MC100E310 5 V ECL Low Voltage 2:8 Differential Fanout Buffer Description The MC100E310 is a low voltage, low skew 2:8 differential ECL fanout buffer designed with clock distribution in mind. The device features fully differential clock paths to minimize both device and system skew. The E310 offers two selectable clock inputs to allow for redundant or test clocks to be incorporated into the system clock trees. The lowest TPD delay time results from terminating only one output pair, and the greatest TPD delay time results from terminating all the output pairs. This shift is about 10-20 pS in TPD. The skew between any two output pairs within a device is typically about 25 nS. If other output pairs are not terminated, the lowest TPD delay time results from both output pairs and the skew is typically 25 nS. When all outputs are terminated, the greatest TPD (delay time) occurs and all outputs display about the same 10-20 ps increase in TPD, so the relative skew between any two output pairs remains about 25 ns. For more information on using PECL, designers should refer to ON Semiconductor Application Note AN1406/D. The VBB pin, an internally generated voltage supply, is available to this device only. For single-ended input conditions, the unused differential input is connected to VBB as a switching reference voltage. VBB may also rebias AC coupled inputs. When used, decouple VBB and VCC via a 0.01 mF capacitor and limit current sourcing or sinking to 0.5 mA. When not used, VBB should be left open. The 100 Series Contains Temperature Compensation. www.onsemi.com PLCC-28 FN SUFFIX CASE 776-02 MARKING DIAGRAM* 1 28 MC100E310FNG AWLYYWW Features * * * * * * * * * * * * * * Dual Differential Fanout Buffers 200 ps Part-to-Part Skew 50 ps Output-to-Output Skew 28-lead PLCC Packaging Q Output will Default LOW with Inputs Open or at VEE PECL Mode Operating Range: VCC = 4.2 V to 5.7 V with VEE = 0 V NECL Mode Operating Range: VCC = 0 V with VEE = -4.2 V to -5.7 V Internal Input 50 kW Pulldown Resistors ESD Protection: > 2 kV Human Body Model > 200 V Machine Model Meets or Exceeds JEDEC Spec EIA/JESD78 IC Latchup Test Moisture Sensitivity: Level 3 (Pb-Free) (For Additional Information, see Application Note AND8003/D) Flammability Rating: UL 94 V-0 @ 0.125 in, Oxygen Index: 28 to 34 Transistor Count = 212 Devices These Devices are Pb-Free, Halogen Free and are RoHS Compliant (c) Semiconductor Components Industries, LLC, 2016 July, 2016 - Rev. 7 1 A WL YY WW G = Assembly Location = Wafer Lot = Year = Work Week = Pb-Free Package *For additional marking information, refer to Application Note AND8002/D. ORDERING INFORMATION Package Shipping MC100E310FNG Device PLCC-28 (Pb-Free) 37 Units / Tube MC100E310FNR2G PLCC-28 (Pb-Free) 500 Tape & Reel For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. Publication Order Number: MC100E310/D MC100E310 Q0 Q0 25 24 Q1 VCCO Q1 23 22 21 Q2 Q2 20 19 Q0 Q0 Q1 VEE 26 18 Q3 Q1 CLK_SEL 27 17 Q3 Q2 CLKa 28 16 Q4 VCC Pinout: 28-Lead PLCC (Top View) 1 15 VCCO CLKa 2 14 Q4 VBB 3 13 Q5 CLKb 4 12 Q5 5 6 7 8 9 10 11 Q7 Q6 Q6 Q2 CLKa Q3 CLKa Q3 CLKb Q4 CLKb Q4 Q5 CLK_SEL Q5 Q6 Q6 CLKb NC Q7 VCCO Q7 * All VCC and VCCO pins are tied together on the die. Q7 Warning: All VCC, VCCO, and VEE pins must be externally connected to Power Supply to guarantee proper operation. VBB Figure 1. Logic Diagram and Pinout Assignment Figure 2. Logic Symbol Table 1. PIN DESCRIPTION PIN CLKa, CLKb; CLKa, CLKb Q0:7; Q0:7 CLK_SEL VBB VCC, VCCO VEE NC Table 2. FUNCTION TABLE Function PIN ECL Differential Input Pairs ECL Differential Input Pairs ECL Differential Outputs ECL Input Clock Select Reference Voltage Output Positive Supply Negative Supply No Connect 0 1 www.onsemi.com 2 Function CLKa Selected CLKb Selected MC100E310 Table 3. MAXIMUM RATINGS Symbol Parameter Condition 1 Condition 2 Rating Unit 8 V 6 -6 V V 50 100 mA mA 0.5 mA -40 to +85 C VCC PECL Mode Power Supply VEE = 0 V VI PECL Mode Input Voltage NECL Mode Input Voltage VEE = 0 V VCC = 0 V Iout Output Current Continuous Surge IBB VBB Sink/Source TA Operating Temperature Range Tstg Storage Temperature Range -65 to +150 C qJA Thermal Resistance (Junction-to-Ambient) 0 lfpm 500 lfpm PLCC-28 PLCC-28 63.5 43.5 C/W C/W qJC Thermal Resistance (Junction-to-Case) Standard Board PLCC-28 22 to 26 C/W Tsol Wave Solder (Pb-Free) 265 C VI VCC VI VEE Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. www.onsemi.com 3 MC100E310 Table 4. 100E SERIES PECL DC CHARACTERISTICS (VCCx = 5.0 V; VEE = 0 V (Note 1)) -40C Symbol Characteristic Min 25C Typ Max 55 60 Min 85C Typ Max 55 60 Min Typ Max Unit 65 70 mA IEE Power Supply Current VOH Output HIGH Voltage (Note 2) 3915 3995 4120 3975 4050 4120 3975 4050 4120 mV VOL Output LOW Voltage (Note 2) 3170 3305 3445 3190 3255 3380 3190 3260 3380 mV VIH Input HIGH Voltage (Single-Ended) 3835 3975 4120 3835 3975 4120 3835 3975 4120 mV VIL Input LOW Voltage (Single-Ended) 3190 3355 3525 3190 3355 3525 3190 3355 3525 mV VBB Output Voltage Reference 3.62 3.74 3.62 3.74 3.62 3.74 V Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 3) 2.7 4.6 2.7 4.6 2.7 4.6 V 150 mA VIHCMR IIH Input HIGH Current IIL Input LOW Current 150 0.5 0.3 150 0.5 0.25 0.5 0.2 mA NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously. 1. Input and output parameters vary 1:1 with VCC. VEE can vary -0.46 V / +0.8 V. 2. Outputs are terminated through a 50 W resistor to VCC - 2.0 V. 3. VIHCMR min varies 1:1 with VEE, max varies 1:1 with VCC. Table 5. 100E SERIES NECL DC CHARACTERISTICS (VCCx = 0 V; VEE = -5.0 V (Note 1)) -40C Symbol Characteristic Min 25C Typ Max 55 60 Min 85C Typ Max 55 60 Min Typ Max Unit 65 70 mA IEE Power Supply Current VOH Output HIGH Voltage (Note 2) -1085 -1005 -880 -1025 -950 -880 -1025 -950 -880 mV VOL Output LOW Voltage (Note 2) -1830 -1695 -1555 -1810 -1745 -1620 -1810 -1740 -1620 mV VIH Input HIGH Voltage (Single-Ended) -1165 -1025 -880 -1165 -1025 -880 -1165 -1025 -880 mV VIL Input LOW Voltage (Single-Ended) -1810 -1645 -1475 -1810 -1645 -1475 -1810 -1645 -1475 mV VBB Output Voltage Reference -1.38 -1.26 -1.38 -1.26 -1.38 -1.26 V Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 3) -2.3 -0.4 -2.3 -0.4 -2.3 -0.4 V 150 mA VIHCMR IIH Input HIGH Current IIL Input LOW Current 150 0.5 0.3 150 0.5 0.25 0.5 0.2 mA NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously. 1. Input and output parameters vary 1:1 with VCC. VEE can vary -0.46 V / +0.8 V. 2. Outputs are terminated through a 50 W resistor to VCC - 2.0 V. 3. VIHCMR min varies 1:1 with VEE, max varies 1:1 with VCC. www.onsemi.com 4 MC100E310 Table 6. AC CHARACTERISTICS (VCCx = 5.0 V; VEE= 0 V or VCCx = 0 V; VEE = -5.0 V (Note 1)) -40C Symbol Characteristic Min Typ 900 fMAX Maximum Toggle Frequency 700 tPLH tPHL Propagation Delay to Output IN (differential) (Note 2) IN (single-ended) (Note 3) 525 500 tskew Within-Device Skew (Note 4) Part-to-Part Skew (Diff) 25C Max 725 750 Min Typ 700 900 550 550 750 800 75 250 tJITTER Random Clock Jitter (RMS) VPP Input Voltage Swing (Differential Configuration) 500 tr/tf Output Rise/Fall Time (20%-80%) 200 85C Max Min Typ 700 900 575 600 50 200 <1 <1 500 600 200 200 ps ps ps 500 600 Unit MHz 775 850 50 200 <1 Max mV 600 ps NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously. 1. VEE can vary -0.46 V / +0.8 V. 2. The differential propagation delay is defined as the delay from the crossing points of the differential input signals to the crossing point of the differential output signals. See Definitions and Testing of ECLinPS AC Parameters in Chapter 1 (page 1-12) of the ON Semiconductor High Performance ECL Data Book (DL140/D). 3. The single-ended propagation delay is defined as the delay from the 50% point of the input signal to the 50% point of the output signal. 4. The within-device skew is defined as the worst case difference between any two similar delay paths within a single device. www.onsemi.com 5 MC100E310 Q Zo = 50 W D Receiver Device Driver Device Q D Zo = 50 W 50 W 50 W VTT VTT = VCC - 2.0 V Figure 3. Typical Termination for Output Driver and Device Evaluation (See Application Note AND8020/D - Termination of ECL Logic Devices) Resource Reference of Application Notes AN1405/D - ECL Clock Distribution Techniques AN1406/D - Designing with PECL (ECL at +5.0 V) AN1503/D - ECLinPSt I/O SPiCE Modeling Kit AN1504/D - Metastability and the ECLinPS Family AN1568/D - Interfacing Between LVDS and ECL AN1672/D - The ECL Translator Guide AND8001/D - Odd Number Counters Design AND8002/D - Marking and Date Codes AND8020/D - Termination of ECL Logic Devices AND8066/D - Interfacing with ECLinPS AND8090/D - AC Characteristics of ECL Devices www.onsemi.com 6 MC100E310 PACKAGE DIMENSIONS 28 LEAD PLLC FN SUFFIX CASE 776-02 ISSUE F B Y BRK -N- 0.007 (0.180) U M T L-M 0.007 (0.180) M N S T L-M S S N S D Z -M- -L- W 28 D X V 1 G1 0.010 (0.250) T L-M S N S S VIEW D-D Z A 0.007 (0.180) R 0.007 (0.180) M M T L-M S T L-M S N N H S 0.007 (0.180) M T L-M N S S S K1 C E 0.004 (0.100) G J S K SEATING PLANE F VIEW S G1 0.010 (0.250) -T- T L-M S N VIEW S S NOTES: 1. DATUMS -L-, -M-, AND -N- DETERMINED WHERE TOP OF LEAD SHOULDER EXITS PLASTIC BODY AT MOLD PARTING LINE. 2. DIMENSION G1, TRUE POSITION TO BE MEASURED AT DATUM -T-, SEATING PLANE. 3. DIMENSIONS R AND U DO NOT INCLUDE MOLD FLASH. ALLOWABLE MOLD FLASH IS 0.010 (0.250) PER SIDE. 4. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 5. CONTROLLING DIMENSION: INCH. 6. THE PACKAGE TOP MAY BE SMALLER THAN THE PACKAGE BOTTOM BY UP TO 0.012 (0.300). DIMENSIONS R AND U ARE DETERMINED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY EXCLUSIVE OF MOLD FLASH, TIE BAR BURRS, GATE BURRS AND INTERLEAD FLASH, BUT INCLUDING ANY MISMATCH BETWEEN THE TOP AND BOTTOM OF THE PLASTIC BODY. 7. DIMENSION H DOES NOT INCLUDE DAMBAR PROTRUSION OR INTRUSION. THE DAMBAR PROTRUSION(S) SHALL NOT CAUSE THE H DIMENSION TO BE GREATER THAN 0.037 (0.940). THE DAMBAR INTRUSION(S) SHALL NOT CAUSE THE H DIMENSION TO BE SMALLER THAN 0.025 (0.635). DIM A B C E F G H J K R U V W X Y Z G1 K1 INCHES MIN MAX 0.485 0.495 0.485 0.495 0.165 0.180 0.090 0.110 0.013 0.021 0.050 BSC 0.026 0.032 0.020 --0.025 --0.450 0.456 0.450 0.456 0.042 0.048 0.042 0.048 0.042 0.056 --0.020 2_ 10_ 0.410 0.430 0.040 --- www.onsemi.com 7 MILLIMETERS MIN MAX 12.32 12.57 12.32 12.57 4.20 4.57 2.29 2.79 0.33 0.53 1.27 BSC 0.66 0.81 0.51 --0.64 --11.43 11.58 11.43 11.58 1.07 1.21 1.07 1.21 1.07 1.42 --0.50 2_ 10_ 10.42 10.92 1.02 --- 0.007 (0.180) M T L-M S N S MC100E310 ECLinPS is a trademark of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. PUBLICATION ORDERING INFORMATION LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5817-1050 www.onsemi.com 8 ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative MC100E310/D