5–1
FEATURES
Very High Current Transfer Ratio, 500% Min.
High Isolation Resistance, 10
11
Typical
Standard Plastic DIP Package
Underwriters Lab File #E52744
VDE Approvals #0884 (Available with
Option 1)
DESCRIPTION
The 4N32 and 4N33 are optically coupled isolators
with a Gallium Arsenide infrared LED and a silicon
photodarlington sensor. Switching can be
achieved while maintaining a high degree of isola-
tion between driving and load circuits. These opto-
couplers can be used to replace r eed and mercury
relays with advantages of long life, high speed
switching and elimination of magnetic fields.
Maximum Ratings
Emitter
Peak Reverse Voltage........................................3 V
Continuous Forward Current.........................60 mA
Power Dissipation at 25
°
C..........................100 mW
Derate Linearly from 55
°
C....................1.33 mW/
°
C
Detector
Collector-Emitter Breakdown Voltage,
BV
CEO
.......................................................... 30 V
Emitter-Base Breakdown Voltage,
BV
EBO
............................................................. 8V
Collector-Base Breakdown Voltage,
BV
CBO
.......................................................... 50 V
Emiter-Collector Breakdown Voltage,
BV
ECO
............................................................ 5 V
Collector (load) Current...............................125 mA
Power Dissipation at 25
°
C Ambient...........150 mW
Derate Linearly from 25
°
C......................2.0 mW/
°
C
Package
Total Dissipation at 25
°
C Ambient .............250 mW
Derate Linearly from 25
°
C......................3.3 mW/
°
C
Isolation Test Voltage.........................5300 VAC
RMS
Between Emitter and Detector,
Standard Climate: 23
°
C/50%RH,
DIN 50014
Leakage Path........................................ 7 mm min.
Air Path...................................................7 mm min.
Isolation Resitance
V
IO
=500 V/25
°
C......................................
10
12
V
IO
=500 V/100
°
C....................................
10
11
Storage Temperature ...................–55
°
C to +150
°
C
Operating Temperature ...............–55
°
C to +100
°
C
Lead Soldering Time at 260
°
C....................10 sec.
V
DE
Electrical Characteristics
(T
A
=25
°
C)
*Indicates JEDEC registered values
Parameter Min. Typ. Max. Unit Condition
Emitter
Forward Voltage 1.25 1.5 V I
F
=50 mA
Reverse Current 0.1 100
µ
AV
R
=3.0 V
Capacitance 25 pF V
R
=0 V
Detector
BV
CEO
*30 VI
C
=100
µ
A, I
F
=0
BV
CBO
*50 VI
C
=100
µ
A, I
F
=0
BV
EBO
*8 VI
C
=100
µ
A, I
F
=0
BV
ECO
*510VI
E
=100
µ
A, I
F
=0
I
CEO
1.0 100 nA V
CE
=10 V, I
F
=0
H
FE
13K I
C
=0.5 mA
Package
Current Transfer Ratio 500 % I
F
=10 mA,
V
CE
=10 V
V
CEsat
1.0 V I
C
=2 mA,
I
F
=8 mA
Coupling Capacitance 1.5 pF
Turn On Time 5
µ
sV
CC
=10 V,
I
C
=50 mA
Turn Off Time 100
µ
sI
F
=200mA,
R
L
=180
Dimensions in inches (mm)
1
2
3
6
5
4
Base
Collector
Emitter
Anode
Cathode
NC
.010 (.25)
.014 (.35)
.110 (2.79
)
.150 (3.81
)
.130 (3.30)
.150 (3.81)
.020 (.051) min.
.300 (7.62)
typ.
.031 (0.80)
.035 (0.90)
.100 (2.54) typ.
.039
(1.00)
min.
.018 (0.45)
.022 (0.55)
.
248 (6.30)
.
256 (6.50)
.335 (8.50)
.343 (8.70)
Pin One ID.
6
5
4
12
3
18° typ.
.300 (7.62)
.347 (8.82)
4°
typ.
4N32/4N33
PHOTODARLINGTON
OPTOCOUPLER
5–2
4N32/33
Figure 1. Forward voltage versus forward current
Figure 2. Normalized non-saturated and saturated
CTRce versus LED current
Figure 3. Normalized non-saturated and saturated col-
lector-emitter current versus LED current
Figure 4. Normalized collector-base photocurrent
versus LED current
100101.1
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
IF - Forward Current - mA
VF - Forward Voltage - V
Ta = -55°
C
Ta = 25°
C
Ta = 100°
C
.1 1 10 100 1000
0.0
0.2
0.4
0.6
0.8
1.0
1.2
Vce =1V
Vce = 5 V
IF - LED Current - mA
NCTRce - Normalized CTRce
Vce = 5 V
IF = 10 mA
Ta = 25 °C
Normalized to:
100
101.1
.001
.01
.1
1
10
Vce = 1V
Vce = 5 V
IF - LED Current - mA
NIce - Normalized Ice
Ta = 25°C
IF = 10 mA
Vce = 5 V
Normalized to:
.1 1 10 100
.001
.01
.1
1
10
IF - LED Current - mA
NIcb - Normalized Icb
Ta = 25°C
Vcb = 3.5 V
IF = 10 mA
Normalized to:
Figure 5. Non-saturated and saturated HFE versus
base current
Figure 6. Low to high propagation delay versus
collector load resistance and LED current
Figure 7. High to low propagation delay versus
collector load resistance and LED current
.01 .1 1 10 100
0
2000
4000
6000
8000
1000
0
Vce = 5
V
Vce = 1
V
5
Ib - Base Current - µA
HFE - Forward Transfer Gain
Ta = 25°
0 5 10 15 20
0
20
40
60
80 Ta = 25°C, Vcc = 5
V
Vth = 1.5 V
220
470
1K
IF - LED Current - mA
tpLH - Low/High Propagation
Delay - µs
100
0 5 10 15 20
0
5
10
15
20
100
1K
IF - LED Current - mA
tpHL - High/Low Propagation
delay - µs
Ta = 25°C
Vcc = 5 V
Vth = 1.5
V
Figure 8. Switching waveform and switching schematic
IF
tR
V
O
tD
tStF
tPHL
tPLH
VTH=1.5 V
V
O
RL
VCC
IF