240 THRU '4395 1 NORMALIZED HOLDING CURRENT vs JUNCTION TEMPERATURE TC4MAD 1.5 20 15 7 2.0 TC4MACC Normalized Hol ding Current IT - On-State Current - A 70 150 Figure 3. Figure 2. 100 0 25 50 75 100 125 TJ - Junction Temperature - C Figure 4. 0.9 0.8 0.7 0.6 0.5 '4070 THRU '4115 1.5 2 31 4 5 VT - On-State Voltage - V 1.0 0.4 7 10 -25 0 25 50 75 100 TJ - Junction Temperature - C 125 150 Figure 5. AUGUST 2001 - REVISED JANUARY 2007 Specifications are subject to change without notice. Customers should verify actual device performance in their specific applications. TISP4xxxM3AJ Overvoltage Protector Series Typical Characteristics TJ = 25 C Vd = 1 Vrms 0.8 0.7 0.6 0.5 '4070 THRU '4115 0.4 '4125 THRU '4200 0.3 '4240 THRU '4395 0.2 0.5 TCMAEB 40 0.9 Capacitance Normali zed to VD = 0 DIFFERENTIAL OFF-STATE CAPACITANCE vs RATED REPETITIVE PEAK OFF-STATE VOLTAGE C - Differential Off-State Capacitance- pF 1 NORMALIZED CAPACITANCE vs OFF-STATE VOLTAGE TC4MABC 1 2 3 5 10 20 30 VD - Off-state Voltage - V 50 35 C = Coff(-2 V) - Coff (-50 V) 30 25 20 100 150 50 Figure 6. Figure 7. 3 |Coff(+VD) - Coff(-VD) | -- Capacitance Asymmetry -- pF 60 70 80 90 100 150 200 250 300 350 VDRM - Repetitive Peak Off-State Voltage - V TYPICAL CAPACITANCE ASYMMETRY vs OFF-STATE VOLTAGE TC4XBB Vd = 10 mV rms, 1 MHz 2 1 Vd = 1 V rms, 1 MHz 0 0.5 0.7 1 2 3 4 5 7 10 VD -- Off-State Voltage -- V Figure 8. AUGUST 2001 - REVISED JANUARY 2007 Specifications are subject to change without notice. Customers should verify actual device performance in their specific applications. 20 30 4050 TISP4xxxM3AJ Overvoltage Protector Series Rating and Thermal Information ITSM(t) - Non-Repetitive Peak On-State Current - A NON-REPETITIVE PEAK ON-STATE CURRENT vs CURRENT DURATION TI4MAl 20 VGEN = 600 Vrms, 50/60 Hz RGEN = 1.4*VGEN / ITSM(t) EIA/JESD51-2 ENVIRONMENT EIA/JESD51-3 PCB TA = 25 C 15 10 9 8 7 6 5 4 3 2 1.5 0*1 1 10 100 1000 t - Current Duration - s Figure 9. IMPULSE RATING vs AMBIENT TEMPERATURE VDRM DERATING FACTOR vs MINIMUM AMBIENT TEMPERATURE 400 TI4MADAB 1.00 Impulse Current - A Derating Factor 250 '4125 THRU '4200 0.97 0.96 0.95 BELLCORE 2/10 300 0.99 0.98 TC4MAA '4070 THRU '4115 FCC 10/160 120 100 90 80 70 ITU-T 10/700 FCC 10/560 50 '4240 THRU '4395 0 5 10 15 20 25 TAMIN - Minimum Ambient Temperature - C Figure 10. 150 60 0.94 0.93 -40 -35 -30 -25 -20 -15 -10 -5 IEC 1.2/50, 8/20 200 40 -40 -30 -20 -10 0 BELLCORE 10/1000 10 20 30 40 50 60 70 80 TA - Ambient Temperature - C Figure 11. AUGUST 2001 - REVISED JANUARY 2007 Specifications are subject to change without notice. Customers should verify actual device performance in their specific applications. TISP4xxxM3AJ Overvoltage Protector Series APPLICATIONS INFORMATION Deployment These devices are two terminal overvoltage protectors. They may be used either singly to limit the voltage between two conductors (Figure 12) or in multiples to limit the voltage at several points in a circuit (Figure 13). Th3 Th1 Th1 Th2 Figure 12. Two Point Protection Figure 13. Multi-Point Protection In Figure 12, protector Th1 limits the maximum voltage between the two conductors to V(BO). This configuration is normally used to protect circuits without a ground reference, such as modems. In Figure 13, protectors Th2 and Th3 limit the maximum voltage between each conductor and ground to the V(BO) of the individual protector. Protector Th1 limits the maximum voltage between the two conductors to its V(BO) value. If the equipment being protected has all its vulnerable components connected between the conductors and ground, then protector Th1 is not required. Impulse Testing To verify the withstand capability and safety of the equipment, standards require that the equipment is tested with various impulse wave forms. The table below shows some common values. Standard Peak Voltage Setting V Voltage Wave Shape s 2/10 10/1000 10/160 10/560 9/720 9/720 0.5/700 Peak Current Value A Current Wave Shape s TISP4XXXM3 25 C Rating A Series Resistance 2500 500 2/10 300 11 1000 100 10/1000 50 1500 200 10/160 120 2x5.6 800 100 10/560 75 3 FCC Part 68 1500 37.5 5/320 100 0 (March 1998) 1000 25 5/320 100 0 I3124 1500 37.5 0.2/310 100 0 37.5 1500 5/310 100 0 10/700 ITU-T K.20/K.21 100 4000 FCC Part 68 terminology for the waveforms produced by the ITU-T recommendation K.21 10/700 impulse generator GR-1089-CORE If the impulse generator current exceeds the protector's current rating, then a series resistance can be used to reduce the current to the protector's rated value to prevent possible failure. The required value of series resistance for a given waveform is given by the following calculations. First, the minimum total circuit impedance is found by dividing the impulse generator's peak voltage by the protector's rated current. The impulse generator's fictive impedance (generator's peak voltage divided by peak short circuit current) is then subtracted from the minimum total circuit impedance to give the required value of series resistance. For the FCC Part 68 10/560 waveform, the following values result. The minimum total circuit impedance is 800/75 = 10.7 and the generator's fictive impedance is 800/100 = 8 . This gives a minimum series resistance value of 10.7 - 8 = 2.7 . After allowing for tolerance, a 3 10% resistor would be suitable. The 10/160 waveform needs a standard resistor value of 5.6 per conductor. These would be R1a and R1b in Figure 15 and Figure 16. FCC Part 68 allows the equipment to be non-operational after the 10/160 (conductor to ground) and 10/560 (interconductor) impulses. The series resistor value may be reduced to zero to pass FCC Part 68 in a non-operational mode, e.g. Figure 14. For this type of design, the series fuse must open before the TISP4xxxM3 fails. For Figure 14, the maximum fuse i2t is 2.3 A2s. In some cases, the equipment will require verification over a temperature range. By using the rated waveform values from Figure 11, the appropriate series resistor value can be calculated for ambient temperatures in the range of -40 C to 85 C. AUGUST 2001 - REVISED JANUARY 2007 Specifications are subject to change without notice. Customers should verify actual device performance in their specific applications. TISP4xxxM3AJ Overvoltage Protector Series AC Power Testing The protector can withstand currents applied for times not exceeding those shown in Figure 9. Currents that exceed these times must be terminated or reduced to avoid protector failure. Fuses, PTC (Positive Temperature Coefficient) thermistors and fusible resistors are overcurrent protection devices which can be used to reduce the current flow. Protective fuses may range from a few hundred milliamperes to one ampere. In some cases, it may be necessary to add some extra series resistance to prevent the fuse opening during impulse testing. The current versus time characteristic of the overcurrent protector must be below the line shown in Figure 9. In some cases, there may be a further time limit imposed by the test standard (e.g. UL 1459 wiring simulator failure). Capacitance The protector characteristic off-state capacitance values are given for d.c. bias voltage, V D, values of 0, -1 V, -2 V and -50 V. Where possible values are also given for -100 V. Values for other voltages may be calculated by multiplying the VD = 0 capacitance value by the factor given in Figure 6. Up to 10 MHz, the capacitance is essentially independent of frequency. Above 10 MHz, the effective capacitance is strongly dependent on connection inductance. In many applications, such as Figure 15 and Figure 17, the typical conductor bias voltages will be about -2 V and -50 V. Figure 7 shows the differential (line unbalance) capacitance caused by biasing one protector at -2 V and the other at -50 V. Figure 8 shows the typical capacitance asymmetry; the difference between the capacitance measured with a positive value of V D and the capacitance value when the polarity of V D is reversed. Capacitance asymmetry is an important parameter in ADSL systems where the protector often has no d.c. bias and the signal level is in the region of 10 V. Normal System Voltage Levels The protector should not clip or limit the voltages that occur in normal system operation. For unusual conditions, such as ringing without the line connected, some degree of clipping is permissible. Under this condition, about 10 V of clipping is normally possible without activating the ring trip circuit. Figure 10 allows the calculation of the protector VDRM value at temperatures below 25 C. The calculated value should not be less than the maximum normal system voltages. The TISP4265M3AJ, with a VDRM of 200 V, can be used for the protection of ring generators producing 100 V rms of ring on a battery voltage of -58 V (Th2 and Th3 in Figure 17). The peak ring voltage will be 58 + 1.414*100 = 199.4 V. However, this is the open circuit voltage and the connection of the line and its equipment will reduce the peak voltage. In the extreme case of an unconnected line, clipping the peak voltage to 190 V should not activate the ring trip. This level of clipping would occur at the temperature when the VDRM has reduced to 190/200 = 0.95 of its 25 C value. Figure 10 shows that this condition will occur at an ambient temperature of -28 C. In this example, the TISP4265M3AJ will allow normal equipment operation provided that the minimum expected ambient temperature does not fall below -28 C. JESD51 Thermal Measurement Method To standardize thermal measurements, the EIA (Electronic Industries Alliance) has created the JESD51 standard. Part 2 of the standard (JESD51-2, 1995) describes the test environment. This is a 0.0283 m3 (1 ft3) cube which contains the test PCB (Printed Circuit Board) horizontally mounted at the center. Part 3 of the standard (JESD51-3, 1996) defines two test PCBs for surface mount components; one for packages smaller than 27 mm on a side and the other for packages up to 48 mm. The SMBJ measurements used the smaller 76.2 mm x 114.3 mm (3.0 " x 4.5 ") PCB. The JESD51-3 PCBs are designed to have low effective thermal conductivity (high thermal resistance) and represent a worst case condition. The PCBs used in the majority of applications will achieve lower values of thermal resistance, and can dissipate higher power levels than indicated by the JESD51 values. AUGUST 2001 - REVISED JANUARY 2007 Specifications are subject to change without notice. Customers should verify actual device performance in their specific applications. TISP4xxxM3AJ Overvoltage Protector Series Typical Circuits MODEM TIP WIRE RING FUSE RING DETECTOR R1a Th3 HOOK SWITCH TISP4350 PROTECTED EQUIPMENT Th1 D.C. SINK E.G. LINE CARD Th2 SIGNAL RING WIRE TIP AI6XBMA R1b AI6XBK Figure 15. Protection Module Figure 14. Modem Inter-Wire Protection R1a Th3 SIGNAL Th1 Th2 R1b AI6XBL D.C. Figure 16. ISDN Protection TIP WIRE OVERCURRENT PROTECTION RING/TEST PROTECTION TEST RELAY RING RELAY SLIC RELAY S3a R1a Th3 S1a SLIC PROTECTION Th4 S2a SLIC Th1 Th2 RING WIRE Th5 R1b S3b S1b S2b TISP6xxxx, TISPPBLx, 1/2TISP6NTP2 C1 220 nF TEST EQUIPMENT RING GENERATOR Figure 17. Line Card Ring/Test Protection AUGUST 2001 - REVISED JANUARY 2007 Specifications are subject to change without notice. Customers should verify actual device performance in their specific applications. V BAT AI6XBJ TISP4xxxM3AJ Overvoltage Protector Series MECHANICAL DATA Recommended Printed Wiring Footprint SMA Land Pattern 2.34 (. 092) 1.90 (.075) 2.16 (.085) MILLIMETERS DIMENSIONS ARE: (INCHES) MDXX BIC Device Symbolization Code Devices will be coded as below. As the device parameters are symmetrical, terminal 1 is not identified. TISP4070M3AJ TISP4080M3AJ TISP4090M3AJ Symbolization Code 4070M3 4080M3 4090M3 TISP4095M3AJ TISP4115M3AJ TISP4125M3AJ TISP4145M3AJ TISP4165M3AJ TISP4180M3AJ TISP4200M3AJ TISP4220M3AJ TISP4240M3AJ TISP4250M3AJ TISP4265M3AJ TISP4290M3AJ TISP4300M3AJ TISP4350M3AJ TISP4360M3AJ TISP4395M3AJ 4095M3 4115M3 4125M3 4145M3 4165M3 4180M3 4200M3 4220M3 4240M3 4250M3 4265M3 4290M3 4300M3 4350M3 4360M3 4395M3 Device Carrier Information For production quantities, the carrier will be embossed tape reel pack. Evaluation quantities may be shipped in bulk pack or embossed tape. Carrier Embossed Tape Reel Pack Standard Quantity 5,000 "TISP" is a trademark of Bourns, Ltd., a Bourns Company, and is Registered in U.S. Patent and Trademark Office. "Bourns" is a registered trademark of Bourns, Inc. in the U.S. and other countries. AUGUST 2001 - REVISED JANUARY 2007 Specifications are subject to change without notice. Customers should verify actual device performance in their specific applications. Mouser Electronics Authorized Distributor Click to View Pricing, Inventory, Delivery & Lifecycle Information: Bourns: TISP4250M3AJR TISP4240M3AJR TISP4350M3AJR TISP4220M3AJR TISP4200M3AJR TISP4360M3AJR TISP4300M3AJR TISP4320M3AJR TISP4070M3AJR TISP4145M3AJR TISP4125M3AJR TISP4115M3AJR TISP4165M3AJR TISP4180M3AJR TISP4290M3AJR TISP4080M3AJR TISP4090M3AJR TISP4200M3AJR-S TISP4240M3AJR-S TISP4250M3AJR-S TISP4290M3AJR-S TISP4180M3AJR-S TISP4145M3AJR-S TISP4165M3AJR-S TISP4125M3AJR-S TISP4115M3AJR-S TISP4220M3AJR-S TISP4395M3AJR-S TISP4080M3AJR-S TISP4095M3AJR-S TISP4090M3AJR-S TISP4070M3AJR-S TISP4395M3AJR TISP4095M3AJR TISP4300M3AJR-S TISP4320M3AJR-S TISP4360M3AJR-S TISP4350M3AJR-S