NuMicro NUC120 Data Sheet
ARM Cortex™-M0
32-BIT MICROCONTROLLER
Publication Release Date: Jan. 2, 2012
- 1 - Revision V2.03
NuMicro™ Family
NUC120 Data Sheet
The information described in this document is the exclusive intellectual property of
Nuvoton Technology Corporation and shall not be reproduced without permission from Nuvoton.
Nuvoton is providing this document only for reference purposes of NuMicro microcontroller based
system design. Nuvoton assumes no responsibility for errors or omissions.
All data and specifications are subject to change without notice.
For additional information or questions, please contact: Nuvoton Technology Corporation.
NuMicro NUC120 Data Sheet
Publication Release Date: Jan. 2, 2012
- 2 - Revision V2.03
Contents
1GENERAL DESCRIPTION ......................................................................................................... 7
2FEATURES ................................................................................................................................. 8
2.1NuMicro NUC120 Features – USB Line ...................................................................... 8
3PARTS INFORMATION LIST AND PIN CONFIGURATION .................................................... 12
3.1NuMicro NUC120 Products Selection Guide............................................................. 12
3.1.1NuMicro NUC120 Medium Density USB Line Selection Guide....................................12
3.1.2NuMicro NUC120 Low Density USB Line Selection Guide..........................................12
3.2Pin Configuration .......................................................................................................... 14
3.2.1NuMicro NUC120 Medium Density Pin Diagram .........................................................14
3.2.2NuMicro NUC120 Low Density Pin Diagram ...............................................................17
4BLOCK DIAGRAM .................................................................................................................... 19
4.1NuMicro NUC120 Medium Density Block Diagram ................................................... 19
4.2NuMicro NUC120 Low Density Block Diagram.......................................................... 20
5FUNCTIONAL DESCRIPTION.................................................................................................. 21
5.1ARM® Cortex™-M0 Core.............................................................................................. 21
5.2System Manager........................................................................................................... 23
5.2.1Overview ........................................................................................................................23
5.2.2System Reset .................................................................................................................23
5.2.3System Power Distribution .............................................................................................24
5.2.4System Memory Map......................................................................................................25
5.2.5System Timer (SysTick) .................................................................................................27
5.2.6Nested Vectored Interrupt Controller (NVIC) ..................................................................28
5.3Clock Controller ............................................................................................................ 32
5.3.1Overview ........................................................................................................................32
5.3.2Clock Generator .............................................................................................................34
5.3.3System Clock and SysTick Clock ...................................................................................35
5.3.4Peripherals Clock ...........................................................................................................36
5.3.5Power Down Mode Clock ...............................................................................................36
5.3.6Frequency Divider Output...............................................................................................37
5.4USB Device Controller (USB) ....................................................................................... 38
5.4.1Overview ........................................................................................................................38
5.4.2Features .........................................................................................................................38
5.5General Purpose I/O (GPIO) ........................................................................................ 39
5.5.1Overview ........................................................................................................................39
5.5.2Features .........................................................................................................................39
5.6I2C Serial Interface Controller (Master/Slave) (I2C) ...................................................... 40
5.6.1Overview ........................................................................................................................40
5.6.2Features .........................................................................................................................41
5.7PWM Generator and Capture Timer (PWM) ................................................................ 42
5.7.1Overview ........................................................................................................................42
NuMicro NUC120 Data Sheet
Publication Release Date: Jan. 2, 2012
- 3 - Revision V2.03
5.7.2Features .........................................................................................................................43
5.8Real Time Clock (RTC)................................................................................................. 44
5.8.1Overview ........................................................................................................................44
5.8.2Features .........................................................................................................................44
5.9Serial Peripheral Interface (SPI)................................................................................... 45
5.9.1Overview ........................................................................................................................45
5.9.2Features .........................................................................................................................45
5.10Timer Controller (TMR)................................................................................................. 46
5.10.1Overview ......................................................................................................................46
5.10.2Features .......................................................................................................................46
5.11Watchdog Timer (WDT)................................................................................................ 47
5.11.1Overview ......................................................................................................................47
5.11.2Features .......................................................................................................................49
5.12UART Interface Controller (UART) ............................................................................... 49
5.12.1Overview ......................................................................................................................49
5.12.2Features .......................................................................................................................51
5.13PS/2 Device Controller (PS2D)..................................................................................... 52
5.13.1Overview ......................................................................................................................52
5.13.2Features .......................................................................................................................52
5.14I2S Controller (I2S)......................................................................................................... 53
5.14.1Overview ......................................................................................................................53
5.14.2Features .......................................................................................................................53
5.15Analog-to-Digital Converter (ADC) ............................................................................... 54
5.15.1Overview ......................................................................................................................54
5.15.2Features .......................................................................................................................54
5.16Analog Comparator (CMP) ........................................................................................... 55
5.16.1Overview ......................................................................................................................55
5.16.2Features .......................................................................................................................55
5.17PDMA Controller (PDMA) ............................................................................................. 56
5.17.1Overview ......................................................................................................................56
5.17.2Features .......................................................................................................................56
5.18External Bus Interface (EBI) ......................................................................................... 57
5.18.1Overview ......................................................................................................................57
5.18.2Features .......................................................................................................................57
6FLASH MEMORY CONTROLLER (FMC) ................................................................................ 58
6.1Overview ....................................................................................................................... 58
6.2Features........................................................................................................................ 58
7ELECTRICAL CHARACTERISTICS......................................................................................... 59
7.1Absolute Maximum Ratings .......................................................................................... 59
7.2DC Electrical Characteristics ........................................................................................ 60
7.2.1NuMicro NUC100/NUC120 Medium Density DC Electrical Characteristics .................60
7.2.2NuMicro NUC100/NUC120 Low Density DC Electrical Characteristics .......................65
NuMicro NUC120 Data Sheet
Publication Release Date: Jan. 2, 2012
- 4 - Revision V2.03
7.2.3Operating Current Curve (Test condition: run NOP).......................................................70
7.2.4Idle Current Curve ..........................................................................................................72
7.2.5Power Down Current Curve............................................................................................74
7.3AC Electrical Characteristics ........................................................................................ 75
7.3.1External 4~24 MHz High Speed Crystal .........................................................................75
7.3.2External 32.768 kHz Low Speed Crystal ........................................................................76
7.3.3Internal 22.1184 MHz High Speed Oscillator..................................................................76
7.3.4Internal 10 kHz Low Speed Oscillator.............................................................................76
7.4Analog Characteristics.................................................................................................. 77
7.4.1Specification of 12-bit SARADC .....................................................................................77
7.4.2Specification of LDO and Power management...............................................................78
7.4.3Specification of Low Voltage Reset ................................................................................79
7.4.4Specification of Brown-Out Detector...............................................................................79
7.4.5Specification of Power-On Reset (5 V) ...........................................................................79
7.4.6Specification of Temperature Sensor .............................................................................80
7.4.7Specification of Comparator ...........................................................................................80
7.4.8Specification of USB PHY ..............................................................................................81
7.5Flash DC Electrical Characteristics .............................................................................. 82
7.6SPI Dynamic Characteristics ........................................................................................ 83
8PACKAGE DIMENSIONS......................................................................................................... 85
8.1100L LQFP (14x14x1.4 mm footprint 2.0mm) .............................................................. 85
8.264L LQFP (10x10x1.4mm footprint 2.0 mm) ................................................................ 86
8.348L LQFP (7x7x1.4mm footprint 2.0mm) ..................................................................... 87
9REVISION HISTORY ................................................................................................................ 88
NuMicro NUC120 Data Sheet
Publication Release Date: Jan. 2, 2012
- 5 - Revision V2.03
Figures
Figure 3-1 NuMicro NUC100 Series selection code ................................................................... 13
Figure 3-2 NuMicro NUC120 Medium Density LQFP 100-pin Pin Diagram ............................... 14
Figure 3-3 NuMicro NUC120 Medium Density LQFP 64-pin Pin Diagram ................................. 15
Figure 3-4 NuMicro NUC120 Medium Density LQFP 48-pin Pin Diagram ................................. 16
Figure 3-5 NuMicro NUC120 Low Density LQFP 64-pin Pin Diagram........................................ 17
Figure 3-6 NuMicro NUC120 Low Density LQFP 48-pin Pin Diagram........................................ 18
Figure 4-1 NuMicro NUC120 Medium Density Block Diagram ................................................... 19
Figure 4-2 NuMicro NUC120 Low Density Block Diagram ......................................................... 20
Figure 5-1 Functional Controller Diagram...................................................................................... 21
Figure 5-2 NuMicro NUC120 Power Distribution Diagram.......................................................... 24
Figure 5-4 Clock generator global view diagram ........................................................................... 33
Figure 5-5 Clock generator block diagram..................................................................................... 34
Figure 5-6 System Clock Block Diagram ....................................................................................... 35
Figure 5-7 SysTick Clock Control Block Diagram.......................................................................... 35
Figure 5-8 Clock Source of Frequency Divider .............................................................................. 37
Figure 5-9 Block Diagram of Frequency Divider ............................................................................ 37
Figure 5-10 I2C Bus Timing............................................................................................................ 40
Figure 5-11 Timing of Interrupt and Reset Signal .......................................................................... 48
Figure 7-1 Typical Crystal Application Circuit ................................................................................ 76
Figure 7-2 SPI Master dynamic characteristics timing................................................................... 84
Figure 7-3 SPI Slave dynamic characteristics timing..................................................................... 84
NuMicro NUC120 Data Sheet
Publication Release Date: Jan. 2, 2012
- 6 - Revision V2.03
Tables
Table 1-1 Connectivity Supported Table.......................................................................................... 7
Table 5-1 Address Space Assignments for On-Chip Controllers................................................... 26
Table 5-2 Exception Model ............................................................................................................ 29
Table 5-3 System Interrupt Map..................................................................................................... 30
Table 5-4 Vector Table Format ...................................................................................................... 31
Table 5-5 Watchdog Timeout Interval Selection............................................................................ 47
Table 5-6 UART Baud Rate Equation............................................................................................ 49
Table 5-7 UART Baud Rate Setting Table..................................................................................... 50
NuMicro NUC120 Data Sheet
Publication Release Date: Jan. 2, 2012
- 7 - Revision V2.03
1 GENERAL DESCRIPTION
The NuMicro NUC100 Series is 32-bit microcontrollers with embedded ARM® Cortex™-M0 core
for industrial control and applications which need rich communication interfaces. The Cortex™-M0
is the newest ARM® embedded processor with 32-bit performance and at a cost equivalent to
traditional 8-bit microcontroller. NuMicro NUC100 Series includes NUC100, NUC120, NUC130
and NUC140 product line.
The NuMicro NUC120 USB Line with USB 2.0 full-speed function embeds Cortex™-M0 core
running up to 50 MHz with 32K/64K/128K-byte embedded flash, 4K/8K/16K-byte embedded
SRAM, and 4K-byte loader ROM for the ISP. It also equips with plenty of peripheral devices, such
as Timers, Watchdog Timer, RTC, PDMA, UART, SPI, I2C, I2S, PWM Timer, GPIO, PS/2, USB
2.0 FS Device, 12-bit ADC, Analog Comparator, Low Voltage Reset Controller and Brown-Out
Detector.
Product Line UART SPI I2C USB LIN CAN PS/2 I2S
NUC100
NUC120
NUC130
NUC140
Table 1-1 Connectivity Supported Table
NuMicro NUC120 Data Sheet
2 FEATURES
The equipped features are dependent on the product line and their sub products.
2.1 NuMicro NUC120 Features – USB Line
Core
ARM® Cortex™-M0 core runs up to 50 MHz
One 24-bit system timer
Supports low power sleep mode
Single-cycle 32-bit hardware multiplier
NVIC for the 32 interrupt inputs, each with 4-levels of priority
Serial Wire Debug supports with 2 watchpoints/4 breakpoints
Build-in LDO for wide operating voltage ranges from 2.5 V to 5.5 V
Flash Memory
32K/64K/128K bytes Flash for program code (128KB only support in NuMicro
NUC100/NUC120 Medium Density)
4KB flash for ISP loader
Support In-system program (ISP) application code update
512 byte page erase for flash
Configurable data flash address and size for 128KB system, fixed 4KB data flash for
the 32KB and 64KB system
Support 2 wire ICP update through SWD/ICE interface
Support fast parallel programming mode by external programmer
SRAM Memory
4K/8K/16K bytes embedded SRAM (16KB only support in NuMicro NUC100/NUC120
Medium Density)
Support PDMA mode
PDMA (Peripheral DMA)
Support 9 channels PDMA for automatic data transfer between SRAM and peripherals
(Only support 1 channel in NuMicro NUC100/NUC120 Low Density)
Clock Control
Flexible selection for different applications
Built-in 22.1184 MHz high speed OSC for system operation
Trimmed to 1 % at +25 and VDD = 5 V
Trimmed to 3 % at -40 ~ +85 and V℃℃
DD = 2.5 V ~ 5.5 V
Built-in 10 KHz low speed OSC for Watchdog Timer and Wake-up operation
Support one PLL, up to 50 MHz, for high performance system operation
External 4~24 MHz high speed crystal input for USB and precise timing operation
External 32.768 kHz low speed crystal input for RTC function and low power system
operation
GPIO
Four I/O modes:
Quasi bi-direction
Push-Pull output
Open-Drain output
Input only with high impendence
Publication Release Date: Jan. 2, 2012
- 8 - Revision V2.03
NuMicro NUC120 Data Sheet
Publication Release Date: Jan. 2, 2012
- 9 - Revision V2.03
TTL/Schmitt trigger input selectable
I/O pin can be configured as interrupt source with edge/level setting
High driver and high sink IO mode support
Timer
Support 4 sets of 32-bit timers with 24-bit up-timer and one 8-bit pre-scale counter
Independent clock source for each timer
Provides one-shot, periodic, toggle and continuous counting operation modes
(NuMicro NUC100/NUC120 Medium Density only support one-shot and periodic
mode)
Support event counting function (NuMicro NUC100/NUC120 Low Density only)
Watchdog Timer
Multiple clock sources
8 selectable time out period from 1.6ms ~ 26.0sec (depends on clock source)
WDT can wake-up from power down or idle mode
Interrupt or reset selectable on watchdog time-out
RTC
Support software compensation by setting frequency compensate register (FCR)
Support RTC counter (second, minute, hour) and calendar counter (day, month, year)
Support Alarm registers (second, minute, hour, day, month, year)
Selectable 12-hour or 24-hour mode
Automatic leap year recognition
Support periodic time tick interrupt with 8 period options 1/128, 1/64, 1/32, 1/16, 1/8,
1/4, 1/2 and 1 second
Support wake-up function
PWM/Capture
Built-in up to four 16-bit PWM generators provide eight PWM outputs or four
complementary paired PWM outputs
Each PWM generator equipped with one clock source selector, one clock divider, one
8-bit prescaler and one Dead-Zone generator for complementary paired PWM
Up to eight 16-bit digital Capture timers (shared with PWM timers) provide eight
rising/falling capture inputs
Support Capture interrupt
UART
Up to three UART controllers (NuMicro NUC100/NUC120 Low Density only support 2
UART controllers)
UART ports with flow control (TXD, RXD, CTS and RTS)
UART0 with 63-byte FIFO is for high speed
UART1/2(optional) with 15-byte FIFO for standard device
Support IrDA (SIR) function
Support RS-485 9-bit mode and direction control. (NuMicro NUC100/NUC120 Low
Density Only)
Programmable baud-rate generator up to 1/16 system clock
Support PDMA mode
SPI
Up to four sets of SPI controller (NuMicro NUC100/NUC120 Low Density only
support 2 SPI controllers)
Master up to 16 MHz, and Slave up to 10 MHz (chip working @ 5V)
Support SPI master/slave mode
NuMicro NUC120 Data Sheet
Publication Release Date: Jan. 2, 2012
- 10 - Revision V2.03
Full duplex synchronous serial data transfer
Variable length of transfer data from 1 to 32 bits
MSB or LSB first data transfer
Rx and Tx on both rising or falling edge of serial clock independently
2 slave/device select lines when it is as the master, and 1 slave/device select line
when it is as the slave
Support byte suspend mode in 32-bit transmission
Support PDMA mode
I 2C
Up to two sets of I2C device
Master/Slave mode
Bidirectional data transfer between masters and slaves
Multi-master bus (no central master)
Arbitration between simultaneously transmitting masters without corruption of serial
data on the bus
Serial clock synchronization allows devices with different bit rates to communicate via
one serial bus
Serial clock synchronization can be used as a handshake mechanism to suspend and
resume serial transfer
Programmable clocks allow versatile rate control
Support multiple address recognition (four slave address with mask option)
I 2S
Interface with external audio CODEC
Operate as either master or slave mode
Capable of handling 8-, 16-, 24- and 32-bit word sizes
Mono and stereo audio data supported
I2S and MSB justified data format supported
Two 8 word FIFO data buffers are provided, one for transmit and one for receive
Generates interrupt requests when buffer levels cross a programmable boundary
Support two DMA requests, one for transmit and one for receive
PS/2 Device Controller
Host communication inhibit and request to send detection
Reception frame error detection
Programmable 1 to 16 bytes transmit buffer to reduce CPU intervention
Double buffer for data reception
S/W override bus
USB 2.0 Full-Speed Device
One set of USB 2.0 FS Device 12Mbps
On-chip USB Transceiver
Provide 1 interrupt source with 4 interrupt events
Support Control, Bulk In/Out, Interrupt and Isochronous transfers
Auto suspend function when no bus signaling for 3 ms
Provide 6 programmable endpoints
Include 512 Bytes internal SRAM as USB buffer
Provide remote wake-up capability
EBI (External bus interface) support (NuMicro NUC100/NUC120 Low Density 64-pin
Package Only)
Accessible space: 64KB in 8-bit mode or 128KB in 16-bit mode
Support 8-/16-bit data width
Support byte write in 16-bit data width mode
NuMicro NUC120 Data Sheet
Publication Release Date: Jan. 2, 2012
- 11 - Revision V2.03
ADC
12-bit SAR ADC with 600K SPS
Up to 8-ch single-end input or 4-ch differential input
Single scan/single cycle scan/continuous scan
Each channel with individual result register
Scan on enabled channels
Threshold voltage detection
Conversion start by software programming or external input
Support PDMA mode
Analog Comparator
Up to two analog comparators
External input or internal bandgap voltage selectable at negative node
Interrupt when compare result change
Power down wake-up
One built-in temperature sensor with 1 resolution
Brown-Out detector
With 4 levels: 4.5 V/3.8 V/2.7 V/2.2 V
Support Brown-Out Interrupt and Reset option
Low Voltage Reset
Threshold voltage levels: 2.0 V
Operating Temperature: -40~85
Packages:
All Green package (RoHS)
LQFP 100-pin / 64-pin / 48-pin (100-pin for NuMicro NUC100/NUC120 Medium
Density Only)
NuMicro NUC120 Data Sheet
Publication Release Date: Jan. 2, 2012
- 12 - Revision V2.03
3 PARTS INFORMATION LIST AND PIN CONFIGURATION
3.1 NuMicro NUC120 Products Selection Guide
3.1.1 NuMicro NUC120 Medium Density USB Line Selection Guide
Connectivity
Part number APROM RAM Data
Flash
ISP
Loader
ROM I/O Timer UART SPI I2CUSB LIN CAN I2SComp. PWM ADC RTC EBI ISP
ICP Package
NUC120LD3AN 64 KB 16 KB 4 KB 4 KB up to 31 4x32-bit 2 1 2 1 - - 1 1 4 8x12-bit v - v LQFP48
NUC120LE3AN 128 KB 16 KB Definable 4 KB up to 31 4x32-bit 2 1 2 1 - - 1 1 4 8x12-bit v - v LQFP48
NUC120RD3AN 64 KB 16 KB 4 KB 4 KB up to 45 4x32-bit 2 2 2 1 - - 1 2 6 8x12-bit v - v LQFP64
NUC120RE3AN 128 KB 16 KB Definable 4 KB up to 45 4x32-bit 2 2 2 1 - - 1 2 6 8x12-bit v - v LQFP64
NUC120VD2AN 64 KB 8 KB 4 KB 4 KB up to 76 4x32-bit 3 4 2 1 - - 1 2 8 8x12-bit v - v LQFP100
NUC120VD3AN 64 KB 16 KB 4 KB 4 KB up to 76 4x32-bit 3 4 2 1 - - 1 2 8 8x12-bit v - v LQFP100
NUC120VE3AN 128 KB 16 KB Definable 4 KB up to 76 4x32-bit 3 4 2 1 - - 1 2 8 8x12-bit v - v LQFP100
3.1.2 NuMicro NUC120 Low Density USB Line Selection Guide
Connectivity
Part number APROM RAM Data
Flash
ISP
Loader
ROM I/O Timer UART SPI I2CUSB LIN CAN I2SComp. PWM ADC RTC EBI ISP
ICP Package
NUC120LC1BN 32 KB 4 KB 4 KB 4 KB up to 31 4x32-bit 2 1 2 1 - - 1 1 4 8x12-bit v - v LQFP48
NUC120LD1BN 64 KB 4 KB 4 KB 4 KB up to 31 4x32-bit 2 1 2 1 - - 1 1 4 8x12-bit v - v LQFP48
NUC120LD2BN 64 KB 8 KB 4 KB 4 KB up to 31 4x32-bit 2 1 2 1 - - 1 1 4 8x12-bit v - v LQFP48
NUC120RC1BN 32 KB 4 KB 4 KB 4 KB up to 45 4x32-bit 2 2 2 1 - - 1 2 4 8x12-bit v v v LQFP64
NUC120RD1BN 64 KB 4 KB 4 KB 4 KB up to 45 4x32-bit 2 2 2 1 - - 1 2 4 8x12-bit v v v LQFP64
NUC120RD2BN 64 KB 8 KB 4 KB 4 KB up to 45 4x32-bit 2 2 2 1 - - 1 2 4 8x12-bit v v v LQFP64
NuMicro NUC120 Data Sheet
NUC 1 0 -XX
ARM-Based
32-bit Microcontroller
0: Advance Line
2: USB Line
3: Automotive Line
4: Connectivity Li ne
CPU core
1: Cortex-M0
5/7: ARM7
9: ARM9
Temperature
N: -40 ~ +85
E: -40 ~ +105
C: -40 ~ +125
Reserve
X X
Function
0
Package Type
Y: QFN 36
L: LQFP 48
R: LQFP 64
V: LQFP 100
X
RAM Size
1: 4K
2: 8K
3: 16K
APROM Size
A: 8K
B: 16K
C: 32K
D: 64K
E: 128K
Figure 3-1 NuMicro NUC100 Series selection code
Publication Release Date: Jan. 2, 2012
- 13 - Revision V2.03
NuMicro NUC120 Data Sheet
3.2 Pin Configuration
3.2.1 NuMicro NUC120 Medium Density Pin Diagram
3.2.1.1 NuMicro
NUC120 Medium Density LQ FP 100 pin
ADC5/PA.5
ADC6/PA.6
ADC7/SPISS21/PA.7
SPISS31/INT0/PB.14
CPO1/PB.13
CLKO/CPO0/PB.12
X32I
X32O
I2C1SCL/PA.11
I2C1SDA/PA.10
I2C0SCL/PA.9
I2C0SDA/PA.8
RXD1/PB.4
TXD1/PB.5
RTS1/PB.6
CTS1/PB.7
LDO
VDD
VSS
CPN0/PC.7
CPP0/PC.6
CPN1/PC.15
CPP1/PC.14
INT1/PB.15
XT1_OUT
XT1_IN
/RESET
STADC/PB.8
PA.4/ADC4
PA.3/ADC3
PA.2/ADC2
PA.1/ADC1
PA.0/ADC0
AVSS
ICE_CK
ICE_DAT
PA.12/PWM0
PA.13/PWM1
PA.14/PWM2
PA.15/PWM3/I2SMCLK
PC.8/SPISS10
PC.9/SPICLK1
AVDD
VSS
VDD
PVSS
PC.0/SPISS00/I2SLRCLK
PC.1/SPICLK0/I2SBCLK
PC.2/MISO00/I2SDI
PC.3/MOSI00/I2SDO
PD.15/TXD2
PD.14/RXD2
PD.7
PD.6
PB.3/CTS0
PB.2/RTS0
PB.1/TXD0
PB.0/RXD0
D+
D-
VDD33
VBUS
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
100
99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
PC.10/MISO10
PC.11/MOSI10
NUC120VxxAN
Medium Density
LQFP 100-pin
25
24
23
22
21
20
19
18
17
PE.15
PE.14
PE.13
SPISS30/PD.8
SPICLK3/PD.9
MISO30/PD.10
MOSI30/PD.11
MISO31/PD.12
MOSI31/PD.13
42
43
44
45
46
47
48
49
50
PE.7
PE.8
PC.4/MISO01
PC.5/MOSI01
PB.9/SPISS11
PB.10/SPISS01
PB.11/PWM4
PE.5/PWM5
PE.6
51
52
53
54
55
56
57
58
59
VSS
VDD
PC.12/MISO11
PC.13/MOSI11
PE.0/PWM6
PE.1/PWM7
PE.2
PE.3
PE.4
84
83
82
81
80
79
78
77
76
PS2DAT
PS2CLK
SPISS20/PD.0
SPICLK2/PD.1
MISO20/PD.2
MOSI20/PD.3
MISO21/PD.4
MOSI21/PD.5
VREF
Figure 3-2 NuMicro NUC120 Medium Density LQFP 100-pin Pin Diagram
Publication Release Date: Jan. 2, 2012
- 14 - Revision V2.03
NuMicro NUC120 Data Sheet
3.2.1.2 NuMicro
NUC120 Medium Density LQ FP 64 pin
ADC5/PA.5
ADC6/PA.6
ADC7/PA.7
INT0/PB.14
CPO1/PB.13
CLKO/CPO0/PB.12
X32I
X32O
I2C1SCL/PA.11
I2C1SDA/PA.10
I2C0SCL/PA.9
I2C0SDA/PA.8
RXD1/PB.4
TXD1/PB.5
RTS1/PB.6
CTS1/PB.7
LDO
VDD
VSS
CPN0/PC.7
CPP0/PC.6
CPN1/PC.15
CPP1/PC.14
INT1/PB.15
XT1_OUT
XT1_IN
/RESET
STADC/PB.8
PA.4/ADC4
PA.3/ADC3
PA.2/ADC2
PA.1/ADC1
PA.0/ADC0
AVSS
ICE_CK
ICE_DAT
PA.12/PWM0
PA.13/PWM1
PA.14/PWM2
PA.15/PWM3/I2SMCLK
PC.8/SPISS10
PC.9/SPICLK1
AVDD
VSS
VDD
PVSS
PC.0/SPISS00/I2SLRCLK
PC.1/SPICLK0/I2SBCLK
PC.2/MISO00/I2SDI
PC.3/MOSI00/I2SDO
D+
D-
VDD33
VBUS
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
64
63
62
61
60
59
58
57
56
55
54
53
52
51
50
49
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
PC.10/MISO10
PC.11/MOSI10
PB.9
PB.10
PB.11/PWM4
PE.5/PWM5
PB.3/CTS0
PB.2/RTS0
PB.1/TXD0
PB.0/RXD0
NUC120RxxAN
Medium Density
LQFP 64-pin
Figure 3-3 NuMicro NUC120 Medium Density LQFP 64-pin Pin Diagram
Publication Release Date: Jan. 2, 2012
- 15 - Revision V2.03
NuMicro NUC120 Data Sheet
3.2.1.3 NuMicro
NUC120 Medium Density LQ FP 48 pin
CLKO/CPO0/PB.12
X32I
X32O
I2C1SCL/PA.11
I2C1SDA/PA.10
I2C0SCL/PA.9
I2C0SDA/PA.8
RXD1/PB.4
TXD1/PB.5
LDO
VDD
VSS
PA.4/ADC4
PA.3/ADC3
PA.2/ADC2
PA.1/ADC1
PA.0/ADC0
AVSS
ICE_CK
ICE_DAT
PA.12/PWM0
PA.13/PWM1
PA.14/PWM2
PA.15/PWM3/I2SMCLK
12
11
10
9
8
7
6
5
4
3
2
1
25
26
27
28
29
30
31
32
33
34
35
36
Figure 3-4 NuMicro NUC120 Medium Density LQFP 48-pin Pin Diagram
Publication Release Date: Jan. 2, 2012
- 16 - Revision V2.03
NuMicro NUC120 Data Sheet
3.2.2 NuMicro NUC120 Low Density Pin Diagram
3.2.2.1 NuMicro
NUC120 Low Density LQF P 64 pin
AD8/ADC5/PA.5
AD7/ADC6/PA.6
AD6/ADC7/PA.7
AD5/CPN0/PC.7
AD4/CPP0/PC.6
AD3/CPN1/PC.15
AD2/CPP1/PC.14
INT1/PB.15
XT1_OUT
XT1_IN
/RESET
STADC/TM0/PB.8
AVDD
VSS
VDD
PVSS
PC.0/SPISS00/I2SLRCLK
PC.1/SPICLK0/I2SBCLK
PC.2/MISO00/I2SDI
PC.3/MOSI00/I2SDO
D+
D-
VDD33
VBUS
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
64
63
62
61
60
59
58
57
56
55
54
53
52
51
50
49 PB.9/TM1
PB.10/TM2
PB.11/TM3
PE.5
PB.3/CTS0/nWRH
PB.2/RTS0/nWRL
PB.1/TXD0
PB.0/RXD0
NUC120RxxBN
Low Density
LQFP 64-pin
Figure 3-5 NuMicro NUC120 Low Density LQFP 64-pin Pin Diagram
Publication Release Date: Jan. 2, 2012
- 17 - Revision V2.03
NuMicro NUC120 Data Sheet
3.2.2.2 NuMicro
NUC120 Low Density LQF P 48 pin
CLKO/CPO0/PB.12
X32I
X32O
I2C1SCL/PA.11
I2C1SDA/PA.10
I2C0SCL/PA.9
I2C0SDA/PA.8
RXD1/PB.4
TXD1/PB.5
LDO
VDD
VSS
PA.4/ADC4
PA.3/ADC3
PA.2/ADC2
PA.1/ADC1
PA.0/ADC0
AVSS
ICE_CK
ICE_DAT
PA.12/PWM0
PA.13/PWM1
PA.14/PWM2
PA.15/PWM3/I2SMCLK
12
11
10
9
8
7
6
5
4
3
2
1
25
26
27
28
29
30
31
32
33
34
35
36
Figure 3-6 NuMicro NUC120 Low Density LQFP 48-pin Pin Diagram
Publication Release Date: Jan. 2, 2012
- 18 - Revision V2.03
NuMicro NUC120 Data Sheet
4 BLOCK DIAGRAM
4.1 NuMicro NUC120 Medium Density Block Diagram
FLASH
128KB
Cortex-M0
50MHz
CLK_CTL
PDMA
ISP 4KB SRAM
16KB
GPIO
A,B,C,D,E
UART 1 -115K
I2C 1
Timer 2/3
RTC
WDT
I2C 0
SPI 0/1
UART 0 -3M
PWM 0~3
Timer 0/1/
12-bit ADC
Analog
Comparator
POR
Brown-out
LVR
Peripherals with PDMA
I2S
10 kHz
32.768 kHz
P
L
L22.1184 MHz
4~24 MHz
LDO 2.5V~
5.5V
USB-FS
512BRAM USBPHY
PWM 4~7UART 2 -115K
SPI 2/3
PS2
Figure 4-1 NuMicro NUC120 Medium Density Block Diagram
Publication Release Date: Jan. 2, 2012
- 19 - Revision V2.03
NuMicro NUC120 Data Sheet
4.2 NuMicro NUC120 Low Density Block Diagram
FLASH
64KB
Cortex-M0
50MHz
CLK_CTL
PDMA
ISP 4KB SRAM
8KB
GPIO
A,B,C,D,E
UART 1 -115K
I2C 1
Timer 2/3
RTC
WDT
I2C 0 USB-FS
512BRAM
SPI 0/1
UART 0 -3M
PWM 0~3
Timer 0/1/
12-bit ADC
Analog
Comparator
POR
Brown-out
LVR
USBPHY
Peripherals with PDMA
I2S
P
L
L
LDO 2.5V~
5.5V
10 kHz
32.768 kHz
22.1184 MHz
4~24 MHz
Figure 4-2 NuMicro NUC120 Low Density Block Diagram
Publication Release Date: Jan. 2, 2012
- 20 - Revision V2.03
NuMicro NUC120 Data Sheet
5 FUNCTIONAL DESCRIPTION
5.1 ARM® Cortex™-M0 Core
The Cortex™-M0 processor is a configurable, multistage, 32-bit RISC processor. It has an AMBA
AHB-Lite interface and includes an NVIC component. It also has optional hardware debug
functionality. The processor can execute Thumb code and is compatible with other Cortex-M
profile processor. The profile supports two modes -Thread mode and Handler mode. Handler
mode is entered as a result of an exception. An exception return can only be issued in Handler
mode. Thread mode is entered on Reset, and can be entered as a result of an exception return.
Figure 5-1 shows the functional controller of processor.
Cortex-M0
Processor
Core
Nested
Vectored
Interrupt
Controller
(NVIC)
Breakpoint
and
Watchpoint
Unit
Debugger
interface
Bus Matrix
Debug
Access
Port
(DAP)
Debug
Cortex-M0 processor
Cortex-M0 components
Wakeup
Interrupt
Controller
(WIC)
Interrupts
Serial Wire or
JTAG debug port
AHB-Lite
interface
Figure 5-1 Functional Controller Diagram
The implemented device provides:
sor that features:
et
SysTick timer
ts little-endian data accesses
dling
bandoned and
ption model. This is the ARMv6-M,
z A low gate count proces
The ARMv6-M Thumb® instruction s
Thumb-2 technology
ARMv6-M compliant 24-bit
A 32-bit hardware multiplier
The system interface suppor
The ability to have deterministic, fixed-latency, interrupt han
Load/store-multiples and multicycle-multiplies that can be a
restarted to facilitate rapid interrupt handling
C Application Binary Interface compliant exce
C Application Binary Interface (C-ABI) compliant exception model that enables
the use of pure C functions as interrupt handlers
Publication Release Date: Jan. 2, 2012
- 21 - Revision V2.03
NuMicro NUC120 Data Sheet
Publication Release Date: Jan. 2, 2012
- 22 - Revision V2.03
Low power sleep mode entry using Wait For Interrupt (WFI), Wait For Event
(WFE) instructions, or the return from interrupt sleep-on-exit feature
z NVIC that features:
32 external interrupt inputs, each with four levels of priority
Dedicated Non-Maskable Interrupt (NMI) input.
Support for both level-sensitive and pulse-sensitive interrupt lines
Wake-up Interrupt Controller (WIC), providing ultra-low power sleep mode
support.
z Debug support
Four hardware breakpoints.
Two watchpoints.
Program Counter Sampling Register (PCSR) for non-intrusive code profiling.
Single step and vector catch capabilities.
z Bus interfaces:
Single 32-bit AMBA-3 AHB-Lite system interface that provides simple integration
to all system peripherals and memory.
Single 32-bit slave port that supports the DAP (Debug Access Port).
NuMicro NUC120 Data Sheet
Publication Release Date: Jan. 2, 2012
- 23 - Revision V2.03
5.2 System Manager
5.2.1 Overview
System management includes these following sections:
z System Resets
z System Memory Map
z System management registers for Part Number ID, chip reset and on-chip controllers
reset , multi-functional pin control
z System Timer (SysTick)
z Nested Vectored Interrupt Controller (NVIC)
z System Control registers
5.2.2 System Reset
The system reset can be issued by one of the below listed events. For these reset event flags can
be read by RSTSRC register.
z The Power-On Reset
z The low level on the /RESET pin
z Watchdog Time Out Reset
z Low Voltage Reset
z Brown-Out Detector Reset
z CPU Reset
z System Reset
System Reset and Power-On Reset all reset the whole chip including all peripherals. The
difference between System Reset and Power-On Reset is external crystal circuit and ISPCON.BS
bit. System Reset doesn’t reset external crystal circuit and ISPCON.BS bit, but Power-On Reset
does.
NuMicro NUC120 Data Sheet
5.2.3 System Power Distribution
In this chip, the power distribution is divided into three segments.
z Analog power from AVDD and AVSS provides the power for analog components
operation.
z Digital power from VDD and VSS supplies the power to the internal regulator which
provides a fixed 2.5 V power for digital operation and I/O pins.
z USB transceiver power from VBUS offers the power for operating the USB transceiver.
The outputs of internal voltage regulators, LDO and VDD33, require an external capacitor which
should be located close to the corresponding pin. Analog power (AVDD) should be the same
voltage level of the digital power (VDD). Figure 5-2 shows the power distribution of NuMicro
NUC120.
VDD
VSS
X32O
X32I
PVSS
Figure 5-2 NuMicro NUC120 Power Distribution Diagram
Publication Release Date: Jan. 2, 2012
- 24 - Revision V2.03
NuMicro NUC120 Data Sheet
Publication Release Date: Jan. 2, 2012
- 25 - Revision V2.03
5.2.4 System Memory Map
NuMicro NUC100 Series provides 4G-byte addressing space. The memory locations assigned
to each on-chip controllers are shown in the following table. The detailed register definition,
memory space, and programming detailed will be described in the following sections for each on-
chip peripherals. NuMicro NUC100 Series only supports little-endian data format.
Address Space Token Controllers
Flash and SRAM Memory Space
0x0000_0000 – 0x0001_FFFF FLASH_BA FLASH Memory Space (128KB)
0x2000_0000 – 0x2000_3FFF SRAM_BA SRAM Memory Space (16KB)
0x6000_0000 – 0x6001_FFFF EXTMEM_BA
External Memory Space (128KB)
(NuMicro NUC100/NUC120 Low Density 64-pin Only)
AHB Controllers Space (0x5000_0000 – 0x501F_FFFF)
0x5000_0000 – 0x5000_01FF GCR_BA System Global Control Registers
0x5000_0200 – 0x5000_02FF CLK_BA Clock Control Registers
0x5000_0300 – 0x5000_03FF INT_BA Interrupt Multiplexer Control Registers
0x5000_4000 – 0x5000_7FFF GPIO_BA GPIO Control Registers
0x5000_8000 – 0x5000_BFFF PDMA_BA Peripheral DMA Control Registers
0x5000_C000 – 0x5000_FFFF FMC_BA Flash Memory Control Registers
0x5001_0000 – 0x5001_03FF EBI_BA
External Bus Interface Control Registers
(NuMicro NUC100/NUC120 Low Density 64-pin Only)
APB1 Controllers Space (0x4000_0000 ~ 0x400F_FFFF)
0x4000_4000 – 0x4000_7FFF WDT_BA Watchdog Timer Control Registers
0x4000_8000 – 0x4000_BFFF RTC_BA Real Time Clock (RTC) Control Register
0x4001_0000 – 0x4001_3FFF TMR01_BA Timer0/Timer1 Control Registers
0x4002_0000 – 0x4002_3FFF I2C0_BA I2C0 Interface Control Registers
0x4003_0000 – 0x4003_3FFF SPI0_BA SPI0 with master/slave function Control Registers
0x4003_4000 – 0x4003_7FFF SPI1_BA SPI1 with master/slave function Control Registers
0x4004_0000 – 0x4004_3FFF PWMA_BA PWM0/1/2/3 Control Registers
0x4005_0000 – 0x4005_3FFF UART0_BA UART0 Control Registers
0x4006_0000 – 0x4006_3FFF USBD_BA USB 2.0 FS device Controller Registers
0x400D_0000 – 0x400D_3FFF ACMP_BA Analog Comparator Control Registers
NuMicro NUC120 Data Sheet
Publication Release Date: Jan. 2, 2012
- 26 - Revision V2.03
Address Space Token Controllers
0x400E_0000 – 0x400E_FFFF ADC_BA Analog-Digital-Converter (ADC) Control Registers
APB2 Controllers Space (0x4010_0000 ~ 0x401F_FFFF)
0x4010_0000 – 0x4010_3FFF PS2_BA PS/2 Interface Control Registers
0x4011_0000 – 0x4011_3FFF TMR23_BA Timer2/Timer3 Control Registers
0x4012_0000 – 0x4012_3FFF I2C1_BA I2C1 Interface Control Registers
0x4013_0000 – 0x4013_3FFF SPI2_BA ster/slave function Control Registers
(NuMicro NUC100/NUC120 Medium Density Only)
SPI2 with ma
0x4013_4000 – 0x4013_7FFF SPI3_BA SPI3 with master/slave function Control Registers
um Density Only) (NuMicro NUC100/NUC120 Medi
0x4014_0000 – 0x4014_3FFF PWMB_BA PWM4/5/6/7 Control Registers
(NuMicro NUC100/NUC120 Medium Density Only)
0x4015_0000 – 0x4015_3FFF UART1_BA UART1 Control Registers
0x4015_4000 – 0x4015_7FFF UART2_BA
0 Medium Density Only)
UART2 Control Registers
(NuMicro NUC100/NUC12
0x401A_0000 – 0x401A_3FFF I2S_BA I2S Interface Control Registers
System Controllers Space (0xE000_E000 ~ 0xE000_EFFF)
0xE000_E010 – 0xE000_E0FF SCS_BA System Timer Control Registers
0xE000_E100 – 0xE000_ECFF SCS_BA External Interrupt Controller Control Registers
0xE000_ED00 – 0xE000_ED8F SCS_BA System Control Registers
Table 5-1 Address Space As
signments for On-Chip Controllers
NuMicro NUC120 Data Sheet
Publication Release Date: Jan. 2, 2012
- 27 - Revision V2.03
5.2.
ysTick. SysTick provides a simple, 24-bit
anism. The
perat r as a simple counter.
l un SysTick Current Value
Register (SYST_CVR) to zero, and reload (wrap) to the value in the SysTick Reload Value
eck cy quent clocks. When the
counter transitions to zero, the COUNTFL ears on
The SYST_CVR value is UNKNOWN on re lear it to
zero before enabling the feature. This ens R value
ena
If the SYST_RVR is zero, the timer will be maint
s c ature independently from
i ef RM® Cortex™-M0 Technical
5 System Timer (SysTick)
The Cortex-M0 includes an integrated system timer, S
clear-on-write, decrementing, wrap-on-zero counter with a flexible control mech
counter can be used as a Real Time O ing System (RTOS) tick timer o
When system timer is enab ed, it will co t down from the value in the
Register (SYST_RVR) on th next clo cle, then decrement on subse
AG status bit is set. The COUNTFLAG bit cl
reads.
set. Software should write to the register to c
ures the timer will count from the SYST_RV
rather than an arbitrary value when it is bled.
ained with a current value of zero after it is
an be used to disable the fereloaded with this value. Thi
the timer enable bit.
mechanism
For more detailed informat
Reference Manual” and “ARM
on, please r
® v6-M Archite
er to the documents “A
cture Reference Manual”.
NuMicro NUC120 Data Sheet
Publication Release Date: Jan. 2, 2012
- 28 - Revision V2.03
t Controller (NVIC)
IC prioritizes and handles all supported exceptions. All exceptions are handled in “Handler
ompare the priority of the new interrupt to the
is accepted, the starting address of the interrupt service routine (ISR) is
e registers “PC, PSR, LR,
R0~R3, R12” to the stack. At the end of the ISR, the NVIC will restore the mentioned registers
from stack and resume the normal execution. Thus it will take less and deterministic time to
process the interrupt request.
The NVIC supports “Tail Chaining” which handles back-to-back interrupts efficiently without the
overhead of states saving and restoration and therefore reduces delay time in switching to
pending ISR at the end of current ISR. The NVIC also supports “Late Arrival” which improves the
efficiency of concurrent ISRs. When a higher priority interrupt request occurs before the current
ISR starts to execute (at the stage of state saving and starting address fetching), the NVIC will
give priority to the higher one without delay penalty. Thus it advances the real-time capability.
For more detailed information, please refer to the documents “ARM® Cortex™-M0 Technical
Reference Manual” and “ARM® v6-M Architecture Reference Manual”.
5.2.6 Nested Vectored Interrup
Cortex-M0 provides an interrupt controller as an integral part of the exception mode, named as
“Nested Vectored Interrupt Controller (NVIC)”. It is closely coupled to the processor kernel and
provides following features:
z Nested and Vectored interrupt support
z Automatic processor state saving and restoration
z Reduced and deterministic interrupt latency
The NV
Mode”. This NVIC architecture supports 32 (IRQ[31:0]) discrete interrupts with 4 levels of priority.
All of the interrupts and most of the system exceptions can be configured to different priority
levels. When an interrupt occurs, the NVIC will c
current running one’s priority. If the priority of the new interrupt is higher than the current one, the
new interrupt handler will override the current handler.
When any interrupts
fetched from a vector table in memory. There is no need to determine which interrupt is accepted
and branch to the starting address of the correlated ISR by software. While the starting address is
fetched, NVIC will also automatically save processor state including th
NuMicro NUC120 Data Sheet
Publication Release Date: Jan. 2, 2012
- 29 - Revision V2.03
rity “0” is treated as the fourth priority on
“NMI” and “Hard Fault”.
5.2.6.1 Exception Model and System Interrupt Map
Table 5-2 lists the exception model supported by NuMicro NUC100 Series. Software can set
four levels of priority on some of these exceptions as well as on all interrupts. The highest user-
configurable priority is denoted as “0” and the lowest priority is denoted as “3”. The default priority
of all the user-configurable interrupts is “0”. Note that prio
the system, after three system exceptions “Reset”,
Exception Name Vector Number Priority
Reset 1 -3
NMI 2 -2
Hard Fault 3 -1
Reserved 4 ~ 10 Reserved
SVCall 11 Configurable
Reserved 12 ~ 13 Reserved
PendSV 14 Configurable
SysTick 15 Configurable
Interrupt (IRQ0 ~ IRQ31) 16 ~ 47 Configurable
Table 5-2 Exception Model
Vector
Number
Interrupt
Number
(Bit in Interrupt
Registers)
Interrupt
Name Source IP Interrup t d escription
0 ~ 15 - - - System exceptions
16 0
BOD_OUT Brown-Out Brown-Out low voltage detected interrupt
17 1
WDT_INT WDT Watchdog Timer interrupt
18 2 EINT0 GPIO External signal interrupt from PB.14 pin
19 3 EINT1 GPIO External signal interrupt from PB.15 pin
20 4
GPAB_INT GPIO External signal interrupt from PA[15:0]/PB[13:0]
21 5
GPCDE_INT GPIO External interrupt from PC[15:0]/PD[15:0]/PE[15:0]
22 6
PWMA_INT PWM0~3 PWM0, PWM1, PWM2 and PWM3 interrupt
23 7
PWMB_INT PWM4~7 PWM4, PWM5, PWM6 and PWM7 interrupt
24 8
TMR0_INT TMR0 Timer 0 interrupt
25 9
TMR1_INT TMR1 Timer 1 interrupt
NuMicro NUC120 Data Sheet
Publication Release Date: Jan. 2, 2012
- 30 - Revision V2.03
Vector
Number
Interrupt
Number
(Bit in Interrupt
Registers)
Interrupt
Name Source IP Interrup t d escription
26 10
TMR2_INT TMR2 Timer 2 interrupt
27 11
TMR3_INT TMR3 Timer 3 interrupt
28 12
UART02_INT UART0/2 UART0 and UART2 interrupt
29 13
ART1_INT UART rupt
U1 UART1 inter
30 14
SPI0_INT SPI0 SPI0 interrupt
31 15
SPI1_INT SPI1 SPI1 interrupt
32 16
SPI2_INT SPI2 SPI2 interrupt
33 17
SPI3_INT SPI3 SPI3 errupt int
34 18
I2C0_INT I2C0 I2nterrupt C0 i
35 19
I2C1_INT I2C1 rrupt I2C1 inte
36 20
Reserved Reserved Reserved
37 21
Reserved Reserved Reserved
38 erved Reserved d 22
Res Reserve
39 23
USB S Device interrupt
_INT USBD USB 2.0 F
40 24
PS2_INT PS/2 PS/2 interrupt
41 25
ACMP_INT ACMP Analog Comparator-0 or Comaprator-1 interrupt
42 26
PDMA_INT PDMA PDMA interrupt
43 27
I2S_INT I2S I2S interrupt
44 2 PWRWU_INT CLKC rrupt for chip wake-up from
8 Clock controller inte
power down state
45 29
ADC_INT ADC ADC interrupt
46 30
Reserved Reserved Reserved
47 31
RTC_INT RTC Real time clock interrupt
Table 5-3 System Interrupt Map
NuMicro NUC120 Data Sheet
Publication Release Date: Jan. 2, 2012
- 31 - Revision V2.03
5.2.6.2 Vector Table
When any the processor will automatically fetch the starting address of the
interrupt serv (ISR) from a vector table in memory. For ARMv6-M, the vector table base
address is fixed at 0x0000 vector table tialization value for the stack
pointer on reset, and the entry point addresses for all exception handlers. The vector number on
previous page defines the o tries v ciated with exception handler
entry as illustrated in previo
interrupts is accepted,
ice routine
0000. The contains the ini
rder of en in the ector table asso
us section.
Ve Table Wo ffset ctor rd O Description
0 S he M ckP_main – T ain sta pointer
Vector Num E try P usi umber ber xception En ointer ng that Vector N
Table 5-4 V ab
5.2.6.3
NVIC interrupts can be enabled and disabled by writing to their corresponding Interrupt Set-
Enable or Interrupt Clear-En er s use a write-1-to-enable and write-
1-to-clear policy, both regis g nabled state of the corresponding
interrupts. When interrup ed t cause the interrupt to become
Pending, however, the inter t I upt is Active when it is disabled, it
remains in its Active state until cleared by reset or an exception return. Clearing the enable bit
prevents new activations of t
NVIC interrupts can be pend ded a y pair of registers to those used
to enable/disable the interru d the Se
res tively. The registers te-1 b rs
rea back the current te of the c nterrupts. The Clear-Pending
Regi as no effect on the execut status of an A .
NVIC interrupts are prioritized by updating an 8-bi gister (each register
sup g four interrupts).
The general registers associated with the NVIC are m a block of memory in the
System Control Space and w ribed xt
ector T le Format
Operation Description
able regist bit-field. The register
ters readin
t is disabl
back the
, interrup
current e
assertion will an
rupt will no activate. f an interr
he associated interrupt.
ed/un-pen using complementar
pts, name
use a wri
t-Pe
-to-ena
nding Register and Clear-Pending Register
le and write-1-to-clear policy, both registepec
ding
ster h
pended sta
ion
orresponding i
ctive interrupt
t field within a 32-bit re
portin
all accessible fro
ill be desc in ne section.
NuMicro NUC120 Data Sheet
Publication Release Date: Jan. 2, 2012
- 32 - Revision V2.03
ler
5.3.
ets the power down enable bit (PWR_DOWN_EN) and
Cortex-M0 core executes the WFI instruction. After that, chip enter power down mode and wait for
wake-up interrupt source triggered to leave power down mode. In the power down mode, the
c e 24 MHz high speed crystal and internal 22.1184 MHz high
speed oscilla r to reduce t ption.
5.3 Clock Control
1 Overview
The clock controller generates the clocks for the whole chip, including system clocks and all
peripheral clocks. The clock controller also implements the power control function with the
individually clock ON/OFF control, clock source selection and a clock divider. The chip will not
enter power down mode until CPU s
lock controller turns off th external 4~
to he overall system power consum
NuMicro NUC120 Data Sheet
Publication Release Date: Jan. 2, 2012
- 33 - Revision V2.03
22.1184
MHz 111
011
10 kHz
22.1184 MHz
CPUCLK CPU
1
0
PLLCON[19]
4~12
MHz
PLLFOUT
111
011
010
001
4~24 MHz
32.768 kHz
4~24 MHz
HCLK
22.1184 MHz
000
1/2
1/2
1/2
CLKSEL0[5:3]
1
0
SysTick
TMR 3
ADC
UART 0-2
PDMA
ACMP
I2C 0~1
SPI 0-3
USB
I2S
RTC
PS2
FDIV
PWM 0-1
WDT
PWM 2-3
PWM 4-5
PWM 6-7
TMR 0
TMR 1
TMR 2
FMC
EBI
32.768
kHz
10 kHz 111
010
001
HCLK
32.768 kHz
000
4~24 MHz
010
001
PLLFOUT
32.768 kHz
4~24 MHz
SYST_CSR[2]
CPUCLK
1/(HCLK_N+1)
PCLK
HCLK
000
CLKSEL0[2:0]
22.1184 MHz
11
01
00
PLLFOUT
4~24 MHz
22.1184 MHz
CLKSEL1[3:2]
CLKSEL1[25:24]
CLKSEL1[22:20]
CLKSEL1[18:16]
CLKSEL1[14:12]
CLKSEL1[10:8]
1/(USB_N+1)
PLLFOUT
11
10
01
00
HCLK
PLLFOUT
4~24 MHz
22.1184 MHz
11
10
01
00
HCLK
4~24 MHz
22.1184 MHz
32.768 kHz
CLKSEL2[7:2]
CLKSEL1[31:28]
22.1184 MHz
32.768 kHz
BOD
10 kHz
1/(ADC_N+1)
CLKSEL2[1:0]
11
10
CLKSEL1[1:0]
HCLK 1/2048
1/(UART_N+1)
22.1184 MHz
4~24 MHz
Figure 5-3 Clock generator global view diagram
NuMicro NUC120 Data Sheet
Publication Release Date: Jan. 2, 2012
- 34 - Revision V2.03
5.3.2 Clock Generator
The clock generator consists of 5 clock sources which are listed below:
z One external 32.768 kHz low speed crystal
z One external 4~24 MHz high speed crystal
z One programmable PLL FOUT(PLL source consists of external 4~24 MHz high speed
crystal and internal 22.1184 MHz high speed oscillator)
z One internal 22.1184 MHz high speed oscillator
z One internal 10 kHz low speed oscillator
XT_OUT
External
4~24 MHz
Crystal
XTL12M_EN (PWRCON[0])
XT_IN
Internal
22.1184 MHz
Oscillator
OSC22M_EN (PWRCON[2])
0
1
PLL
PLL_SRC (PLLCON[19])
PLL FOUT
X32O
External
32.768 kHz
Crystal
32.768 kHz
XTL32K_EN (PWRCON[1])
X32I
Internal
10 kHz
Oscillator
OSC10K_EN(PWRCON[3])
4~24 MHz
22.1184 MHz
10 kHz
Figure 5-4 Clock generator block diagram
NuMicro NUC120 Data Sheet
Publication Release Date: Jan. 2, 2012
- 35 - Revision V2.03
ysTick Clock
ock generator block. The
(CLKSEL0[2:0]). The block diagram is
5.3.3 System Clock and S
The system clock has 5 clock sources which were generated from cl
clock source switch depends on the register HCLK_S
showed in Figure 5-5.
111
011
010
001
PLLFOUT
32.768 kHz
4~24 MHz
10 kHz
HCLK_S (CLKSEL0[2:0])
22.1184 MHz
000
1/(HCLK_N+1)
HCLK_N (CLKDIV[3:0])
CPU in Power Down Mode
CPU
AHB
CPUCLK
HCLK
PCLK
APB
Figure 5-5 System Clock Block Diagram
The clock source of SysTick in Cortex-M0 core can use CPU clock or external clock
(SYST_CSR[2]). If using external clock, the SysTick clock (STCLK) has 5 clock sources. The
clock source switch depends on the setting of the register STCLK_S (CLKSEL0[5:3]). The block
diagram is showed in Figure 5-6.
Fig m ure 5-6 SysTick Clock Control Block Diagra
NuMicro NUC120 Data Sheet
Publication Release Date: Jan. 2, 2012
- 36 - Revision V2.03
5.3.5 Power Down Mode Clock
When chip enters into power down mode, system clocks, some clock sources, and some
peripheral clocks will be disabled. Some clock sources and peripherals clock are still active in
power down mode.
For theses clocks which still keep active list below:
z Clock Generator
Internal 10 kHz low speed oscillator clock
External 32.768 kHz low speed crystal clock
z Peripherals Clock (When WDT adopt internal 10 kHz low speed oscillator as clock
source and RTC adopt external 32.768 kHz low speed crystal as clock source)
5.3.4 Peripherals Clock
The peripherals clock had different clock source switch setting which depends on the different
peripheral. Please refer the CLKSEL1 and CLKSEL2 register description in 5.3.7.
NuMicro NUC120 Data Sheet
Publication Release Date: Jan. 2, 2012
- 37 - Revision V2.03
utput
e multiplexer is
reflected to CLKO function pin. Therefore there are 16 options of power-of-2 divided clocks with
where Fin is input clock frequency to the clock divider.
EN (FRQDIV[4]), the chained counter starts to count. When write 0 to
ntinuously runs till divided clock reaches low
5.3.6 Frequency Divider O
This device is equipped a power-of-2 frequency divider which is composed by16 chained divide-
by-2 shift registers. One of the 16 shift register outputs selected by a sixteen to on
the frequency from Fin/21 to Fin/216
The output formula is F
out = Fin/2(N+1), where Fin is the input clock frequency, Fout is the clock
divider output frequency and N is the 4-bit value in FSEL (FRQDIV[3:0]).
When write 1 to DIVIDER_
DIVIDER_EN (FRQDIV[4]), the chained counter co
state and stay in low state.
Figure 5-7 Clock Source of Frequency Divider
Figure 5-8 Block Diagram of Frequency Divider
NuMicro NUC120 Data Sheet
Publication Release Date: Jan. 2, 2012
- 38 - Revision V2.03
)
5.4.
nterrupt/
USB bus which comes
starting address of SRAM for each endpoint buffer through “buffer
segmentation register (USB_BUFSEGx)”.
There are 6 endpoints in this controller. Each of the endpoint can be configured as IN or OUT
endpoint. All the operations including Control, Bulk, Interrupt and Isochronous transfer are
implemented in this block. The block of ENDPOINT CONTROL is also used to manage the data
sequential synchronization, endpoint states, current start address, transaction status, and data
buffer status for each endpoint.
There are four different interrupt events in this controller. They are the wake-up function, device
plug-in or plug-out event, USB events, like IN ACK, OUT ACK etc, and BUS events, like suspend
and resume, etc. Any event will cause an interrupt, and users just need to check the related event
flags in interrupt event status register (USB_INTSTS) to acknowledge what kind of interrupt
occurring, and then check the related USB Endpoint Status Register (USB_EPSTS) to
acknowledge what kind of event occurring in this endpoint.
A software-disable function is also supported for this USB controller. It is used to simulate the
disconnection of this de (USB_DRVSE0), the USB
controller will force the output of USB_DP and USB_DM to level low and its function is disabled.
After disable the DRVSE0 bit, host will enumerate the USB device again.
Reference: Universal Serial Bus Specification Revision 1.1
5.4.2 Features
This Universal Serial Bus (USB) performs a serial interface with a single connector type for
attaching all USB peripherals to the host system. Following is the feature listing of this USB.
z Compliant with USB 2.0 Full-Speed specification
z Provide 1 interrupt vector with 4 different interrupt events (WAKEUP, FLDET, USB
and BUS)
z Support Control/Bulk/Interrupt/Isochronous transfer type
z Support suspend function when no bus activity existing for 3 ms
z Provide 6 endpoints for configurable Control/Bulk/Interrupt/Isochronous transfer types
and maximum 512 bytes buffer size
z Provide remo
5.4 USB Device Controller (US B
1 Overview
There is one set of USB 2.0 full-speed device controller and transceiver in this device. It is
compliant with USB 2.0 full-speed device specification and support control/bulk/i
isochronous transfer types.
In this device controller, there are two main interfaces: the APB bus and
from the USB PHY transceiver. For the APB bus, the CPU can program control registers through
it. There are 512 bytes internal SRAM as data buffer in this controller. For IN or OUT transfer, it is
necessary to write data to SRAM or read data from SRAM through the APB interface or SIE.
Users need to set the effective
vice from the host. If user enables DRVSE0 bit
te wake-up capability
NuMicro NUC120 Data Sheet
Publication Release Date: Jan. 2, 2012
- 39 - Revision V2.03
A, GPIOB, GPIOC, GPIOD and GPIOE. Each port equips maximum
GPIOE with 1 pins PE.5.
5.5.
h edge/level setting
z High driver and high sink IO mode support
5.5 General Purpose I/O (GPIO)
5.5.1 Overview
NuMicro NUC100/NUC120 Medium Density has up to 80 General Purpose I/O pins can be
shared with other function pins; it depends on the chip configuration. These 80 pins are arranged
in 5 ports named with GPIO
16 pins. Each one of the 80 pins is independent and has the corresponding register bits to control
the pin mode function and data.
NuMicro NUC100/NUC120 Low Density has up to 65 General Purpose I/O pins can be shared
with other function pins; it depends on the chip configuration and package. These 65 pins are
arranged in 4 ports named with GPIOA, GPIOB, GPIOC and GPIOD with each port equips
maximum 16 pins and another port named
The I/O type of each of I/O pins can be configured by software individually as input, output, open-
drain or quasi-bidirectional mode. After reset, the I/O type of all pins stay in quasi-bidirectional
mode and port data register GPIOx_DOUT[15:0] resets to 0x0000_FFFF. Each I/O pin equips a
very weakly individual pull-up resistor which is about 110KΩ~300KΩ for VDD is from 5.0 V to 2.5
V.
2 Features
z Four I/O modes:
Quasi bi-direction
Push-Pull output
Open-Drain output
Input only with high impendence
z TTL/Schmitt trigger input selectable
z I/O pin can be configured as interrupt source wit
NuMicro NUC120 Data Sheet
Publication Release Date: Jan. 2, 2012
- 40 - Revision V2.03
(Master/Slave) (I2C)
aster and a Slave synchronously to SCL on the SDA line on a
CL. A transition on the SDA
5.6 I2C Serial Interface Controller
5.6.1 Overview
I2C is a two-wire, bi-directional serial bus that provides a simple and efficient method of data
exchange between devices. The I2C standard is a true multi-master bus including collision
detection and arbitration that prevents data corruption if two or more masters attempt to control
the bus simultaneously.
Data is transferred between a M
byte-by-byte basis. Each data byte is 8-bit long. There is one SCL clock pulse for each data bit
with the MSB being transmitted first. An acknowledge bit follows each transferred byte. Each bit is
sampled during the high period of SCL; therefore, the SDA line may be changed only during the
low period of SCL and must be held stable during the high period of S
line while SCL is high is interpreted as a command (START or STOP). Please refer to the Figure
5-9 for more detail I2C BUS Timing.
Figure 5-9 I2C Bus Timing
ce that meets the I2C bus standard mode
omously. To enable this port, the bit ENS1
in I2CON should be set to '1'. The I2C H/W interfaces to the I2C bus via two pins: SDA and SCL.
Pull up resistor is needed for I2C operation as these are open drain pins. When the I/O pins are
used as I2C port, user must set the pins function to I2C in advance.
The device’s on-chip I2C logic provides the serial interfa
specification. The I2C port handles byte transfers auton
NuMicro NUC120 Data Sheet
Publication Release Date: Jan. 2, 2012
- 41 - Revision V2.03
The I2C bus uses two wires (SDA and SCL) to transfer information between devices connected to
features of the bus are:
bus (no central master)
z Built-in a 14-bit time-out counter will request the I2C interrupt if the I2C bus hangs up
and timer-out counter overflows.
z External pull-up are needed for high output
z Programmable clocks allow versatile rate control
z Supports 7-bit addressing mode
z I
2C-bus controllers support multiple address recognition ( Four slave address with
mask option)
5.6.2 Features
the bus. The main
z Master/Slave mode
z Bidirectional data transfer between masters and slaves
z Multi-master
z Arbitration between simultaneously transmitting masters without corruption of serial
data on the bus
z Serial clock synchronization allows devices with different bit rates to communicate via
one serial bus
z Serial clock synchronization can be used as a handshake mechanism to suspend and
resume serial transfer
NuMicro NUC120 Data Sheet
Publication Release Date: Jan. 2, 2012
- 42 - Revision V2.03
ator and Capture Timer (PWM)
5.7.
m Density has 2 sets of PWM group supports total 4 sets of
independent PWM outputs, PWM0~PWM7, or as
4, PWM5) and (PWM6,
tors. NuMicro NUC100/NUC120 Low Density
only sup
(PWM , PWM3) with 2 programmable dead-zone generators.
1/2, 1/4, 1/8, 1/16), two PWM Timers including two clock selectors, two 16-bit PWM down-
zon
whi correspondin PWM period down cou t aches zero.
int gured as one-shot mode to produce only one PWM
rm continuously.
lementary PWM paired function; the
PWM0 timer and Dead-zone
WM pairs of (PWM2, PWM3), (PWM4, PWM5) and
To prevent PWM driving output pin with unsteady waveform, the 16-bit period down counter and
16-bit comparator are implemented with double buffer. When user writes data to
counter/comparator buffer registers the updated value will be load into the 16-bit down counter/
comparator at the time down counter reaching zero. The double buffering feature avoids glitch at
PWM outputs.
When the 16-bit period down counter reaches zero, the interrupt request is generated. If PWM-
timer is set as auto-reload mode, when the down counter reaches zero, it is reloaded with PWM
Counter Register (CNRx) automatically then start decreasing, repeatedly. If the PWM-timer is set
as one-shot mode, the down counter will stop and generate one interrupt request when it reaches
zero.
The value of PWM counter comparator is used for pulse high width modulation. The counter
control logic changes the output to high level when down-counter value matches the value of
compare register.
The alternate feature of the PWM-timer is digital input Capture function. If Capture function is
enabled the PWM output pin is switched as capture input mode. The Capture0 and PWM0 share
one timer which is included in PWM0 and the Capture1 and PWM1 share PWM1 timer, and etc.
Therefore user must setup the PWM-timer before enable Capture feature. After capture feature is
enabled, the capture always latched PWM-counter to Capture Rising Latch Register (CRLR)
when input channel has a rising transition and latched PWM-counter to Capture Falling Latch
Register (CFLR) when input channel has a falling transition. Capture channel 0 interrupt is
programmable by setting CCR0.CRL_IE0[1] (Rising latch Interrupt enable) and
CCR0.CFL_IE0[2]] (Falling latch Interrupt enable) to decide the condition of interrupt occur.
Capture channel 1 has the same feature by setting CCR0.CRL_IE1[17] and CCR0.CFL_IE1[18].
And capture channel 2 to channel 3 on each group have the same feature by setting the
corresponding control bits in CCR2. For each group, whenever Capture issues Interrupt 0/1/2/3,
5.7 PWM Gener
1 Overview
NuMicro NUC100/NUC120 Mediu
PWM Generators which can be configured as 8
4 complementary PWM pairs, (PWM0, PWM1), (PWM2, PWM3), (PWM
PWM7) with 4 programmable dead-zone genera
port 1 set of PWM group supports total 2 sets of PWM Generators which can be
configured as 4 independent PWM outputs, PWM0~PWM3, or as 2 complementary PWM pairs,
0, PWM1) and (PWM2
Each PWM Generator has one 8-bit prescaler, one clock divider with 5 divided frequencies (1,
counters for PWM period control, two 16-bit comparators for PWM duty control and one dead-
e generator. The 4 sets of PWM Generators provide eight independent PWM interrupt flags
ch are set by hardware when the g n er re
Each PWM interrupt source with its corresponding enable bit can cause CPU to request PWM
errupt. The PWM generators can be confi
cycle signal or auto-reload mode to output PWM wavefo
When PCR.DZEN01 is set, PWM0 and PWM1 perform comp
paired PWM period, duty and dead-time are determined by
generator 0. Similarly, the complementary P
(PWM6, PWM7) are controlled by PWM2, PWM4 and PWM6 timers and Dead-zone generator 2,
4 and 6, respectively.
NuMicro NUC120 Data Sheet
Publication Release Date: Jan. 2, 2012
- 43 - Revision V2.03
the PWM counter 0/1/2/3 will be reload at this moment.
ture is confined by the capture interrupt
ll do at least three steps, they are: Read
pt source and Read CRLRx/CFLRx(x=0~3) to get capture value and finally write
zero. If interrupt latency will take time T0 to finish, the capture signal mustn’t
5.7.
5.7.
5.7.
port 8 Capture input channels shared with 8 PWM output channels (NuMicro
The maximum captured frequency that PWM can cap
latency. When capture interrupt occurred, software wi
PIIR to get interru
1 to clear PIIR to
transition during this interval (T0). In this case, the maximum capture frequency will be 1/T0. For
example:
HCLK = 50 MHz, PWM_CLK = 25 MHz, Interrupt latency is 900 ns
So the maximum capture frequency will is 1/900ns 1000 kHz
2 Features
2.1 PWM function features:
z PWM group has two PWM generators. Each PWM generator supports one 8-bit
prescaler, one clock divider, two PWM-timers (down counter), one dead-zone
generator and two PWM outputs.
z Up to 16-bit resolution
z PWM Interrupt request synchronized with PWM period
z One-shot or Auto-reload mode PWM
z Up to 2 PWM group (PWMA/PWMB) to support 8 PWM channels or 4 PWM paired
channels (only 1 PWM group support for NuMicro NUC100/NUC120 Low Density)
2.2 Capture Function Features:
z Timing control logic shared with PWM Generators
z Sup
NUC100/NUC120 Low Density only support 4 Capture input channels shared with 4
PWM output channels)
z Each channel supports one rising latch register (CRLR), one falling latch register
(CFLR) and Capture interrupt flag (CAPIFx)
NuMicro NUC120 Data Sheet
Publication Release Date: Jan. 2, 2012
- 44 - Revision V2.03
5.8
5.8.
RTC is from an external 32.768 kHz low speed crystal connected at pins X32I and
z low speed oscillator output
econd, minute, hour) in Time
onth, year) in Calendar Loading
Register (CLR). The data message is expressed in BCD format. It also offers alarm function that
user can preset the alarm time in Time Alarm Register (TAR) and alarm calendar in Calendar
AR).
eriodic Time Tick and Alarm Match interrupts. The periodic interrupt
8, 1/4, 1/2 and 1 second which are selected by
an
int Time Tick and Alarm Match can cause chip wake-
nction is enabled (TWKE (TTR[3])=1).
5.8.2
z Alarm register (second, minute, hour, day, month, year)
electable
z
z tions 1/128, 1/64, 1/32, 1/16, 1/8, 1/4, 1/2
z Support RTC Time Tick and Alarm Match interrupt
z Support wake-up chip from power down mode
Real Time Clock (RTC)
1 Overview
Real Time Clock (RTC) controller provides user the real time and calendar message. The clock
source of
X32O (reference to pin descriptions) or from an external 32.768 kH
fed at pin X32I. The RTC controller provides the time message (s
Loading Register (TLR) as well as calendar message (day, m
Alarm Register (C
The RTC controller supports p
has 8 period options 1/128, 1/64, 1/32, 1/16, 1/
TTR (TTR[2:0]). When RTC counter in TLR and CLR is equal to alarm setting time registers TAR
d CAR, the alarm interrupt flag (RIIR.AIF) is set and the alarm interrupt is requested if the alarm
errupt is enabled (RIER.AIER=1). Both RTC
up from power down mode if wake-up fu
Features
z There is a time counter (second, minute, hour) and calendar counter (day, month, year) for
user to check the time
z 12-hour or 24-hour mode is s
z Leap year compensation automatically
z Day of week counter
Frequency compensate register (FCR)
z All time and calendar message is expressed in BCD code
Support periodic time tick interrupt with 8 period op
and 1 second
NuMicro NUC120 Data Sheet
Publication Release Date: Jan. 2, 2012
- 45 - Revision V2.03
ce (SPI)
ensity contains two sets of SPI controller only.
5.9.
ensity
z Up to two sets of SPI controller for NuMicro NUC100/NUC120 Low Density
ter or slave mode operation
rable word numbers up to 2
ach data transfer
it/receive can be transferred up to two times word
irst transfer
de, but 1 device/slave select line in slave mode
clock frequency in master mode
in master mode
nsmitter and another for receiver
5.9 Serial Peripheral Interfa
5.9.1 Overview
The Serial Peripheral Interface (SPI) is a synchronous serial data communication protocol which
operates in full duplex mode. Devices communicate in master/slave mode with 4-wire bi-direction
interface. The NuMicro NUC100/NUC120 Medium Density contains up to four sets of SPI
controller performing a serial-to-parallel conversion on data received from a peripheral device,
and a parallel-to-serial conversion on data transmitted to a peripheral device. Each set of SPI
controller can be set as a master that can drive up to 2 external peripheral slave devices; it also
can be configured as a slave device controlled by an off-chip master device. NuMicro
NUC100/NUC120 Low D
This controller supports a variable serial clock for special application and it also supports 2-bit
transfer mode to connect 2 off-chip slave devices at the same time. The SPI controller also
supports PDMA function to access the data buffer.
2 Features
z Up to four sets of SPI controller for NuMicro NUC100/NUC120 Medium D
z Support mas
z Support 1-bit or 2-bit transfer mode
z Configurable bit length up to 32-bit of a transfer word and configu
of a transaction, so the maximum bit length is 64-bit for e
z Provide burst mode operation, transm
transaction in one transfer
z Support MSB or LSB f
z 2 device/slave select lines in master mo
z Support byte reorder function
z Support byte or word suspend mode
z Variable output serial
z Support two programmable serial clock frequencies
z Support two channel PDMA request, one for tra
NuMicro NUC120 Data Sheet
Publication Release Date: Jan. 2, 2012
- 46 - Revision V2.03
Timer Controller (TMR)
ler includes four 32-bit timers, TIMER0~TIMER3, which allows user to easily
5.10
z Provides one-shot, periodic, toggle and continuous counting operation modes (NuMicro
C120 Medium Density only support one-shot and periodic mode)
-bit TCMP)
er clock
R (Timer Data Register)
to count the event from external pin (NuMicro
5.10
5.10.1 Overview
The timer control
implement a timer control for applications. The timer can perform functions like frequency
measurement, event counting, interval measurement, clock generation, delay timing, and so on.
The timer can generates an interrupt signal upon timeout, or provide the current value during
operation. Note: toggle mode, continuous counting mode and event counting function only
support in NuMicro NUC100/NUC120 Low Density.
.2 Features
z 4 sets of 32-bit timers with 24-bit up-timer and one 8-bit pre-scale counter
z Independent clock source for each timer
NUC100/NU
z Time out period = (Period of timer clock input) * (8-bit pre-scale counter + 1) * (24
z Maximum counting cycle time = (1 / T MHz) * (28) * (224), T is the period of tim
z 24-bit timer value is readable through TD
z Support event counting function
NUC100/NUC120 Low Density only)
NuMicro NUC120 Data Sheet
Publication Release Date: Jan. 2, 2012
- 47 - Revision V2.03
imer (WDT)
5.11
ows the timing of watchdog interrupt signal
and reset signal.
Setting WTE (WDTCR [7]) enables the watchdog timer and the WDT counter starts counting up.
ter reaches the selected time-out interval, Watchdog timer interrupt flag WTIF will
nable bit WTIE is
WDT event. User must
high to reset the 18-bit WDT counter to avoid chip
T
(TRST)
ared
e reset source. WDT also
is waken up from power down state. First example, if
WTIS is set as 000, the specific time interval for chip to wake up from power down state is 24 *
TWDT. When power down command is set by software, then, chip enters power down state. After
24 * TWDT time is elapsed, chip is waken up from power down state. Second example, if WTIS
(WDTCR [10:8]) is set as 111, the specific time interval for chip to wake up from power down
state is 218 * TWDT. If power down command is set by software, then, chip enters power down
state. After 218 * TWDT time is elapsed, chip is waken up from power down state. Notice if WTRE
(WDTCR [1]) is set to 1, after chip is waken up, software should clear the Watchdog Timer
counter by setting WTR(WDTCR [0]) to 1 as soon as possible. Otherwise, if the Watchdog Timer
counter is not cleared by setting WTR (WDTCR [0]) to 1 before time starting from waking up to
software clearing Watchdog Timer counter is over 1024 * TWDT , the chip is reset by Watchdog
Timer.
5.11 Watchdog T
.1 Overview
The purpose of Watchdog Timer is to perform a system reset when system runs into an unknown
state. This prevents system from hanging for an infinite period of time. Besides, this Watchdog
Timer supports another function to wake-up chip from power down mode. The watchdog timer
includes an 18-bit free running counter with programmable time-out intervals. Table 5-5 show the
watchdog timeout interval selection and Figure 5-64 sh
When the coun
be set immediately to request a WDT interrupt if the watchdog timer interrupt e
4 * T ) follows the time-outset, in the meanwhile, a specified delay time (102
set WTR (WDTCR [0]) (Watchdog timer reset)
from Watchdog timer reset before the delay time expires. WTR bit is cleared automatically by
hardware after WDT counter is reset. There are eight time-out intervals with specific delay time
which are selected by Watchdog timer interval select bits WTIS (WDTCR [10:8]). If the WD
counter has not been cleared after the specific delay time expires, the watchdog timer will set
Watchdog Timer Reset Flag (WTRF) high and reset chip. This reset will last 63 WDT clocks
then chip restarts executing program from reset vector (0x0000_0000). WTRF will not be cle
by Watchdog reset. User may poll WTRF by software to recognize th
provides wake-up function. When chip is powered down and the Watchdog Timer Wake-up
Function Enable bit (WDTR[4]) is set, if the WDT counter reaches the specific time interval
defined by WTIS (WDTCR [10:8]) , the chip
WTIS
Timeout Interval
Selection
TTIS
Interrupt Period
TINT
WTR Timeout Interval
(WDT_CLK=10 kHz)
Min. TWTR ~ Max. TWTR
000 24 * TWDT 1024 * TWDT 1.6 ms ~ 104 ms
001 26 * TWDT 1024 * TWDT 6.4 ms ~ 108.8 ms
010 28 * TWDT 1024 * TWDT 25.6 ms ~ 128 ms
011 210 * TWDT 1024 * TWDT 102.4 ms ~ 204.8 ms
100 212 * TWDT 1024 * TWDT 409.6 ms ~ 512 ms
101 214 * TWDT 1024 * TWDT 1.6384 s ~ 1.7408 s
110 216 * TWDT 1024 * TWDT 6.5536 s ~ 6.656 s
111 218 * TWDT 1024 * TWDT 26.2144 s ~ 26.3168 s
Table 5-5 Watchdog Timeout Interval Selection
NuMicro NUC120 Data Sheet
TWDT
TTIS
INT 1024 * TWDT
RST 63 * TWDT
Minimum TWTR
TINT
TRST
Maximum TWTR
TWDT : Watchdog Engine Clock Time Period
TTIS : Watchdog Timeout Interval Selection Period
TINT : Watchdog Interrupt Period
TRST : Watchdog Reset Period
TWTR : Watchdog Timeout Interval Period
Figure 5-10 Timing of Interrupt and Reset Signal
Publication Release Date: Jan. 2, 2012
- 48 - Revision V2.03
NuMicro NUC120 Data Sheet
Publication Release Date: Jan. 2, 2012
- 49 - Revision V2.03
5.11.2 Features
z 18-bit free running counter to avoid chip from Watchdog timer reset before the delay time
expires.
z Selectable time-out interval (24 ~ 218) and the time out interval is 104 ms ~ 26.3168 s (if
WDT_CLK = 10 kHz).
z Reset period = (1 / 10 kHz) * 63, if WDT_CLK = 10 kHz.
5.12 UART Interface Controller (UART)
NuMicro NUC100/NUC120 Medium Density provides up to three channels of Universal
Asynchronous Receiver/Transmitters (UART). UART0 supports High Speed UART and UART1~2
perform Normal Speed UART, besides, only UART0 and UART1 support flow control function.
NuMicro NUC100/NUC120 Low Density only supports UART0 and UART1.
5.12.1 Overview
The Universal Asynchronous Receiver/Transmitter (UART) performs a serial-to-parallel
conversion on data received from the peripheral, and a parallel-to-serial conversion on data
transmitted from the CPU. The UART controller also supports IrDA SIR Function and RS-485
mode functions. Each UART channel supports seven types of interrupts including transmitter
FIFO empty interrupt (INT_THRE), receiver threshold level reaching interrupt (INT_RDA), line
status interrupt (parity error or framing error or break interrupt) (INT_RLS), receiver buffer time out
interrupt (INT_TOUT), MODEM/Wake-up status interrupt (INT_MODEM) and Buffer error interrupt
(INT_BUF_ERR). Inte umber 12 (vector number
is 28); Interrupt number 13 (vector number is 29) only supports UART1 interrupt. Refer to Nested
Vectored Interrupt Controller chapter for System Interrupt Map.
The UART0 is built-in with a 64-byte transmitter FIFO (TX_FIFO) and a 64-byte receiver FIFO
(RX_FIFO) that reduces the number of interrupts presented to the CPU and the UART1~2 are
equipped 16-byte transmitter FIFO (TX_FIFO) and 16-byte receiver FIFO (RX_FIFO). The CPU
can read the status of the UART at any time during the operation. The reported status information
includes the type and condition of the transfer operations being performed by the UART, as well
as 4 error conditions (parity error, framing error, break interrupt and buffer error) probably occur
while receiving data. The UART includes a programmable baud rate generator that is capable of
dividing clock input by divisors to produce the serial clock that transmitter and receiver need. The
baud rate equation is Baud Rate = UART_CLK / M * [BRD + 2], where M and BRD are defined in
Baud Rate Divider Register (UA_BAUD). Table 5-6 lists the equations in the various conditions
and Table 5-7 list the UART baud rate setting table.
rrupts of UART0 and UART2 share the interrupt n
Mode DIV_X_EN DIV_X_ONE Divider X BRD Baud rate equation
0 0 0 B A UART_CLK / [16 * (A+2)]
1 1 0 B A UART_CLK / [(B+1) * (A+2)] , B must >= 8
2 1 1 Don’t care A UART_CLK / (A+2), A must >=3
Table 5-6 UART Baud Rate Equation
NuMicro NUC120 Data Sheet
Publication Release Date: Jan. 2, 2012
- 50 - Revision V2.03
System clock = Internal 22.1184 MHz high speed oscillator
Mode0 Mode1 Mode2
Baud rate
Parameter Register Parameter Register Parameter Register
921600 x x A=0,B=11 0x2B00_0000 A=22 0x3000_0016
460800 A=1 0x0000_0001 A=2,B=11 0x2B00
A=1,B=15 0x2F00_0001
_0002 A=46 0x3000_002E
230400 A=4 0x0000_0004 A=
A=
4,B=15
6,B=11
0x2F00_0004
0x2B00_0006 A=94 0x3000_005E
115200 A=10 0x0000_000A A=10,B=15
A=14,B=11
0x2F00_000A
0x2B00_000E A=190 0x3000_00BE
57600 A=22 0x0000_0016 A=22,B=15 0x2F00_0016 A=382 0x30
A=30,B=11 0x2B00_001E 00_017E
38400 A=34 0x0000_0022
A=62,B=8
A=46,B=11
A=34,B=15
0x2800_003E
0x2B00_002E
0x2F00_0022
A=574 0x3000_023E
19200 A=70 0x0000_0046
A=126,B=8
A=94,B=11
A=70,B=15
0x2800_007E
0x2B00_005E
0x2F00_0046
A=1150 0x3000_047E
9600 A=142 0x0000_008E
A=254,B=8
A=190,B=11
A=142,B=15
0x2800_00FE
0x2B00_00BE
0x2F00_008E
A=2302 0x3000_08FE
4800 A=286 0x0000_011E
A=510,B=8
A=382,B=11
A=286,B=15
0x2800_01FE
0x2B00_017E
0x2F00_011E
A=4606 0x3000_11FE
Table 5-7 UART Baud Rate Setting Table
The UART0 and UART1 controllers support auto-flow control function that uses two low-level
signals, /CTS (clear-to-send) and /RTS (request-to-send), to control the flow of data transfer
between the UART and external devices (ex: Modem). When auto-flow is enabled, the UART is
not allowed to receive data until the UART asserts /RTS to external device. When the number of
bytes in the RX FIFO equals the value of RTS_TRI_LEV (UA_FCR [19:16]), the /RTS is de-
asserted. The UART sends data out when UART controller detects /CTS is asserted from external
evice. If a valid asserted /CTS is not detected the UART controller will not send data out.
RT controllers also provides Serial IrDA (SIR, Serial Infrared) function (User must set
Ir ( E ble ct n defines a short-range
infrared asynchronous serial transmission mode with one start bit, 8 data bits, and 1 stop bit. The
maximum data rate is 115.2 Kbps (half duplex). he an IrDA SIR
Protocol encoder/decoder. The IrDA SIR protocol ha d
receive data at the same time. The IrDA SIR phys l er
delay between n and rece del fe software.
For NuMicro NUC100/NUC120 Low Density, another alternate function of UART controllers is
RS-485 9-bit mode functio TS pin or can program GPIO
(PB.2 for RTS0 and PB.6 for RTS1) to implement the function by software. The RS-485 mode is
selected by setting the UA_FUN_SEL register to select RS-485 function. The RS-485 driver
control is implemented using the RTS control signal from an asynchronous serial port to enable
the RS-485 driver. In RS-485 mode, many characteristics of the RX and TX are same as UART.
d
The UA
DA_EN UA_FUN_S L [1]) to ena IrDA fun ion). The SIR specificatio
T IrDA SIR block contains
is
ica
lf-duplex only. So it cannot transmit an
layer specifies a minimum 10ms transf
transmissio ption. This ay ature must be implemented by
n, and direction control provided by R
NuMicro NUC120 Data Sheet
Publication Release Date: Jan. 2, 2012
- 51 - Revision V2.03
5.12.2
z ple no c
z ate receive / transm 4/16/1 AR ART try
ds
z rt hard au ol/ ol S, R nd p
RTS flow control trigger level (UART0 T1
z mmab eiv r
z Support programmable baud-rate generator for ea ually
z rt CTS -up R T
z Support 7-bit receiver buffer time out detection fun
z 0/UART1 can be se he o
z Programmable transmitting data delay time betw op and the next start bit by
g UA_ LY
z Support break error, frame error, pa d receive / transmit buffer overflow detect
function
z progra e s c cs
Programmable number of data bit, 5-, 6-, 7-, 8-bit ch
Progr le e k p ge
detection
Programmable stop bit, 1, 1.5, t g
z rt IrDA SIR function
Support for 3-/16-bit duration for normal mode
Features
Full du x, asynchro us communi ations
Separ
payloa
it 6 6 bytes (U T0/UART1/U 2) en FIFO for data
Suppo ware to flow contr flow contr
and UAR
function (CT TS) a rogrammable
support)
Progra le rec er buffer trigge level
ch channel individ
Suppo wake function (UA T0 and UAR 1 support)
ction
ller UART rved by t DMA contr
een the last st
settin TOR [D ] register
rity error an
Fully mmabl erial-interface haracteristi
aracter
ammab parity bit, ev n, odd, no parity or stic arity bit neration and
or 2 stop bi eneration
Suppo mode
z Support RS-485 function mode. (NuMicro NUC100/NUC120 Low Density only)
Support RS-485 9-bit mode
Support hardware or software direct enable control provided by RTS pin
NuMicro NUC120 Data Sheet
Publication Release Date: Jan. 2, 2012
- 52 - Revision V2.03
e Controller (PS2D)
vice and the host is managed through the CLK and DATA pins. Unlike PS/2
he CLK signal after receiving a
ver communication. DATA sent from the host to
from device to the host is change after rising
to 16 bytes for a
ion
le buffer for data reception
5.13 PS/2 Devic
5.13.1 Overview
PS/2 device controller provides basic timing control for PS/2 communication. All communication
between the de
keyboard or mouse device controller, the received/transmit code needs to be translated as
meaningful code by firmware. The device controller generates t
request to send, but host has ultimate control o
the device is read on the rising edge and DATA sent
edge. A 16 bytes FIFO is used to reduce CPU intervention. S/W can select 1
continuous transmission.
5.13.2 Features
z Host communication inhibit and request to send detection
z Reception frame error detect
z Programmable 1 to 16 bytes transmit buffer to reduce CPU intervention
z Doub
z S/W override bus
NuMicro NUC120 Data Sheet
Publication Release Date: Jan. 2, 2012
- 53 - Revision V2.03
5.14
ing 8-, 16-, 24- and 32-bit word sizes
z Mono and stereo audio data supported
2d MSB justified data format supported
it and one for receive
n buffer levels cross a programmable boundary
5.14 I2S Controller (I2S)
5.14.1 Overview
The I2S controller consists of IIS protocol to interface with external audio CODEC. Two 8 word
deep FIFO for read path and write path respectively and is capable of handling 8 ~ 32 bit word
sizes. DMA controller handles the data movement between FIFO and memory.
.2 Features
z I
2S can operate as either master or slave
z Capable of handl
z IS an
z Two 8 word FIFO data buffers are provided, one for transm
z Generates interrupt requests whe
z Two DMA requests, one for transmit and one for receive
NuMicro NUC120 Data Sheet
Publication Release Date: Jan. 2, 2012
- 54 - Revision V2.03
onverter (ADC)
/D converters can
be started by software and external STADC pin.
uaranteed
differential analog input channels
Single mode: A/D conversion is performed one time on a specified channel
Single-cycle scan mode: A/D conversion is performed one cycle on all specified
channels with the sequence from the lowest numbered channel to the highest
numbered channel
Continuous scan mode: A/D converter continuously performs Single-cycle scan mode
until software stops A/D conversion
z An A/D conversion can be started by
Software write 1 to ADST bit
External pin STADC
z Conversion results are held in data registers for each channel with valid and overrun
indicators
z Conversion result can be compared with specify value and user can select whether to
generate an interrupt when conversion result is equal to the compare register setting
z Channel 7 supports 3 input sources: external analog voltage, internal bandgap voltage,
and internal temperature sensor output
z Support Self-calibration to minimize conversion error
5.15 Analog-to-Digital C
5.15.1 Overview
NuMicro NUC100 Series contains one 12-bit successive approximation analog-to-digital
converters (SAR A/D converter) with 8 input channels. The A/D converter supports three
operation modes: single, single-cycle scan and continuous scan mode. The A
5.15.2 Features
z Analog input voltage range: 0~VREF
z 12-bit resolution and 10-bit accuracy is g
z Up to 8 single-end analog input channels or 4
z Maximum ADC clock frequency is 16 MHz
z Up to 600K SPS conversion rate
z Three operating modes
NuMicro NUC120 Data Sheet
Publication Release Date: Jan. 2, 2012
- 55 - Revision V2.03
Analog Comparator (CMP)
00 Series contains two comparators. The comparators can be used in a number
e end
5.16
5.16.1 Overview
NuMicro NUC1
of different configurations. The comparator output is a logical one when positive input greater than
negative input, otherwise the output is a zero. Each comparator can be configured to cause an
interrupt when the comparator output value changes. The block diagram is shown in Error!
Reference source not fo und..
5.16.2 Features
z Analog input voltage range: 0~5.0 V
z Hysteresis function supported
z Two analog comparators with optional internal reference voltage input at negativ
z One interrupt vector for both comparators
NuMicro NUC120 Data Sheet
Publication Release Date: Jan. 2, 2012
- 56 - Revision V2.03
s APB devices and Memory.
top the PDMA operation by disable PDMA [PDMACEN]. The CPU can recognize
re polling or when it receives an internal PDMA
urce or destination address or fixed them as well.
ensity only has 1 PDMA channel (channel 0).
5.17.2
an support a unidirectional transfer (NuMicro
NUC100/NUC120 Low Density only has 1 PDMA channel)
z AMBA AHB master/slave interface compatible, for data transfer and register read/write
z Support source and destination address increased mode or fixed mode
z Hardware channel priority. DMA channel 0 has the highest priority and channel 8 has the
lowest priority
5.17 PDMA Controller (PDMA)
5.17.1 Overview
NuMicro NUC100/NUC120 Medium Density contains a peripheral direct memory access
(PDMA) controller that transfers data to and from memory or transfer data to and from APB
devices. The PDMA has nine channels of DMA (Peripheral-to-Memory or Memory-to-Peripheral
or Memory-to-Memory). For each PDMA channel (PDMA CH0~CH8), there is one word buffer as
transfer buffer between the Peripheral
Software can s
the completion of a PDMA operation by softwa
interrupt. The PDMA controller can increase so
Notice: NuMicro NUC100/NUC120 Low D
Features
z Up to nine DMA channels. Each channel c
NuMicro NUC120 Data Sheet
Publication Release Date: Jan. 2, 2012
- 57 - Revision V2.03
s Interface (EBI)
5.18
EBI support address bus and
5.18
al devices with max. 64K-byte size (8-bit data width)/128K-byte (16-bit data width)
nd address hold
d data bus multiplex mode supported to save the address pins
z Configurable idle cycle supported for different access condition: Write command finish
(W2X), Read-to-Read (R2R)
5.18 External Bu
.1 Overview
The NuMicro NUC100/NUC120 Low Density LQFP-64 package equips an external bus interface
(EBI) for external device used.
To save the connections between external device and this chip,
data bus multiplex mode. And, address latch enable (ALE) signal supported differentiate the
address and data cycle.
.2 Features
External Bus Interface has the following functions:
z Extern
supported
z Variable external bus base clock (MCLK) supported
z 8-bit or 16-bit data width supported
z Variable data access time (tACC), address latch enable time (tALE) a
time (tAHD) supported
z Address bus an
NuMicro NUC120 Data Sheet
Publication Release Date: Jan. 2, 2012
- 58 - Revision V2.03
ER (FMC)
t can be updated through ISP procedure. In System Programming
data before chip power off. For 128K bytes APROM device, the
ared with original 128K program memory and its start address is configurable and
4K/32K bytes APROM device, the data flash
6.2
address read access
emory (APROM) (NuMicro NUC100/NUC120 Low
date on chip Flash
6 FLASH MEMORY CONTROLL
6.1 Overview
NuMicro NUC100 Series equips with 128/64/32K bytes on chip embedded Flash for application
program memory (APROM) tha
(ISP) function enables user to update program memory when chip is soldered on PCB. After chip
power on, Cortex-M0 CPU fetches code from APROM or LDROM decided by boot select (CBS) in
Config0. By the way, NuMicro NUC100 Series also provides additional DATA Flash for user, to
store some application dependent
data flash is sh
defined by user application request in Config1. For 6
is fixed at 4K.
Features
z Run up to 50 MHz with zero wait state for continuous
z 128/64/32KB application program m
Density only support up to 64KB size)
z 4KB in system programming (ISP) loader program memory (LDROM)
z Configurable or fixed 4KB data flash with 512 bytes page erase unit
z Programmable data flash start address for 128K APROM device
z In System Program (ISP) to up
NuMicro NUC120 Data Sheet
Publication Release Date: Jan. 2, 2012
- 59 - Revision V2.03
ximum Ratings
7 ELECTRICAL CHARACTERISTICS
7.1 Absolute Ma
SYMBOL PARAMETER MIN MAX UNIT
DC Power Supply VDDVSS -0.3 +7.0 V
Input Voltage VIN V
SS-0.3 VDD+0.3 V
Oscillator Frequency 1/tCLCL 4 24 MHz
Operating Temperature TA -40 +85 °C
Storage Temperature TST -55 +150 °C
Maximum Current into VDD - 120 mA
Maximum Current out of V 120
SS mA
Maximum Current sunk by a I/O pin 35 mA
Maximum Current sourced by a I/O pin 35 mA
Maximum Current sunk by total I/O pins 100 mA
Maximum Current sourced by total I/O pins 100 mA
Note: Exposure to conditions beyond those listed under absolute maximum ratings may adversely affects the lift and
reliability of the device.
NuMicro NUC120 Data Sheet
Publication Release Date: Jan. 2, 2012
- 60 - Revision V2.03
dium Density DC Electrical Characteristics
(VDD-VSS=3.3 V, TA C = 50 MHz unless ot
7.2 DC Electrical Characteristics
7.2.1 NuMicro NUC100/NUC120 Me
= 25°C, FOS herwise specified.)
SPEC I N IF CATIO
PARAMETER SYM. MIN. TYP. MAX. UNIT TEST CONDITIONS
Operation voltage VDD 2.5 5 V V 2.5 V ~ 5. p to 505. DD = 5 V u MHz
Power Ground VSS
AVSS
-0.3 V
LDO Output Voltage VLDO -10% 2.5 +10% V V > 2.7 V
DD
Analog Operating Voltage AVDD 0 VDD V
Analog Reference Voltage Vref 0 AVDD V
IDD1 54 mA enable all IP and PLL, XTAL=12
MHz
VDD = 5.5 V@50 MHz,
IDD2 31 mA
VDD = 5.5 V@ 50 MHz,
disable all IP and enable PLL,
XTAL=12 MHz
IDD3 51 mA
VDD = 3 V@50 MHz,
enable all IP and PLL, XTAL=12
MHz
Operating Current
Normal Run Mode
@ 50 MHz
IDD4 28 mA
VDD = 3 V@50 MHz,
disable all IP and enable PLL,
XTAL=12 MHz
IDD5 22 mA
VDD = 5.5 V@12 MHz,
enable all IP and disable PLL,
XTAL=12 MHz
IDD6 14 mA
VDD = 5.5 V@12 MHz,
disable all IP and disable PLL,
XTAL=12 MHz
Operating Current
Normal Run Mode
@ 12 MHz
IDD7 20 mA
VDD = 3 V@12MHz,
enable all IP and disable PLL,
XTAL=12 MHz
NuMicro NUC120 Data Sheet
Publication Release Date: Jan. 2, 2012
- 61 - Revision V2.03
SPECIFICATION
PARAMETER SYM. MIN. TYP. MAX. UNIT TEST CONDITIONS
IDD8 12 mA
VDD = 3 V@12 MHz,
disable all IP and disable PLL,
XTAL=12 MHz
I
DD9
VDD = 5
enable all IP and disable PLL,
XTAL=4 MHz
15 mA
V@4 MHz,
I0 11 mA disable all IP and disable PLL,
TAL=4 MHz
DD1
VDD = 5 V@4 MHz,
X
I11 13 mA
VDD = 3 V@4 MHz,
a and disable PLL,
DD en ble all IP
XTAL=4 MHz
Operating Current
de
@ 4 MHz
m
VDD = 3 V@4 MHz,
isable all IP and disable PLL,
XTAL=4 MHz
Normal Run Mo
IDD12 9 A d
IIDLE1 38 mA
DD= 5.5 V@50 MHz,
enable all IP and PLL, XTAL=12
V
MHz
IIDLE2 15 mA disable all IP and enable PLL,
VDD=5.5 V@50 MHz,
XTAL=12 MHz
IIDLE3 35 mA enable all IP and PLL, XTAL=12
VDD = 3 V@50 MHz,
MHz
Operating Current
Idle Mode
IIDLE4 13 mA disable all IP and enable PLL,
@ 50 MHz
VDD = 3 V@50 MHz,
XTAL=12 MHz
IIDLE5 13 mA enable all IP and disable PLL,
VDD = 5.5 V@12 MHz,
XTAL=12 MHz
IIDLE6 5.5 mA disable all IP and disable PLL,
VDD = 5.5 V@12 MHz,
XTAL=12 MHz
Operating Current
Idle Mode
IIDLE7 12 mA enable all IP and disable PLL,
@ 12 MHz
VDD = 3 V@12 MHz,
XTAL=12 MHz
NuMicro NUC120 Data Sheet
Publication Release Date: Jan. 2, 2012
- 62 - Revision V2.03
SPECIFICATION
PARAMETER SYM. MIN. TYP. MAX. UNIT TEST CONDITIONS
IIDLE8 4 mA
VDD = 3 V@12 MHz,
disable all IP and disable PLL,
XTAL=12 MHz
IIDLE9 8.5 mA
VDD = 5 V@4 MHz,
enable all IP and disable PLL,
XTAL=4 MHz
IIDLE10 3.5 mA
VDD = 5 V@4 MHz,
disable all IP and disable PLL,
XTAL=4 MHz
IIDLE11 7 mA
VDD = 3 V@4 MHz,
enable all IP and disable PLL,
XTAL=4 MHz
Operating Current
Idle Mode
@ 4 MHz
IIDLE12 2.5 mA
VDD = 3 V@4 MHz,
disable all IP and disable PLL,
XTAL=4 MHz
IPWD1
, No load
23
μAVDD = 5.5 V, RTC OFF
@ Disable BOV function
IPWD2 18
μATC OFF, No load
@ Disable BOV function
VDD = 3.3 V, R
IPWD3 28
μAVDD = 5.5 V, RTC run , No load
@ Disable BOV function
Standby Current
Power down Mode
IPWD4 22
μAC run , No load
on
VDD = 3.3 V, RT
@ Disable BOV functi
Input Current PA, PB, PC,
PD, PE (Quasi-bidirectional
mode)
IIN1 -50 -60
μAVDD = 5.5 V, VIN = 0 V or VIN=VDD
Input Current at /RESET[1] -55 - 5 V
IIN2 -45 30 μAVDD = 3.3 V, VIN = 0.4
Input Leakage Current PA,
PB, PC, PD, PE ILK -2 - +2
μAIN<VDD VDD = 5.5 V, 0<V
Logic 1 to 0 T
PA~PE (Qu
ransition Current
asi-bidirectional TL -650
mode)
I [3] - -200 μAVDD = 5.5 V, VIN<2.0 V
-0.3 - 0.8 VDD = 4.5 V
Input Low Voltage PA, PB,
PC, PD, PE (TTL input) -0.3 - 0.6
VIL1 V VDD = 2.5 V
2.0 -
VDD
+0.2 VDD = 5.5 V
Input High Voltage PA, PB,
PC, PD, PE (TTL input)
1.5 -
V
+0.2
VIH1
DD
V
VDD =3.0 V
Input Low Voltage PA, PB,
PC, PD, PE (Schmitt input) VIL2 -0.5 - 0.2 VDD V
NuMicro NUC120 Data Sheet
Publication Release Date: Jan. 2, 2012
- 63 - Revision V2.03
SPECIFICATION
PARAMETER SYM. MIN. TYP. MAX. UNIT TEST CONDITIONS
Input High Voltage PA, PB,
PC, PD, PE (Schmitt input) IH2 0.4
DD DD .5VV- V +0 V
Hysteresis voltage of PA~PE
(Schmitt input) VHY 0.2 VDD V
0 - 0 .8 VDD = 4.5 V
Input Low Voltage XT1[*2] VIL3
0 - 0.4
V VDD = 3.0 V
3.5 -
V
+
DD
0.2 V V = 5.5 V
DD
Input High Voltage XT1[*2] IH3
2.4 -
VDD
+0.2
V
VDD = 3.0 V
Input Low Voltage X32I[*2] 0 VIL4 0 - .4 V
Input High Voltage X32I[*2] VIH4 1.7 2.5 V
Negative going threshold
(Schmitt input), /RESET -0 0.3
DD
VILS .5 - V V
Positive going threshold
(Schmitt input), /RESET 0.7
DD VDD .5VIHS V- +0 V
ISR11 -300 - -450370 μAVDD = 4.5 V, VS = 2.4 V
ISR12 -50 -70 -90
μAVDD = 2.7 V, VS = 2.2 V
Source Current PA, PB, PC,
ctional
ISR13 -40 -60 -80
μA
PD, PE (Quasi-bidire
Mode)
VDD = 2.5 V, VS = 2.0 V
ISR21 -20 -24 - 28 mA VDD = 4.5 V, VS = 2.4 V
I22 -4 -6 -8 mA VDD = 2.7 V, VS = 2.2 V
SR
Source Current PA, PB, PC
PD, PE (Push-pull Mode)
,
ISR23 -3 -5 -7 mA VDD = 2.5 V, VS = 2.0 V
ISK11 10 16 20 mA VDD = 4.5 V, VS = 0.45 V
I1 0.45 V
SK12 7 0 13 mA VDD = 2.7 V, VS =
Sink Current PA, PB, PC, PD,
PE (Quasi-bidirectional and
Push-pull Mode)
ISK13 6 9 12 mA VDD = 2.5 V, VS = 0.45 V
Brown-Out voltage with
BOV_VL [1:0] =00b VBO2.2 2 2.1 .2 2.3 V
Brown-Out voltage with
BOV_VL [1:0] =01b V2
BO2.7 2.6 .7 2.8 V
Brown-Out voltage with
BOV_VL [1:0] =10b VBO3.8 3.6 3.8 V 4.0
Brown-Out voltage with
BOV_VL [1:0] =11b VBO4.5 4 V 4.3 .5 4.7
Hysteresis range of BOD
voltage VBH 30 - 150 m DD = 2.5 V~5.5 V
VV
NuMicro NUC120 Data Sheet
Publication Release Date: Jan. 2, 2012
- 64 - Revision V2.03
Note:
1. /RESET pin is a Schmitt trigger input.
2. Crystal Input is a CMOS input.
E ca rc tion rren y b ing externally driven from 1 to 0. In the
sition n its m im h IN ximates to 2 V.
3. Pins of PA, PB, PC, PD and P
condition of VDD=5.5 V, 5he tran
n sou
curre
e a transi
t reaches
cu
ax
t when the
um value w
are
en V
e
appro
NuMicro NUC120 Data Sheet
Publication Release Date: Jan. 2, 2012
- 65 - Revision V2.03
7.2.2 120 Low Density DC Electrical Characteristics
C = 50 MHz unless otherwise specified.)
NuMicro NUC100/NUC
(V -V =3.3 V, TA = 25°C, FOS
DD SS
SPECIFICATION
PARAMETER SYM. MIN. TYP. MAX. UNIT TEST CONDITIONS
Operation voltage VDD 2.5 5.5 V VDD =2.5 V ~ 5.5 V up to 50 MHz
Power Ground VSS
AVSS
-0.3 V
LDO Output Voltage VLDO -10% 2.5 +10% V VDD > 2.7 V
Analog Operating Voltage AVDD 0 VDD V
Analog Reference Voltage Vref 0 AVDD V
IDD1 46 mA
VDD = 5.5 V@50 MHz,
enable all IP and PLL, XTAL=12
MHz
IDD2 30 mA
VDD = 5.5 V@50 MHz,
disable all IP and enable PLL,
XTAL=12 MHz
IDD3 44 mA
VDD = 3 V@50 MHz,
enable all IP and PLL, XTAL=12
MHz
Operating Current
Normal Run Mode
@ 50 MHz
IDD4 28 mA
VDD = 3 V@50 MHz,
disable all IP and enable PLL,
XTAL=12 MHz
IDD5 19 mA
VDD = 5.5 V@12 MHz,
enable all IP and disable PLL,
XTAL=12 MHz
IDD6 13 mA
VDD = 5.5 V@12 MHz,
disable all IP and disable PLL,
XTAL=12 MHz
Operating Current
Normal Run Mode
@ 12 MHz
IDD7 17 mA
VDD = 3 V@12 MHz,
enable all IP and disable PLL,
XTAL=12 MHz
NuMicro NUC120 Data Sheet
Publication Release Date: Jan. 2, 2012
- 66 - Revision V2.03
SPECIFICATION
PARAMETER SYM. MIN. TYP. MAX. UNIT TEST CONDITIONS
I mA
VDD = 3 V@12 MHz,
disable a ,
XTAL=
DD8 11.5 ll IP and disable PLL
12 MHz
IDD9
13.5 m
VDD = 5 V@4 MHz,
XTAL=4 MHz
A enable all IP and disable PLL,
IDD10 10 mA
DD = 5 V@4 MHz,
disable all IP and disable PLL,
XTAL=4 MHz
V
IDD11 12 mA
MHz,
enable all IP and disable PLL,
TAL=4 MHz
VDD = 3 V@4
X
Operating Current
@ 4 MHz
m
VDD = 3 V@4 MHz,
isable all IP and disable PLL,
XTAL=4 MHz
Normal Run Mode
IDD12 8 A d
IIDLE1 30 mA
VDD= 5.5 V@50 MHz,
enable all IP and PLL, XTAL=12
MHz
IIDLE2 13 mA
VDD=5.5 V@50 MHz,
disable all IP and enable PLL,
XTAL=12 MHz
IIDLE3 28 mA
VDD = 3 V@50 MHz,
enable all IP and PLL, XTAL=12
MHz
Operating Current
Idle Mode
@ 50 MHz
IIDLE4 12 mA
VDD = 3 V@50 MHz,
disable all IP and enable PLL,
XTAL=12 MHz
IIDLE5 11 mA
VDD = 5.5 V@12 MHz,
enable all IP and disable PLL,
XTAL=12 MHz
IIDLE6 5 mA
VDD = 5.5 V@12 MHz,
disable all IP and disable PLL,
XTAL=12 MHz
Operating Current
Idle Mode
@ 12 MHz
IIDLE7 10 mA
VDD = 3 V@12 MHz,
enable all IP and disable PLL,
XTAL=12 MHz
NuMicro NUC120 Data Sheet
Publication Release Date: Jan. 2, 2012
- 67 - Revision V2.03
SPECIFICATION
PARAMETER SYM. MIN. TYP. MAX. UNIT TEST CONDITIONS
IIDLE8 4 mA
VDD = 3 V@12 MHz,
disable all IP and disable PLL,
XTAL=12 MHz
IIDLE9 7 mA
VDD = 5 V@4 MHz,
enable all IP and disable PLL,
XTAL=4 MHz
IIDLE10 3.5 mA
VDD = 5 V@4 MHz,
disable all IP and disable PLL,
XTAL=4 MHz
IIDLE11 6 mA
VDD = 3 V@4 MHz,
enable all IP and disable PLL,
XTAL=4 MHz
Operating Current
Idle Mode
@ 4 MHz
IIDLE12 2.5 mA
VDD = 3 V@4 MHz,
disable all IP and disable PLL,
XTAL=4 MHz
IPWD1
, No load
17
μAVDD = 5.5 V, RTC OFF
@ Disable BOV function
IPWD2 14.5
μATC OFF, No load
@ Disable BOV function
VDD = 3.3 V, R
IPWD3 20
μAVDD = 5.5 V, RTC run , No load
@ Disable BOV function
Standby Current
Power down Mode
IPWD4 17
μAC run , No load
on
VDD = 3.3 V, RT
@ Disable BOV functi
Input Current PA, PB, PC,
PD, PE (Quasi-bidirectional
mode)
IIN1 -60
μA
-50 VDD = 5.5 V, VIN = 0 V or VIN=VDD
Input Current at /RESET[1] -55 - 5 V
IIN2 -45 30 μAVDD = 3.3 V, VIN = 0.4
Input Leakage Current PA,
PB, PC, PD, PE ILK -2 - +2
μAIN<VDD VDD = 5.5 V, 0<V
Logic 1 to 0 T
PA~PE (Qu
ransition Current
asi-bidirectional TL -650 -2 0
mode)
I [3] - 0 μAVDD = 5.5 V, VIN<2.0 V
-0.3 - 0.8 VDD = 4.5 V
Input Low Voltage PA, PB,
PC, PD, PE (TTL input) -0.3 - 0.6
VIL1 V VDD = 2.5 V
2.0 -
VDD
+0.2 VDD = 5.5 V
Input High Voltage PA, PB,
PC, PD, PE (TTL input)
1.5 -
V
+0.2
VIH1
DD
V
VDD =3.0 V
Input Low Voltage PA, PB,
PC, PD, PE (Schmitt input) VIL2 -0.5 - 0.2
VDD V
NuMicro NUC120 Data Sheet
Publication Release Date: Jan. 2, 2012
- 68 - Revision V2.03
SPECIFICATION
PARAMETER SYM. MIN. TYP. MAX. UNIT TEST CONDITIONS
Input High Voltage PA, PB,
PC, PD, PE (Schmitt input) IH2 0.4
V
VDD
+
VDD - 0.5 V
Hysteresis voltage of PA~PE
(Schmitt input) VHY 0.2 VDD V
0 - 0 .8 VDD = 4.5 V
Input Low Voltage XT1[*2] VIL3
0 - 0.4
V VDD = 3.0 V
3.5 -
V
+
DD
0.2 V V = 5.5 V
DD
Input High Voltage XT1[*2] IH3
2.4 -
VDD
+0.2
V
VDD = 3.0 V
Input Low Voltage X32I[*2] 0 VIL4 0 - .4 v
Input High Voltage X32I[*2] VIH4 1.7 2.5 V
Negative going threshold
(Schmitt input), /RESET -0 0.3
DD
VILS .5 - V V
Positive going threshold
(Schmitt input), /RESET 0.7
DD VDD .5VIHS V- +0 V
ISR11 -300 -450-370 μAVDD = 4.5 V, VS = 2.4 V
ISR12 -50 -70 -90
μAVDD = 2.7 V, VS = 2.2 V
Source Current PA, PB, PC,
ctional
ISR12 -40 -60 -80
μA
PD, PE (Quasi-bidire
Mode)
VDD = 2.5 V, VS = 2.0 V
ISR21 -20 -24 - 28 mA VDD = 4.5 V, VS = 2.4 V
I22 -4 -6 -8 mA VDD = 2.7 V, VS = 2.2 V
SR
Source Current PA, PB, PC
PD, PE (Push-pull Mode)
,
ISR22 -3 -5 -7 mA VDD = 2.5 V, VS = 2.0 V
ISK1 10 16 20 mA VDD = 4.5 V, VS = 0.45 V
ISK1 7 10 0.45 V
13 mA VDD = 2.7 V, VS =
Sink Current PA, PB, PC, PD,
PE (Quasi-bidirectional and
Push-pull Mode)
ISK1 6 9 12 mA VDD = 2.5 V, VS = 0.45 V
Brown-Out voltage with
BOV_VL [1:0] =00b VBO2.2 2 2.1 .2 2.3 V
Brown-Out voltage with
BOV_VL [1:0] =01b V2
BO2.7 2.6 .7 2.8 V
Brown-Out voltage with
BOV_VL [1:0] =10b VBO3.8 3.6 3.8 V 4.0
Brown-Out voltage with
BOV_VL [1:0] =11b VBO4.5 4 V 4.3 .5 4.7
Hysteresis range of BOD
voltage VBH 30 - 150 m DD = 2.5 V~5.5 V
VV
NuMicro NUC120 Data Sheet
Publication Release Date: Jan. 2, 2012
- 69 - Revision V2.03
SPECIFICATION
PARAMETER SYM. MIN. TYP. MAX. UNIT TEST CONDITIONS
Bandgap voltage VBG 1.20 1.26 DD = 2.5 V~5.5 V
1.32 V
V
Note:
inp
2. Crystal Input is a CMOS input.
PE can source a transition current w they b y driven from 1 to 0. In the
nsition current reaches its maximum value wh IN to 2 V.
1. /RESET pin is a Schmitt trigger ut.
3. Pins of PA, PB, PC, PD and
condition of VDD=5.5 V, 5he tra
hen are
en V
eing externall
approximates
NuMicro NUC120 Data Sheet
Publication Release Date: Jan. 2, 2012
- 70 - Revision V2.03
7.2.3 Operating Current Curve (Test condition: run NOP)
1. XTAL clock = 12 MHz, PLL disable, all-IP disable:
Unit: mA
2. XTAL clock = 12 MHz, PLL disable, all-IP enable
Unit: mA
NuMicro NUC120 Data Sheet
3. XTAL clock = 12 MHz, PLL enable, all-IP disable
Unit: mA
4. XTAL clock = 12 MHz, PLL enable, all-IP enable
Unit: mA
Publication Release Date: Jan. 2, 2012
- 71 - Revision V2.03
NuMicro NUC120 Data Sheet
Publication Release Date: Jan. 2, 2012
- 72 - Revision V2.03
7.2. urrent Curve
1. XTAL clock = 12 MHz, PLL disable, all-IP disable
Unit: mA
4 Idle C
2. XTAL clock = 12 MHz, PLL disable, all-IP enable
Unit: mA
NuMicro NUC120 Data Sheet
Publication Release Date: Jan. 2, 2012
- 73 - Revision V2.03
3. XTAL clock = 12 MHz, PLL enable, all-IP disable
Unit: mA
4. XTAL clock = 12 MHz, PLL enable, all-IP enable
Unit: mA
NuMicro NUC120 Data Sheet
Publication Release Date: Jan. 2, 2012
- 74 - Revision V2.03
7.2. r Down Current Curve
XTAL clock = 12 MHz, PLL Disable
Unit: mA
5 Powe
NuMicro NUC120 Data Sheet
Publication Release Date: Jan. 2, 2012
- 75 - Revision V2.03
s 7.3 AC Electrical Characteristic
tCLCL
tCLCX
tCHCX
tCLCH
tCHCL
Note: Duty cycle is 50%.
SYMBOL PARAMETER CONDITION MIN. TYP. MAX. UNIT
tCHCX Clock High Time 20 - - nS
tCLCX Clock Low Time 20 - - nS
tCLCH Clock Rise Time - - 10 nS
tCHCL Clock Fall Time - - 10 nS
7.3.1 External 4~24 MHz High Speed Crystal
PARAMETER CONDITION MIN. TYP. MAX. UNIT
Input clock frequency External crystal 4 12 24 MHz
Temperature - -40 - 85
VDD - 2.5 5 5.5 V
Operating current 12 MHz@ VDD = 5V - 1 - mA
7.3.1.1 Typical Crystal Application Circuits
CRYSTAL C1 C2 R
4 MHz ~ 24 MHz without without without
NuMicro NUC120 Data Sheet
Figure 7-1 Typical Crystal Application Circuit
7.3.2 rnal 32.7 eed Crystal Exte 68 kHz Low Sp
PARAMETER CONDITION MIN. TYP. MAX. UNIT
Input clock frequenc External crystal 32.768 y - - kHz
Temper ure -40 at - - 85
VDD - 2.5 - 5.5 V
7.3.3 Internal 22.1184 MHz High Speed Oscillator
PARAMETER CONDITION MIN. TYP. MAX. UNIT
Supply voltage[1] - 2.5 - 5.5 V
Center Frequency - - 22.1184 MHz
-
+25; VDD =5 V -1 - +1 %
Calibrated Internal Oscillator Frequency -40~+85;
VDD=2.5 V~5.5 V -3 - +3 %
Operation Curre 5 V 500 - uAnt VDD = -
Internal 10 kHz Low Speed Oscillator 7.3.4
PARAMETER CONDITION MIN. TYP. MAX. UNIT
Supply voltage[1] - 2.5 - 5.5 V
Center Frequency - - 10 - kHz
+25; VDD =5 V -30 - +30 %
Calibrated Internal Oscillator Frequency -40~+85;
VDD=2.5 V~5.5 V -50 - +50 %
Note: Internal operation voltage comes from LDO.
Publication Release Date: Jan. 2, 2012
- 76 - Revision V2.03
NuMicro NUC120 Data Sheet
Publication Release Date: Jan. 2, 2012
- 77 - Revision V2.03
7.4 Analog Characteristics
7.4.1 Specification of 12-bit SARADC
SYMBOL PARAMETER MIN. TYP. MAX. UNIT
- Resolution - - 12 Bit
DNL Differential nonlinearity error - ±3 - LSB
INL Integral nonlinearity error ±4 - LSB-
EO ±1 10 LSBOffset error -
EG Gain error (Transfer gain) - 1 1.005 -
- Monotonic Guaranteed
FADC ck frequency (AVDD
ADC clo =5V/3V) - - 16/8 MHz
FS Sample rate 600 K SPS- -
VDDA Supply voltage 3 - 5.5 V
IDD - 0.5 m- A
IDDA
Supply current (Avg.)
- 1.5 - mA
VREF Reference voltage - VDDA - V
IREF eference current (AvR g.) - 1 - mA
VIN Input voltage 0 - VREF V
NuMicro NUC120 Data Sheet
Publication Release Date: Jan. 2, 2012
- 78 - Revision V2.03
ower management
7.4.2 Specification of LDO and P
PARAMETER MIN. TYP. MAX. UNIT NOTE
Input Voltage 5 5.5 in ag2.7 V VDD put volt e
Output Voltage 0% 2.5 +10% VDD > V -1 V 2.7
Temperature -40 25 85
Cbp 1 - Resr= hm - uF 1o
Note
1. It nded that a 10u 0nF bypass capacitor a connec betw an
closest VSS pin of the device.
2. For ensuring power stability, a 1uF or tor must be connected between LD osest VSS pin of
the device.
:
is recomme F or higher capacitor and a 10 re ted een VDD d the
higher capaci O pin and the cl
NuMicro NUC120 Data Sheet
Publication Release Date: Jan. 2, 2012
- 79 - Revision V2.03
7.4.3 Specification of Low Voltage Reset
PARAMETER CONDITION MIN. TYP. MAX. UNIT
Operatio -
n voltage - 1.7 5.5 V
Quiescent current VDD - 5 uA =5.5 V -
Temperature - -40 25 85
Temperature=257 .0 V 1. 2 2.3
Temperature=-40 - 2.4 - V
Threshold voltage
Temperature=85 - 1.6 - V
Hysteresis - 0 0 0 V
7.4.4 Specification of Brown-Out Detector
PARAMETER CONDITION MIN. TYP. MAX. UNIT
Operation voltage - 2.5 - 5.5 V
Quiescent current AVDD=5.5 V - - 125 μA
Temperature - -40 25 85
BOV_VL[1:0]=11 4.3 4.5 4.7 V
BOV_VL [1:0]=10 3.6 3.8 4.0 V
BOV_VL [1:0]=01 2.6 2.7 2.8 V
Brown-Out voltage
BOV_VL [1:0]=00 2.1 2.2 2.3 V
Hysteresis - 30 - 150 mV
7.4.5 Specification of Power-On Reset (5 V)
PARAMETER CONDITION MIN. TYP. MAX. UNIT
Temperature - -40 25 85
Reset voltage V+ - 2 - V
Quiescent current Vin>reset voltage - 1 - nA
NuMicro NUC120 Data Sheet
Publication Release Date: Jan. 2, 2012
- 80 - Revision V2.03
r
7.4.6 Specification of Temperature Senso
PARAMETER CONDITIONS MIN. TYP. MAX. UNIT
Supply voltage[1] 2.5 - 5.5 V
Temperature -40 - 125
Current consumption 6.4 10.5 uA -
Gain -1.76 mV/
Offset Temp=0 720 mV
Note: Internal operation voltage comes from
.4.7 Specification of Comparator
LDO.
7
PARAMETER CONDITION MIN. TYP. MAX. UNIT
Temperature - -40 25 5 8
VDD - 2.4 3 5.5 V
VDD current @VDD=3 V - 20 40 20 uA uA
Input offset voltage - - 5 15 mV
Output swing - 0.1 - -0.1 VDD V
Input common mode range 0.1 - -1.2 - VDD V
DC gain - 70 - - dB
Propagation delay .2 V and
0.1 V - 200 - s
@VCM=1
VDIFF= n
Comparison voltage
0 mV@VCM=1 V
50 mV@VCM=0.1 V
V@VCM=VDD-1.2
10 mV for non-
eresis
10 20 - mV
2
50 m
@
hyst
Hysteresis
One bit control
and W. hysteresi
~ VDD-1.2 V
- ±10 - VW/O s
@VCM=0.4 V
m
Wake-up time @CINP=1.3 V
CINN=1.2 V - - 2 us
NuMicro NUC120 Data Sheet
Publication Release Date: Jan. 2, 2012
- 81 - Revision V2.03
7.4.8.1 US l Characteristi
7.4.8 Specification of USB PHY
B DC Electrica cs
SYMBOL PARAMETER CONDITIONS MIN. TYP. MAX. UNIT
VIH Input high (driven) 2.0 V
VIL Input 0.8 low V
VDI t sensitivity |PADP-PADM| 0.2 Differential inpu V
VCM Differential
common-mode range es VDI range 0 2.5 Includ .8 V
VSE Single-ended receiver threshold 0.8 2.0 V
Receiver hysteresis 200 mV
VOL Output low (driven) 0 0.3 V
VOH Output high (driven) 2.8 3.6 V
VCRS Ou voltage tput signal cross 1.3 2.0 V
RPU Pull 1 1.575-up resistor .425 k
VTRM Termina Voltage for
upst l up (RPU) 3.0 3.6
tion
ream port pul V
ZDRV D ce Steady state drive* river output resistan 10
CIN Tra tance Pin to GND nsceiver capaci 20 pF
*Driver o eries resistor res tance.
7.4.8.2 USB Full-Speed Driver Electrical Ch ara
utput resistance doesn’t include s is
cteristics
SYMBOL PARAMETER CONDITIONS MIN. TYP. MAX. UNIT
TFR Rise Time 4 20 ns CL=50p
TFF 20 Fall Time CL=50p 4 ns
TFRFF Rise and fall time matching 90 111.11 % TFRFF=TFR/TFF
7.4.8.3 USB Power Dissipation
SYMBOL PARAMETER CONDITIONS MIN. TYP. MAX. UNIT
Standb uAy 50
Input mode uA
IVDDREG
(Full
Speed)
VD REG Supply
Current (Stea
Output mode uA
DD and VDD
dy State)
NuMicro NUC120 Data Sheet
Publication Release Date: Jan. 2, 2012
- 82 - Revision V2.03
.5 Flash DC Electrical Characterist ics 7
SYMBOL PARAMETER CONDITIONS MIN. TYP. MAX. UNIT
Nendu Endurance 10000 cycles[1]
Tret Retention time Temp=25 100 year
Terase 4 mPage erase time 20 0 s
Tmass e time 40 50 mMass eras 60 s
Tprog 40 55 us Program time 35
Vdd e 2.25 2.5 2.75 V[2] Supply voltag
Idd1 14 mA Read current
Idd2 Program/Erase current 7 mA
Ipd 1Power down current 0 uA
1. Numbe cles.
is source from chip L ge.
is tab sign, not test in producti
r of program/erase cy
2. Vdd
3. Th
DO output volta
le is guaranteed by de on.
NuMicro NUC120 Data Sheet
Publication Release Date: Jan. 2, 2012
- 83 - Revision V2.03
7.6 Dy aracteristics SPI namic Ch
SYMBOL PARAMETER MIN. TYP. MAX. UNIT
SPI master ~ 5.5V, 30pF loading Capac or) mode (VDD = 4.5V it
tDS Data setup time 26 18 - ns
tDH Data hold time 0 - - ns
tV Data output valid time - 6 4 ns
SPI master .0V ~ 3.6V, 30pF loading Capac or) mode (VDD = 3 it
tDS Data setup time 39 26 - ns
tDH Data hold time 0 - - ns
tV Data output valid time - 6 10 ns
SPI slave mode (VDD = 4.5V ~ 5.5V, 30pF loading Capacitor)
tDS Data setup time 0 - - ns
tDH Data hold time 2*PCLK+4 - - ns
tV Data output valid time - 2*PCLK+19 2*PCLK+27 ns
SPI slave mode (VDD = 3.0V ~ 3.6V, 30pF loading Capacitor)
tDS Data setup time 0 - - ns
tDH Data hold time 2*PCLK+8 - - ns
tV Data output valid time - 2*PCLK+27 2*PCLK+40 ns
NuMicro NUC120 Data Sheet
Publication Release Date: Jan. 2, 2012
- 84 - Revision V2.03
Figure 7-2 SPI Master dynamic racteristics timing
cha
Figure 7-3 SPI Slave dynamic characteristics timing
NuMicro NUC120 Data Sheet
Publication Release Date: Jan. 2, 2012
- 85 - Revision V2.03
8 PACKAGE DIMENSIONS
8.1 100L LQFP (14x14x1.4 mm footprint 2.0mm)
D
D
E
E
b
Controlling Dimension : Millimeters
0.10
070
0.004
1.00
0.75
0.60
0.45
0.039
0.030
0.024
0.018
0.638
0.630
0.622
0.50
14.10
0.20
0.27
1.45
1.40
0.17
1.35
0.011
0.0570.055
0.007
0.053
1.60
14.00
13.90
0.10
0.05
0.008
0.063
0.020
0.556
0.551
0.547
0.004
0.002
Symbol Min Nom Max Max
Nom
Min
Dimension in inch Dimension in mm
A
c
D
e
HD
HE
L
y
A1
b
A
2
L1
E
0.009 0.22
0.006 0.15
7
13.90 14.00 14.10
15.80 16.00 16.20
15.80 16.00 16.20
0.556
0.551
0.547
θ
0.638
0.630
0.622
A2 A1
A
L1
ec
H
H
1
100
θ
L
Y
25
26
50
51
7
7
NuMicro NUC120 Data Sheet
8.2 64L LQFP (10x10x1.4mm fo
Publication Release Date: Jan. 2, 2012
- 86 - Revision V2.03
otprint 2.0 mm)
0
7
0
1.00
0.75
0.60
12.00
0.45
0.039
0.030
0.024
0.472
0.018
0.50
0.20
0.27
1.45
1.60
10.00
1.40
0.09
0.17
1.35
0.05
0.008
0.011
0.057
0.063
0.393
0.055
0.020
0.004
0.007
0.053
0.002
Symbol Min Nom Max Max
Nom
Min
Dimension in inch Dimension in mm
A
b
c
D
e
HD
HE
L
y
0
A
A
L1
1
2
E
0.008 0.20
7
0.393 10.00
0.472 12.00
0.006 0.15
0.004 0.10
3.5 3.5
NuMicro NUC120 Data Sheet
8.3 48L LQFP (7x7x1.4mm footprint 2.0mm)
Publication Release Date: Jan. 2, 2012
- 87 - Revision V2.03
NuMicro NUC120 Data Sheet
Publication Release Date: Jan. 2, 2012
- 88 - Revision V2.03
REVISION HISTORY
DESCRIPTION
9
VERSION DATE PAGE/
CHAP.
V1.00 March 1, 2010 - Preliminary version initial issued
V1.01 April 9, 2010 Ch4 Modify the block diagram
V1.02 May 31, 2010 7.2 Add operation current of DC characteristics
V1.03 July 27, 2010 3.3.1 Modify LQFP 48 Pin Description
V1.04 Aug. 23, 2010 7.2 1. Modify LQFP 48 Pin Description
2. Modify operation current of DC characteristics
V2.00 Nov. 11 2010 - Update low density and selection table
V2.01 May 6, 2011 -
Remove NUC130/NUC140
Add SPI Dynamic Characteristics
Remove TM0~3 of medium density
Remove word “MICROWIRE” in all document
V2.02 June 20, 2011 -
Modify temperature sensor spec
Revise Pin description position for multi-function T2EX, T3EX,
nRD, nWR
Update title of SPI Dynamic Characteristics
Update BOD spec
V2.03 Jan. 2, 2012 - 1. Remove feature “Dynamic priority changing” for NVIC
2. Modify ADC analog characteristic spec
NuMicro NUC120 Data Sheet
Publication Release Date: Jan. 2, 2012
- 89 - Revision V2.03
Important Notice
Nuvoton Products are neither d nor w arranted for usa y
malfun r h m ca ily injury or severe property
damage. Su ed, “Insec
Insecu ge t is lim r surgical implementation, atomic
energy ol air e ation of
dynamic, brake or safety systems designed for vehicular use, traffic signal instruments, all
types o y d th l or sustain life.
All Insecure Usage shall be made at ent that third parties lay
claims vo lt ustomer’s mnify the
damages and liabilities thus incurred b
intende ge in systems or equipment, an
ction o
ch applicatio
failure of whic
ns are deem
ay use loss of human life, bod
ure Usage”.
re usa includes, bu not ited to: equipment fo
contr instruments, plan or spaceship instruments, the control or oper
f safet evices, and o er app ications intended to support
customer’s risk, and in the ev
to Nu ton as a resu of c Insecure Usage, customer shall inde
y Nuvoton.