SPIDER+ 12V TLE75004-ELD SPI Driver for Enhanced Relay Control Data Sheet Rev. 1.1, 2015-09-25 Automotive Power TLE75004-ELD Table of Contents 1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2 2.1 2.2 Block Diagram and Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3 3.1 3.2 Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Pin Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Pin Definitions and Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 4 4.1 4.2 4.3 4.3.1 4.3.2 General Product Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Functional Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Thermal Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PCB set up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Thermal Impedance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 13 15 16 16 18 5 5.1 5.2 5.3 Control Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Input pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IDLE pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Electrical Characteristics Control Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 19 19 20 6 6.1 6.1.1 6.1.2 6.1.3 6.1.4 6.1.5 6.1.6 6.2 6.2.1 6.2.2 6.3 Power Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Operation Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Power-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Sleep mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Idle mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Active mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Limp Home mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Definition of Power Supply modes transition times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Reset condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Undervoltage on VS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Low Operating Power on VDD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Electrical Characteristics Power Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 24 25 25 25 25 26 26 27 27 28 29 7 7.1 7.1.1 7.1.2 7.1.3 7.2 7.3 Power Stages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Output ON-state resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Switching Resistive Loads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Inductive Output Clamp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Maximum Load Inductance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Switching Channels in parallel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Electrical Characteristics Power Stages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 35 35 35 36 36 37 8 8.1 8.2 8.3 8.4 8.5 8.6 Protection Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Over Load Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Over Temperature Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Over Temperature and Over Load Protection in Limp Home mode . . . . . . . . . . . . . . . . . . . . . . . . . . Reverse Polarity Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Over Voltage Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Electrical Characteristics Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 39 39 40 40 40 41 9 9.1 9.2 Diagnosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 Over Load and Over Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 Output Status Monitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 Data Sheet 2 Rev. 1.1, 2015-09-25 TLE75004-ELD Table of Contents 9.3 Electrical Characteristics Diagnosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 10 10.1 10.2 10.3 10.4 10.5 10.6 10.6.1 10.6.2 10.6.3 10.6.4 Serial Peripheral Interface (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SPI Signal Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Daisy Chain Capability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Timing Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SPI Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SPI Registers Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Standard Diagnosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Register structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Register summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SPI command quick list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 11.1 Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 Further Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 12 Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 13 Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 Data Sheet 3 45 45 46 47 48 51 54 54 55 56 57 Rev. 1.1, 2015-09-25 TLE75004-ELD List of Figures List of Figures Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 Figure 10 Figure 11 Figure 12 Figure 13 Figure 14 Figure 15 Figure 16 Figure 17 Figure 18 Figure 19 Figure 20 Figure 21 Figure 22 Figure 23 Figure 24 Figure 25 Figure 26 Figure 27 Figure 28 Figure 29 Figure 30 Figure 31 Figure 32 Figure 33 Figure 34 Data Sheet Block Diagram of TLE75004-ELD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Voltage and Current definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Pin Configuration TLE75004-ELD in PG-SSOP-14-5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2s2p PCB Cross Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 PC Board for Thermal Simulation with 600 mm Cooling Area . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 PC Board for Thermal Simulation with 2s2p Cooling Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Typical Thermal Impedance. PCB setup according Chapter 4.3.1 . . . . . . . . . . . . . . . . . . . . . . . . 18 Typical Thermal Resistance. PCB setup 1s0p . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Input Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 TLE75004-ELD Internal Power Supply concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 "Cranking Operative Range" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Operation Mode state diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Transition Time diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 VS Undervoltage Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Switching a Resistive Load. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Output Clamp concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Over Load current thresholds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Latch OFF at Over Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Restart timer in Limp Home mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Output Status Monitor timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 Output Status Monitor - concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Serial Peripheral Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 Combinatorial Logic for TER bit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 Daisy Chain Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 Data Transfer in Daisy Chain Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 Timing Diagram SPI Access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 Relationship between SI and SO during SPI communication. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 Register content sent back to C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 TLE75004-ELD response after a error in transmission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 TLE75004-ELD response after coming out of Power-On reset at VDD . . . . . . . . . . . . . . . . . . . . . . 52 TLE75004-ELD response after a command syntax error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 TLE75004-ELD Application Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 PG-SSOP-14-5 Package drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 TLE75004-ELD Package pads and stencil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 4 Rev. 1.1, 2015-09-25 TLE75004-ELD List of Tables List of Tables Table 1 Table 2 Table 3 Table 4 Table 5 Table 6 Table 7 Table 8 Table 9 Table 10 Table 11 Table 12 Table 13 Table 14 Table 15 Table 16 Table 17 Table 18 Table 19 Data Sheet Product Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Functional range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Thermal Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Electrical Characteristics: Control Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Device capability as function of VS and VDD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Device function in relation to operation modes, VS and VDD voltages . . . . . . . . . . . . . . . . . . . . . . 25 Electrical Characteristics Power Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Electrical Characteristics: Power Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Electrical Characteristics Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Electrical Characteristics Diagnosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 Electrical Characteristics Serial Peripheral Interface (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 SPI Command summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 Standard Diagnosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 Register structure - all registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 Register addressing space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 Addressable registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 SPI command quick list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 Suggested Component values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 5 Rev. 1.1, 2015-09-25 SPI Driver for Enhanced Relay Control 1 TLE75004-ELD Overview Features * 16-bit serial peripheral interface for control and diagnosis * Daisy Chain capability SPI also compatible with 8-bit SPI devices * 2 CMOS compatible parallel input pins with Input Mapping functionality * Cranking capability down to VS = 3.0 V (supports LV124) * Digital supply voltage range compatible with 3.3 V and 5 V microcontrollers * Very low quiescent current (with usage of IDLE pin) * Limp Home mode (with usage of IDLE and IN pins) * Green Product (RoHS compliant) * AEC Qualified PG-SSOP-14-5 Package Marking PG-SSOP-14-5 TLE75004ELD Description The TLE75004-ELD is a four channel low-side power switch in PG-SSOP-14-5 package providing embedded protective functions. It is specially designed to control relays and LEDs in automotive and industrial applications. A serial peripheral interface (SPI) is utilized for control and diagnosis of the loads as well as of the device. For direct control and PWM there are two input pins available connected to two outputs by default. Additional or different outputs can be controlled by the same input pins (programmable via SPI). Table 1 Product Summary Parameter Symbol Values Analog supply voltage VS 3.0 V ... 28 V Digital supply voltage VDD 3.0 V ... 5.5 V Minimum overvoltage protection VS(AZ) 42 V (see Chapter 8.5 for details) Maximum on-state resistance at TJ = 150 C RDS(ON) 2.2 Nominal load current (TA = 85 C, all channels) IL(NOM) 470 mA Maximum Energy dissipation - repetitive EAR 10 mJ @ IL(EAR) = 220 mA Minimum Drain to Source clamping voltage VDS(CL) 42 V Maximum overload switch OFF threshold IL(OVL0) 2.3 A Maximum total quiescent current at TJ 85 C ISLEEP 5 A Maximum SPI clock frequency fSCLK 5 MHz Data Sheet 6 Rev. 1.1, 2015-09-25 TLE75004-ELD Overview Applications * Low-side switches for 12 V in automotive or industrial applications such as lighting, heating, motor driving, energy and power distribution * Especially designed for driving relays, LEDs and motors. Protective Functions * Reverse battery protection on VS without external components * Short circuit to ground and battery protection * Stable behavior at under voltage conditions ("Lower Supply Voltage Range for Extended Operation") * Over Current latch OFF * Thermal shutdown latch OFF * Overvoltage protection * Loss of ground protection * Loss of battery protection * Electrostatic discharge (ESD) protection Diagnostic Features * Latched diagnostic information via SPI register * Over Load detection at ON state * Open Load detection at OFF state using Output Status Monitor function * Output Status Monitor * Input Status Monitor Application Specific Functions * Fail-safe activation via Input pins in Limp-Home Mode * SPI with Daisy Chain capability * Safe operation at low battery voltage (cranking) Detailed Description The TLE75004-ELD is a four channel low-side switch providing embedded protective functions. The output stages incorporate four low-side switches (typical RDS(ON) at TJ = 25C is 1 ). The 16-bit serial peripheral interface (SPI) is utilized to control and diagnose the device and the loads. The SPI interface provides daisy chain capability in order to assemble multiple devices (also devices with 8 bit SPI) in one SPI chain by using the same number of microcontroller pins. This device is designed for low supply voltage operation, therefore being able to keep its state at low battery voltage (VS 3.0 V). The SPI functionality, including the possibility to program the device, is available only when the digital power supply is present (see Chapter 6 for more details). The TLE75004-ELD is equipped with two input pins that are connected to two outputs, making them controllable even when the digital supply voltage is not available. With the Input Mapping functionality it is possible to connect the input pins to different outputs, or assign more outputs to the same input pin. In this case more channels can be controlled with one signal applied to one input pin. Data Sheet 7 Rev. 1.1, 2015-09-25 TLE75004-ELD Overview In Limp Home mode (Fail-Safe mode) the input pins are directly routed to channels 2 and 3. When IDLE pin is "low", it is possible to activate the two channels using the input pins independently from the presence of the digital supply voltage. The device provides diagnosis of the load via Open Load at OFF state (with DIAG_OSM.OUTn bits) and short circuit detection. For Open Load at OFF state detection, a internal current source IOL can be activated via SPI. Each output stage is protected against short circuit. In case of Overload, the affected channel switches OFF when the Overload Detection Current IL(OVLn) is reached and can be reactivated via SPI. In Limp Home mode operation, the channels connected to an input pin set to "high" restart automatically after Output Restart time tRETRY(LH) is elapsed. Temperature sensors are available for each channel to protect the device against Over Temperature. The power transistors are built by N-channel power MOSFET . The inputs are ground referenced TTL compatible. The device is monolithically integrated in Smart Power Technology. Data Sheet 8 Rev. 1.1, 2015-09-25 TLE75004-ELD Block Diagram and Terms 2 Block Diagram and Terms 2.1 Block Diagram VS VDD power supply IDLE Power mode control IN0 Limp Home IN1 input register CSN SCLK SI SO control, diagnostic and protective functions temperature sensor Over Load detection SPI Output Status Monitor diagnosis register low-side gate control OUT3_LS OUT2_LS OUT1_LS OUT0_LS GND BlockDiagram _4LS.emf Figure 1 Data Sheet Block Diagram of TLE75004-ELD 9 Rev. 1.1, 2015-09-25 TLE75004-ELD Block Diagram and Terms 2.2 Terms Figure 2 shows all terms used in this data sheet, with associated convention for positive values. VS IVS VS IVD D VDD VDD IL_D0 IIDLE OUT0_LS IDLE VIDLE VDS0 IIN 0 IN0 VIN 0 IL_D1 IIN 1 OUT1_LS VDS1 IN1 VIN 1 ICSN IL_D2 CSN VCSN OUT2_LS ISCLK VSCLK VSI VSO VDS2 SCLK ISI IL_D3 SI OUT3_LS ISO SO VDS3 GND IGND Terms_4LS.emf Figure 2 Voltage and Current definition In all tables of electrical characteristics the channel related symbols without channel numbers are valid for each channel separately (e.g. VDS specification is valid for VDS0 ... VDS3). Furthermore, parameters relative to output current can be indicated without specifying whether the current is going into the Drain pin or going out of the Source pin, unless otherwise specified. For instance, nominal output current can be indicated in the following ways: IL(NOM) IL_LS(NOM) IL_D(NOM) All SPI registers bits are marked as follows: ADDR.PARAMETER (e.g. HWCR.RST) with the exception of the bits in the Diagnosis frames which are marked only with PARAMETER (e.g. UVRVS). Data Sheet 10 Rev. 1.1, 2015-09-25 TLE75004-ELD Pin Configuration 3 Pin Configuration 3.1 Pin Assignment CSN SCLK SI SO GND OUT0_LS OUT2_LS 1 2 3 4 5 6 7 15 SUB exposed pad (bottom) (top view) 14 13 12 11 10 9 8 VDD IN0 IN1 IDLE VS OUT1_LS OUT3_LS PinOut_4LS.emf Figure 3 Data Sheet Pin Configuration TLE75004-ELD in PG-SSOP-14-5 11 Rev. 1.1, 2015-09-25 TLE75004-ELD Pin Configuration 3.2 Pin Definitions and Functions Pin Symbol I/O Function Power Supply Pins 10 VS - Analog supply VS Positive supply voltage for power switches gate control (incl. protections) 14 VDD - Digital supply VDD Supply voltage for SPI with support function to VS 5 GND - Ground Ground connection 1 CSN I Chip Select "low" active, integrated pull-up to VDD 2 SCLK I Serial Clock "high" active, integrated pull-down to ground 3 SI I Serial Input "high" active, integrated pull-down to ground 4 SO O Serial Output "Z" (tri-state) when CSN is "high" SPI Pins Input and Stand-by Pins 11 IDLE I Idle mode power mode control, "high" active, integrated pull-down to ground 13 IN0 I Input pin 0 connected to channel 2 by default and in Limp Home mode, "high" active, integrated pull-down to ground 12 IN1 I Input pin 1 connected to channel 3 by default and Limp Home mode, "high" active, integrated pull-down to ground Power Ouput Pins 6 OUT0_LS O Drain of low-side power transistor (channel 0) 7 OUT2_LS O Drain of low-side power transistor (channel 2) 8 OUT3_LS O Drain of low-side power transistor (channel 3) 9 OUT1_LS O Drain of low-side power transistor (channel 1) GND - Exposed pad It is recommended to connect it to PCB ground for cooling and EMC - not usable as electrical GND pin. Electrical ground must be provided by pin 5. Cooling Tab 15 Data Sheet 12 Rev. 1.1, 2015-09-25 TLE75004-ELD General Product Characteristics 4 General Product Characteristics 4.1 Absolute Maximum Ratings Table 2 Absolute Maximum Ratings 1) TJ = -40 C to +150 C all voltages with respect to ground, positive current flowing into pin (unless otherwise specified) Parameter Symbol Values Min. Typ. Max. Unit Note / Test Condition Number Supply Voltages Analog Supply voltage VS -0.3 - 28 V - P_4.1.1 Digital Supply voltage VDD -0.3 - 5.5 V - P_4.1.2 P_4.1.3 Supply voltage for load dump protection VS(LD) - - 42 V 2) Supply voltage for short circuit protection (single pulse) VS(SC) 0 - 28 V - P_4.1.4 Reverse polarity voltage -VS(REV) - - 16 V 3) P_4.1.5 TJ(0) = 25 C t 2 min See Chapter 11 for general setup. RL = 70 on all channels Current through VS pin IVS -10 - 10 mA t 2 min P_4.1.7 Current through VDD pin IVDD -50 - 10 mA t 2 min P_4.1.8 Load current | IL | - - IL(OVL0) A single channel P_4.1.9 Voltage at power transistor VDS -0.3 - 42 V - P_4.1.10 mJ 4) P_4.1.13 Power Stages Maximum energy dissipation single pulse EAS - Maximum energy dissipation single pulse EAS - Maximum energy dissipation repetitive pulses - IL(EAR) EAR - - 50 TJ(0) = 25 C IL(0) = 2*IL(EAR) - 25 mJ 4) P_4.1.14 TJ(0) = 150 C IL(0) = 400 mA - 10 mJ 4) P_4.1.16 TJ(0) = 85 C IL(0) = IL(EAR) 2*106 cycles IDLE pin Voltage at IDLE pin VIDLE -0.3 5.5 V - P_4.1.23 Current through IDLE pin IIDLE -0.75 0.75 mA - P_4.1.25 Current through IDLE pin IIDLE -10.0 2.0 mA t 2 min. P_4.1.26 Data Sheet 13 Rev. 1.1, 2015-09-25 TLE75004-ELD General Product Characteristics Table 2 Absolute Maximum Ratings (cont'd)1) TJ = -40 C to +150 C all voltages with respect to ground, positive current flowing into pin (unless otherwise specified) Parameter Symbol Values Min. Unit Note / Test Condition Number Typ. Max. Input Pins Voltage at input pins VIN -0.3 5.5 V - P_4.1.28 Current through input pins IIN -0.75 0.75 mA - P_4.1.30 Current through input pins IIN -10.0 2.0 mA t 2 min. P_4.1.31 Voltage at chip select pin VCSN -0.3 5.5 V - P_4.1.33 Current through chip select pin ICSN -0.75 0.75 mA - P_4.1.34 Current through chip select pin ICSN -10.0 2.0 mA t 2 min. P_4.1.35 Voltage at serial clock pin VSCLK -0.3 5.5 V Current through serial clock pin ISCLK -0.75 0.75 mA - P_4.1.38 Current through serial clock pin ISCLK -10.0 2.0 mA t 2 min. P_4.1.39 Voltage at serial input pin VSI -0.3 5.5 V Current through serial input pin ISI -0.75 0.75 mA - P_4.1.42 Current through serial input pin ISI -10.0 2.0 mA t 2 min. P_4.1.43 Voltage at serial output pin SO VSO -0.3 VDD+0.3 V P_4.1.58 Current through serial output pin ISO SO -0.75 0.75 mA P_4.1.45 Current through serial output pin ISO SO -2.0 10.0 mA t 2 min. P_4.1.46 SPI Pins P_4.1.37 P_4.1.41 Temperatures Junction Temperature TJ -40 - 150 C - P_4.1.48 Storage Temperature Tstg -55 - 150 C - P_4.1.49 ESD Susceptibility HBM OUT pins vs. VS or GND VESD -4 - 4 kV 5) P_4.1.50 ESD Susceptibility HBM other pins VESD ESD Susceptibility CDM Pin 1, 7, 8, 14 (corner pins) VESD ESD Susceptibility CDM VESD ESD Susceptibility HBM -2 - 2 kV 5) P_4.1.51 HBM -750 - 750 V 6) P_4.1.53 CDM -500 - 500 V 6) P_4.1.54 CDM 1) Not subject to production test, specified by design. 2) For a duration of ton = 400 ms; ton/toff = 10%; limited to 100 pulses 3) Device is mounted on a FR4 2s2p board according to Jedec JESD51-2,-5,-7 at natural convection; the Product (Chip+Package) was simulated on a 76.2 *114.3 *1.5 mm board with 2 inner copper layers (2 * 70 m Cu, 2 * 35 m Cu). Where applicable a thermal via array under the exposed pad contacted the first inner copper layer. 4) Pulse shape represents inductive switch off: IL(t) = IL(0) x (1 - t / tpulse); 0 < t < tpulse 5) ESD susceptibility, HBM according to ANSI/ESDA/JEDEC JS001 (1.5k , 100 pF) 6) ESD susceptibility, Charged Device Model "CDM" ESDA STM5.3.1 or ANSI/ESD S.5.3.1 Data Sheet 14 Rev. 1.1, 2015-09-25 TLE75004-ELD General Product Characteristics Notes 1. Stresses above the ones listed here may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. 2. Integrated protection functions are designed to prevent IC destruction under fault conditions described in the data sheet. Fault conditions are considered as "outside" normal operating range. Protection functions are not designed for continuous repetitive operation. 4.2 Functional Range Table 3 Functional range Parameter Supply Voltage Range for Normal Operation Symbol VS(NOR) Upper Supply Voltage Range VS(EXT,UP) for Extended Operation Values Unit Note / Test Condition Number P_4.2.1 Min. Typ. Max. 7 - 18 V - 18 - 28 V Parameter deviation P_4.2.2 possible - 7 V Parameter deviation P_4.2.3 possible Lower Supply Voltage Range VS(EXT,LOW) 3 for Extended Operation Junction Temperature TJ -40 - 150 C - P_4.2.4 Logic supply voltage VDD 3 - 5.5 V - P_4.2.5 Note: Within the functional or operating range, the IC operates as described in the circuit description. The electrical characteristics are specified within the conditions given in the Electrical Characteristics table. Data Sheet 15 Rev. 1.1, 2015-09-25 TLE75004-ELD General Product Characteristics 4.3 Thermal Resistance Note: This thermal data was generated in accordance with JEDEC JESD51 standards. For more information, go to www.jedec.org. Table 4 Thermal Resistance Parameter Symbol Junction to Soldering Point RthJSP Values Min. Typ. Max. - 5 7 Unit Note / Test Condition Number K/W 1) P_4.3.2 measured to exposed pad (pin 15) Junction to Ambient RthJA - 32 - K/W 2) P_4.3.6 1) not subject to production test, specified by design 2) Specified RthJA value is according to Jedec JESD51-2,-5,-7 at natural convection on FR4 2s2p board; the Product (Chip+Package) was simulated on a 76.2 * 114.3 * 1.5 mm board with 2 inner copper layers (2 * 70 m Cu, 2 * 35 m Cu). Where applicable a thermal via array under the exposed pad contacted the first inner copper layer. 4.3.1 PCB set up 70m 1.5mm 35m 0.3mm Figure 4 Data Sheet Zth_PCB_2s2p.emf 2s2p PCB Cross Section 16 Rev. 1.1, 2015-09-25 TLE75004-ELD General Product Characteristics Figure 5 PC Board for Thermal Simulation with 600 mm Cooling Area Figure 6 PC Board for Thermal Simulation with 2s2p Cooling Area Data Sheet 17 Rev. 1.1, 2015-09-25 TLE75004-ELD General Product Characteristics 4.3.2 Thermal Impedance 4 Channels Low Side 100 ZthJA (K/W) Tambient = 105C 10 1 2s2p 1s0p - 600 mm 1s0p - 300 mm 1s0p - footprint 0.1 0.0001 Figure 7 0.001 0.01 0.1 Time (s) 1 10 100 1000 Typical Thermal Impedance. PCB setup according Chapter 4.3.1 4 Channels Low Side 110 1s0p - Tambient = 105C 100 RthJA (K/W) 90 80 70 60 50 0 100 200 300 400 500 600 Area (mm) Figure 8 Data Sheet Typical Thermal Resistance. PCB setup 1s0p 18 Rev. 1.1, 2015-09-25 TLE75004-ELD Control Pins 5 Control Pins The device has three pins (IN0, IN1 and IDLE) to control directly the device without using SPI. 5.1 Input pins TLE75004-ELD has two input pins available. Each input pin is connected by default to one channel (IN0 to channel 2, IN1 to channel 3). Input Mapping Registers MAPIN0 and MAPIN1 can be programmed to connect additional or different channels to each input pin, as shown in Figure 9. The signals driving the channels are an OR combination between OUT register status, IN0 and IN1 (according to Input Mapping registers status). IN1 Limp Home mode (default ) IIN1 MAPIN1 & 4 4 IN0 Limp Home mode (default ) IIN0 OR MAPIN0 & 4 4 Channel 3 Channel 2 Channel 1 Channel 0 4 OR OUT 4 4 InputMapping_4ch.emf Figure 9 Input Mapping The logic level of the input pins can be monitored via the Input Status Monitor Register (INST). The Input Status Monitor is operative also when TLE75004-ELD is in Limp Home mode. If one of the Input pins is set to "high" and the IDLE pin is set to "low", the device switches into Limp Home mode and activates the channel mapped by default to the input pins. See Chapter 6.1.5 for further details. 5.2 IDLE pin The IDLE pin is used to bring the device into Sleep mode operation when is set to "low" and all input pins are set to "low".When IDLE pin is set to "low" while one of the input pins is set to "high" the device enters Limp Home mode. To ensure a proper mode transition, IDLE pin must be set for at least tIDLE2SLEEP (P_6.3.54, transition from "high" to "low") or tSLEEP2IDLE (P_6.3.53, transition from "low" to "high"). Setting the IDLE pin to "low" has the following consequences: * All registers in the SPI are reset to default values * VDD and VS Undervoltage detection circuits are disabled to decrease current consumption (if both inputs are set to "low") * No SPI communication is allowed (SO pin remains in high impedance state also when CSN pin is set to "low") if both input pins are set to "low" Data Sheet 19 Rev. 1.1, 2015-09-25 TLE75004-ELD Control Pins 5.3 Electrical Characteristics Control Pins Table 5 Electrical Characteristics: Control Pins VDD = 3 V to 5.5 V, VS = 7 V to 18 V, TJ = -40 C to +150 C (unless otherwise specified) Typical values: VDD = 5 V, VS = 13.5 V, TJ = 25 C Parameter Symbol Values Min. Typ. Unit Note / Test Condition Number Max. IDLE pin L-input level VIDLE(L) 0 0.8 V - P_5.3.1 H-input level VIDLE(H) 2.0 5.5 V - P_5.3.2 L-input current IIDLE(L) 5 12 20 A VIDLE = 0.8 V P_5.3.3 H-input current IIDLE(H) 14 28 45 A VIDLE = 2.0 V P_5.3.4 L-input level VIN(L) 0 0.8 V - P_5.3.5 H-input level VIN(H) 2.0 5.5 V - P_5.3.6 L-input current IIN(L) 5 12 20 A VIN = 0.8 V P_5.3.7 H-input current IIN(H) 14 28 45 A VIN = 2.0 V P_5.3.8 Input Pins Data Sheet 20 Rev. 1.1, 2015-09-25 TLE75004-ELD Power Supply 6 Power Supply The TLE75004-ELD is supplied by two supply voltages: VS (analog supply voltage used also for the logic) * VDD (digital supply voltage) The VS supply line is connected to a battery feed and used, in combination with VDD supply, for the driving circuitry of the power stages. In situations where VS voltage drops below VDD voltage (for instance during cranking events * down to 3.0 V), an increased current consumption may be observed at VDD pin. VS and VDD supply voltages have an undervoltage detection circuit, which prevents the activation of the associated function in case the measured voltage is below the undervoltage threshold. More in detail: * An undervoltage on both VS and VDD supply voltages prevents the activation of the power stages and any SPI communication (the SPI registers are reset) * An undervoltage on VDD supply prevents any SPI communication. SPI read/write registers are reset to default values. * An undervoltage on VS supply forces the TLE75004-ELD to drain all needed current for the low-side switches and for the logic from VDD supply. Figure 10 shows a basic concept drawing of the interaction between supply pins VS and VDD, the output stage drivers and SO supply line. VS LS IVS VREG VDD GD UVR VDD IVDD GND UVR VS SO SPI SupplyConcept_xLS.emf Figure 10 TLE75004-ELD Internal Power Supply concept When 3.0 V VS VDD - VSDIFF TLE75004-ELD operates in "Cranking Operative Range" (COR). In this condition the current consumption from VDD pin increases while it decreases from VS pin where the total current consumption remains within the specified limits. Figure 11 shows the voltage levels at VS pin where the device goes in and out of COR. During the transition to and from COR operative region, IVS and IVDD change between values defined for normal operation and for COR operation. The sum of both current remains within limits specified in "Overall current consumption" section (see Table 8). Data Sheet 21 Rev. 1.1, 2015-09-25 TLE75004-ELD Power Supply VS VDD + V SDIFF VDD V DD - V SDIFF 3.0 V t COR (no) yes (no) t IVS Supply transition Supply transition IVDD t SupplyConcept_COR.emf Figure 11 "Cranking Operative Range" Furthermore, when VS(UV) VS VS(OP) it may be not possible to switch ON a channel that was previously OFF. All channels that are already ON keep their state unless they are switched OFF via SPI or via INn pins. An overview of channel behavior according to different VS and VDD supply voltages is shown in Table 6 (the table is valid after a successful power-up, see Chapter 6.1.1 for more details). Data Sheet 22 Rev. 1.1, 2015-09-25 TLE75004-ELD Power Supply Table 6 Device capability as function of VS and VDD VS 3.0 V 3.0 V = VS(UV),max (P_6.3.1) 3.0 V < VS VS(OP) (VS(OP) = P_6.3.2) VDD VDD(UV) (VDD(UV) = P_6.3.25) VDD = VDD(LOP) (VDD(LOP) = P_6.3.24) VDD > VDD(LOP) channels cannot be controlled channels can be switched channels can be switched ON and OFF (SPI control) ON and OFF (SPI control) (RDS(ON) deviations possible) (RDS(ON) deviations possible) SPI registers reset SPI registers available SPI registers available SPI communication not available (fSCLK = 0 MHz) SPI communication possible SPI communication possible (fSCLK = 1 MHz) (P_10.4.34) (fSCLK = 5 MHz) (P_10.4.22) Limp Home mode not available Limp Home mode available Limp Home mode available (RDS(ON) deviations possible) (RDS(ON) deviations possible) channels cannot be controlled by SPI channels can be switched channels can be switched ON and OFF (SPI control)1) ON and OFF (SPI control)1) (RDS(ON) deviations possible) (RDS(ON) deviations possible) SPI registers reset SPI registers available SPI registers available SPI communication not available (fSCLK = 0 MHz) SPI communication possible SPI communication possible (fSCLK = 1 MHz) (P_10.4.34) (fSCLK = 5 MHz) (P_10.4.22) Limp Home mode available1) Limp Home mode available1) Limp Home mode available (RDS(ON) deviations possible) (RDS(ON) deviations possible) (RDS(ON) deviations possible) VS > VS(OP) channels can be switched ON and OFF (small RDS(ON) dev. possible when VS = VS(EXT,LOW)) channels can be switched ON and OFF (small RDS(ON) dev. possible when VS = VS(EXT,LOW)) SPI registers reset SPI registers available SPI registers available SPI communication not available (fSCLK = 0 MHz) SPI communication possible SPI communication possible (fSCLK = 5 MHz) (P_10.4.22) (fSCLK = 5 MHz) (P_10.4.22) channels cannot be controlled by SPI Limp Home mode available Limp Home mode available Limp Home mode available (RDS(ON) dev. possible when (RDS(ON) dev. possible when (RDS(ON) dev. possible when VS = VS(EXT,LOW)) VS = VS(EXT,LOW)) VS = VS(EXT,LOW)) 1) undervoltage condition on VS must be considered - see Chapter 6.2.1 for more details Data Sheet 23 Rev. 1.1, 2015-09-25 TLE75004-ELD Power Supply 6.1 Operation Modes TLE75004-ELD has the following operation modes: * Sleep mode * Idle mode * Active mode * Limp Home mode The transition between operation modes is determined according to following levels and states: * logic level at IDLE pin * logic level at INn pins * OUT.OUTn bits state * HWCR.ACT bit state The state diagram including the possible transitions is shown in Figure 12. The behaviour of TLE75004-ELD as well as some parameters may change in dependence from the operation mode of the device. Furthermore, due to the undervoltage detection circuitry which monitors VS and VDD supply voltages, some changes within the same operation mode can be seen accordingly. The operation mode of the TLE75004-ELD can be observed by: * status of output channels * status of SPI registers * current consumption at VDD pin (IVDD) * current consumption at VS pin (IVS) The default operation mode to switch ON the loads is Active mode. If the device is not in Active mode and a request to switch ON one or more outputs comes (via SPI or via Input pins), it will switch into Active or Limp Home mode, according to IDLE pin status. Due to the time needed for such transitions, output turn-on time tON will be extended due to the mode transition latency. init IDLE = high" INn = low" Sleep INn = high" & IDLE = low" IDLE = low" Idle INn = low" & VDD < VDD(UV) IDLE = low" & INn = low" HWCR.ACT = 0 & OUT.OUTn = 0 & INn = low" Limp Home IDLE = high" Active IDLE = low" & INn = high" HWCR.ACT = 1 or OUT.OUTn = 1 or INn = high" Figure 12 Data Sheet OpModes.emf Operation Mode state diagram 24 Rev. 1.1, 2015-09-25 TLE75004-ELD Power Supply Table 7 shows the correlation between device operation modes, VS and VDD supply voltages, and state of the most important functions (channels operativity, SPI communication and SPI registers). Table 7 Device function in relation to operation modes, VS and VDD voltages Operation Mode Function Undervoltage condition on VS1) VDD VDD(UV) Undervoltage condition on VS VDD > VDD(UV) VS not in undervoltage VDD VDD(UV) VS not in undervoltage VDD >VDD(UV) Sleep Channels not available not available not available not available SPI comm. not available not available not available not available SPI registers reset reset reset reset Channels not available not available not available not available SPI comm. not available not available SPI registers reset reset Channels not available (IN pins only) SPI comm. not available not available SPI registers reset reset Channels not available (IN pins only) (IN pins only) (IN pins only) SPI comm. not available (read-only) not available (read-only) reset (read-only) reset (read-only)2) Idle Active Limp Home SPI registers 2) 1) see Chapter 6.2.1 for more details 2) see Chapter 6.1.5 for a detailed overview 6.1.1 Power-up The Power-up condition is satisfied when one of the supply voltages (VS or VDD) is applied to the device and the INn or IDLE pins are set to "high". If VS is above the threshold VS(OP) or if VDD is above the threshold VDD(LOP) the internal power-on signal is set. 6.1.2 Sleep mode When TLE75004-ELD is in Sleep mode, all outputs are OFF and the SPI registers are reset, independently from the supply voltages. The current consumption is minimum. See parameters IVDD(SLEEP) and IVS(SLEEP), or parameter ISLEEP for the whole device. 6.1.3 Idle mode In Idle mode, the current consumption of the device can reach the limits given by parameters IVDD(IDLE) and IVS(IDLE), or by parameter IIDLE for the whole device. The internal voltage regulator is working. Diagnosis functions are not available. The output channels are switched OFF, independently from the supply voltages. When VDD is available, the SPI registers are working and SPI communication is possible. In Idle mode the ERRn bits are not cleared for functional safety reasons. 6.1.4 Active mode Active mode is the normal operation mode of TLE75004-ELD when no Limp Home condition is set and it is necessary to drive some or all loads. Voltage levels of VDD and VS influence the behavior as described at the beginning of Chapter 6. Device current consumption is specified with IVDD(ACTIVE) and IVS(ACTIVE) (IACTIVE for the Data Sheet 25 Rev. 1.1, 2015-09-25 TLE75004-ELD Power Supply whole device). The device enters Active mode when IDLE pin is set to "high" and one of the input pins is set to "high" or one OUT.OUTn bit is set to "1". If HWCR.ACT is set to "0", the device returns to Idle mode as soon as all inputs pins are set to "low" and OUT.OUTn bits are set to "0". If HWCR.ACT is set to "1", the device remains in Active mode independenly of the status of input pins and OUT.OUTn bits. An undervoltage condition on VDD supply brings the device into Idle mode, if all input pins are set to "low". Even if the registers MAPIN0 and MAPIN1 are both set to "00H" but one of the input pins INn is set to "high", the device goes into Active mode. 6.1.5 Limp Home mode TLE75004-ELD enters Limp Home mode when IDLE pin is "low" and one of the input pins is set to "high", switching ON the channel connected to it. SPI communication is possible but only in read-only mode (SPI registers can be read but cannot be written). More in detail: * UVRVS and LOPVDD are set to "1" * MODE bits are set to "01B" (Limp Home mode) * TER bit is set to "1" on the first SPI command after entering Limp Home mode. Afterwards it works normally * OLOFF bits is set to "0" * ERRn bits work normally * DIAG_OSM.OUTn bits can be read and work normally * All other registers are set to their default value and cannot be programmed as long as the device is in Limp Home mode See Table 6 for a detailed overview of supply voltage conditions required to switch ON channels 2 and 3 during Limp Home. All other channels are OFF. A transmission of SPI commands during transition from Active to Limp Home mode or Limp Home to Active mode may result in undefined SPI responses. 6.1.6 Definition of Power Supply modes transition times The channel turn-ON time is as defined by parameter tON when TLE75004-ELD is in Active mode or in Limp Home mode. In all other cases, it is necessary to add the transition time required to reach one of the two aforementioned Power Supply modes (as shown in Figure 13). Data Sheet 26 Rev. 1.1, 2015-09-25 TLE75004-ELD Power Supply init tSLEEP2IDLE tLH2SLEEP Sleep tIDLE2SLEEP tACTIVE2SLEEP Idle tSLEEP2LH Channel ON tON Limp Home tON tACTIVE2IDLE tLH2ACTIVE Active tIDLE2ACTIVE tACTIVE2LH OpModesTimings.emf Figure 13 Transition Time diagram 6.2 Reset condition One of the following 3 conditions resets the SPI registers to the default value: * VDD is not present or below the undervoltage threshold VDD(UV) * IDLE pin is set to "low" * a reset command (HWCR.RST set to "1") is executed - ERRn bits are not cleared by a reset command (for functional safety) - UVRVS and LOPVDD bits are cleared by a reset command In particular, all channels are switched OFF (if there are no input pin set to "high") and the Input Mapping configuration is reset. 6.2.1 Undervoltage on VS Between VS(UV) and VS(OP) the undervoltage mechanism is triggered. If the device is operative and the supply voltage drops below the undervoltage threshold VS(UV), the logic set the bit UVRVS to "1". As soon as the supply voltage VS is above the minimum voltage operative threshold VS(OP), the bit UVRVS is set to "0" after the first Standard Diagnosis readout. Undervoltage condition on VS influences the status of the channels, as described in Table 6. Figure 14 sketches the undervoltage behavior. Data Sheet 27 Rev. 1.1, 2015-09-25 TLE75004-ELD Power Supply VS VS(OP) VS(UV) VS(HYS) t UVRVS 1 0 1 t Supply_UVRVS_LS.emf Figure 14 VS Undervoltage Behavior 6.2.2 Low Operating Power on VDD When VDD supply voltage is in the range indicated by VDD(LOP), the bit LOPVDD is set to "1". As soon as VDD > VDD(LOP) the bit LOPVDD is set to "0" after the first Standard Diagnosis readout. If VDD supply voltage is not present, a voltage applied to pins CSN or SO can supply the internal logic (not recommended in normal operation due to internal design limitations). Data Sheet 28 Rev. 1.1, 2015-09-25 TLE75004-ELD Power Supply 6.3 Electrical Characteristics Power Supply Table 8 Electrical Characteristics Power Supply VDD = 3 V to 5.5 V, VS = 7 V to 18 V, TJ = -40 C to +150 C, all voltages with respect to ground, positive currents flowing as described in Figure 2 (unless otherwise specified) Typical values: VDD = 5 V, VS = 13.5 V, TJ = 25 C Parameter Symbol Values Min. Typ. Max. Unit Note / Test Condition Number VS pin Analog supply undervoltage shutdown VS(UV) 1.5 - 3.0 V OUTn = ON from VDS 1 V to UVRVS = 1B RL = 50 P_6.3.1 Analog supply minimum operative voltage VS(OP) - - 4.0 V OUT.OUTn = 1B from UVRVS = 1B to VDS 1 V RL = 50 P_6.3.2 Undervoltage shutdown hysteresis VS(HYS) - 1 - V 1) P_6.3.3 Analog supply current consumption in Sleep mode with loads IVS(SLEEP) - 0.1 3 A 1) P_6.3.4 Analog supply current consumption in Sleep mode with loads IVS(SLEEP) - VIDLE floating VINn floating VCSN = VDD TJ 85 C 0.1 - A 1) P_6.3.63 VIDLE floating VINn floating VCSN = VDD TJ 85 C VS = 13.5 V Analog supply current consumption in Sleep mode with loads IVS(SLEEP) - 0.1 20 A VIDLE floating VINn floating VCSN = VDD TJ = 150 C Analog supply current consumption in Idle mode with loads IVS(IDLE) - - 2.2 mA IDLE = "high" P_6.3.6 VINn floating fSCLK = 0 MHz HWCR.ACT = 0B OUT.OUTn = 0B DIAG_IOL.OUTn = 0B VCSN = VDD Data Sheet 29 P_6.3.5 Rev. 1.1, 2015-09-25 TLE75004-ELD Power Supply Table 8 Electrical Characteristics Power Supply (cont'd) VDD = 3 V to 5.5 V, VS = 7 V to 18 V, TJ = -40 C to +150 C, all voltages with respect to ground, positive currents flowing as described in Figure 2 (unless otherwise specified) Typical values: VDD = 5 V, VS = 13.5 V, TJ = 25 C Parameter Symbol Values Min. Typ. Max. Unit Note / Test Condition Number Analog supply current consumption in Idle mode with loads (COR) IVS(IDLE) - - 0.3 mA P_6.3.7 IDLE = "high" VINn floating fSCLK = 0 MHz HWCR.ACT = 0B OUT.OUTn = 0B DIAG_IOL.OUTn = 0B VCSN = VDD VS VDD - 1 V Analog supply current consumption in Active mode with loads - channels OFF IVS(ACTIVE) - - 3.2 mA IDLE = "high" P_6.3.11 VINn floating fSCLK = 0 MHz HWCR.ACT = 1B OUT.OUTn = 0B DIAG_IOL.OUTn = 0B VCSN = VDD Analog supply current consumption in Active mode with loads - channels OFF (COR) IVS(ACTIVE) - 0.1 0.3 mA P_6.3.12 IDLE = "high" VINn floating fSCLK = 0 MHz HWCR.ACT = 1B OUT.OUTn = 0B DIAG_IOL.OUTn = 0B VCSN = VDD VS VDD - 1 V Analog supply current consumption in Active mode with loads - channels ON IVS(ACTIVE) - - 3.2 mA IDLE = "high" P_6.3.19 VINn floating fSCLK = 0 MHz HWCR.ACT = 1B OUT.OUTn = 1B DIAG_IOL.OUTn = 0B VCSN = VDD Analog supply current consumption in Active mode with loads - channels ON (COR) IVS(ACTIVE) - 0.1 0.3 mA P_6.3.20 IDLE = "high" VINn floating fSCLK = 0 MHz HWCR.ACT = 1B OUT.OUTn = 1B DIAG_IOL.OUTn = 0B VCSN = VDD VS VDD - 1 V Data Sheet 30 Rev. 1.1, 2015-09-25 TLE75004-ELD Power Supply Table 8 Electrical Characteristics Power Supply (cont'd) VDD = 3 V to 5.5 V, VS = 7 V to 18 V, TJ = -40 C to +150 C, all voltages with respect to ground, positive currents flowing as described in Figure 2 (unless otherwise specified) Typical values: VDD = 5 V, VS = 13.5 V, TJ = 25 C Parameter Symbol Values Min. Typ. Max. Unit Note / Test Condition Number VDD pin Logic Supply Operating voltage VDD(OP) 3.0 - 5.5 V fSCLK = 5 MHz P_6.3.23 Logic Supply Lower Operating Voltage VDD(LOP) 3.0 - 4.5 V - P_6.3.24 Undervoltage shutdown VDD(UV) 1 - 3.0 V VSI = 0 V VSCLK = 0 V VCSN = 0 V P_6.3.25 SO from "low" to high impedance 1) Logic supply current in Sleep IVDD(SLEEP) mode - Logic supply current in Sleep IVDD(SLEEP) mode - - 10 A VIDLE floating VINn floating VCSN = VDD TJ = 150 C P_6.3.27 0.1 2.5 A P_6.3.26 VIDLE floating VINn floating VCSN = VDD TJ 85 C Logic supply current in Idle mode IVDD(IDLE) - - 0.3 mA IDLE = "high" VINn floating fSCLK = 0 MHz HWCR.ACT = 0B OUT.OUTn = 0B VCSN = VDD P_6.3.28 Logic supply current in Idle mode (COR) IVDD(IDLE) - - 2.2 mA IDLE = "high" VINn floating fSCLK = 0 MHz HWCR.ACT = 0B OUT.OUTn = 0B VCSN = VDD VS VDD - 1 V P_6.3.29 - - 0.3 mA IDLE = "high" VINn floating fSCLK = 0 MHz HWCR.ACT = 1B OUT.OUTn = 0B VCSN = VDD P_6.3.30 Logic supply current in Active IVDD(ACTIVE) mode - channels OFF Data Sheet 31 Rev. 1.1, 2015-09-25 TLE75004-ELD Power Supply Table 8 Electrical Characteristics Power Supply (cont'd) VDD = 3 V to 5.5 V, VS = 7 V to 18 V, TJ = -40 C to +150 C, all voltages with respect to ground, positive currents flowing as described in Figure 2 (unless otherwise specified) Typical values: VDD = 5 V, VS = 13.5 V, TJ = 25 C Parameter Symbol Values Unit Note / Test Condition Number Min. Typ. Max. Logic supply current in Active IVDD(ACTIVE) mode - channels OFF (COR) - - 3.2 mA IDLE = "high" VINn floating fSCLK = 0 MHz HWCR.ACT = 1B OUT.OUTn = 0B VCSN = VDD VS VDD - 1 V P_6.3.34 Logic supply current in Active IVDD(ACTIVE) mode - channels ON - - 0.3 mA IDLE = "high" VINn floating fSCLK = 0 MHz HWCR.ACT = 1B OUT.OUTn = 1 VCSN = VDD P_6.3.35 Logic supply current in Active IVDD(ACTIVE) mode - channels ON (COR) - - 3.2 mA IDLE = "high" VINn floating fSCLK = 0 MHz HWCR.ACT = 1B OUT.OUTn = 1B VCSN = VDD VS = VDD - 1 V P_6.3.38 - 5 A 1) P_6.3.40 Overall current consumption Overall current consumption in Sleep mode IVS(SLEEP) + IVDD(SLEEP) ISLEEP - Overall current consumption in Sleep mode IVS(SLEEP) + IVDD(SLEEP) ISLEEP - Overall current consumption in Sleep mode IVS(SLEEP) + IVDD(SLEEP) ISLEEP - Data Sheet VIDLE floating VINn floating VCSN = VDD TJ 85 C - 5 A 1) P_6.3.64 VIDLE floating VINn floating VCSN = VDD TJ 85 C VS = 13.5 V - 30 32 A VIDLE floating VINn floating VCSN = VDD TJ = 150 C P_6.3.41 Rev. 1.1, 2015-09-25 TLE75004-ELD Power Supply Table 8 Electrical Characteristics Power Supply (cont'd) VDD = 3 V to 5.5 V, VS = 7 V to 18 V, TJ = -40 C to +150 C, all voltages with respect to ground, positive currents flowing as described in Figure 2 (unless otherwise specified) Typical values: VDD = 5 V, VS = 13.5 V, TJ = 25 C Parameter Symbol Values Min. Typ. Max. Unit Note / Test Condition Number Overall current consumption in Idle mode IVS(IDLE) + IVDD(IDLE) IIDLE - - 2.5 mA IDLE = "high" P_6.3.42 VINn floating fSCLK = 0 MHz HWCR.ACT = 0B OUT.OUTn = 0B DIAG_IOL.OUTn = 0B VCSN = VDD Overall current consumption in Active mode - channels OFF IVS(ACTIVE) + IVDD(ACTIVE) IACTIVE - - 3.5 mA IDLE = "high" P_6.3.46 VINn floating fSCLK = 0 MHz HWCR.ACT = 1B OUT.OUTn = 0B DIAG_IOL.OUTn = 0B VCSN = VDD Overall current consumption IACTIVE in Active mode - channels ON IVS(ACTIVE) + IVDD(ACTIVE) - - 3.5 mA IDLE = "high" P_6.3.51 VINn floating fSCLK = 0 MHz HWCR.ACT = 1B OUT.OUTn = 1B DIAG_IOL.OUTn = 0B VCSN = VDD VSDIFF - 200 - mV 1) P_6.3.52 tSLEEP2IDLE - 200 400 s 1) P_6.3.53 Voltage difference between VS and VDD supply lines Timings Sleep to Idle delay from IDLE pin to TER + INST register = 8680H (see Chapter 10.6.1 for details) Idle to Sleep delay tIDLE2SLEEP - 100 200 s 1) P_6.3.54 from IDLE pin to Standard Diagnosis = 0000H (see Chapter 10.5 for details) external pull-down SO to GND required Data Sheet 33 Rev. 1.1, 2015-09-25 TLE75004-ELD Power Supply Table 8 Electrical Characteristics Power Supply (cont'd) VDD = 3 V to 5.5 V, VS = 7 V to 18 V, TJ = -40 C to +150 C, all voltages with respect to ground, positive currents flowing as described in Figure 2 (unless otherwise specified) Typical values: VDD = 5 V, VS = 13.5 V, TJ = 25 C Parameter Idle to Active delay Symbol tIDLE2ACTIVE Values Min. Typ. Max. - 100 200 Unit Note / Test Condition Number s 1) P_6.3.55 from INn or CSN pins to MODE = 10B Active to Idle delay tACTIVE2IDLE - 100 200 s 1) P_6.3.56 from INn or CSN pins to MODE = 11B Sleep to Limp Home delay Limp Home to Sleep delay Limp Home to Active delay tSLEEP2LH tLH2SLEEP tLH2ACTIVE - - - 300 +tON 600 +tON s 200 +tOFF 400 +tOFF s 50 100 s 1) P_6.3.57 from INn pins to VDS = 10% VS 1) P_6.3.58 from INn pins to Standard Diagnosis = 0000H (see Chapter 10.6.1 for details). External pull-down SO to GND required 1) P_6.3.59 from IDLE pin to MODE = 10B Active to Limp Home delay tACTIVE2LH - 50 100 s 1) P_6.3.60 from IDLE pin to TER + INST register = 8683H (IN0 = IN1 = "high") or 8682H(IN1 = "high", IN0 = "low") or 8681H (IN1 = "low", IN0 = "high") (see Chapter 10.5 for details) Active to Sleep delay tACTIVE2SLEEP - 50 100 s 1) P_6.3.61 from IDLE pin to Standard Diagnosis = 0000H (see Chapter 10.6.1 for details). External pull-down SO to GND required. 1) Not subject to production test - specified by design Data Sheet 34 Rev. 1.1, 2015-09-25 TLE75004-ELD Power Stages 7 Power Stages The TLE75004-ELD is an four channels low-side relay switch. The power stages are built by N-channel lateral power MOSFET transistors. 7.1 Output ON-state resistance The ON-state resistance RDS(ON) depends on the supply voltage as well as the junction temperature TJ. 7.1.1 Switching Resistive Loads When switching resistive loads the following switching times and slew rates can be considered. INn / OUT.OUTn t ON V DS t OFF t DELAY (ON) t t DELAY (OFF) 90% of V S 70% of V S 70% dV / dtOFF dV / dtON 30% 30% of V S 10% of V S t SwitchON .emf Figure 15 Switching a Resistive Load 7.1.2 Inductive Output Clamp When switching off inductive loads, the voltage across the power switch rises to VDS(CL) potential, because the inductance intends to continue driving the current. The voltage clamping is necessary to prevent device destruction. Figure 16 shows a concept drawing of the implementation. Nevertheless, the maximum allowed load inductance is limited. The clamping structure protects the device in all operative modes (Sleep, Idle, Active, Limp Home). Data Sheet 35 Rev. 1.1, 2015-09-25 TLE75004-ELD Power Stages VS Low -side Channel IL OUT I L_D L, RL V DS V DS(CL) GND PowerStage_LS.emf Figure 16 Output Clamp concept 7.1.3 Maximum Load Inductance During demagnetization of inductive loads, energy has to be dissipated in the TLE75004-ELD. Equation (7.1) shows how to calculate the energy for low-side switches: RL IL V S - V DS ( CL ) L E = V DS ( CL ) --------------------------------- ln 1 - -------------------------------- + I L ----- RL RL V S - V DS ( CL ) (7.1) The maximum energy, which is converted into heat, is limited by the thermal design of the component. The EAR value provided in Table 2 assumes that all channels can dissipate the same energy when the inductances connected to the outputs are demagnetized at the same time. 7.2 Switching Channels in parallel In case of appearance of a short circuit with channels in parallel, it may happen that the two channels switch OFF asynchronously, therefore bringing an additional thermal stress to the channel that switches OFF last. In order to avoid this condition, it is possible to parametrize in the SPI registers the parallel operation of two neighbour channels (bits HWCR.PAR). When operating in this mode, the fastest channel to react to an Over Load or Over Temperature condition will deactivate also the other. The inductive energy that two channels can handle once set in parallel is lower than twice the single channel energy (see P_7.6.11). It is possible to synchronize the following couples of channels: * channel 0 and channel 2 HWCR.PAR (0) set to "1" * channel 1 and channel 3 HWCR.PAR (1) set to "1" The synchronization bits influence only how the channels react to Over Load or Over Temperature conditions. Synchronized channels have to be switched ON and OFF individually by the micro-controller. Data Sheet 36 Rev. 1.1, 2015-09-25 TLE75004-ELD Power Stages 7.3 Electrical Characteristics Power Stages Table 9 Electrical Characteristics: Power Stage VDD = 3 V to 5.5 V, VS = 7 V to 18 V, TJ = -40 C to +150 C (unless otherwise specified) Typical values: VDD = 5 V, VS = 13.5 V, TJ = 25 C Parameter Symbol Values Min. Typ. Max. RDS(ON) - 1.0 - RDS(ON) - Unit Note / Test Condition Number 1) P_7.6.1 Output Characteristics On-State Resistance On-State Resistance TJ = 25 C 1.8 2.2 TJ = 150 C IL = IL(EAR) = P_7.6.2 220 mA Nominal load current (all channels active) IL(NOM) - Nominal load current (all channels active) IL(NOM) - IL(EAR) Load current for maximum energy dissipation - repetitive (all channels active) - Maximum energy dissipation EAR repetitive pulses - 2*IL(EAR) (two channels in parallel) - 470 5002)3) mA 1) P_7.6.6 TA = 85 C TJ 150 C 370 5002)3) mA 1) P_7.6.7 TA = 105 C TJ 150 C 220 - mA 1) P_7.6.8 TA = 85 C TJ 150 C - 15 mJ 1) P_7.6.11 TJ(0) = 85 C IL(0) = 2*IL(EAR) 2*106 cycles HWCR.PAR = "1" for affected channels Power stage voltage drop at low battery VDS(OP) - - 1 V RL = 50 supplied P_7.6.12 by VS = 4 V VS = VS(OP),max or VDD = 4.5 V, VS pin open refer to Figure 16 Drain to Source Output clamping voltage VDS(CL) 42 46 55 V IL = 20 mA P_7.6.16 Output leakage current (each channel) TJ 85 C IL(OFF) - 0.01 0.5 A 1) P_7.6.19 VIN = 0 V or floating VDS = 28 V OUT.OUTn = 0 TJ 85 C Output leakage current (each channel) TJ = 150 C (Low-Side channels) Data Sheet IL(OFF) - 0.1 5 A 1) P_7.6.20 VIN = 0 V or floating VDS = 28 V OUT.OUTn = 0 TJ = 150 C 37 Rev. 1.1, 2015-09-25 TLE75004-ELD Power Stages Table 9 Electrical Characteristics: Power Stage (cont'd) VDD = 3 V to 5.5 V, VS = 7 V to 18 V, TJ = -40 C to +150 C (unless otherwise specified) Typical values: VDD = 5 V, VS = 13.5 V, TJ = 25 C Parameter Symbol Values Min. Typ. Max. Turn-ON delay tDELAY(ON) (from INn pin or bit to VOUT = 90% VS) 1 4 8 Turn-OFF delay tDELAY(OFF) (from INn pin or bit to VOUT = 10% VS) 1 Turn-ON time tON (from INn pin or bit to VOUT = 10% VS) 6 Turn-OFF time tOFF (from INn pin or bit to VOUT = 90% VS) 6 Unit Note / Test Condition Number s RL = 50 VS = 13.5 V P_7.6.21 Timings Turn-ON/OFF matching tON - tOFF Active mode or Limp Home mode 6 12 s RL = 50 VS = 13.5 V P_7.6.22 Active mode or Limp Home mode 15 35 s RL = 50 VS = 13.5 V P_7.6.23 Active mode or Limp Home mode 15 35 s RL = 50 VS = 13.5 V P_7.6.24 Active mode or Limp Home mode -10 0 10 s RL = 50 VS = 13.5 V P_7.6.25 Active mode or Limp Home mode Turn-ON slew rate VDS = 70% to 30% VS dV/dtON 0.7 1.3 1.9 V/s RL = 50 VS = 13.5 V P_7.6.26 Active mode or Limp Home mode Turn-OFF slew rate VDS = 30% to 70% VS -dV/dtOFF 0.7 1.3 1.9 V/s RL = 50 VS = 13.5 V P_7.6.27 Active mode or Limp Home mode Internal reference frequency synchronization time tSYNC - 5 10 s 1) P_7.6.45 1) Not subject to production test - specified by design 2) If one channel has IL(NOM),max applied, the remaining channels must be underloaded accordingly so that TJ < 150C 3) IL(NOM),max can reach IL(OVL1),min Data Sheet 38 Rev. 1.1, 2015-09-25 TLE75004-ELD Protection Functions 8 Protection Functions 8.1 Over Load Protection The TLE75004-ELD is protected in case of over load or short circuit of the load. There are two over load current thresholds (see Figure 17): * * IL(OVL0) between channel switch ON and tOVLIN IL(OVL1) after tOVLIN Every time the channel is switched OFF for a time longer than 2 * tSYNC the over load current threshold is set back to IL(OVL0). INn OUT.OUTn t IL(OVL0) IL(OVL) IL(OVL 1) t tOVLIN OverLoadStep.emf Figure 17 Over Load current thresholds In case the load current is higher than IL(OVL0) or IL(OVL1), after time tOFF(OVL) the over loaded channel is switched OFF and the according diagnosis bit ERRn is set. The channel can be switched ON after clearing the protection latch by setting the corresponding HWCR_OCL.OUTn bit to "1". This bit is set back to "0" internally after de-latching the channel. Please refer to Figure 18 for details. INn OUT.OUTn t ILn IL(OVLn) tOFF(OVL) t ERRn 0 1 0 t SPI command to set HWCR_OCL.OUTn = 1b HWCR_OCL.OUTn t 0 1 0 t OverLoad.emf Figure 18 Latch OFF at Over Load 8.2 Over Temperature Protection A temperature sensor is integrated for each channel, causing an overheated channel to switch OFF to prevent destruction. The according diagnosis bit ERRn is set (combined with Over Load protection). The channel can be Data Sheet 39 Rev. 1.1, 2015-09-25 TLE75004-ELD Protection Functions switched ON after clearing the protection latch by setting the corresponding HWCR_OCL.OUTn bit to "1". This bit is set back to "0" internally after de-latching the channel. 8.3 Over Temperature and Over Load Protection in Limp Home mode When TLE75004-ELD is in Limp Home mode, channels 2 and 3 can be switched ON using the input pins. In case of Over Load, Short Circuit or Over Temperature the channels switch OFF. If the input pins remain "high", the channels restart with the following timings: * 10 ms (first 8 retries) * 20 ms (following 8 retries) * 40 ms (following 8 retries) * 80 ms (as long as the input pin remains "high" and the error is still present) If at any time the input pin is set to "low" for longer than 2*tSYNC, the restart timer is reset. At the next channel activation while in Limp Home mode the timer starts from 10 ms again. See Figure 19 for details. Over Load current thresholds behave as described in Chapter 8.1. IN0 IN1 IL2 IL3 0 1 8 1 8 1 0 8 t RETRY0(LH) tRETRY 1(LH) t RETRY2(LH) tRETRY 3(LH) 10 ms 20 ms 40 ms 80 ms 1 tRETRY 0(LH) t t 10 ms LHrestart.emf Figure 19 Restart timer in Limp Home mode 8.4 Reverse Polarity Protection In Reverse Polarity (also known as Reverse Battery) condition, power dissipation is caused by the intrinsic body diode of each DMOS channel. Each ESD diode of the logic and supply pins contributes to total power dissipation. The reverse current through the channels has to be limited by the connected loads. The current through digital power supply VDD and input pins has to be limited as well (please refer to the Absolute Maximum Ratings listed on Chapter 4.1). Note: No protection mechanism like temperature protection or current limitation is active during reverse polarity. 8.5 Over Voltage Protection In the case of supply voltages between VS(SC) and VS(LD) the output transistors are still operational and follow the input pins or the OUT register. In addition to the output clamp for inductive loads as described in Chapter 7.1.2, there is a clamp mechanism available for over voltage protection for the logic and all channels, monitoring the voltage between VS and GND pins (VS(AZ)). Data Sheet 40 Rev. 1.1, 2015-09-25 TLE75004-ELD Protection Functions 8.6 Electrical Characteristics Protection Table 10 Electrical Characteristics Protection VDD = 3 V to 5.5 V, VS = 7 V to 18 V, TJ = -40 C to +150 C (unless otherwise specified) Typical values: VDD = 5 V, VS = 13.5 V, TJ = 25 C Parameter Symbol Values Min. Typ. Max. 1.3 1.7 2.3 Unit Note / Test Condition Number A TJ = -40 C P_8.8.19 A 1) P_8.8.20 Over Load Over Load detection current IL(OVL0) IL(OVL0) 1.25 Over Load detection current IL(OVL0) 1 1.45 2 A TJ = 150 C P_8.8.21 Over Load detection current IL(OVL1) 0.7 0.95 1.3 A TJ = -40 C P_8.8.22 A 1) P_8.8.23 Over Load detection current Over Load detection current Over Load detection current 1.55 2.3 TJ = 25 C IL(OVL1) 0.65 IL(OVL1) 0.5 0.85 1.3 TJ = 25 C 0.8 1.25 A TJ = 150 C P_8.8.24 P_8.8.5 P_8.8.26 Over Load threshold switch delay time tOVLIN 110 170 260 s 1) Over Load shut-down delay time tOFF(OVL) 4 7 11 s 1) Over Temperature and Over Voltage Thermal shut-down temperature TJ(SC) 150 1751) 2201) C Over voltage protection VS(AZ) 42 50 60 V P_8.8.7 IVS = 10 mA P_8.8.8 Sleep mode Reverse Polarity Drain Source diode during reverse polarity VDS(REV) - 800 - mV 1) P_8.8.9 IL = -10 mA TJ = 25 C Sleep mode Drain Source diode during reverse polarity VDS(REV) - 650 - mV IL = -10 mA TJ = 150 C P_8.8.10 Sleep mode Timings Restart time in Limp Home mode tRETRY0(LH) 7 10 13 ms 1) P_8.8.13 Restart time in Limp Home mode tRETRY1(LH) 14 20 26 ms 1) P_8.8.14 Restart time in Limp Home mode tRETRY2(LH) 28 40 52 ms 1) P_8.8.15 Restart time in Limp Home mode tRETRY3(LH) 56 80 104 ms 1) P_8.8.16 1) Not subject to production test - specified by design Data Sheet 41 Rev. 1.1, 2015-09-25 TLE75004-ELD Diagnosis 9 Diagnosis The SPI of TLE75004-ELD provides diagnosis information about the device and the load status. Each channel diagnosis information is independent from other channels. An error condition on one channel has no influence on the diagnostic of other channels in the device (unless configured to work in parallel, see Chapter 7.2 for more details). 9.1 Over Load and Over Temperature When either an Over Load or an Over Temperature occurs on one channel, the diagnosis bit ERRn is set accordingly. As described in Chapter 8.1 and Chapter 8.2, the channel latches OFF and must be reactivated setting corresponding HWCR_OCL.OUTn bit to "1". 9.2 Output Status Monitor The device compares each channel VDS with VDS(OL) and sets the corresponding DIAG_OSM.OUTn bits accordingly. The bits are updated every time DIAG_OSM register is read. VDS < VDS(OL) DIAG_OSM.OUTn = "1" A diagnosis current IOL in parallel to the power switch can be enabled by programming the DIAG_IOL.OUTn bit, * which can be used for Open Load at OFF detection. Each channel has its dedicated diagnosis current source. If the diagnosis current IOL is enabled or if the channel changes state (ON OFF or OFF ON) it is necessary to wait a time tOSM for a reliable diagnosis. Enabling IOL current sources increases the current consumption of the device. Even if an Open Load is detected, the channel is not latched OFF. See Figure 20 for a timing overview (the values of DIAG_IOL.OUTn refer to a channel in normal operation properly connected to the load). INn OUT.OUTn Output voltage comparator t 0 x 1 x tON + tOSM 0 t tOFF + tOSM SPI readout of DIAG_OSM.OUTn t DIAG_OSM.OUTn x 1 x 0 0 t OutStatMon_timings.emf Figure 20 Output Status Monitor timing Output Status Monitor diagnostic is available when VS = VS(NOR) and VDD VDD(UV). Due to the fact that Output Status Monitor checks the voltage level at the outputs in real time, for Open Load in OFF diagnostic it is necessary to sychronize the reading of DIAG_OSM register with the OFF state of the channels. Figure 21 shows how Output Status Monitor is implemented at concept level. Data Sheet 42 Rev. 1.1, 2015-09-25 TLE75004-ELD Diagnosis VS Low-side Channel VDS < V DS(OL) AE DIAG_OSM.OUTn = 1" DIAG_OSM.OUTn IOL ROL OUT VDS IOL V DS(OL) GND OutStatMon_LS.emf Figure 21 Output Status Monitor - concept In Standard Diagnosis the bit OLOFF represents the OR combination of all DIAG_OSM.OUTn bits for all channels in OFF state which have the corresponding current source IOL activated. Data Sheet 43 Rev. 1.1, 2015-09-25 TLE75004-ELD Diagnosis 9.3 Electrical Characteristics Diagnosis Table 11 Electrical Characteristics Diagnosis VDD = 3 V to 5.5 V, VS = 7 V to 18 V, TJ = -40 C to +150 C (unless otherwise specified) Typical values: VDD = 5 V, VS = 13.5 V, TJ = 25 C Parameter Symbol Values Min. Typ. Max. Unit Note / Test Condition Number 1) P_9.5.1 Output Status Monitor Output Status Monitor comparator settling time tOSM - - 20 s Output Status Monitor threshold voltage VDS(OL) 3 3.3 3.6 V Output diagnosis current IOL 70 85 100 A VDS = 3.3 V P_9.5.5 Open Load equivalent resistance ROL 30 - 300 k 1) P_9.5.6 P_9.5.2 1) Not subject to production test - specified by design Data Sheet 44 Rev. 1.1, 2015-09-25 TLE75004-ELD Serial Peripheral Interface (SPI) 10 Serial Peripheral Interface (SPI) The serial peripheral interface (SPI) is a full duplex synchronous serial slave interface, which uses four lines: SO, SI, SCLK and CSN. Data is transferred by the lines SI and SO at the rate given by SCLK. The falling edge of CSN indicates the beginning of an access. Data is sampled in on line SI at the falling edge of SCLK and shifted out on line SO at the rising edge of SCLK. Each access must be terminated by a rising edge of CSN. A modulo 8/16 counter ensures that data is taken only when a multiple of 8 bit has been transferred after the first 16 bits. Otherwise a TER bit is asserted. In this way the interface provides daisy chain capability with 16 bit as well as with 8 bit SPI devices. SO MSB 14 13 12 11 10 9 8 7 6 5 4 3 2 1 SI MSB 14 13 12 11 10 9 8 7 6 5 4 3 2 1 LSB LSB CSN SCLK time SPI _16bit.emf Figure 22 Serial Peripheral Interface 10.1 SPI Signal Description CSN - Chip Select The system microcontroller selects the TLE75004-ELD by means of the CSN pin. Whenever the pin is in "low" state, data transfer can take place. When CSN is in "high" state, any signals at the SCLK and SI pins are ignored and SO is forced into a high impedance state. CSN "high" to "low" Transition * The requested information is transferred into the shift register. * SO changes from high impedance state to "high" or "low" state depending on the logic OR combination between the transmittion error flag (TER) and the signal level at pin SI. This allows to detect a faulty transmission even in daisy chain configuration. * If the device is in Sleep mode, SO pin remains in high impedance state and no SPI transmission occurs. TER SI OR 1 SO 0 SI SPI SO S CSN SCLK S SPI _TER.emf Figure 23 Data Sheet Combinatorial Logic for TER bit 45 Rev. 1.1, 2015-09-25 TLE75004-ELD Serial Peripheral Interface (SPI) CSN "low" to "high" Transition * Command decoding is only done, when after the falling edge of CSN exactly a multiple (1, 2, 3, ...) of eight SCLK signals have been detected after the first 16 SCLK pulses. In case of faulty transmission, the transmission error bit (TER) is set and the command is ignored. * Data from shift register is transferred into the addressed register. SCLK - Serial Clock This input pin clocks the internal shift register. The serial input (SI) transfers data into the shift register on the falling edge of SCLK while the serial output (SO) shifts diagnostic information out on the rising edge of the serial clock. It is essential that the SCLK pin is in "low" state whenever chip select CSN makes any transition, otherwise the command may be not accepted. SI - Serial Input Serial input data bits are shift-in at this pin, the most significant bit first. SI information is read on the falling edge of SCLK. The input data consists of two parts, control bits followed by data bits. Please refer to Chapter 10.5 for further information. SO Serial Output Data is shifted out serially at this pin, the most significant bit first. SO is in high impedance state until the CSN pin goes to "low" state. New data appears at the SO pin following the rising edge of SCLK. Please refer to Chapter 10.5 for further information. 10.2 Daisy Chain Capability The SPI of TLE75004-ELD provides daisy chain capability. In this configuration several devices are activated by the same CSN signal MCSN. The SI line of one device is connected with the SO line of another device (see Figure 24), in order to build a chain. The end of the chain is connected to the output and input of the master device, MO and MI respectively. The master device provides the master clock MCLK which is connected to the SCLK line of each device in the chain. Figure 24 SO SPI SI SO SPI SCLK SI device 3 CSN SCLK MI MCSN MCLK SO SPI CSN SI CSN MO device 2 SCLK device 1 SPI_DaisyChain_1.emf Daisy Chain Configuration In the SPI block of each device, there is one shift register where each bit from SI line is shifted in each SCLK. The bit shifted out occurs at the SO pin. After sixteen SCLK cycles, the data transfer for one device is finished. In single chip configuration, the CSN line must turn "high" to make the device acknowledge the transferred data. In daisy Data Sheet 46 Rev. 1.1, 2015-09-25 TLE75004-ELD Serial Peripheral Interface (SPI) chain configuration, the data shifted out at device 1 has been shifted in to device 2. When using three devices in daisy chain, several multiples of 8 bits have to be shifted through the devices (depending on how many devices with 8 bit SPI and how many with 16 bit SPI). After that, the MCSN line must turn "high" (see Figure 25). MI SO device 3 SO device 2 SO device 1 MO SI device 3 SI device 2 SI device 1 MCSN MCLK SPI_DaisyChain_2.emf Figure 25 Data Transfer in Daisy Chain Configuration 10.3 Timing Diagrams t CSN(lead) t CSN(lag) tCSN(td) tSCLK(P ) CSN tSCLK (H) V CSN(H) V CSN(L) tSCLK (L) V SCLK(H) V SCLK(L) SCLK tSI (s u) t SI (h) V SI (H) V SI (L) SI t SO(en) tSO(v ) tSO (dis ) V SO(H) V SO(L) SO SPI _Timings.emf Figure 26 Data Sheet Timing Diagram SPI Access 47 Rev. 1.1, 2015-09-25 TLE75004-ELD Serial Peripheral Interface (SPI) 10.4 Electrical Characteristics VDD = 3 V to 5.5 V, VS = 7 V to 18 V, TJ = -40 C to +150 C (unless otherwise specified) Typical values: VDD = 5 V, VS = 13.5 V, TJ = 25 C Table 12 Electrical Characteristics Serial Peripheral Interface (SPI) Parameter Symbol Values Min. Typ. Max. Unit Note / Number Test Condition Input Characteristics (CSN, SCLK, SI) - "low" level of pin CSN VCSN(L) 0 - 0.8 V - P_10.4.1 SCLK VSCLK(L) 0 - 0.8 V - P_10.4.2 SI VSI(L) 0 - 0.8 V - P_10.4.3 Input Characteristics (CSN, SCLK, SI) - "high" level of pin CSN VCSN(H) 2 - VDD V - P_10.4.4 SCLK VSCLK(H) 2 - VDD V - P_10.4.5 SI VSI(H) 2 - VDD V - P_10.4.6 L-input pull-up current at CSN pin -ICSN(L) 30 60 90 A VDD = 5 V VCSN = 0.8 V P_10.4.7 H-input pull-up current at CSN pin -ICSN(H) 20 40 65 A VDD = 5 V VCSN = 2 V P_10.4.8 SCLK ISCLK(L) 5 12 20 A VSCLK = 0.8 V P_10.4.9 SI ISI(L) 5 12 20 A VSI = 0.8 V P_10.4.10 SCLK ISCLK(H) 14 28 45 A VSCLK = 2 V P_10.4.11 SI ISI(H) 14 28 45 A VSI = 2 V P_10.4.12 L level output voltage VSO(L) 0 - 0.4 V ISO = -1.5 mA P_10.4.13 H level output voltage VSO(H) VDD - - VDD V ISO = 1.5 mA P_10.4.14 Input Pull-Up Current at Pin CSN L-Input Pull-Down Current at Pin H-Input Pull-Down Current at Pin Output Characteristics (SO) 0.4 Output tristate leakage current ISO(OFF) -1 - 1 A VCSN =VDD VSO = 0 V P_10.4.15 Output tristate leakage current ISO(OFF) -1 - 1 A VCSN =VDD VSO = VDD P_10.4.16 Enable lead time (falling CSN to rising SCLK) tCSN(lead) 200 - - ns 1) P_10.4.17 Enable lag time (falling SCLK to rising CSN) tCSN(lag) 200 Timings Data Sheet VDD = 4.5 V or VS > 7 V - - ns 1) P_10.4.18 VDD = 4.5 V or VS > 7 V 48 Rev. 1.1, 2015-09-25 TLE75004-ELD Serial Peripheral Interface (SPI) Table 12 Electrical Characteristics Serial Peripheral Interface (SPI) (cont'd) Parameter Transfer delay time (rising CSN to falling CSN) Symbol tCSN(td) Output enable time (falling CSN to tSO(en) SO valid) Values Min. Typ. Max. Unit Note / Number Test Condition 250 - - ns 1) P_10.4.19 VDD = 4.5 V or VS > 7 V - - 200 ns 1) P_10.4.20 VDD = 4.5 V or VS > 7 V CL = 20 pF at SO pin Output disable time (rising CSN to tSO(dis) SO tristate) - - 200 ns 1) P_10.4.21 VDD = 4.5 V or VS > 7 V CL = 20 pF at SO pin Serial clock frequency Serial clock period Serial clock "high" time Serial clock "low" time fSCLK - tSCLK(P) 200 tSCLK(H) 75 tSCLK(L) 75 MHz 1) P_10.4.22 - - ns 1) P_10.4.23 VDD = 4.5 V or VS > 7 V - - ns 1) P_10.4.24 VDD = 4.5 V or VS > 7 V - - ns 1) P_10.4.25 VDD = 4.5 V or VS > 7 V 20 Data hold time (falling SCLK to SI) tSI(h) 20 tSO(v) 5 VDD = 4.5 V or VS > 7 V Data setup time (required time SI to tSI(su) falling SCLK) Output data valid time with capacitive load - - - ns 1) P_10.4.26 VDD = 4.5 V or VS > 7 V - - ns 1) P_10.4.27 VDD = 4.5 V or VS > 7 V - - 100 ns 1) P_10.4.28 VDD = 4.5 V or VS > 7 V CL = 20 pF at SO pin Enable lead time (falling CSN to rising SCLK) tCSN(lead) 1 Enable lag time (falling SCLK to rising CSN) tCSN(lag) 1 Transfer delay time (rising CSN to falling CSN) tCSN(td) 1.25 Data Sheet - - s 1) P_10.4.29 VDD = VS = 3.0 V - - s 1) P_10.4.30 VDD = VS = 3.0 V - - s 1) P_10.4.31 VDD = VS = 3.0 V 49 Rev. 1.1, 2015-09-25 TLE75004-ELD Serial Peripheral Interface (SPI) Table 12 Electrical Characteristics Serial Peripheral Interface (SPI) (cont'd) Parameter Symbol Output enable time (falling CSN to tSO(en) SO valid) Values Min. Typ. Max. Unit Note / Number Test Condition - - 1 s 1) P_10.4.32 VDD = VS = 3.0 V CL = 20 pF at SO pin Output disable time (rising CSN to tSO(dis) SO tristate) - - 1 s 1) P_10.4.33 VDD = VS = 3.0 V CL = 20 pF at SO pin Serial clock frequency Serial clock period Serial clock "high" time Serial clock "low" time fSCLK - tSCLK(P) 1 tSCLK(H) 375 tSCLK(L) 375 MHz 1) P_10.4.34 - - s 1) P_10.4.35 VDD = VS = 3.0 V - - ns 1) P_10.4.36 VDD = VS = 3.0 V - - ns 1) P_10.4.37 VDD = VS = 3.0 V 100 Data hold time (falling SCLK to SI) tSI(h) 100 tSO(v) 1 VDD = VS = 3.0 V Data setup time (required time SI to tSI(su) falling SCLK) Output data valid time with capacitive load - - - ns 1) P_10.4.38 VDD = VS = 3.0 V - - ns 1) P_10.4.39 VDD = VS = 3.0 V - - 500 ns 1) P_10.4.40 VDD = VS = 3.0 V CL = 20 pF at SO pin 1) Not subject to production test, specified by design Data Sheet 50 Rev. 1.1, 2015-09-25 TLE75004-ELD Serial Peripheral Interface (SPI) 10.5 SPI Protocol The relationship between SI and SO content during SPI communication is shown in Figure 27. SI line represents the frame sent from the C and SO line is the answer provided by TLE75004-ELD. SI frame A frame B frame C SO (previous response ) response to frame A response to frame B SPI_SI2SO.emf Figure 27 Relationship between SI and SO during SPI communication The SPI protocol provides the answer to a command frame only with the next trasmission triggered by the C. Although the biggest majority of commands and frames implemented in TLE75004-ELD can be decoded without the knowledge of what happened before, it is advisable to consider what the C sent in the previous transmission to decode TLE75004-ELD response frame completely. More in detail, the sequence of commands to "read" and "write" the content of a register looks as follows: SI write register A read register A (new command ) SO (previous response ) Standard diagnostic register A content SPI_RWseq.emf Figure 28 Register content sent back to C There are 3 special situations where the frame sent back to the C is not related directly to the previous received frame: * in case an error in transmission happened during the previous frame (for instance, the clock pulses were not multiple of 8 with a minimum of 16 bits), shown in Figure 29 * when TLE75004-ELD logic supply comes out of Power-On reset condition or after a Software Reset, as shown in Figure 30 * in case of command syntax errors - "write" command starting with "11" instead of "10" - "read" command starting with "00" instead of "01" - "read" or "write" commands on registers which are "reserved" or "not used" Data Sheet 51 Rev. 1.1, 2015-09-25 TLE75004-ELD Serial Peripheral Interface (SPI) SI frame A (error in transmission ) SO (previous response ) (new command) Standard diagnostic + TER SPI_SO_TER.emf Figure 29 TLE75004-ELD response after a error in transmission VDD VDD(PO) SI SO frame A frame B frame C INST register + TER (8680h) (SO = Z") response to frame B SPI _SO_POR.emf Figure 30 TLE75004-ELD response after coming out of Power-On reset at VDD SI frame A (syntax or addressing error ) (new command) SO (previous response ) Standard diagnostic SPI_SO_SyntaxError.emf Figure 31 TLE75004-ELD response after a command syntax error A summary of all possible SPI commands is presented in Table 13, including the answer that TLE75004-ELD sends back at the next transmission. Data Sheet 52 Rev. 1.1, 2015-09-25 TLE75004-ELD Serial Peripheral Interface (SPI) Table 13 SPI Command summary1) Requested Operation Frame sent to SPIDER+ (SI pin) Frame received from SPIDER+ (SO pin) with the next command Read Standard Diagnosis 0xxxxxxxxxxxxx01B ("xxxxxxxxxxxxB" = dont care) 0dddddddddddddddB (Standard Diagnosis) Write 8 bit register 10aaaabbccccccccB where: "aaaaB" = register address ADDR0 "bbB" = register address ADDR1 "ccccccccB" = new register content 0dddddddddddddddB (Standard Diagnosis) Read 8 bit registers 01aaaabbxxxxxx10B where: "aaaaB" = register address ADDR0 "bbB" = register address ADDR1 "xxxxxxB" = dont care 10aaaabbccccccccB where: "aaaaB" = register address ADDR0 "bbB" = register address ADDR1 "ccccccccB" = register content 1) "a" = address bits for ADDR0 field, "b" = address bit for ADDR1 field, "c" = register content, "d" = diagnostic bit Data Sheet 53 Rev. 1.1, 2015-09-25 TLE75004-ELD Serial Peripheral Interface (SPI) 10.6 SPI Registers Overview 10.6.1 Standard Diagnosis Table 14 Standard Diagnosis 15 0 14 13 12 UVR LOP MODE VS VDD 11 10 9 TER 0 8 7 OL 0 OFF 6 0 5 0 Field Bits Type Description UVRVS 14 r VS Undervoltage Monitor 0B 1B LOPVDD 13 r 4 0 3 2 1 0 ERR Default 7800H No undervoltage condition on VS detected (see Chapter 6.2.1 for more details) (default) There was at least one VS Undervoltage condition since last Standard Diagnosis readout VDD Lower Operating Range Monitor VDD is above VDD(LOP) 0B 1B (default) There was at least one "VDD = VDD(LOP)" condition since last Standard Diagnosis readout MODE 12:11 r Operative Mode Monitor 00B (reserved) 01B Limp Home Mode 10B Active Mode 11B (default) Idle Mode TER 10 r Transmission Error 0B Previous transmission was successful (modulo 16 + n*8 clocks received, where n = 0, 1, 2...) 1B (default) Previous transmission failed The first frame after a reset is TER set to "high" and the INST register. The second frame is the Standard Diagnosis with TER set to "low" (if there was no fail in the previous transmission). OLOFF 8 r Open Load in OFF Diagnosis 0B (default) All channels in OFF state (which have DIAG_IOL.OUTn bit set to "1") have VDS > VDS(OL) 1B At least one channel in OFF state (with DIAG_IOL.OUTn bit set to "1") has VDS < VDS(OL) Channels in ON state are not considered ERRn n:0 r Over Load / Over Temperature Diagnosis of channel n 0B (default) No failure detected 1B Over Temperature or Over Load bits 7:4 - reserved (default: 0B) n = 3 to 0 Data Sheet 54 Rev. 1.1, 2015-09-25 TLE75004-ELD Serial Peripheral Interface (SPI) 10.6.2 Register structure The register banks the digital part have following structure: Table 15 15 14 Register structure - all registers 13 12 11 10 9 r = 0 r = 1 ADDR0 w=1 w=0 8 ADDR1 7 6 5 4 3 DATA 2 1 0 Default XXXXH Table 16 summarizes the available registers with their addresing space and size Table 16 Register addressing space Register name ADDR0 ADDR1 Size Type Purpose OUT 0000B 00B n r/w Power output control register bits OUT.OUTn 0B (default) Output is OFF 1B Output is ON bits 7:4 - reserved (default: 0B) 0001B 00B n r/w Input Mapping (Input Pin 0) bits MAPIN0.OUTn 0B (default) The output is not connected to the input pin 1B The output is connected to the input pin Note: Channel 2 has the corresponding bit set to "1" by default bits 7:4 - reserved (default: 0B) 0001B 01B n r/w Input Mapping (Input Pin 1) bits MAPIN1.OUTn 0B (default) The output is not connected to the input pin 1B The output is connected to the input pin Note: Channel 3 has the corresponding bit set to "1" by default bits 7:4 - reserved (default: 0B) 0001B 10B 8 r Input Status Monitor bit TER 0B Previous transmission was successful (modulo 16 + n*8 clocks received, where n = 0, 1, 2...) 1B (default) Previous transmission failed bits INST.RES (6:2) - reserved bits INST.INn (1:0) 0B (default) The input pin is set to "low" The input pin is set to "high" 1B First register transmitted after a reset of the logic n = 3 to 0 MAPIN0 n = 3 to 0 MAPIN1 n = 3 to 0 INST Data Sheet 55 Rev. 1.1, 2015-09-25 TLE75004-ELD Serial Peripheral Interface (SPI) Table 16 Register addressing space (cont'd) Register name ADDR0 ADDR1 Size Type Purpose DIAG_IOL 0010B 00B n r/w Open Load diagnostic current control bits DIAG_IOL.OUTn 0B (default) Diagnosis current not enabled 1B Diagnosis current enabled bits 7:4 - reserved (default: 0B) 0010B 01B n r Output Status Monitor bits DIAG_OSM.OUTn 0B (default) VDS > VDS(OL) 1B VDS < VDS(OL) bits 7:4 - reserved (default: 0B) 0011B 00B 8 r/w Hardware Configuration Register bit HWCR.ACT (7) (Active Mode) 0B (default) Normal operation or device leaves Active Mode 1B Device enters Active Mode (see Chapter 6.1 for a description of the possible operative mode transitions) bit HWCR.RST (6) (Reset) 0B (default) Normal operation 1B Execute Reset command (self clearing) bits HWCR.PAR (1:0) (channels operating in parallel) 0B (default) Normal operation 1B two neighbour channels have Over Load and Over Temperature synchronized (see Chapter 7.2 for more details) n = 3 to 0 DIAG_OSM n = 3 to 0 HWCR bits 5:2 - reserved (default: 0B) HWCR_OCL 0011B 01B n w Output Clear Latch bits HWCR_OCL.OUTn 0B (default) Normal operation Clear the error latch for the selected output 1B bits 7:4 - reserved (default: 0B) n = 3 to 0 10.6.3 Register summary All registers with addresses not mentioned in Table 17 have to be considered as "reserved". "Read" operations performed on those registers return the Standard Diagnosis. The column "Default" indicates the content of the register (8 bits) after a reset. Table 17 15 14 Addressable registers 13-10 9 8 7 6 5 4 3 2 1 0 Default r = 0 r = 1 0000 w=1 w=0 00 (reserved) OUT.OUTn 00H r = 0 r = 1 0001 w=1 w=0 00 (reserved) MAPIN0.OUTn 04H Data Sheet 56 Rev. 1.1, 2015-09-25 TLE75004-ELD Serial Peripheral Interface (SPI) Table 17 15 Addressable registers 14 13-10 9 8 7 6 5 4 3 2 1 0 Default r = 0 r = 1 0001 w=1 w=0 01 (reserved) 0 0001 10 TER r = 0 r = 1 0010 w=1 w=0 00 (reserved) DIAG_IOL.OUTn 00H 0 0010 01 (reserved) DIAG_OSM.OUTn 00H r = 0 r = 1 0011 w=1 w=0 00 HWCR .ACT r = 0 r = 1 0011 w=1 w=0 01 (reserved) 1 1 10.6.4 08H MAPIN1.OUTn (reserved) HWCR .RST INST.INn (reserved) HWCR.PAR 00H 00H 00H HWCR_OCL.OUTn SPI command quick list A summary of the most used SPI commands (read and write operations on all registers) is shown in Table 18 Table 18 SPI command quick list Register "read" command" "write" command content written OUT 4002H 80XXH XXH = xxxxxxxxB MAPIN0 4402H 84XXH XXH = xxxxxxxxB MAPIN1 4502H 85XXH XXH = xxxxxxxxB INST 4602H n.a. (read-only) - DIAG_IOL 4802H 88XXH XXH = xxxxxxxxB DIAG_OSM 4902H n.a. (read-only) - HWCR 4C02H 8CXXH XXH = xxxxxxxxB HWCR_OCL 4D02H 8DXXH XXH = xxxxxxxxB Data Sheet 57 Rev. 1.1, 2015-09-25 TLE75004-ELD Application Information 11 Application Information Note: The following information is given as a hint for the implementation of the device only and shall not be regarded as a description or warranty of a certain functionality, condition or quality of the device. VBA TT CVS CVDD VDD VDD GPO RIN GPO RIN GPO RIDLE ROUT1 IN0_LH IN1_LH ZOUT2 RVDD ZOUT3 VDD VS IN0 IN1 RLH OUT0_LS IDLE OUT1_LS LIMPHOME ZVS OUT2_LS GPO RCSN CSN GPO RSCLK SCLK GPO RSI SI GPI RSO SO COUT COUT COUT GND COUT GND OUT3_LS Application_4LS.emf Figure 32 TLE75004-ELD Application Diagram Note: This is a very simplified example of an application circuit. The function must be verified in the real application. Table 19 Suggested Component values Reference Value Purpose RIN 4.7 k Protection of the micro-controller during Over Voltage and Reverse Polarity Guarantee TLE75004-ELD channels OFF during Loss of Ground RIDLE 4.7 k Protection of the micro-controller during Over Voltage and Reverse Polarity Guarantee TLE75004-ELD channels OFF during Loss of Ground RCSN 500 Protection of the micro-controller during Over Voltage and Reverse Polarity RSCLK 500 Protection of the micro-controller during Over Voltage and Reverse Polarity RSI 500 Protection of the micro-controller during Over Voltage and Reverse Polarity RSO 500 Protection of the micro-controller during Over Voltage and Reverse Polarity RVDD 100 Logic supply voltage spikes filtering CVDD 100 nF Logic supply voltage spikes filtering CVS 68 nF Analog supply voltage spikes filtering Data Sheet 58 Rev. 1.1, 2015-09-25 TLE75004-ELD Application Information Table 19 Suggested Component values (cont'd) Reference Value Purpose ZVS P6SMB30 Protection of device during Over Voltage. Zener diode COUT 10 nF Protection of TLE75004-ELD against ESD and BCI 11.1 Further Application Information * Please contact us for information regarding the Pin FMEA * For further information you may contact http://www.infineon.com/ Data Sheet 59 Rev. 1.1, 2015-09-25 TLE75004-ELD Package Outlines Package Outlines 0.35 x 45" 6 x 0.65 = 3.9 0.19 +0.06 H 0.08 C SEATING PLANE 0.64 !0.25 D 6 !0.2 0.2 C 14x 2) 0.15 M C A-B D 14x Bottom View 3 !0.2 A 14 1 8 1 7 Index Marking 4.9 !0.11) Exposed Diepad B 0.1 H A-B 2x 7 14 8 2.65 !0.2 0.25 !0.05 0.1 H D 2x 8" MAX. C 0.65 3.9 !0.11) 1.7 MAX. 0.05 !0.05 STAND OFF (1.45) 12 1) Does not include plastic or metal protrusion of 0.15 max. per side 2) Lead width can be 0.61 max. in dambar area PG-SSOP-14-1,-2,-3, -5-PO V05 Figure 33 PG-SSOP-14-5 Package drawing 2.65 5.69 1.31 3 0.45 0.65 PG-SSOP-14-1,-2,-3, -5-FP V01 Figure 34 Data Sheet TLE75004-ELD Package pads and stencil 60 Rev. 1.1, 2015-09-25 TLE75004-ELD Package Outlines Green Product (RoHS compliant) To meet the world-wide customer requirements for environmentally friendly products and to be compliant with government regulations the device is available as a green product. Green products are RoHS-Compliant (i.e Pbfree finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020). For further information on alternative packages, please visit our website: http://www.infineon.com/packages. Data Sheet 61 Dimensions in mm Rev. 1.1, 2015-09-25 TLE75004-ELD Revision History 13 Revision History Page or Item Changes since previous revision Rev. 1.1, 2015-09-25 All TLE75004-ELD Figure 33 changed Rev. 1.0, 2015-07-27 TLE75004-ELD Data Sheet released Trademarks of Infineon Technologies AG AURIXTM, C166TM, CanPAKTM, CIPOSTM, CIPURSETM, EconoPACKTM, CoolMOSTM, CoolSETTM, CORECONTROLTM, CROSSAVETM, DAVETM, DI-POLTM, EasyPIMTM, EconoBRIDGETM, EconoDUALTM, EconoPIMTM, EconoPACKTM, EiceDRIVERTM, eupecTM, FCOSTM, HITFETTM, HybridPACKTM, IRFTM, ISOFACETM, IsoPACKTM, MIPAQTM, ModSTACKTM, my-dTM, NovalithICTM, OptiMOSTM, ORIGATM, POWERCODETM; PRIMARIONTM, PrimePACKTM, PrimeSTACKTM, PRO-SILTM, PROFETTM, RASICTM, ReverSaveTM, SatRICTM, SIEGETTM, SINDRIONTM, SIPMOSTM, SmartLEWISTM, SOLID FLASHTM, TEMPFETTM, thinQ!TM, TRENCHSTOPTM, TriCoreTM. Other Trademarks Advance Design SystemTM (ADS) of Agilent Technologies, AMBATM, ARMTM, MULTI-ICETM, KEILTM, PRIMECELLTM, REALVIEWTM, THUMBTM, VisionTM of ARM Limited, UK. AUTOSARTM is licensed by AUTOSAR development partnership. BluetoothTM of Bluetooth SIG Inc. CAT-iqTM of DECT Forum. COLOSSUSTM, FirstGPSTM of Trimble Navigation Ltd. EMVTM of EMVCo, LLC (Visa Holdings Inc.). EPCOSTM of Epcos AG. FLEXGOTM of Microsoft Corporation. FlexRayTM is licensed by FlexRay Consortium. HYPERTERMINALTM of Hilgraeve Incorporated. IECTM of Commission Electrotechnique Internationale. IrDATM of Infrared Data Association Corporation. ISOTM of INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. MATLABTM of MathWorks, Inc. MAXIMTM of Maxim Integrated Products, Inc. MICROTECTM, NUCLEUSTM of Mentor Graphics Corporation. MIPITM of MIPI Alliance, Inc. MIPSTM of MIPS Technologies, Inc., USA. muRataTM of MURATA MANUFACTURING CO., MICROWAVE OFFICETM (MWO) of Applied Wave Research Inc., OmniVisionTM of OmniVision Technologies, Inc. OpenwaveTM Openwave Systems Inc. RED HATTM Red Hat, Inc. RFMDTM RF Micro Devices, Inc. SIRIUSTM of Sirius Satellite Radio Inc. SOLARISTM of Sun Microsystems, Inc. SPANSIONTM of Spansion LLC Ltd. SymbianTM of Symbian Software Limited. TAIYO YUDENTM of Taiyo Yuden Co. TEAKLITETM of CEVA, Inc. TEKTRONIXTM of Tektronix Inc. TOKOTM of TOKO KABUSHIKI KAISHA TA. UNIXTM of X/Open Company Limited. VERILOGTM, PALLADIUMTM of Cadence Design Systems, Inc. VLYNQTM of Texas Instruments Incorporated. VXWORKSTM, WIND RIVERTM of WIND RIVER SYSTEMS, INC. ZETEXTM of Diodes Zetex Limited. Last Trademarks Update 2011-11-11 Data Sheet 62 Rev. 1.1, 2015-09-25 Edition 2015-09-25 Published by Infineon Technologies AG 81726 Munich, Germany (c) 2015 Infineon Technologies AG All Rights Reserved. Legal Disclaimer The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party. Information For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com). Warnings Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office. Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.