Ol def 3s75o41 oo1sasy g ote 18354 DT STI. Standard Power MOSFETs File Number 1578 IRF630, IRF631, IRF632, IRF633 Power MOS Field-Effect Transistors _ - 3875081 GE SOLID STATE N-Channel Enhancement-M ode N-CHANNEL ENHANCEMENT MODE Power Field-Effect Transistors , 0 8.0A and 9.0A, 150V-200V : ros(on) = 0.4.9 and 0.6.0 Features: 6 = SOA is power-dissipation limited @ Nanosecond switching speeds @ Linear transfer characteristics : @ High input impedance - | 9208-99741 @ Majority carrier device TERMINAL DIAGRAM The IRF630, IRF631, IRF632 and IRFE633 are n-channel enhancement-mode silicon-gate power field- TERMINAL DESIGNATION effect transistors designed for applications such as switch- souRCE ing regulators, switching converters, motor drivers, relay drivers, and drivers for high-power bipolar switching tran- DRAIN a} === DRAIN 2 coe , . (FLANGE) sistors requiring high speed and low gate-crive power. els These types can be operated directly from integrated > circuits. OP VERO GATE The IRF-types are supplied in the JEDEC TO-220AB plastic szcs-s9528 package. JEDEC TO-220AB Absolute Maximum Ratings Parameter IRF630 IRF634 IRF632 IRFG33 Unies Vos Drain - Source Voltage 200 150 200 150 Vv VoGR Drain - Gate Voltage (Rgg = 20K) 200 150 200 160 v Ip @ Fe = 25C Continuous Drain Current 9.0 9.0 8.0 80 A Ip @ Te = 100C Continvous Drain Current 60 60 50 $0 A lom Pulsed Drain Current @) 36 36 32 32 A Ves Gate Source Voltage 20 v Pp @ Tc = 25C Max. Power Dissipation 75 (See Fig 14) w Linear Desaung Factor 0.6 (See Fig 14) wed ILM Inductive Current, Clamped {See Fig 15 and 16})L = 100uH A 36 | 36 | 32 L 32 eatin Thig Storage impersare Henge 85 to 160 *c Lead Temperature 300 (0 063 1n {1 Emm) from case for 10s} eC rena vm 297; OL DE gj 5875041 0018355 2 i 3875081 G E SOLID STATE O1E 18355 DT SBP-//. Standard Power MOSFETs IRF630, IRF631, IRF632, IRF633 Electrical Characteristics @Tc = 25C (Unless Otherwise Specified) Parameter Type Min | Typ | Max | Units Test Conditions 8Vpss_Drain - Source Breakdown Voltage IRF630 200 _ . Vv Vas = OV RFG32 IRF631 = IRF633 150 - Vv Ip = 250pA Vastiht Gate Threshold Voltage ALL 20 = [40 v Vos = Va@s.lp = 250xA 1GSS __ Gate Source Leakage Forward ALL = =] s00 | A Veg = 20V 'gss _ Gate-Source Leakage Reverse ALL = |-s00 nA Veg = -20V lpss Zero Gate Voltage Drain Current ALL = = 250 BA Vpsg = Max. Rating. Vgg = OV = [1000] pA Vpg = Max Ratingx 08. Vag = OV. Tc = 125C 'Dton} On-State Deain Current @ IRF630 wrest | | - | A ' A Veg = 10V Vos? lotion * Aston) max.: Yas * F632 | go | _.| A IAF633 Roston} Static Drain-Source On State IAF630 _ Resistance @ (AF635 gas] oa | 8 Vgg = 10. Ip = 50A inf632 | _ toa | os] 2 \AF633 fs Forward Teansconductance @) ALL 30 | 48 $ (ot Vos? loton *Rosiant max. 'p = 5-04 Ciss Input Capacitance ALL = 600 | 800 oF Vos = OV. Vpg = 25V.f = 1.0MH2 Tosg _ Output Capacitance ALL | 250 | 450 pF See Fig 10 Css Reverse Transfer Capacuanca ALL = 80 150 pF tdfon} _Turn-On Delay Time ALL = = 30 ns Vpp = 90V. Ip = 5.0A. Z, = 152 ty Rise Time ALL = = 60 ns See Fig 17 tgioff) Turn Off Delay Time AUL = = 50 ns {MOSFET switching umes are essentially tf Fall time ALL _ _ 40 ns independent of operating temperature.) a Total Gate Charge _ Vag = 10V.Ip = 124. Vpg = 0.8 Max Rating % {Gate Source Plus Gate Drain) ALL 19 | 30] 8 See Fig. 18 for test circuit (Gate charge 1s essentially One Gate-Source Charge ALL _ 10 _ nc indapendant of operating temparatute.) Qog Gate-Drain ("Miller") Charge ALL - 9.0 - nc lp internal Drain Inductance - 3.5 - nH Measured from the Modified MOSFET contact screw on tab symbol showing the to center of die. internal device ALL - 4s o nH Measured from the drain lead, 6mm (0.25 9 in.) from package to. center of die. to ls Internal Source inductance ALL - 75 - nH Measured from the 6 - source lead. 6mm . (0 25 1n ) from package to source s bonding pad. Thermal Resistance Rik Junction to Case ALL - ~ [167 | ecw - Rincs Case to-Sink ALL = io [ - CW Mounting surface flat, smooth, and greased. Reinga Junction to Ambient ALL - = 80 SCAN Free Air Operation Source-Drain Diode Ratings and Characteristics Ig Continuous Source Current IRF630 _ _ 90 A Madcified MOSFET symbot {Body Dioda) (RFB31 showing the integral IRF632 teverse P-N unction rectifier. 5 wrea3 | ~ | ~ [| 8 | 4 igng Pulse Source Current IAFE30 (Body Diodel wrest | ~ | | 6] 4 s IRFB32 s weo3a | ~ | ~ | 32 | A Vsp OOlode Forward Voltage @ IRFE30 = = = nese | ~ | - | Od OY Tr = 25C, Ig = 9.0A, Vag = OV IRF632 ineega | - | 18 v Tr = 28C, Ig = 8.0A, Vgg = OV tr Reverse Recovery Time ALL -_ [450] - ns Ty = 180C, Ip = 9.08, dip/dt = 100 Alys Opn Reverse Recovered Chaige ALL 30 | ac Ty = 150C, Ip = 9.0A, digidt = 100 Als ton Forward Turn-on Time ALL Intansic turn-on ume Is neglg ble. Turn on speed ts substantially cantroiled by Lg + Lp. @Ty = 25C 10 180C, @Putso Test: Pulse width <300zs, Duty Cycle < 2%. Repetitive Rating Pulse width Limited by max. juncuon temperaturs. See Transient Thermal impedance Curve (Fig. 5).. 3875081 GE SOLID STATE gi pe WW aa7s0a1 0018356 y preset. ower MOSFETs olanaarn a im Ip, ORAIN CURRENT (AMPERES) a 40 40 i) Vog, DRAIH TO-SOURCE VOLTAGE {VOLTS} 100 Fig. 1 Typical Output Characteristics Ig, DRAIN CURRENT (AMPERES) tp, ORAIN CUARENT (AMPERES) 5 1 2 3 4 5 Vag. ORAIM TO SOURCE VOLTAGE {VOLTS} Fig. 3 Typical Saturation Characteristics 5S oo. e oe Zynacttl/Aip sc, NORMALIZED EFFECTIVE TRANSIENT THE AMAL {MPEDANCE {PEA UNIT) w ot O05 SINGLE FULSE THERMAL IMPEDANCE} 002 oot 10-5 2 5 10-4 2 5 10-3 2 5 10-2 6p, ORAIN CURRENT (AMPERES) IRF630, IRF631, IRF632, IRF633 MO PULSE Vos > lofon} Aoston) max. 0 1 2 3 4 5 7 Vgg. GATE TO SOURCE VOLTAGE (VOLTS} Fig. 2 Typical Transfer Characteristics AREA IS LIMITED BY Tr = 25C Ty = 150C MAX. 7 Ringe * 1 67 CAW, 19 2 5 10 2 $0 100 200 Vos. ORAIN TO SOURCE VOLTAGE {VOLTS} sw Fig. 4 Maximum Safe Operating Area fe tim he -t2 1 OUTY FACTOR, = zt : 2. PER UNIT BASE = Rinse = | 67 DEG. CW. 3 Tyg -Teo* Pom Ziuclll 2 5 wl 2 5 i 2 5 ty, SQUARE WAVE PULSE CURATION (SECONDS) Fig. 5 Maximum Effective Transient Therma! Impedance, Junction-to-Case Vs, Pulse Duration 299oe OE 3875081 coras7 tb 3875081 G E SOLID STATE OTE 18357. Dp T SS77)_. Standard Power MOSFETs IRF630, IRF631, IRF632, IRF633 ft, TRANSCONDUCTANCE (SIEMENS) Ipg. REVERSE ORAIN CUARENT (AMPERES) 1 Vas > tion) Boston) Ty 2 4 a 10 a 1 2 3 4 tp, ORAIH CURAENT (AMPERES) Vgp, SOURCE TO DRAIN VOLTAGE (VOLTS} Fig. 6 Typical Transconductance Vs. Drain Current Fig. 7 Typica! Source-Drain Diode Forward Voltage & BVogs, DRAIN-TO-SOURCE BREAKDOWN VOLTAGE (NORMALIZED? Aigs(on). DRAIN-TO-SOUACE ON RESISTANCE (NORMALIZED) 015 02 40 a 0 (7) 120 160 -40 q 40 0 120 Ty, UNCTION TEMPERATURE (C} Ty, JUNCTION TEMPERATURE (C? Fig. 8 Breakdown Voltage Vs. Temperature Fig. 9 Normalized On-Rasistance Vs. Temperature te1 Ging Ct gy, Crus * Cy cans S Cet yg Vpg + 40 | > 100V, \ Vps = 160v, IRF630, C, CAPACITANCE (pF} Veg GATE TO SOUACE VOLTAGE {VOLTS} Ip# IZA FOR TEST CIRCUIT FIGURE e 19 x 0 50 0 16 u 2 a Vos, OAAIN-T0 SOURCE VOLTAGE (VOLTS) ay, TOTAL GATE CHARGE {aC} Fig. 10 Typical Capacitance Vs. Drain-to-Source Voltage Fig. 11 Typical Gate Charge Vs. Gate-to-Source Voltage 300__ - - ~~DE _3875081 GE SOLID STATE 36?50481 0018358 3 16358 B r-3 9-1) Standard Power MOSFETs UTE Roston). DRAIN-TD.SOURCE ON RESISTANCE (OHMS) OF INITIAL Ty 25C (HEATING 2.0 us PULSE IS MINIMAL ) e 2 4 fg. DRAIN CURRENT (AMPERES) Fig. 12 Typical On-Resistance Vs. Drain Current 0 Po, POWER DISSIPATION (WATTS) & o 20 a 0 IRF630, IRF631, IRF632, IRF633 I 5 . FEZ, 833 Ip, DRAIN CURRENT (AMPERES) a 3 oO ri} 100 Te. CASE TEMPERATURE (0C} Fig. 13 Maximum Drain Current Vs. Cato Temperature 125 150 a 100 mo (40 ' Tc. CASE TEMPERATURE (C) Fig. 14 Power Vs. Temperature Derating Curve VARY ty TO OBTAIN REQUIRED PEAK ouT L ve Vo TO SCOPE Fig. 17 Switching Time Test Circuit , = 058Vogs Vo *.258Vas5 Fig. 16 Clamped Inductive Waveforms o os {ISOLATED SUPPLY) CURRENT REGULATOR SAME TYPE AS DUT lav T O2uf 1 partery | CURRENT = SHUNT Fig. 18 Gate Charge Test Circuit CURRENT SHUNT 301