211x1-DSH-001-I Mindspeed Technologies®December 2012
Mindspeed Proprietary and Confidential
M21131/M21151
72x72/144x144 3.2 Gbps Asynchronous Crosspoint Switch
with Amplif-EYE Signal Conditioning
Applications
Large NxN cascaded switch fabrics up to 10 Terabits/sec (Tbps)
Dense-Wavelength-Division Multiplexing (DWDM) telecom/datacom
Switcher/Router
Serial Digital Video Switcher/Router (3G/HD/SD-SDI)
Storage Area Network (SAN) Switcher/Router
High-speed Automated Test Equipment (ATE)
Disaster recovery and redundancy systems
The M21131/M21151 is a 3.2 Gbps, 72/144 lane high-speed, low-power CMOS asynchronous non-blocking
crosspoint switch. It operates from DC to 3.2 Gbps making it suitable for many telecom, datacom, and broadcast
video applications.
Features
72/144 inputs by 72/144 outputs non-blocking crosspoint switch
3.2 Gbps Non-Return to Zero (NRZ) raw data bandwidth
Global or individual lane programmable Input Equalization, output De-
Emphasis, and drive levels
Pinout and software compatible with the M21141/M21161
Input signal activity monitor
Flexible interface AVdd_IO +1.2/1.5/1.8/2.5V
Built-in Pseudo-Random Bit Sequence (PRBS) generator/checker
SmartPower™ dynamically reduces power consumption
Green/RoHS compliant package
M21131/M21151 Typical Application Diagram
72x72/
144x144
Crosspoint
Core
O/E
E/O
PHY/Pointer
Processor
O/E
E/O
Pointer
Processor
Ser/Des
CDR
Optical
Optical
Driver
Driver
DS3/E3
DS1/E1
VT/
Framer/
Mapper
SPE/
Framer/
Mapper
Line Card/Backplane
SFP/XFP SFP/XFP
Optical Optical
DC~3.2 GbpsDC~3.2 Gbps
Video SD/HD Video SD/HD
211x1-DSH-001-I Mindspeed Technologies®2
Mindspeed Proprietary and Confidential
Ordering Information
72x72 3.2 Gbps Crosspoint Switch Ordering Information
Part Number Package Type Substrate
Material
Green/
Eutectic
Operating
Temperature Availability
M21131-12 (1) 1156-terminal, 35 mm, BGA Ceramic Eutectic 0°C to 85 °C Now
M21131G-12 (1) 1156-terminal, 35 mm, BGA Ceramic Green 0°C to 85 °C Now
M21131G-13 (1,2) 1156-terminal, 35 mm, BGA Ceramic Green 0°C to 85 °C Now
M21131-22 1156-terminal, 35 mm, BGA CPCore Eutectic 0°C to 85 °C Production orders: 01/01/2011
M21131G-22 1156-terminal, 35 mm, BGA CPCore Green 0°C to 85 °C Production orders: 01/01/2011
M21131G-23 (2) 1156-terminal, 35 mm, BGA CPCore Green 0°C to 85 °C Production orders: 01/01/2011
(1) Not recommended for new designs
(2) Improved input sensitivity especially for SDI applications
144x144 3.2 Gbps Crosspoint Switch Ordering Information
Part Number Package Type Substrate
Material
Green/
Eutectic
Operating
Temperature Availability
M21151-13 (1) 1156-terminal, 35 mm, BGA Ceramic Eutectic 0°C to 85 °C Now
M21151G-13 (1) 1156-terminal, 35 mm, BGA Ceramic Green 0°C to 85 °C Now
M21151G-14 (1,2) 1156-terminal, 35 mm, BGA Ceramic Green 0°C to 85 °C Now
M21151-23 1156-terminal, 35 mm, BGA CPCore Eutectic 0°C to 85 °C Production orders: 01/01/2011
M21151G-23 1156-terminal, 35 mm, BGA CPCore Green 0°C to 85 °C Production orders: 01/01/2011
M21151G-24 (2) 1156-terminal, 35 mm, BGA CPCore Green 0°C to 85 °C Production orders: 01/01/2011
(1) Not recommended for new designs
(2) Improved input sensitivity especially for SDI applications
NOTE: Mindspeed is changing the package substrate material from Ceramic to CPCore.
For traceability, the revision code will be changed from -1x to -2x to signify this
change. The device silicon will remain unchanged during this transition. The
differences between the CPCore and Ceramic packaged material are outlined in
Section 2.1.3.
These devices are shipped in trays.
The letter “G” designator after the part number indicates that the device is RoHS
compliant. Refer to www.mindspeed.com for additional information. The RoHS
compliant devices are backwards compatible with 225 °C reflow profiles.
211x1-DSH-001-I Mindspeed Technologies®3
Mindspeed Proprietary and Confidential
Revision History
Revision Level Date Description
I Released December 2012 Corrected an error in table 1-1. Maximum voltage on CMOS inputs should be
referenced to DVDD_IO instead of AVDD_IO
H Released July 2010 Expanded ordering matrix to include all current revisions.
G Released May 2010 Revised part numbers to -23 and -24.
Corrected signal names on pin AF1 INP[117] and AF2 INN[117].
Updated Marking Diagrams.
Update package from ceramic to CPCore. Please see Section 2.1.3 for package
changes
F Released October 2009 Revised for M21131-13 part details.
Added marking diagrams.
Removed M21131-12 parameters from Table 1-6.
Removed BGA Assignments by Ball Name Tables.
Corrrected global control of de-emphasis duration values in Table 3-33.
E Released May 2009 See prior revisions for revision history details.
D Released September 2008 See prior revisions for revision history details.
M21131 Marking Diagrams
M21151 Marking Diagrams
XXXX .X
YYWW CC
M21131-xx
M21131 -xx Marking Diagram
e
Part Number
Lot Number
Date and Country Code
XXXX .X
YYWW CC
M21131G-xx
RoHS Symbol
M21131 G- xx M ar king Diagram
XXXX .X
YYWW CC
M21151-xx
M21151 -xx Marking Diagram
e
Part Number
Lot Number
Date and Country Code
XXXX .X
YYWW CC
M21151G-xx
RoHS Symbol
M21151 G- xx M ar king Diagram
211x1-DSH-001-I Mindspeed Technologies®4
Mindspeed Proprietary and Confidential
Table of Contents
Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Revision History. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Table of Contents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.0 Electrical Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.0 Package Outline Drawing and Pin Descriptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1 Package Outline Drawing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
2.1.1 M21131 and M21151 Packaging Drawing (-12/-13/-14) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
2.1.2 M21131 and M21151 Packaging Drawing (-22/-23/-24) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13
2.1.3 Package Changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14
2.2 Pinout Diagram and Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15
2.3 Pin Definitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24
3.0 Control Registers Map and Descriptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.1 Control Registers Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28
3.1.1 Even PRBS Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29
3.1.2 Odd PRBS Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33
3.1.3 Global Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37
4.0 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41
4.2 Detailed Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45
4.2.1 Document Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45
4.2.2 Power Supply Configurations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45
4.3 Serial Interface and Switch Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45
4.3.1 Switch State Register Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46
4.3.2 Parallel I/O Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46
4.3.3 Serial I/O Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .50
4.3.3.1 Timing Diagram Clock Set and Program Modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .50
4.3.4 Switch Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52
4.3.5 Input/Output Enable and Output Logic Swing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52
4.3.6 Programmable Input Equalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53
4.3.7 Programmable Output De-Emphasis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53
4.3.8 Duty Cycle Distortion (Offset) Circuit on Inputs to Switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55
4.3.9 Input Signal Activity Monitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55
4.3.9.1 LOS Data Rate Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55
4.3.9.2 LOS Signal Busing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56
Table of Contents
211x1-DSH-001-I Mindspeed Technologies®5
Mindspeed Proprietary and Confidential
4.3.10 Power-Up Sequence and Device Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56
4.3.11 Product and Revision Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57
4.3.12 Core Power Saving. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57
4.3.13 PRBS Transmitter and Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58
4.3.13.1 PRBS TX Pattern Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58
4.3.13.2 Additional Test Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59
4.3.13.3 PRBS Output Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59
4.3.13.4 PRBS RX Control Parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59
4.3.13.5 PRBS CDR Control Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59
4.3.14 PRBS CDR Data Rate Programming. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60
4.3.14.1 Settings for Non-Standard Rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60
4.3.14.2 PRBS Error Detection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63
211x1-DSH-001-I Mindspeed Technologies®6
Mindspeed Proprietary and Confidential
1.0 Electrical Characteristics
Unless noted otherwise, specifications in this section are valid with AVDD_CORE = 1.2V, AVDD_IO = 1.8V, and
DVDD_IO = 2.5V power supplies, 25 °C ambient temperature, 800 mVpp differential input/output data swing, PRBS
215– 1 test pattern at 3.2 Gbps, RL = 50Ω.
Table 1-1. Absolute Maximum Ratings (1)
Symbol Parameter Minimum Typical Maximum Unit
DVDD_IO Digital logic I/O supply 0 +3.6 V
AVDD_IO Switch I/O supply 0 +2.7 V
AVDD_CORE Switch core supply 0 +1.5 V
VCML DC input voltage (CML) VSS - 0.5 AVDD_IO + 0.5 V
VCMOS DC input voltage (CMOS) VSS - 0.5 DVDD_IO + 0.5 V
Tst Storage temperature -65 +150 °C
VESD Human body model (low-speed) 1000 V
VESD Human body model (high-speed) 500 V
VESD Charge device model 150 V
NOTES:
1. Exposure to these conditions over extended periods of time may affect device reliability.
Table 1-2. Recommended Operating Conditions
Symbol Parameter Notes Minimum Typical Maximum Unit
DVDD_IO Digital supply voltage 2 +1.71 +1.8/2.5/3.3 +3.47 V
AVDD_IO Analog I/O supply voltage 2 +1.14 +1.2/1.5/1.8/2.5 +2.63 V
AVDD_CORE Switch core supply voltage 2 +1.14 +1.2 +1.26 V
Tc Package heat spreader temperature 1, 3 0 +85 °C
θJC Junction to Case Thermal Resistance 0.3
C/W
NOTES:
1. Lower limit is ambient temperature and upper limit is case temperature.
2. Power supply tolerances are ±5%.
3. Please refer to the 144 XPS thermal Application Note for thermal design and bolted down heat sink recommendations for this product. The use
of adhesively mounted heatsinks is prohibited.
Electrical Characteristics
211x1-DSH-001-I Mindspeed Technologies®7
Mindspeed Proprietary and Confidential
Table 1-3. M21131 Power DC Electrical Specifications
Symbol Parameter Notes Minimum Typical Maximum(1) Unit
AIDD_CORE
Core current consumption, small output swing, SmartPower on 1,2 4.2 4.4 A
Core current consumption, small output swing, SmartPower off 1,2 8.6 9.0 A
AIDD_IO
I/O current consumption, small output swing, +1.2V I/O 2 1.3 1.4 A
I/O current consumption, small output swing, +2.5V I/O 2 2.8 3.0 A
Pdiss
Power dissipation at +1.2V CORE, +1.2V I/O, SmartPower on 2 6.6 7.0 W
Power dissipation at +1.2V CORE, +2.5V I/O, SmartPower on 2 12.1 12.8 W
AIDD_CORE
Core current consumption, medium output swing, SmartPower
on
1,2 4.4 4.6 A
Core current consumption, medium output swing, SmartPower
off
1,2 8.8 9.2 A
AIDD_IO
I/O current consumption, medium output swing, +1.2V I/O 2 2.0 2.1 A
I/O current consumption, medium output swing, +2.5V I/O 2 3.1 3.2 A
Pdiss
Power dissipation at +1.2V CORE, +1.2V I/O, SmartPower on 2 7.7 8.0 W
Power dissipation at +1.2V CORE, +2.5V I/O, SmartPower on 2 12.9 13.5 W
AIDD_CORE
Core current consumption, high output swing, SmartPower on 1,2 4.5 4.7 A
Core current consumption, high output swing, SmartPower off 1,2 8.9 9.4 A
AIDD_IO
I/O current consumption, high output swing, +1.2V I/O 2 2.5 2.7 A
I/O current consumption, high output swing, +2.5V I/O 2 3.5 3.7 A
Pdiss
Power dissipation at +1.2V CORE, +1.2V I/O, SmartPower on 2 8.4 8.9 W
Power dissipation at +1.2V CORE, +2.5V I/O, SmartPower on 2 14.2 14.9 W
DIDD_IO Digital current consumption DVDD_IO = +2.5V 2 0.626 25 mA
NOTES:
1. Core power supply is +1.26V, (+1.20V, +5%).
2. 1-to-1 mapping (Input0 to Output0, Input1 to Output1,...).
Electrical Characteristics
211x1-DSH-001-I Mindspeed Technologies®8
Mindspeed Proprietary and Confidential
Table 1-4. M21151 Power DC Electrical Specifications (1)
Symbol Parameter Notes Minimum Typical Maximum Unit
AIDD_CORE
Core current consumption, small output swing, SmartPower on 1,2 8.3 8.5 A
Core current consumption, small output swing, SmartPower off 1,2 11.2 11.5 A
AIDD_IO
I/O current consumption, small output swing, +1.2V I/O 2 2.5 2.6 A
I/O current consumption, small output swing, +2.5V I/O 2 3.6 3.7 A
Pdiss
Power dissipation at +1.2V CORE, +1.2V I/O, SmartPower on 2 12.9 13.3 W
Power dissipation at +1.2V CORE, +2.5V I/O, SmartPower on 2 18.9 19.5 W
AIDD_CORE
Core current consumption, medium output swing, SmartPower on 1,2 8.4 8.7 A
Core current consumption, medium output swing, SmartPower off 1,2 11.3 11.7 A
AIDD_IO
I/O current consumption, medium output swing, +1.2V I/O 2 3.6 3.8 A
I/O current consumption, medium output swing, +2.5V I/O 2 4.7 4.9 A
Pdiss
Power dissipation at +1.2V CORE, +1.2V I/O, SmartPower on 2 14.4 15.0 W
Power dissipation at +1.2V CORE, +2.5V I/O, SmartPower on 2 21.8 22.7 W
AIDD_CORE
Core current consumption, high output swing, SmartPower on 1,2 8.7 8.9 A
Core current consumption, high output swing, SmartPower off 1,2 11.6 11.9 A
AIDD_IO
I/O current consumption, high output swing, +1.2V I/O 2 4.3 4.5 A
I/O current consumption, high output swing, +2.5V I/O 2 5.5 6.1 A
Pdiss
Power dissipation at +1.2V CORE, +1.2V I/O, SmartPower on 2 15.5 16.1 W
Power dissipation at +1.2V CORE, +2.5V I/O, SmartPower on 2 24.2 25.9 W
DIDD_IO Digital current consumption DVDD_IO = +2.5V 2 0.626 25 mA
NOTES:
1. Core power supply is +1.26V, (+1.20V +5%).
2. 1-to-1 mapping (Input0 to Output0, Input1 to Output1,...).
Table 1-5. CMOS DC Electrical Specifications
Symbol Parameter Minimum Typical Maximum Unit
VOH Output logic high IOH = -100 μA 0.8 x DVDD_IO V
VOL Output logic low IOL = 100 μA—0.2 x DV
DD_IO V
VIH Input logic high DVDD_IO - 0.3 +3.6 V
VIL Input logic low 0 +0.3 V
Electrical Characteristics
211x1-DSH-001-I Mindspeed Technologies®9
Mindspeed Proprietary and Confidential
Table 1-6. PCML Input Electrical Specifications (1)
Symbol Parameter Notes Minimum Typical Maximum Unit
VID Input differential voltage (peak-to-peak) PRBS
SDI Pseudo-Pathological Pattern
1 100
350
1200
mV
VICM Input common-mode voltage AVDD_IO - 300 mV
VIH Maximum input high voltage AVDD_IO + 300 mV
VIL Minimum input low voltage AVDD_IO - 800 mV
S11 Input return loss (40 MHz to 2 GHz) -10.0 dB
S11 Input return loss (2 GHz to 5 GHz) -5.0 dB
NOTES:
1. Input sensitivity specified @ 3.2 Gbps PRBS 223-1 and BER 10-12.
Table 1-7. PCML Output Specifications
Symbol Parameter Notes Minimum Typical Maximum Unit
DROUT Operating data rate (NRZ data) DC 3.2 Gbps
JOUTRMS Output data broadband jitter (RMS) 6.0 ps
JOUTP-P Output data broadband jitter (peak-to-peak) 36.0 ps
TRISE/FALL Rise time/fall time (20 to 80%) 2 145 ps
VOD Low swing: differential swing
Medium swing: differential swing
High swing: differential swing
3
390
700
920
650
950
1225
700
1200
1600
mV
S22 Output return loss (40 MHz to 2.5 GHz)
Output return loss (2.5 GHz to 5 GHz)
1—
-15.0
-5.0
dB
tDJ Output Deterministic Jitter (ISI) 125 mUI
tRJ Output Random Jitter 2 mUI
RMS
NOTES:
1. RF parameters measured into a 50Ω load on M21131/M21151 EVM.
2. Rise/Fall time specification is for lowest output swing settings. Rise/Fall time improves with higher output swing settings.
3. Package and recommended heat sink are not rated for this mode at AVDD_IO = +2.5 V due to high power dissipation; improved thermal man-
agement at the board level would be necessary to use this mode at AVDD_IO = +2.5 V.
Electrical Characteristics
211x1-DSH-001-I Mindspeed Technologies®10
Mindspeed Proprietary and Confidential
Figure 1-1. Input Equalization Test Setup
Figure 1-2. De-Emphasis Test Setup
BERT
HM-Zd HM-Zd
M21131/M21151 EVM
M21151
SMA
Scope/Error
Detector
Copper Trace
BERT
HM-Zd
HM-Zd
M21131/M21151 EVM
M21151
SMA
Scope/Error
Detector
FR-4 Copper Trace
211x1-DSH-001-I Mindspeed Technologies®11
Mindspeed Proprietary and Confidential
2.0 Package Outline Drawing and
Pin Descriptions
2.1 Package Outline Drawing
2.1.1 M21131 and M21151 Packaging Drawing (-12/-13/-14)
Figure 2-1 illustrates the M21131/M21151 (-12/-13/-14) overall package dimensions and a cross sectional view,
Figure 2-2 is a bottom view of the package with ball assignments. The substrate thickness is 2.03 millimeters. All
dimensions are in millimeters. The ball count is 1156, the width of each ball is 0.60 millimeters, and the ball pitch
from center to center is 1.00 millimeters.
Figure 2-1. M21131/M21151 (-12/-13/-14) Package Outline Top View and Cross Sectional View (in mm)
(heat spreader)
Package Outline Drawing and Pin Descriptions
211x1-DSH-001-I Mindspeed Technologies®12
Mindspeed Proprietary and Confidential
Figure 2-2. M21131/M21151 (-12-13/-14) Bottom View of Package (in mm)
Package Outline Drawing and Pin Descriptions
211x1-DSH-001-I Mindspeed Technologies®13
Mindspeed Proprietary and Confidential
2.1.2 M21131 and M21151 Packaging Drawing (-22/-23/-24)
Figure 2-3 illustrates the M21131/M21151 (-22/-23/-24) overall package dimensions and a cross sectional view,
Figure 2-4 is a bottom view of the package with ball assignments. The substrate thickness is 2.03 millimeters. All
dimensions are in millimeters. The ball count is 1156, the width of each ball is 0.60 millimeters, and the ball pitch
from center to center is 1.00 millimeters.
Figure 2-3. M21131/M21151 (-22/-23/-24) Package Outline Top View and Cross Sectional View (in mm)
Package Outline Drawing and Pin Descriptions
211x1-DSH-001-I Mindspeed Technologies®14
Mindspeed Proprietary and Confidential
2.1.3 Package Changes
There are some differences between Ceramic and CPCore in package dimension and construction. They are listed
below:
Figure 2-4. M21131/M21151 (-22/-23/-24) Bottom View of Package (in mm)
Table 2-1. Differences Between Ceramic and CPCore Packaging
Dimension
Differences
Units
Ceramic CPCore
X dimension 35 +0.15/-0.20 35 +/-0.1 mm
Y dimension 35 +0.15/-0.20 35 +/-0.1 mm
Z dimension 3.85 +/-0.26 3.16 +/-0.25 mm
Coplanarity 0.15 0.20 mm
Package Outline Drawing and Pin Descriptions
211x1-DSH-001-I Mindspeed Technologies®15
Mindspeed Proprietary and Confidential
2.2 Pinout Diagram and Pin Descriptions
Table 2-2. BGA Assignments (1 of 8)
Note: For the M21131, the INP/N[72:143] and OUTP/N[72:143] pins are NC (No Connect).
Location Name
A1 ADDR9
A2 DATA6
A3 XRST
A4 OUTP[134]
A5 OUTP[122]
A6 OUTP[138]
A7 OUTP[132]
A8 OUTP[126]
A9 OUTP[120]
A10 OUTP[114]
A11 OUTP[108]
A12 OUTP[102]
A13 OUTP[96]
A14 OUTP[90]
A15 OUTP[84]
A16 OUTP[78]
A17 OUTP[72]
A18 OUTP[66]
A19 OUTP[60]
A20 OUTP[54]
A21 OUTP[48]
A22 OUTP[42]
A23 OUTP[36]
A24 OUTP[30]
A25 OUTP[24]
A26 OUTP[18]
A27 OUTP[12]
A28 OUTP[6]
A29 OUTP[0]
A30 OUTP[20]
A31 OUTP[8]
A32 DIRXP[0]
A33 DOTXP[0]
A34 CLKTXREF[0]
B1 ADDR8
B2 DATA7
B3 R/XW
B4 OUTN[134]
B5 OUTN[122]
B6 OUTN[138]
B7 OUTN[132]
B8 OUTN[126]
B9 OUTN[120]
B10 OUTN[114]
B11 OUTN[108]
B12 OUTN[102]
B13 OUTN[96]
B14 OUTN[90]
B15 OUTN[84]
B16 OUTN[78]
B17 OUTN[72]
B18 OUTN[66]
B19 OUTN[60]
B20 OUTN[54]
B21 OUTN[48]
B22 OUTN[42]
B23 OUTN[36]
B24 OUTN[30]
B25 OUTN[24]
B26 OUTN[18]
B27 OUTN[12]
B28 OUTN[6]
B29 OUTN[0]
B30 OUTN[20]
B31 OUTN[8]
B32 DIRXN[0]
B33 DOTXN[0]
B34 TRIG[0]
C1 INP[7]
C2 INN[7]
C3 AVSS
C4 DATA5
Location Name
C5 XCS
C6 XTEST
C7 AVSS
C8 AVDD_IO
C9 AVSS
C10 AVDD_IO
C11 AVSS
C12 AVDD_IO
C13 AVSS
C14 AVDD_IO
C15 AVSS
C16 AVDD_IO
C17 AVSS
C18 AVDD_IO
C19 AVSS
C20 AVDD_IO
C21 AVSS
C22 AVDD_IO
C23 AVSS
C24 AVDD_IO
C25 AVSS
C26 AVDD_IO
C27 AVSS
C28 AVDD_IO
C29 AVSS
C30 MDSPDTEST[[3]
C31 MDSPDTEST[2]
C32 PERROR[0]
C33 INN[0]
C34 INP[0]
D1 INP[17]
D2 INN[17]
D3 XDS/SCLK
D4 ADDR7
D5 ADDR6
D6 DATA4
Location Name
D7 OUTP[136]
D8 OUTP[140]
D9 OUTP[128]
D10 OUTP[116]
D11 OUTP[110]
D12 OUTP[104]
D13 OUTP[98]
D14 OUTP[92]
D15 OUTP[86]
D16 OUTP[80]
D17 OUTP[74]
D18 OUTP[68]
D19 OUTP[62]
D20 OUTP[56]
D21 OUTP[50]
D22 OUTP[44]
D23 OUTP[38]
D24 OUTP[32]
D25 OUTP[26]
D26 OUTP[14]
D27 OUTP[2]
D28 OUTP[34]
D29 OUTP[22]
D30 OUTP[10]
D31 XRSTRX[0]
D32 MDSPDTEST[1]
D33 INN[14]
D34 INP[14]
E1 INP[5]
E2 INN[5]
E3 ADDR5
E4 ADDR1
E5 ADDR4
E6 XSET
E7 OUTN[136]
E8 OUTN[140]
Location Name
Package Outline Drawing and Pin Descriptions
211x1-DSH-001-I Mindspeed Technologies®16
Mindspeed Proprietary and Confidential
E9 OUTN[128]
E10 OUTN[116]
E11 OUTN[110]
E12 OUTN[104]
E13 OUTN[98]
E14 OUTN[92]
E15 OUTN[86]
E16 OUTN[80]
E17 OUTN[74]
E18 OUTN[68]
E19 OUTN[62]
E20 OUTN[56]
E21 OUTN[50]
E22 OUTN[44]
E23 OUTN[38]
E24 OUTN[32]
E25 OUTN[26]
E26 OUTN[14]
E27 OUTN[2]
E28 OUTN[34]
E29 OUTN[22]
E30 OUTN[10]
E31 AVSS
E32 AVDD_IO
E33 INN[4]
E34 INP[4]
F1 INP[9]
F2 INN[9]
F3 ADDR2
F4 XOUTDIS
F5 ADDR0
F6 ADDR3
F7 DATA2
F8 MDSPDTEST[28]
F9 AVDD_IO
F10 AVSS
F11 AVDD_IO
Location Name
F12 AVSS
F13 AVDD_IO
F14 AVSS
F15 AVDD_IO
F16 AVSS
F17 AVDD_IO
F18 AVSS
F19 AVDD_IO
F20 AVSS
F21 AVDD_IO
F22 AVSS
F23 AVDD_IO
F24 AVSS
F25 AVDD_IO
F26 AVSS
F27 AVDD_IO
F28 AVSS
F29 AVDD_IO
F30 INN[6]
F31 INP[6]
F32 AVSS
F33 INN[8]
F34 INP[8]
G1 INP[13]
G2 INN[13]
G3 AVSS
G4 INP[1]
G5 INN[1]
G6 XINDIS
G7 MDSPDTEST[4]
G8 OUTP[142]
G9 OUTP[130]
G10 OUTP[124]
G11 OUTP[118]
G12 OUTP[112]
G13 OUTP[106]
G14 OUTP[100]
Location Name
G15 OUTP[94]
G16 OUTP[88]
G17 OUTP[82]
G18 OUTP[76]
G19 OUTP[70]
G20 OUTP[64]
G21 OUTP[58]
G22 OUTP[52]
G23 OUTP[46]
G24 OUTP[40]
G25 OUTP[28]
G26 OUTP[16]
G27 OUTP[4]
G28 CLKTXP[0]
G29 AVSS
G30 INN[16]
G31 INP[16]
G32 AVDD_IO
G33 INN[12]
G34 INP[12]
H1 INP[21]
H2 INN[21]
H3 AVDD_IO
H4 INP[15]
H5 INN[15]
H6 DATA1
H7 MDSPDTEST[5]
H8 OUTN[142]
H9 OUTN[130]
H10 OUTN[124]
H11 OUTN[118]
H12 OUTN[112]
H13 OUTN[106]
H14 OUTN[100]
H15 OUTN[94]
H16 OUTN[88]
H17 OUTN[82]
Location Name
H18 OUTN[76]
H19 OUTN[70]
H20 OUTN[64]
H21 OUTN[58]
H22 OUTN[52]
H23 OUTN[46]
H24 OUTN[40]
H25 OUTN[28]
H26 OUTN[16]
H27 OUTN[4]
H28 CLKTXN[0]
H29 AVDD_IO
H30 INN[22]
H31 INP[22]
H32 AVSS
H33 INN[20]
H34 INP[20]
J1 INP[25]
J2 INN[25]
J3 AVSS
J4 INP[23]
J5 INN[23]
J6 AVDD_IO
J7 INP[3]
J8 INN[3]
J9 AVSS
J10 MDSPDTEST[29]
J11 AVSS
J12 AVDD_IO
J13 AVDD_IO
J14 AVDD_CORE
J15 AVDD_CORE
J16 AVDD_IO
J17 AVDD_IO
J18 AVDD_CORE
J19 AVDD_CORE
J20 AVDD_IO
Location Name
Table 2-2. BGA Assignments (2 of 8)
Package Outline Drawing and Pin Descriptions
211x1-DSH-001-I Mindspeed Technologies®17
Mindspeed Proprietary and Confidential
J21 AVDD_IO
J22 AVDD_CORE
J23 AVDD_CORE
J24 AVSS
J25 AVDD_IO
J26 AVSS
J27 INN[2]
J28 INP[2]
J29 AVSS
J30 INN[30]
J31 INP[30]
J32 AVDD_IO
J33 INN[24]
J34 INP[24]
K1 INP[29]
K2 INN[29]
K3 AVDD_IO
K4 INP[31]
K5 INN[31]
K6 AVSS
K7 INP[11]
K8 INN[11]
K9 N/C
K10 SER/XPAR
K11 DATA3
K12 AVSS
K13 AVSS
K14 AVSS
K15 AVSS
K16 AVSS
K17 AVSS
K18 AVSS
K19 AVSS
K20 AVSS
K21 AVSS
K22 AVSS
K23 AVSS
Location Name
K24 MDSPDTEST[32]
K25 XENRX[0]
K26 AVDD_IO
K27 INN[10]
K28 INP[10]
K29 AVDD_IO
K30 INN[32]
K31 INP[32]
K32 AVSS
K33 INN[28]
K34 INP[28]
L1 INP[37]
L2 INN[37]
L3 AVSS
L4 INP[33]
L5 INN[33]
L6 AVDD_IO
L7 INP[19]
L8 INN[19]
L9 DVSS_IO
L10 LOS
L11 DATA0
L12 AVSS
L13 AVSS
L14 AVSS
L15 AVSS
L16 AVSS
L17 AVSS
L18 AVSS
L19 AVSS
L20 AVSS
L21 AVSS
L22 AVSS
L23 AVSS
L24 MDSPDTEST[33]
L25 XENTX[0]
L26 AVSS
Location Name
L27 INN[18]
L28 INP[18]
L29 AVSS
L30 INN[38]
L31 INP[38]
L32 AVDD_IO
L33 INN[36]
L34 INP[36]
M1 INP[41]
M2 INN[41]
M3 AVDD_IO
M4 INP[39]
M5 INN[39]
M6 AVSS
M7 INP[27]
M8 INN[27]
M9 AVDD_CORE
M10 DVDD_IO
M11 AVSS
M12 AVDD_IO
M13 AVDD_IO
M14 AVSS
M15 AVSS
M16 AVDD_CORE
M17 AVDD_CORE
M18 AVDD_CORE
M19 AVDD_CORE
M20 AVSS
M21 AVSS
M22 AVDD_IO
M23 AVDD_IO
M24 AVSS
M25 AVSS
M26 AVDD_CORE
M27 INN[26]
M28 INP[26]
M29 AVDD_IO
Location Name
M30 INN[46]
M31 INP[46]
M32 AVSS
M33 INN[40]
M34 INP[40]
N1 INP[45]
N2 INN[45]
N3 AVSS
N4 INP[47]
N5 INN[47]
N6 AVDD_IO
N7 INP[35]
N8 INN[35]
N9 AVDD_CORE
N10 AVSS
N11 AVSS
N12 AVDD_IO
N13 AVDD_IO
N14 AVSS
N15 AVSS
N16 AVDD_CORE
N17 AVDD_CORE
N18 AVDD_CORE
N19 AVDD_CORE
N20 AVSS
N21 AVSS
N22 AVDD_IO
N23 AVDD_IO
N24 AVSS
N25 AVSS
N26 AVDD_CORE
N27 INN[34]
N28 INP[34]
N29 AVSS
N30 INN[48]
N31 INP[48]
N32 AVDD_IO
Location Name
Table 2-2. BGA Assignments (3 of 8)
Package Outline Drawing and Pin Descriptions
211x1-DSH-001-I Mindspeed Technologies®18
Mindspeed Proprietary and Confidential
N33 INN[44]
N34 INP[44]
P1 INP[53]
P2 INN[53]
P3 AVDD_IO
P4 INP[49]
P5 INN[49]
P6 AVSS
P7 INP[43]
P8 INN[43]
P9 AVDD_IO
P10 AVSS
P11 AVSS
P12 AVDD_IO
P13 AVDD_IO
P14 AVSS
P15 AVSS
P16 AVDD_CORE
P17 AVDD_CORE
P18 AVDD_CORE
P19 AVDD_CORE
P20 AVSS
P21 AVSS
P22 AVDD_IO
P23 AVDD_IO
P24 AVSS
P25 AVSS
P26 AVDD_IO
P27 INN[42]
P28 INP[42]
P29 AVDD_IO
P30 INN[54]
P31 INP[54]
P32 AVSS
P33 INN[52]
P34 INP[52]
R1 INP[57]
Location Name
R2 INN[57]
R3 AVSS
R4 INP[55]
R5 INN[55]
R6 AVDD_IO
R7 INP[51]
R8 INN[51]
R9 AVDD_IO
R10 AVSS
R11 AVSS
R12 AVDD_IO
R13 AVDD_IO
R14 AVSS
R15 AVSS
R16 AVDD_CORE
R17 AVDD_CORE
R18 AVDD_CORE
R19 AVDD_CORE
R20 AVSS
R21 AVSS
R22 AVDD_IO
R23 AVDD_IO
R24 AVSS
R25 AVSS
R26 AVDD_IO
R27 INN[50]
R28 INP[50]
R29 AVSS
R30 INN[62]
R31 INP[62]
R32 AVDD_IO
R33 INN[56]
R34 INP[56]
T1 INP[61]
T2 INN[61]
T3 AVDD_IO
T4 INP[63]
Location Name
T5 INN[63]
T6 AVSS
T7 INP[59]
T8 INN[59]
T9 AVDD_CORE
T10 AVSS
T11 AVSS
T12 AVDD_IO
T13 AVDD_IO
T14 AVSS
T15 AVSS
T16 AVDD_CORE
T17 AVDD_CORE
T18 AVDD_CORE
T19 AVDD_CORE
T20 AVSS
T21 AVSS
T22 AVDD_IO
T23 AVDD_IO
T24 AVSS
T25 AVSS
T26 AVDD_CORE
T27 INN[58]
T28 INP[58]
T29 AVDD_IO
T30 INN[64]
T31 INP[64]
T32 AVSS
T33 INN[60]
T34 INP[60]
U1 INP[69]
U2 INN[69]
U3 AVSS
U4 INP[65]
U5 INN[65]
U6 AVDD_IO
U7 INP[67]
Location Name
U8 INN[67]
U9 AVDD_CORE
U10 AVSS
U11 AVSS
U12 AVDD_IO
U13 AVDD_IO
U14 AVSS
U15 AVSS
U16 AVDD_CORE
U17 AVDD_CORE
U18 AVDD_CORE
U19 AVDD_CORE
U20 AVSS
U21 AVSS
U22 AVDD_IO
U23 AVDD_IO
U24 AVSS
U25 AVSS
U26 AVDD_CORE
U27 INN[66]
U28 INP[66]
U29 AVSS
U30 INN[70]
U31 INP[70]
U32 AVDD_IO
U33 INN[68]
U34 INP[68]
V1 INP[73]
V2 INN[73]
V3 AVDD_IO
V4 INP[71]
V5 INN[71]
V6 AVSS
V7 INP[75]
V8 INN[75]
V9 AVDD_IO
V10 AVSS
Location Name
Table 2-2. BGA Assignments (4 of 8)
Package Outline Drawing and Pin Descriptions
211x1-DSH-001-I Mindspeed Technologies®19
Mindspeed Proprietary and Confidential
V11 AVSS
V12 AVDD_IO
V13 AVDD_IO
V14 AVSS
V15 AVSS
V16 AVDD_CORE
V17 AVDD_CORE
V18 AVDD_CORE
V19 AVDD_CORE
V20 AVSS
V21 AVSS
V22 AVDD_IO
V23 AVDD_IO
V24 AVSS
V25 AVSS
V26 AVDD_IO
V27 INN[74]
V28 INP[74]
V29 AVDD_IO
V30 INN[78]
V31 INP[78]
V32 AVSS
V33 INN[72]
V34 INP[72]
W1 INP[77]
W2 INN[77]
W3 AVSS
W4 INP[79]
W5 INN[79]
W6 AVDD_IO
W7 INP[83]
W8 INN[83]
W9 AVDD_IO
W10 AVSS
W11 AVSS
W12 AVDD_IO
W13 AVDD_IO
Location Name
W14 AVSS
W15 AVSS
W16 AVDDCORE
W17 AVDD_CORE
W18 AVDD_CORE
W19 AVDD_CORE
W20 AVSS
W21 AVSS
W22 AVDD_IO
W23 AVDD_IO
W24 AVSS
W25 AVSS
W26 AVDD_IO
W27 INN[82]
W28 INP[82]
W29 AVSS
W30 INN[80]
W31 INP[80]
W32 AVDD_IO
W33 INN[76]
W34 INP[76]
Y1 INP[85]
Y2 INN[85]
Y3 AVDD_IO
Y4 INP[81]
Y5 INN[81]
Y6 AVSS
Y7 INP[91]
Y8 INN[91]
Y9 AVDD_CORE
Y10 AVSS
Y11 AVSS
Y12 AVDD_IO
Y13 AVDD_IO
Y14 AVSS
Y15 AVSS
Y16 AVDD_CORE
Location Name
Y17 AVDD_CORE
Y18 AVDD_CORE
Y19 AVDD_CORE
Y20 AVSS
Y21 AVSS
Y22 AVDD_IO
Y23 AVDD_IO
Y24 AVSS
Y25 AVSS
Y26 AVDD_CORE
Y27 INN[90]
Y28 INP[90]
Y29 AVDD_IO
Y30 INN[86]
Y31 INP[86]
Y32 AVSS
Y33 INN[84]
Y34 INP[84]
AA1 INP[89]
AA2 INN[89]
AA3 AVSS
AA4 INP[87]
AA5 INN[87]
AA6 AVDD_IO
AA7 INP[99]
AA8 INN[99]
AA9 AVDD_CORE
AA10 AVSS
AA11 AVSS
AA12 AVDD_IO
AA13 AVDD_IO
AA14 AVSS
AA15 AVSS
AA16 AVDD_CORE
AA17 AVDD_CORE
AA18 AVDD_CORE
AA19 AVDD_CORE
Location Name
AA20 AVSS
AA21 AVSS
AA22 AVDD_IO
AA23 AVDD_IO
AA24 AVSS
AA25 AVSS
AA26 AVDD_CORE
AA27 INN[98]
AA28 INP[98]
AA29 AVSS
AA30 INN[94]
AA31 INP[94]
AA32 AVDD_IO
AA33 INN[88]
AA34 INP[88]
AB1 INP[93]
AB2 INN[93]
AB3 AVDD_IO
AB4 INP[95]
AB5 INN[95]
AB6 AVSS
AB7 INP[107]
AB8 INN[107]
AB9 AVDD_IO
AB10 AVSS
AB11 AVSS
AB12 AVDD_IO
AB13 AVDD_IO
AB14 AVSS
AB15 AVSS
AB16 AVDD_CORE
AB17 AVDD_CORE
AB18 AVDD_CORE
AB19 AVDD_CORE
AB20 AVSS
AB21 AVSS
AB22 AVDD_IO
Location Name
Table 2-2. BGA Assignments (5 of 8)
Package Outline Drawing and Pin Descriptions
211x1-DSH-001-I Mindspeed Technologies®20
Mindspeed Proprietary and Confidential
AB23 AVDD_IO
AB24 AVSS
AB25 AVSS
AB26 AVDD_IO
AB27 INN[106]
AB28 INP[106]
AB29 AVDD_IO
AB30 INN[96]
AB31 INP[96]
AB32 AVSS
AB33 INN[92]
AB34 INP[92]
AC1 INP[101]
AC2 INN[101]
AC3 AVSS
AC4 INP[97]
AC5 INN[97]
AC6 AVDD_IO
AC7 INP[115]
AC8 INN[115]
AC9 AVDD_IO
AC10 AVSS
AC11 AVSS
AC12 AVDD_IO
AC13 AVDD_IO
AC14 AVSS
AC15 AVSS
AC16 AVDD_CORE
AC17 AVDD_CORE
AC18 AVDD_CORE
AC19 AVDD_CORE
AC20 AVSS
AC21 AVSS
AC22 AVDD_IO
AC23 AVDD_IO
AC24 AVSS
AC25 AVSS
Location Name
AC26 AVDD_IO
AC27 INN[114]
AC28 INP[114]
AC29 AVSS
AC30 INN[102]
AC31 INP[102]
AC32 AVDD_IO
AC33 INN[100]
AC34 INP[100]
AD1 INP[105]
AD2 INN[105]
AD3 AVDD_IO
AD4 INP[103]
AD5 INN[103]
AD6 AVSS
AD7 INP[123]
AD8 INN[123]
AD9 AVSS
AD10 PERROR[1]
AD11 MDSPDTEST[31]
AD12 AVSS
AD13 AVSS
AD14 AVSS
AD15 AVSS
AD16 AVSS
AD17 AVSS
AD18 AVSS
AD19 AVSS
AD20 AVSS
AD21 AVSS
AD22 AVSS
AD23 AVSS
AD24 AVSS
AD25 AVSS
AD26 AVDD_IO
AD27 INN[122]
AD28 INP[122]
Location Name
AD29 AVDD_IO
AD30 INN[110]
AD31 INP[110]
AD32 AVSS
AD33 INN[104]
AD34 INP[104]
AE1 INP[109]
AE2 INN[109]
AE3 AVSS
AE4 INP[111]
AE5 INN[111]
AE6 AVDD_IO
AE7 INP[131]
AE8 INN[131]
AE9 AVDD_IO
AE10 TRIG[1]
AE11 MDSPDTEST[30]
AE12 AVSS
AE13 AVSS
AE14 AVSS
AE15 AVSS
AE16 AVSS
AE17 AVSS
AE18 AVSS
AE19 AVSS
AE20 AVSS
AE21 AVSS
AE22 AVSS
AE23 AVSS
AE24 AVSS
AE25 AVSS
AE26 MDSPDTEST[11]
AE27 INN[130]
AE28 INP[130]
AE29 AVSS
AE30 INN[112]
AE31 INP[112]
Location Name
AE32 AVDD_IO
AE33 INN[108]
AE34 INP[108]
AF1 INP[117]
AF2 INN[117]
AF3 AVDD_IO
AF4 INP[113]
AF5 INN[113]
AF6 AVSS
AF7 INP[139]
AF8 INN[139]
AF9 AVSS
AF10 AVDD_IO
AF11 AVSS
AF12 AVDD_IO
AF13 AVDD_IO
AF14 AVDD_CORE
AF15 AVDD_CORE
AF16 AVDD_IO
AF17 AVDD_IO
AF18 AVDD_CORE
AF19 AVDD_CORE
AF20 AVDD_IO
AF21 AVDD_IO
AF22 AVDD_CORE
AF23 AVDD_CORE
AF24 AVDD_IO
AF25 AVDD_IO
AF26 MDSPDTEST[12]
AF27 INN[138]
AF28 INP[138]
AF29 AVDD_IO
AF30 INN[118]
AF31 INP[118]
AF32 AVSS
AF33 INN[116]
AF34 INP[116]
Location Name
Table 2-2. BGA Assignments (6 of 8)
Package Outline Drawing and Pin Descriptions
211x1-DSH-001-I Mindspeed Technologies®21
Mindspeed Proprietary and Confidential
AG1 INP[121]
AG2 INN[121]
AG3 AVSS
AG4 INP[119]
AG5 INN[119]
AG6 AVDD_IO
AG7 CLKTXN[1]
AG8 OUTN[143]
AG9 OUTN[131]
AG10 OUTN[119]
AG11 OUTN[113]
AG12 OUTN[107]
AG13 OUTN[101]
AG14 OUTN[95]
AG15 OUTN[89]
AG16 OUTN[83]
AG17 OUTN[77]
AG18 OUTN[71]
AG19 OUTN[65]
AG20 OUTN[59]
AG21 OUTN[53]
AG22 OUTN[47]
AG23 OUTN[41]
AG24 OUTN[35]
AG25 OUTN[23]
AG26 OUTN[11]
AG27 OUTN[5]
AG28 MDSPDTEST[17]
AG29 AVSS
AG30 INN[126]
AG31 INP[126]
AG32 AVDD_IO
AG33 INN[120]
AG34 INP[120]
AH1 INP[125]
AH2 INN[125]
AH3 AVDD_IO
Location Name
AH4 INP[127]
AH5 INN[127]
AH6 AVSS
AH7 CLKTXP[1]
AH8 OUTP[143]
AH9 OUTP[131]
AH10 OUTP[119]
AH11 OUTP[113]
AH12 OUTP[107]
AH13 OUTP[101]
AH14 OUTP[95]
AH15 OUTP[89]
AH16 OUTP[83]
AH17 OUTP[77]
AH18 OUTP[71]
AH19 OUTP[65]
AH20 OUTP[59]
AH21 OUTP[53]
AH22 OUTP[47]
AH23 OUTP[41]
AH24 OUTP[35]
AH25 OUTP[23]
AH26 OUTP[11]
AH27 OUTP[5]
AH28 MDSPDTEST[18]
AH29 MDSPDTEST[23]
AH30 INN[128]
AH31 INP[128]
AH32 AVSS
AH33 INN[124]
AH34 INP[124]
AJ1 INP[133]
AJ2 INN[133]
AJ3 AVSS
AJ4 INP[135]
AJ5 INN[135]
AJ6 AVDD_IO
Location Name
AJ7 AVSS
AJ8 AVDD_IO
AJ9 AVSS
AJ10 AVDD_IO
AJ11 AVSS
AJ12 AVDD_IO
AJ13 AVSS
AJ14 AVDD_IO
AJ15 AVSS
AJ16 AVDD_IO
AJ17 AVSS
AJ18 AVDD_IO
AJ19 AVSS
AJ20 AVDD_IO
AJ21 AVSS
AJ22 AVDD_IO
AJ23 AVSS
AJ24 AVDD_IO
AJ25 AVSS
AJ26 AVDD_IO
AJ27 AVSS
AJ28 AVDD_IO
AJ29 MDSPDTEST[24]
AJ30 INN[142]
AJ31 INP[142]
AJ32 AVDD_IO
AJ33 INN[132]
AJ34 INP[132]
AK1 INP[137]
AK2 INN[137]
AK3 XRSTRX[1]
AK4 INP[143]
AK5 INN[143]
AK6 OUTN[137]
AK7 OUTN[125]
AK8 OUTN[141]
AK9 OUTN[129]
Location Name
AK10 OUTN[117]
AK11 OUTN[111]
AK12 OUTN[105]
AK13 OUTN[99]
AK14 OUTN[93]
AK15 OUTN[87]
AK16 OUTN[81]
AK17 OUTN[75]
AK18 OUTN[69]
AK19 OUTN[63]
AK20 OUTN[57]
AK21 OUTN[51]
AK22 OUTN[45]
AK23 OUTN[39]
AK24 OUTN[33]
AK25 OUTN[27]
AK26 OUTN[15]
AK27 OUTN[3]
AK28 OUTN[29]
AK29 OUTN[17]
AK30 MDSPDTEST[21]
AK31 MDSPDTEST[9]
AK32 MDSPDTEST[6]
AK33 INN[136]
AK34 INP[136]
AL1 INP[141]
AL2 INN[141]
AL3 MDSPDTEST[27]
AL4 XENRX[1]
AL5 MDSPDTEST[25]
AL6 OUTP[137]
AL7 OUTP[125]
AL8 OUTP[141]
AL9 OUTP[129]
AL10 OUTP[117]
AL11 OUTP[111]
AL12 OUTP[105]
Location Name
Table 2-2. BGA Assignments (7 of 8)
Package Outline Drawing and Pin Descriptions
211x1-DSH-001-I Mindspeed Technologies®22
Mindspeed Proprietary and Confidential
AL13 OUTP[99]
AL14 OUTP[93]
AL15 OUTP[87]
AL16 OUTP[81]
AL17 OUTP[75]
AL18 OUTP[69]
AL19 OUTP[63]
AL20 OUTP[57]
AL21 OUTP[51]
AL22 OUTP[45]
AL23 OUTP[39]
AL24 OUTP[33]
AL25 OUTP[27]
AL26 OUTP[15]
AL27 OUTP[3]
AL28 OUTP[29]
AL29 OUTP[17]
AL30 MDSPDTEST[22]
AL31 MDSPDTEST[8]
AL32 MDSPDTEST[7]
AL33 INN[140]
AL34 INP[140]
AM1 INP[129]
AM2 INN[129]
AM3 CLKTXREF[1]
AM4 XENTX[1]
AM5 MDSPDTEST[26]
AM6 AVSS
AM7 AVDD_IO
AM8 AVSS
AM9 AVDD_IO
Location Name
AM10 AVSS
AM11 AVDD_IO
AM12 AVSS
AM13 AVDD_IO
AM14 AVSS
AM15 AVDD_IO
AM16 AVSS
AM17 AVDD_IO
AM18 AVSS
AM19 AVDD_IO
AM20 AVSS
AM21 AVDD_IO
AM22 AVSS
AM23 AVDD_IO
AM24 AVSS
AM25 AVDD_IO
AM26 AVSS
AM27 AVDD_IO
AM28 AVSS
AM29 AVDD_IO
AM30 AVSS
AM31 MDSPDTEST[19]
AM32 MDSPDTEST[10]
AM33 INN[134]
AM34 INP[134]
AN1 DOTXN[1]
AN2 DIRXN[1]
AN3 OUTN[135]
AN4 OUTN[123]
AN5 OUTN[139]
AN6 OUTN[133]
Location Name
AN7 OUTN[127]
AN8 OUTN[121]
AN9 OUTN[115]
AN10 OUTN[109]
AN11 OUTN[103]
AN12 OUTN[97]
AN13 OUTN[91]
AN14 OUTN[85]
AN15 OUTN[79]
AN16 OUTN[73]
AN17 OUTN[67]
AN18 OUTN[61]
AN19 OUTN[55]
AN20 OUTN[49]
AN21 OUTN[43]
AN22 OUTN[37]
AN23 OUTN[31]
AN24 OUTN[25]
AN25 OUTN[19]
AN26 OUTN[13]
AN27 OUTN[7]
AN28 OUTN[1]
AN29 OUTN[21]
AN30 OUTN[9]
AN31 MDSPDTEST[20]
AN32 AVDD_IO
AN33 N/C
AN34 MDSPDTEST[13]
AP1 DOTXP[1]
AP2 DIRXP[1]
AP3 OUTP[135]
Location Name
AP4 OUTP[123]
AP5 OUTP[139]
AP6 OUTP[133]
AP7 OUTP[127]
AP8 OUTP[121]
AP9 OUTP[115]
AP10 OUTP[109]
AP11 OUTP[103]
AP12 OUTP[97]
AP13 OUTP[91]
AP14 OUTP[85]
AP15 OUTP[79]
AP16 OUTP[73]
AP17 OUTP[67]
AP18 OUTP[61]
AP19 OUTP[55]
AP20 OUTP[49]
AP21 OUTP[43]
AP22 OUTP[37]
AP23 OUTP[31]
AP24 OUTP[25]
AP25 OUTP[19]
AP26 OUTP[13]
AP27 OUTP[7]
AP28 OUTP[1]
AP29 OUTP[21]
AP30 OUTP[9]
AP31 MDSPDTEST[16]
AP32 MDSPDTEST[15]
AP33 RXREFCLK
AP34 MDSPDTEST[14]
Location Name
Table 2-2. BGA Assignments (8 of 8)
Package Outline Drawing and Pin Descriptions
211x1-DSH-001-I Mindspeed Technologies®23
Mindspeed Proprietary and Confidential
Table 2-3. Digital Power Connections
Location Connection
L9 DVSS_IO
M10 DVDD_IO
Table 2-4. BGA Connections to AVDD_IO
Ball Location
AA12 AC9 AF12 AJ12 AM17 C22 F29 K3 P3 R32 V12 Y12
AA13 AC12 AF13 AJ14 AM19 C24 G32 L6 P9 T3 V13 Y13
AA22 AC13 AF16 AJ16 AM21 C26 H3 L32 P12 T12 V22 Y22
AA23 AC22 AF17 AJ18 AM23 C28 H29 M12 P13 T13 V23 Y23
AA32 AC23 AF20 AJ20 AM25 E32 J6 M13 P22 T22 V26 Y29
AA6 AC26 AF21 AJ22 AM27 F09 J12 M22 P23 T23 V29
AB3 AC32 AF24 AJ24 AM29 F11 J13 M23 P26 T29 W6
AB9 AD03 AF25 AJ26 AN32 F13 J16 M29 P29 U6 W9
AB12 AD26 AF29 AJ28 C8 F15 J17 M3 R6 U12 W12
AB13 AD29 AG06 AJ32 C10 F17 J20 N6 R9 U13 W13
AB22 AE6 AG32 AM07 C12 F19 J21 N12 R12 U22 W22
AB23 AE9 AH3 AM9 C14 F21 J25 N13 R13 U23 W23
AB26 AE32 AJ6 AM11 C16 F23 J32 N22 R22 U32 W26
AB29 AF3 AJ8 AM13 C18 F25 K26 N23 R23 V3 W32
AC6 AF10 AJ10 AM15 C20 F27 K29 N32 R26 V9 Y3
Table 2-5. BGA Connections to AVDD_CORE
Ball Locations
AA9 AC18 J22 N19 T17 V18
AA16 AC19 J23 N26 T18 V19
AA17 AF14 M9 P16 T19 W16
AA18 AF15 M16 P17 T26 W17
AA19 AF18 M17 P18 U9 W18
AA26 AF19 M18 P19 U16 W19
AB16 AF22 M19 R16 U17 Y9
AB17 AF23 M26 R17 U18 Y16
AB18 J14 N9 R18 U19 Y17
AB19 J15 N16 R19 U26 Y18
AC16 J18 N17 T9 V16 Y19
AC17 J19 N18 T16 V17 Y26
211x1-DSH-001-I Mindspeed Technologies®24
Mindspeed Proprietary and Confidential
2.3 Pin Definitions
Table 2-6. Power Pins
Pin Name Function Type
AVDD_IO Analog I/O positive supply Power
AVDD_CORE Analog core positive supply Power
AVSS Device ground Power
DVDD_IO Digital I/O positive supply Power
DVSS_IO Digital I/O negative supply Power
Table 2-7. High-Speed Signal Pins (1 of 2)
Pin Name Function Termination Type
INP[71:0] /
INP[143:0]
Positive differential input data 50Ω internal pull-up to AVDD_IO Input/PCML
INN[71:0] /
INN[143:0]
Negative differential input data 50Ω internal pull-up to AVDD_IO Input/PCML
OUTP[71:0] /
OUTP[143:0]
Positive differential output data 50Ω internal pull-up to AVDD_IO Output/PCML
OUTN[71:0] /
OUTN[143:0]
Negative differential output data 50Ω internal pull-up to AVDD_IO Output/PCML
XINDIS Hardware disable of all inputs (active low) 100 kΩ internal pull-down Input/CMOS
XOUTDIS Hardware disable of all outputs (active low) 100 kΩ internal pull-down Input/CMOS
A[9:0] 10 bit parallel address (bit 9: MSB, bit 0: LSB) 100 kΩ internal pull-up Input/CMOS
D[5:0] 6 low bits of 8 bit parallel data (bit 0: LSB) 100 kΩ internal pull-up I/O/CMOS
D[6]/SDI 7th bit of parallel data or serial data input 100 kΩ internal pull-up I/O/CMOS
D[7]/SDO 8th bit of parallel data (MSB) or serial data output 100 kΩ internal pull-up I/O/CMOS
DOTXP[1:0] Positive differential output of 223-1 PRBS signal generator 50Ω internal pull-up to AVDD_IO Output/PCML
DOTXN[1:0] Negative differential output of 223-1 PRBS signal generator 50Ω internal pull-up to AVDD_IO Output/PCML
CLKTXP[1:0] Positive differential clock for 223-1 PRBS signal generator 50Ω internal pull-up to AVDD_IO Input/PCML
CLKTXN[1:0] Negative differential clock for 223-1 PRBS signal generator 50Ω internal pull-up to AVDD_IO Input/PCML
CLKTXREF[1:0] Low speed reference clock for 223-1 PRBS signal generator (2, 3) Input/CMOS
RXREFCLK 19.44 MHz clock reference for LOS detection (2, 3) Input/CMOS
XENTX[1:0] Enable (active low) 223-1 PRBS signal generator clock 100 kΩ internal pull-up to AVDD_IO Input/CMOS
DIRXP[1:0] Positive differential data for 223-1 PRBS signal receiver 50Ω internal pull-up to AVDD_IO Input/PCML
DIRXN[1:0] Negative differential data for 223-1 PRBS signal receiver 50Ω internal pull-up to AVDD_IO Input/PCML
XENRX[1:0] Enable (active low) 223-1 pseudorandom RX clock/data 100 kΩ internal pull-up to AVDD_IO Input/CMOS
211x1-DSH-001-I Mindspeed Technologies®25
Mindspeed Proprietary and Confidential
XRSTRX[1:0] Reset (active low) 223-1 pseudorandom RX clock/data 100 kΩ internal pull-up to AVDD_IO Input/CMOS
PERROR[1:0] PRBS receiver bit error flag: latches High on first error (cleared on
PRBS reset)
100 kΩ internal pull-up Output/CMOS
NOTES:
1. In PRBS mode a portion of the PRBS signal will egress from the input terminal to which the PRBS transmitter is connected. The device normally
connected to these terminals might need to be powered down or temporarily disconnected during PRBS operation; alternatively, any unused
input can be used to route the PRBS signal to any output.
2. 100 kΩ internal pull-ups on all CMOS inputs, unless noted as pull-downs.
3. RXREFCLK and CLKTXREF[1:0] are CMOS inputs that are referenced to AVDD_IO.
Table 2-8. Control, Interface, and Alarm Pins
Pin Name Function Termination Type
R/XW Parallel I/0: H = read, L = write (1) Input/CMOS
XDS/SCLK Parallel I/0: data latch, serial I/0: serial clock (hysteresis) (1) Input/CMOS
XCS Serial/parallel: active low I/O enable (1) Input/CMOS
SER/XPAR Serial/parallel I/O select: H = serial, L = parallel (1) Input/CMOS
XRST Hardware reset (active low) (1) Input/CMOS
XTEST Mindspeed test terminal (active low) (1) Input/CMOS
XSET Hardware xSet terminal enables switching multiple channel
configurations simultaneously (active low)
(1) Input/CMOS
MDSPDTEST[33:1] Pins reserved for production test (should be left open) (1) N/C
TRIG[1:0] CLKTX/16 for use as trigger 50Ω internal pull-up to AVDD_IO Output/PCML
LOS Global loss of signal status (1) Output/CMOS
NOTE:
1. 100 kΩ internal pull-ups on all CMOS inputs, unless noted as pull-downs.
Table 2-7. High-Speed Signal Pins (2 of 2)
Pin Name Function Termination Type
211x1-DSH-001-I Mindspeed Technologies®26
Mindspeed Proprietary and Confidential
3.0 Control Registers Map and
Descriptions
Table 3-1. Control Registers Map (1 of 2)
Addr Register Name d7 d6 d5 d4 d3 d2 d1 d0: LSB
Common Registers
00 INCHSEL#0 InChSel[7] InChSel[6] InChSel[5] InChSel[4] InChSel[3] InChSel[2] InChSel[1] InChSel[0]
01 INCHSEL#1 InChSel[7] InChSel[6] InChSel[5] InChSel[4] InChSel[3] InChSel[2] InChSel[1] InChSel[0]
02 INCHSEL#2 InChSel[7] InChSel[6] InChSel[5] InChSel[4] InChSel[3] InChSel[2] InChSel[1] InChSel[0]
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
8Fh INCHSEL#143 InChSel[7] InChSel[6] InChSel[5] InChSel[4] InChSel[3] InChSel[2] InChSel[1] InChSel[0]
100 CHANCFG#0 offset eql[1] eql[0] en_pe out_level[1] out_level[0] in_mode[1] in_mode[0]
101 CHANCFG#1 offset eql[1] eql[0] en_pe out_level[1] out_level[0] in_mode[1] in_mode[0]
102 CHANCFG#2 offset eql[1] eql[0] en_pe out_level[1] out_level[0] in_mode[1] in_mode[0]
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
18Fh CHANCFG#143 offset eql[1] eql[0] en_pe out_level[1] out_level[0] in_mode[1] in_mode[0]
200 IN_CHAN_CTRL#0 0 0 0 0 inh_en 0 los_en 0
201 IN_CHAN_CTRL#1 0 0 0 0 inh_en 0 los_en 0
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
28Fh IN_CHAN_CTRL#143 0 0 0 0 inh_en 0 los_en 0
300 LOS_DR_SEL#0 0 dr_range data_rate[5] data_rate[4] data_rate[3] data_rate[2] data_rate[1] data_rate[0]
301 LOS_DR_SEL#1 0 dr_range data_rate[5] data_rate[4] data_rate[3] data_rate[2] data_rate[1] data_rate[0]
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
38Fh LOS_DR_SEL#143 0 dr_range data_rate[5] data_rate[4] data_rate[3] data_rate[2] data_rate[1] data_rate[0]
Even PRBS Registers
A0 PRBSRXCTRL_EVEN en_patrx 0 rxmux rst_rx en_rx core2rx rxcdr_pd 0
A1 PRBSRXCHSEL_EVEN rxchsel[7] rxchsel[6] rxchsel[5] rxchsel[4] rxchsel[3] rxchsel[2] rxchsel[1] rxchsel[0]
A2 PRBSERROR_EVEN rxerr[7] rxerr[6] rxerr[5] rxerr[4] rxerr[3] rxerr[2] rxerr[1] rxerr[0]
A3 PRBSRX_DLY_EVEN 0 0 0 prbsrx_dly[4] prbsrx_dly[3] prbsrx_dly[2] prbsrx_dly[1] prbsrx_dly[0]
A4 RXCDR_CTRLA_EVEN lolwinctrl[1] lolwinctrl[0] 0 0 0 1 los_en 1
A5 RXCDR_CTRLB_EVEN softreset reserved data_rate[5] data_rate[4] data_rate[3] data_rate[2] data_rate[1] data_rate[0]
A6 RXCDR_ALARMS_EVEN reserved reserved reserved reserved reserved reserved los lol
A7 PRBSTXCTRL1_EVEN 0 txmux[1] txmux[0] rst_tx en_tx tx2core pll_pd 0
A8 PRBSTXCTRL2_EVEN 0 0 pe_amp en_pe pe_dur sel_div2pat en_pattx pwr_trig
A9 PRBSTXCHSEL_EVEN txchsel[7] txchsel[6] txchsel[5] txchsel[4] txchsel[3] txchsel[2] txchsel[1] txchsel[0]
AA PLL_CTRLA_EVEN lolwinctrl[1] lolwinctrl[0] 0 0 0 0 0 1
AB PLL_CTRLB_EVEN softreset reserved data_rate[5] data_rate[4] data_rate[3] data_rate[2] data_rate[1] data_rate[0]
Odd PRBS Registers
AC PRBSRXCTRL_ODD en_patrx 0 rxmux rst_rx en_rx core2rx rxcdr_pd 0
AD PRBSRXCHSEL_ODD rxchsel[7] rxchsel[6] rxchsel[5] rxchsel[4] rxchsel[3] rxchsel[2] rxchsel[1] rxchsel[0]
AE PRBSERROR_ODD rxerr[7] rxerr[6] rxerr[5] rxerr[4] rxerr[3] rxerr[2] rxerr[1] rxerr[0]
AF PRBSRX_DLY_ODD 0 0 0 prbsrx_dly[4] prbsrx_dly[3] prbsrx_dly[2] prbsrx_dly[1] prbsrx_dly[0]
B0 RXCDR_CTRLA_ODD lolwinctrl[1] lolwinctrl[0] 0 0 0 1 los_en 1
B1 RXCDR_CTRLB_ODD softreset reserved data_rate[5] data_rate[4] data_rate[3] data_rate[2] data_rate[1] data_rate[0]
B2 RXCDR_ALARMS_ODD reserved reserved reserved reserved reserved reserved los lol
B3 PRBSTXCTRL1_ODD 0 txmux[1] txmux[0] rst_tx en_tx tx2core pll_pd 0
B4 PRBSTXCTRL2_ODD 0 0 pe_amp en_pe pe_dur sel_div2pat en_pattx pwr_trig
B5 PRBSTXCHSEL_ODD txchsel[7] txchsel[6] txchsel[5] txchsel[4] txchsel[3] txchsel[2] txchsel[1] txchsel[0]
B6 PLL_CTRLA_ODD lolwinctrl[1] lolwinctrl[0] 0 0 0 0 0 1
B7 PLL_CTRLB_ODD softreset reserved data_rate[5] data_rate[4] data_rate[3] data_rate[2] data_rate[1] data_rate[0]
Control Registers Map and Descriptions
211x1-DSH-001-I Mindspeed Technologies®27
Mindspeed Proprietary and Confidential
Local Registers
B8 XSETMODE 0 0 0 0 0 0 xset[1] xset[0]
B9 XSETCMD xsetcmd[7] xsetcmd[6] xsetcmd[5] xsetcmd[4] xsetcmd[3] xsetcmd[2] xsetcmd[1] xsetcmd[0]
BA IOENABLE offset eql[1] eql[0] en_individ out_level[1] out_level[0] in_mode[1] in_mode[0]
BB CORECTRL 0 0 0 pe_amp pe_dur en_pe 1 en_smartpwr
BF SOFTRESET srst[7] srst[6] srst[5] srst[4] srst[3] srst[2] srst[1] srst[0]
C0 CHIPREV rev[7] rev[6] rev[5] rev[4] rev[3] rev[2] rev[1] rev[0]
C1 PRODCODE prod[7] prod[6] prod[5] prod[4] prod[3] prod[2] prod[1] prod[0]
C3 WIN_INLCK_LOL win_inlck[7] win_inlck[6] win_inlck[5] win_inlck[4] win_inlck[3] win_inlck[2] win_inlck[1] win_inlck[0]
C4 WIN_OUTLCK_LOL win_outlck[7] win_outlck[6] win_outlck[5] win_outlck[4] win_outlck[3] win_outlck[2] win_outlck[1] win_outlck[0]
CB GLOBAL_CTRL 0 0 0 0 0 1 0 clear_alarm
1A2 LOS_STATn los_stat[7] los_stat[6] los_stat[5] los_stat[4] los_stat[3] los_stat[2] los_stat[1] los_stat[0]
1A3 LOS_STATN los_stat[7] los_stat[6] los_stat[5] los_stat[4] los_stat[3] los_stat[2] los_stat[1] los_stat[0]
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
1B3 LOS_STATN los_stat[7] los_stat[6] los_stat[5] los_stat[4] los_stat[3] los_stat[2] los_stat[1] los_stat[0]
NOTES:
D[7]... D[0] represent the internal bus, which is mapped to the data in both the serial and parallel mode.
Blank register bits are undefined for a write and read.
Table 3-1. Control Registers Map (2 of 2)
Addr Register Name d7 d6 d5 d4 d3 d2 d1 d0: LSB
Control Registers Map and Descriptions
211x1-DSH-001-I Mindspeed Technologies®28
Mindspeed Proprietary and Confidential
3.1 Control Registers Descriptions
Table 3-2. Input Channel Selection (INCHSEL: Address 00h–47h/00h–8Fh)
(Output channel = address Input to route to output = data)
Bits Type Default Label Description
7:0 R/W 00h INCHSEL Select input channel (data) to route to selected output (address).
In#0 = 00h, In#1 = 01h, In#143 = 8Fh.
Table 3-3. I/O Input/Output Configuration (CHANCFG: Address 100h–147h/100h–18Fh)
(Selected channel + 100h is the address)
Bits Type Default Label Description
7 R/W 0 DC offset Input DC offset
0: DC offset enable (default)
1: DC offset disable
6:5 R/W 01 eq Input equalization
00: Minimum EQ ( 9 dB)
01: Small EQ ( 12 dB) (default)
10: Medium EQ ( 15 dB)
11: Large EQ ( 18 dB)
4 R/W 0 en_pe Enable de-emphasis—en_individ (BAh, bit 4) must be set to 1 for this bit to be functional.
0: Disabled.
1: Enabled.
3:2 R/W 11 out_level en_individ (BAh, bit 4) must be set to 1 for these bits to be functional.
00: 500 mVp–p differential output.
01: 900 mVp–p differential output.
10: 1200 mVp–p differential output.
11: Disable output.
1:0 R/W 10 in_mode en_individ (BAh, bit 4) must be set to 1 for these bits to be functional.
00: Reserved.
01: Reserved.
10: Input channel is powered down.
11: Input channel is active.
Table 3-4. Input Channel Control (IN_CHAN_CTRL: Address 200h–247h/200h–28Fh)
Bits Type Default Label Description
7:4 R/W 0000 Reserved, set to 0.
3 R/W 0 inh_en 0: Inhibit disabled.
1: Inhibit enabled.
2 R/W 1 Reserved, defaults to 1 but must be set to 0.
1 R/W 1 los_en 0: LOS disabled.
1: LOS enabled (default).
0 R/W 1 Reserved, defaults to 1 but must be set to 0.
Control Registers Map and Descriptions
211x1-DSH-001-I Mindspeed Technologies®29
Mindspeed Proprietary and Confidential
3.1.1 Even PRBS Registers
Table 3-5. Individual Channel LOS Data Rate Control (Select Channel 300h-347h/300h-38Fh)
Bits Type Default Label Description
7 R/W 0 LOS_dr_sel Reserved, default to 0.
6 R/W 0 dr_range 0: 2–3.2 Gbps operation (default).
1: 1–1.6 Gbps operation.
5:0 R/W 011010 Select data rate. See Section 4.3.9.1. for data rate programming.
011010: 2.488 Gbps (default).
Table 3-6. PRBS RX Control (Even) (PRBSRXCTRL_EVEN: Address A0h)
Bits Type Default Label Description
7 R/W 0 en_patrx 0: PRBSRX configured for 223-1 PRBS pattern.
1: PRBSRX configured for simple “1010” or “1100” pattern.
6 R/W Reserved, must be set to 0.
5 R/W 1 rxmux Select RX data input.
0: Select input form cross point core.
1: Select input from terminals DIRXP/N.
4 R/W 1 rst_rx Reset RX PRBS receiver.
0: RX PRBS receiver enabled.
1: RX PRBS in reset.
3 R/W 0 en_rx 0: RX PRBS disabled.
1: RX PRBS enabled.
2 R/W 0 core2rx 0: Disconnect all cross point outputs from PRBS RX.
1: Route cross point outputs to PRBS receiver.
1 R/W 1 rxcdr_pd PRBS receiver CDR control.
0: CDR is enabled.
1: CDR is disabled.
0 R/W Reserved, must be set to 0.
Table 3-7. PRBS RX Channel Select (even) (PRBSRXCHSEL_EVEN: Address A1h)
Bits Type Default Label Description
7:0 R/W 00h rxchSel Selects channel for PRBS RX.
Table 3-8. PRBS RX Error Count (Read Only) (PRBSERROR_EVEN: Address A2h)
Bits Type Default Label Description
7:0 RO rxerr PRBS RX error count register (read-only). Although this is a read-only register, a write of
any value must be performed to latch the latest error count. A PRBS RX reset (address
A0h, bit 4) will clear the PRBS RX error count register.
Control Registers Map and Descriptions
211x1-DSH-001-I Mindspeed Technologies®30
Mindspeed Proprietary and Confidential
Table 3-9. PRBS RX Delay Select (even) (PRBSRX_DLY_EVEN: Address A3h)
Bits Type Default Label Description
7:5 R/W Reserved, must be set to 0
4:0 R/W 00101 prbsrx_dly PRBS RX delay select in increments of 1/32 of a bit time (12.5 ps for 2.488 GHz
operation).
00000: No Delay.
00001: 1/32 of a bit time (12.5 ps for 2.488 GHz operation).
00101: 5/32 of a bit time (62.5 ps for 2.488 GHz operation) (default).
11111: One bit time (400 ps for 2.488 GHz operation).
Table 3-10. PRBS RX CDR Control A (even) (RXCDR_CTRLA_EVEN: Address A4h)
Bits Type Default Label Description
7:6 R/W 00 lolwinctrl 00: LOL window settings are taken from global register.
01: LOL window settings are fixed to 48h (narrow) and 55h (wide).
10: LOL window settings are fixed to 91h (narrow) and AAh (wide) (recommended
settings).
11: Content of register RXCDR_CTRLB is stored into a separate register, which programs
the offset of the VCO counter start value.
5:4 R/W Reserved, must be set to 0.
3 R/W 1 0: Autoinhibit disabled.
1: Autoinhibit enabled.
2 R/W Reserved, must be set to 1.
1 R/W 1 los_en 0: LOS circuit disabled.
1: LOS enabled.
0 R/W Reserved, must be set to 1.
Table 3-11. PRBS RX CDR Control B (even) (RXCDR_CTRLB_EVEN: Address A5h)
Bits Type Default Label Description
7 R/W 0 softreset 0: CDR is in normal mode.
1: CDR is in reset.
6 R/W 0 MSPD Reserved, defaults to “0”, must be set to “1” to use PRBS RX CDR.
5:0 R/W 011010 data_rate Select data rate.
Please refer to Table 4-6 in the PRBS CDR Control Parameters section for data rate
programming.
011010: Reference frequency multiplied by 128d.
Control Registers Map and Descriptions
211x1-DSH-001-I Mindspeed Technologies®31
Mindspeed Proprietary and Confidential
Table 3-12. PRBS RX Alarms (Read Only) (even) (RXCDR_ALARMS_EVEN: Address A6h)
(Cleared on write, a high alarm status gets latched into the register)
Bits Type Default Label Description
7:2 RO Reserved.
1 RO los Loss of Signal alarm.
0 RO lol Loss of Lock alarm.
Table 3-13. PRBS TX Control 1 (even) (PRBSTXCTRL1_EVEN: Address A7h)
Bits Type Default Label Description
7 R/W Reserved, must be set to 0.
6:5 R/W 10 txmux Select PRBS TX clock input.
00: Select clock generated by PRBS TX PLL.
01: Select clock recovered from PRBS RX CDR.
10: Select clock from input pins CLKTXP/N.
11: None.
4 R/W 1 rst_tx 0: PRBS TX pattern generator in normal operation.
1: Reset PRBS TX pattern generator.
3 R/W 0 en_tx 0: TX PRBS disabled.
1: TX PRBS enabled.
2 R/W 0 tx2core 0: Disable the PRBS TX from going to the inputs.
1: Route PRBS TX pattern through cross point.
1 R/W 1 pll_pd PRBS TX PLL control.
0: TX PLL enabled.
1: TX PLL disabled.
0 R/W Reserved, must be set to 0.
Control Registers Map and Descriptions
211x1-DSH-001-I Mindspeed Technologies®32
Mindspeed Proprietary and Confidential
Table 3-14. PRBS TX Control 2 (even) (PRBSTXCTRL2_EVEN: Address A8h)
Bits Type Default Label Description
7:6 R/W Reserved, must be set to 0.
5 R/W 0 pe_amp Control of de-emphasis amplitude.
0: 50% DE.
1: 67% DE.
4 R/W 0 en_pe Enable de-emphasis.
0: Disable.
1: Enable.
3 R/W 1 pe_dur Control of de-emphasis duration.
0: Approximately 1200 ps.
1: Approximately 600 ps.
2 R/W 0 sel_div2_pat Select TX pattern. en_pattx has to be high for this bit to be functional.
0: Select 1010 pattern.
1: Select 1100 pattern.
1 R/W 0 en_pattx Select TX PRBS or simple pattern.
0: Select PRBS TX pattern.
1: Select simple pattern: 1010 or 1100 determined by sel_div2_pat.
0 R/W 0 pwr_trig 0: TX PRBS trigger disabled.
1: TX PRBS trigger enabled.
Table 3-15. PRBS TX Channel Select (even) (PRBSTXCHSEL_EVEN: Address A9h)
Bits Type Default Label Description
7:0 R/W 01h txchSel Select channel for PRBS TX.
Table 3-16. PRBS TX PLL Control A (even) (PLL_CTRLA_EVEN: Address AAh)
Bits Type Default Label Description
7:6 R/W 00 lolwinctrl 00: LOL window settings are taken from global register.
01: LOL window settings are fixed to 48h (narrow) and 55h (wide).
10: LOL window settings are fixed to 91h (narrow) and AAh (wide) (recommended
setting).
11: Content of register PLL_CTRLB is stored into a separate register, which programs the
offset of the VCO counter start value.
5:1 R/W Reserved, must be set to 0.
0 R/W Reserved, must be set to 1.
Control Registers Map and Descriptions
211x1-DSH-001-I Mindspeed Technologies®33
Mindspeed Proprietary and Confidential
3.1.2 Odd PRBS Registers
Table 3-17. PRBS TX PLL Control B (even) (PLL_CTRLB_EVEN: Address ABh)
Bits Type Default Label Description
7 R/W 0 softreset 0: PLL is in normal mode.
1: PLL is in reset.
6 R/W 0 MSPD Reserved, defaults to “0”, must be set to “1” to use PRBS Tx PLL.
5:0 R/W 011010 data_rate Select data rate.
Please refer to Table 4-6 in the PRBS CDR Control Parameters section for data rate
programming.
011010: Reference frequency multiplied by 128d.
Table 3-18. PRBS RX Control (Odd) (PRBSRXCTRL_ODD: Address ACh)
Bits Type Default Label Description
7 R/W 0 en_patrx 0: PRBSRX configured for 223-1 PRBS pattern.
1: PRBSRX configured for simple “1010” or “1100” pattern.
6 R/W Reserved, must be set to 0.
5 R/W 1 rxmux Select RX data input.
0: Select input from cross point core.
1: Select input from terminals DiRxP/N.
4 R/W 1 rst_rx Reset RX PRBS receiver.
0: RX PRBS receiver enabled.
1: RX PRBS in reset.
3 R/W 0 en_rx 0: RX PRBS disabled.
1: RX PRBS enabled.
2 R/W 0 core2rx 0: Disconnect all cross point outputs from PRBS RX.
1: Route cross point outputs to PRBS receiver.
1 R/W 1 rxcdr_pd PRBS receiver CDR control.
0: CDR is enabled.
1: CDR is disabled.
0 R/W Reserved, must be set to 0.
Table 3-19. PRBS RX Channel Select (odd) (PRBSRXCHSEL_ODD: Address ADh)
Bits Type Default Label Description
7:0 R/W 01h rxchSel Selects channel for PRBS RX.
Table 3-20. PRBS RX Error Count (Read Only) (odd) (PRBSERROR_ODD: Address AEh)
Bits Type Default Label Description
7:0 RO rxerr PRBS RX error count register (read-only). Although this is a read-only register, a write of
any value must be performed to latch the latest error count. A PRBS RX reset (address
A0h, bit 4) will clear the PRBS RX error count register.
Control Registers Map and Descriptions
211x1-DSH-001-I Mindspeed Technologies®34
Mindspeed Proprietary and Confidential
Table 3-21. PRBS RX Delay Select (odd) (PRBSRX_DLY_ODD: Address AFh)
Bits Type Default Label Description
7:5 R/W Reserved, must be set to 0.
4:0 R/W 00101 prbsrx_dly PRBS RX delay select in increments of 1/32 of a bit time (12.5 ps for 2.488 GHz
operation).
00000: No Delay.
00001: 1/32 of a bit time (12.5 ps for 2.488 GHz operation).
00101: 5/32 of a bit time (62.5 ps for 2.488 GHz operation).
11111: One bit time (400 ps for 2.488 GHz operation).
Table 3-22. PRBS RX CDR Control A (odd) (RXCDR_CTRLA_EVEN: Address B0h)
Bits Type Default Label Description
7:6 R/W 00 lolwinctrl 00: LOL window settings are taken from global register.
01: LOL window settings are fixed to 48h (narrow) and 55h (wide).
10: LOL window settings are fixed to 91h (narrow) and AAh (wide) (recommended
setting).
11: Content of register RXCDR_CTRLB is stored into a separate register, which programs
the offset of the VCO counter start value.
5:4 R/W Reserved, must be set to 0.
3 R/W 1 0: Autoinhibit disabled.
1: Autoinhibit enabled.
2 R/W Reserved, must be set to 1.
1 R/W 1 los_en 0: LOS circuit disabled.
1: LOS enabled.
0 R/W Reserved, must be set to 1.
Table 3-23. PRBS RX CDR Control B (odd) (RXCDR_CTRLB_ODD: Address B1h)
Bits Type Default Label Description
7 R/W 0 softreset 0: CDR is in normal mode.
1: CDR is in reset.
6 R/W 0 MSPD Reserved, defaults to “0”, must be set to “1” to use PRBS RX CDR.
5:0 R/W 011010 data_rate Select data rate.
Please refer to Table 4-6 in the PRBS CDR Control Parameters section for data rate
programming.
011010: Reference frequency multiplied by 128d.
Control Registers Map and Descriptions
211x1-DSH-001-I Mindspeed Technologies®35
Mindspeed Proprietary and Confidential
Table 3-24. PRBS RX Alarms (Read Only) (odd) (RXCDR_ALARMS_ODD: Address B2h)
Bits Type Default Label Description
7:2 RO Reserved.
1 RO los Loss of Signal alarm.
0 RO lol Loss of Lock alarm.
Table 3-25. PRBS TX Control 1 (odd) (PRBSTX_ctrl1_odd: Address B3h)
Bits Type Default Label Description
7 R/W Reserved, must be set to 0.
6:5 R/W 10 txmux Select PRBS TX clock input.
00: Select clock generated by PRBS TX PLL.
01: Select clock recovered from PRBS RX CDR.
10: Select clock from input terminals CLKTXP/N.
11: None.
4 R/W 1 rst_tx 0: PRBS TX pattern generator in normal operation.
1: Reset PRBS TX pattern generator.
3 R/W 0 en_tx 0: TX PRBS disabled.
1: TX PRBS enabled.
2 R/W 0 tx2core 0: Disable the PRBS TX from going to the inputs.
1: Route PRBS TX pattern through cross point.
1 R/W 1 pll_pd PRBS TX PLL control.
0: TX PLL is enabled.
1: TX PLL is disabled.
0 R/W Reserved, must be set to 0.
Control Registers Map and Descriptions
211x1-DSH-001-I Mindspeed Technologies®36
Mindspeed Proprietary and Confidential
Table 3-26. PRBS TX Control 2 (odd) (PRBSTX_ctrl2_odd: Address B4h)
Bits Type Default Label Description
7:6 R/W Reserved, must be set to 0.
5 R/W 0 pe_amp Control of de-emphasis amplitude.
0: 50% PE.
1: 67% PE.
4 R/W 0 en_pe Enable de-emphasis.
0: Disable.
1: Enable.
3 R/W 1 pe_dur Control of de-emphasis duration.
0: Approximately 1200 ps.
1: Approximately 600 ps.
2 R/W 0 sel_div2_pat Select TX pattern. en_pattx has to be high for this bit to be functional.
0: Select 1010 pattern.
1: Select 1100 pattern.
1 R/W 0 en_pattx Select TX PRBS or simple pattern.
0: Select PRBS TX pattern.
1: Select simple pattern: 1010 or 1100 determined by sel_div2_pat.
0 R/W 0 pwr_trig 0: TX PRBS trigger disabled.
1: TX PRBS trigger enabled.
Table 3-27. PRBS TX Channel Select (odd) (PRBSTXCHSEL_ODD: Address B5h)
Bits Type Default Label Description
7:0 R/W 01h txchSel Selects channel for PRBS TX.
Table 3-28. PRBS TX PLL Control A (odd) (PLL_CTRLA_ODD: Address B6h)
Bits Type Default Label Description
7:6 R/W 00 lolwinctrl 00: LOL window settings are taken from global register.
01: LOL window settings are fixed to 48h (narrow) and 55h (wide).
10: LOL window settings are fixed to 91h (narrow) and AAh (wide) (recommended
setting).
11: Content of register PLL_ctrlB is stored into a separate register, which programs the
offset of the VCO counter start value.
5:1 R/W Reserved, must be set to 0.
0 R/W Reserved, must be set to 1.
Control Registers Map and Descriptions
211x1-DSH-001-I Mindspeed Technologies®37
Mindspeed Proprietary and Confidential
3.1.3 Global Registers
Table 3-29. PRBS TX PLL Control B (odd) (PLL_CTRLB_ODD: Address B7h)
Bits Type Default Label Description
7 R/W 0 softreset 0: CDR is in normal mode.
1: CDR is in reset.
6 R/W 0 MSPD Reserved, defaults to “0”, must be set to “1” to use PRBS TX PLL.
5:0 R/W 011010 data_rate Select data rate.
Please refer to Table 4-6 in the PRBS CDR Control Parameters section for data rate
programming.
011010: Reference frequency multiplied by 128d.
Table 3-30. XSET MODE (xSET mode: Address B8h)
Bits Type Default Label Description
7:2 R/W Reserved, must be set to 0.
1:0 R/W 00 xset Selects the XSET mode.
00: ACL latches are transparent. Any switch setting written immediately affects the core
configuration.
01: ACL latches are controlled through register B9h (software XSET).
10: ACL latches are controlled by terminal XSET (hardware control).
11: N/A.
Table 3-31. Software xSET (Read back always 00h) (xSET cmd: Address B9h)
Bits Type Default Label Description
7:0 R/W xsetcmd Register B8h (XSET mode) needs to be set to 01 in order for this register to be functional.
Any value written to this register will update the ACL with the ICL.
Control Registers Map and Descriptions
211x1-DSH-001-I Mindspeed Technologies®38
Mindspeed Proprietary and Confidential
Table 3-32. I/O Enable (IOENABLE: Address BAh)
Bits Type Default Label Description
7 R/W 0 DC offset Input DC offset
0: DC offset enable (default)
1: DC offset disable
6:5 R/W 01 EQ Input equalization
00: Minimum EQ ( 9 dB)
01: Small EQ ( 12 dB) (default)
10: Medium EQ ( 15 dB)
11: Large EQ ( 18 dB)
4 R/W 0 en_individ This bit controls individual IO control.
0: Individual input/output configuration (100 to 147h/100h to 18Fh) is bypassed.
1: Input/outputs are individually controlled by registers 100 to 147h/100h to 18Fh.
3:2 R/W 11 out_level en_individ (BAh, bit 4) must be set to 0 for these bits to be functional.
00: 500 mVp–p differential on all outputs.
01: 900 mVp–p differential on all outputs.
10: 1200 mVp–p differential on all outputs.
11: Disable all outputs.
1:0 R/W 10 in_mode en_individ (BAh, bit 4) must be set to 0 for these bits to be functional.
00: Reserved.
01: Reserved.
10: All input channels are powered down.
11: All input channels are active.
Table 3-33. Core Control (CORECTRL: Address BBh)
Bits Type Default Label Description
7:5 R/W Reserved, must be set to 0.
4 R/W 0 pe_amp Global control of de-emphasis amplitude.
0: 50% PE.
1: 67% PE.
3 R/W 1 pe_dur Global control of de-emphasis duration.
0: Approximately 1200 ps.
1: Approximately 600 ps (default).
2 R/W 0 en_pe en_individ (BAh, bit 4) must be set to 0 for this bit to be functional.
0: Disable de-emphasis for all outputs.
1: Enable de-emphasis for all outputs.
1 R/W Reserved, must be set to 1.
0 R/W 1 en_smartpwr Core SmartPower control.
0: Core fully powered.
1: Core in low power mode.
Control Registers Map and Descriptions
211x1-DSH-001-I Mindspeed Technologies®39
Mindspeed Proprietary and Confidential
Table 3-34. Software Reset (SOFTRESET: Address BFh)
Bits Type Default Label Description
7:0 R/W 00h srst Software reset: Needs two consecutive Writes with DATA = AAh.
If second Write is not a reset, register is cleared.
Third Write required to bring out of reset.
Table 3-35. Chip Revision (CHIPREV: Address C0h)
Bits Type Default Label Description
7:0 RO rev Chip Revision Number:
M21131-13/M21131G-13: 05h
M21131-23/M21131G-23: 05h
M21151-14/M21151G-14: 05h
M21151-23/M21151G-23: 05h
Table 3-36. Product Code (PRODCODE: Address C1h)
Bits Type Default Label Description
7:0 RO prod Product Code Number
M21131 = 40h
M21151 = C0h
Table 3-37. Global LOL Window Detector Inlock Value (WIN_INLCK_LOL: Address C3h)
Bits Type Default Label Description
7:0 R/W 1Eh win_inlck Sets the in lock window value.
Table 3-38. Global LOL Window Detector Outlock Value (WIN_OUTLCK_LOL: Address C4h)
Bits Type Default Label Description
7:0 R/W 03 win_outlck Sets the out lock window value.
Table 3-39. Global Control (GLOBAL_CTRL: Address CBh)
Bits Type Default Label Description
7:3 R/W Reserved, must be set to 0.
2 R/W Reserved, must be set to 1.
1 R/W Reserved, must be set to 0.
0 R/W 0 clear_alarms 0: All input and PRBS LOS alarms are active.
1: Clear all PRBS and input LOS alarms.
Control Registers Map and Descriptions
211x1-DSH-001-I Mindspeed Technologies®40
Mindspeed Proprietary and Confidential
Table 3-40. LOS Alarms Register Bank 1 to 18 (LOS_STATn: 1A2–1B3h)
Bits Type Default Label Description
7:0 RO los_stat (Read only, cleared by clear_alarms).
0: LOS alarm on CDR (n*8 +[I]) is not present.
1: LOS alarm on CDR (n*8 +[I]) is present.
211x1-DSH-001-I Mindspeed Technologies®41
Mindspeed Proprietary and Confidential
4.0 Functional Description
4.1 Overview
The M21131/M21151, designed for today’s demanding telecom and datacom applications, is a low-power CMOS,
high-speed 72x72/144x144 crosspoint switch with input equalization, output de-emphasis, and built-in system test
features.
The SmartPower features offer dynamically scalable switch settings to further reduce power consumption without
affecting the operation of the remaining channels.
To improve signal quality each input buffer is preceded by a programmable input equalizer (IE) and each output
includes output de-emphasis (PE). The IE removes ISI jitter which is usually caused by PCB skin effect losses. The
IE circuit opens the input data eye in applications where long PCB traces and cables are used. The PE provides a
boost of the high frequency content of the output signal, such that the data eye remains open after passing through
a long interconnect of PCB traces and cables. There are two amplitude settings and two duration settings that can
be selected on a global basis. De-emphasis can be enabled on a per-channel basis.
The device supports data rates from 0 to 3.2 Gbps on each channel, allowing any combination of SONET, Fibre
Channel (1x and 2x), InfiniBand, Gigabit Ethernet and 10 Gbps Ethernet traffic.
The switch includes a pair of on-board 223-1 pseudo-random bit sequence transmitters (PRBS TX) and receivers
(PRBS RX) for system verification purposes.
Three-stage switch fabrics with up to 2,880 x 2,880 ports, carrying over 10 Terabits per second of traffic, can be
designed using this non-blocking switch, with multi-cast and broadcast abilities.
All inputs and outputs are differential PCML (positive current mode logic) with supply voltages ranging from 1.2V to
2.5V. The output levels are programmable at 500 mV, 900 mV, and 1200 mV.
The M21131/M21151 is available in a 1156 terminal, 35 mm, CBGA (Ceramic Ball Grid Array) package. The green
72x72/144x144 crosspoint switch is the M21131G/M21151G. The green devices share the same features,
specifications, and pinout as the non-green devices.
Functional Description
211x1-DSH-001-I Mindspeed Technologies®42
Mindspeed Proprietary and Confidential
Figure 4-1. Jitter Removal by Input Equalization and Output De-Emphasis at 3.2 Gbps
Tx Device
(No output
Pre-Emphasis)
36" FR-4 trace and
backplane
connectors
3.2 Gbps data eye with
input EQ disabled -
NOT ERROR FREE
3.2 Gbps data eye with
input EQ enabled -
ERROR FREE
M21131/M21151
Crosspoint Switch with
Input Equalization
30" FR-4 trace and
backplane
connectors
M21131/M21151
Crosspoint Switch with
Output Pre-Emphasis
3.2 Gbps data eye after 30"
FR4 trace with output pre-
emphasis disabled - NOT
ERROR FREE
3.2 Gbps data eye after 30"
FR4 trace with output pre-
emphasis enabled -
ERROR FREE
Functional Description
211x1-DSH-001-I Mindspeed Technologies®43
Mindspeed Proprietary and Confidential
Figure 4-2. M21131/M21151 Functional Block Diagram
PLL
CDR
Data
Clk
PRBS Tx/Rx Even
PLL
XENRX<0>
223 - 1
PRBS RX
XSET
Data
Clk
PRBS Tx/Rx Odd
CDR
PRBS TX
223 - 1
PRBS TX
223 - 1 223 - 1
PRBS RX
PCML Output
Buffer and
Programmable
Output
Pre-emphasis
144x144
Differential
Crosspoint
Core
PCML Input
Buffer and
Programmable
Input Equalizer
and LOS Monitor
Active
Configuration
Latch (ACL)
Input
Configuration
Latch (ICL)
Parallel - Serial
Interface and
General
Registers
Switch State Write Bus
XRST
XTEST
XCS
R/XW
D[7]/DO
D[6]/DI
D[5:0]
A[9:0]
XDS/SCLK
Switch State Read Bus
XRSTRX<0>
DIRXP/N<0>
OUTP/N<70:0>/
OUTP/N<142:0>
CLKTXREF<0>
CLKTXP/N<0>
TRIG<0>
XENTX<0>
DOTXP/N<0>
PERROR<0>
PRBSRXERR<7:0>
CLKRXP/N<0>
INP/N<0>
INP/N<1>
INP/N<71>/
INP/N<143>
XINDIS
OUTP/N<0>
OUTP/N<1>
OUTP/N<71>/
OUTP/N<143>
XOUTDIS
OUTP/N<71:1>/
OUTP/N<143:1>
SER/XPAR
DIRXP/N<1>
CLKTXREF<1>
CLKTXP/N<1>
TRIG<1>
XENTX<1>
DOTXP/N<1>
PERROR<1>
PRBSRXERR<7:0>
CLKRXP/N<1>
XENRX<1> XRSTRX<1>
72x72/
Functional Description
211x1-DSH-001-I Mindspeed Technologies®44
Mindspeed Proprietary and Confidential
Figure 4-3. PCML Input and Output Equivalent Circuits
Figure 4-4. Crosspoint Application Example
INP
AVss
AVdd_IO AVdd_IO
INN
AVdd_IO
OUTP
OUTN
AVss
AVdd_IO
PCML Input PCML Output
50 50
50 50
Mindspeed Mindspeed
72x72/
144x144
Crosspoint
Core
O/E
E/O
PHY/Pointer
Processor
O/E
E/O
Pointer
Processor
Ser/Des
CDR
Optical
Optical
Driver
Driver
DS3/E3
DS1/E1
VT/
Framer/
Mapper
SPE/
Framer/
Mapper
Line Card/Backplane
SFP/XFP SFP/XFP
Optical Optical
DC~3.2 GbpsDC~3.2 Gbps
Video SD/HD Video SD/HD
Functional Description
211x1-DSH-001-I Mindspeed Technologies®45
Mindspeed Proprietary and Confidential
4.2 Detailed Description
4.2.1 Document Conventions
This document uses the following text styling conventions:
Signal names and terminal numbers are listed in all upper case letters denoting each functional name part, with its
related signal polarity indicated by a upper case 'N' or 'P'. Thus, data input signal names are indicated, for example
as: 'DINP' and 'DINN'.
A signal name and an associated channel number (0 through 71/0 through 143) are indicated as DINP[n] and
DINN[n] where 'n' is a channel number.
A register name is typed in all upper case preceded by the word register with each functional name part separated
by an underscore, additionally, brackets group register bit numbers, and sub-function names are in initial caps such
as for example only: 'register CONTROL_FUNCTION[5:4] Los_hyst'.
In order to distinguish terminal names from internally generated signals, the word ‘terminal’ is included in reference
to an input, output, or control, such as: ‘the signal on terminal ABC controls function x', or ‘when the signal on
terminal ABC = H function x is enabled'.
Terminal function descriptions generally do not repeat the word terminal.
4.2.2 Power Supply Configurations
Below is a summary of possible voltage configurations for the switch core and input/output buffers.
2.5V IO, 1.2V core
1.8V IO, 1.2V core
1.5V IO, 1.2V core
1.2V IO, 1.2V core (tied together externally)
The I/O supply voltage can be chosen independently, no register bit setting is required. The AVDD_IO and
AVDD_CORE supplies are separate from the DVDD_IO supply, and can be any combination of values specified in
Ta bl e 1 - 2 .
4.3 Serial Interface and Switch Programming
The crosspoint switch uses +1.8V/+2.5V/+3.3V CMOS interface levels to program the switch state (SS). All input
terminals have a 100 KΩ internal pull-up, except XINDIS and XOUTDIS, which have internal 100 KΩ pull-downs.
The communication protocol may be either a serial synchronous interface or a parallel asynchronous interface
using eight or ten bits. Either interface can:
Program the switch state
Individually enable/disable inputs or outputs
Access control registers and auxiliary functions
Read back the current state of the switch
Control the programmable equalization
This section details the operation of the I/O interface and switch programming in Section 4.3.4. The auxiliary
functions and address mapping are described in the section, Switch Function Details.
Functional Description
211x1-DSH-001-I Mindspeed Technologies®46
Mindspeed Proprietary and Confidential
4.3.1 Switch State Register Concept
The various switch functions are accessed through 8-bit registers (memory), which are addressed with the 10-bit
address bus. The contents of the registers are transferred via an 8-bit data bus during a read or write.
The M21131/M21151 switch-state controller uses a double-buffered register. The active configuration latch (ACL)
holds the actual switch setting while the input configuration latch (ICL) holds either the actual switch setting or the
next switch setting, depending on the mode of operation.
The XSETMODE register selects one of three modes of operation:
Default Mode—core configuration updated after every register write.
With XSETMODE = 00h, the first mode is enabled and is the default mode after a reset. Consequently, the
state of the switch changes with each write to a register determining the switch state. In the write mode, as
soon as the signal on terminal XDS makes a low-to-high transition, the input channel specified by data for the
output selected by the 10-bit address bus passes directly through the double buffer memory (ICL/ACL). As
soon as the desired data passes through the ACL, the crosspoint core routes the selected input to the desired
output to physically change the switch state. On the rising edge of XDS, this channel is stored (latched) into
both the ICL and ACL.
XSET Mode—core configuration updated after hardware XSET command.
When register XSETMODE = 10b the hardware XSET mode is enabled. In this mode, the desired switch state
(which may contain one or more routing changes) is written first to the ICL, but the switch state does not
change since the data is blocked from the ACL. With either the hardware or software XSET command, the
contents of the ICL are transferred to the ACL, which physically changes the switch state in the switching core.
This mode allows 1 to 144 channels to change at the same time. On the falling edge of the XSET signal, the
ICL contents are passed to the ACL and the switch state changes. On the rising edge of the XSET signal, the
switch state is latched.
XSET Mode—core configuration updated after software XSET command.
When register XSETMODE = 01b the software XSET mode is selected, and the desired switch routing is
written into the appropriate registers to update the ICL without affecting the ACL. Then, a write of any value to
the XSETCMD register will update the ACL with the current contents of the ICL, and the switch state changes.
The interface is configured into the parallel mode by forcing terminal SER/XPAR low.
4.3.2 Parallel I/O Overview
A 10-bit address bus and the register contents (read or write) are transferred via a bidirectional 8-bit data bus. The
active-low data strobe (XDS) latches (stores) the data into the register on the rising edge of XDS. To change the
switch state, the double buffer (ICL/ACL) is transparent (mode1) when signal XDS = L in relationship to the data,
consequently the switch state will change on the falling edge of signal XDS. On the rising edge of XDS, the switch
state will be stored into the register.
The active low terminal XCS gates the I/O and input control signal R/XW selects either a read or write operation.
Figure 4-5 illustrates the timing diagram for a parallel write operation.
Ta bl e 4 - 1 shows the parallel write timing specifications as defined in Figure 4-5.
Functional Description
211x1-DSH-001-I Mindspeed Technologies®47
Mindspeed Proprietary and Confidential
Figure 4-5. Parallel Write Timing Diagram
Functional Description
211x1-DSH-001-I Mindspeed Technologies®48
Mindspeed Proprietary and Confidential
Table 4-1. Parallel I/O Write Timing
Parameter Description Minimum Typical Maximum
tScs_w XCS Falling Edge before XDS Rising Edge 5 ns
tHcs_w XCS Hold after Rising Edge of XDS 0 ns
tHrw_w R/XW Hold after Rising Edge of XDS 0 ns
tSrw_w R/XW Setup before Rising Edge of XDS 9 ns
tTxDSl_w XDS Low Period 8 ns
tTxDSh_w XDS High Period 8 ns
tSA_w Address Setup before Rising Edge of XDS 6 ns
tHA_w Address Hold after Rising Edge of XDS 3 ns
tSD_w Data Setup before Rising Edge of XDS 3 ns
tHD_w Data Hold after Rising Edge of XDS 3 ns
tsetw Hardware XSET pulse width 20 ns
tsets Hardware XSET setup time 3 ns
Functional Description
211x1-DSH-001-I Mindspeed Technologies®49
Mindspeed Proprietary and Confidential
Figure 4-6 shows the timing diagram for a parallel read operation. Ta bl e 4 - 2 shows the parallel read timing
specifications as defined in Figure 4-6.
Figure 4-6. Parallel Read Timing Diagram
Table 4-2. Parallel I/O Read Timing
Parameter Description Minimum Typical Maximum
tScs_r XCS Falling Edge before XDS Falling Edge 5 ns
tHcs_r XCS Hold after Rising Edge of XDS 0 ns
tHrw_r R/XW Hold after Rising Edge of XDS 0 ns
tSrw_r R/XW Setup before Falling Edge of XDS 5 ns
tTxDSl_r XDS Low Period 50 ns
tTxDSh_r XDS High Period 50 ns
tSA_r Address Setup before Falling Edge of XDS 9 ns
tHA_r Address Hold after Rising Edge of XDS 2 ns
ta2out Address Valid to Data Valid (on Read) 24 ns
tout2Z XDS Rising Edge to Data High Z 1 ns 8 ns
XCS
R_XW
XDS
A[9:0]
D[7:0]
Address
Data Read
tScs_r tHcs_r
tSrw_r tHrw_r
tSA _r tHA _r
tTxDS_lo _r tTxDS_hi _r
tout2Z
Read Access
tA2out
Functional Description
211x1-DSH-001-I Mindspeed Technologies®50
Mindspeed Proprietary and Confidential
4.3.3 Serial I/O Overview
The serial I/O operation is gated by chip select signal XCS (on input terminal XCS). Data is shifted in on terminal
SDI on the falling edge of the serial I/O clock input (terminal SCLK), and shifted out on the serial data output
(terminal SDO) on the rising edge of SCLK. Addressing a register consists of the following, as shown in Figure 4-7:
A 12-bit input, consisting of the first bit (start bit, SB = 1), the second bit (operation bit: OP = 1 for read, OP = 0 for
write), followed by the 10-bit address (most significant bit (MSB) first).
4.3.3.1 Timing Diagram Clock Set and Program Modes
To initiate a write sequence, as shown in Figure 4-8, terminal XCS goes low before the falling edge of SCLK. On
each falling edge of serial I/O clock (SCLK) the 20-bit word consisting of SB = 1, OP = 0, address, and data, are
latched into the input shift register. The rising edge of signal XCS must occur before the falling edge of SCLK for
the last bit. Upon receipt of the last bit, one additional cycle of SCLK is necessary before the input data transfers
from the input shift register to the addressed register.
If consecutive read/write cycles are being performed, it is not necessary to insert an extra clock cycle between
read/write cycles, however one extra clock cycle is needed after the last data bit of the final read/write cycle to
complete the operation. On a write cycle, only the first 18 bits after SB and OP are used and all bits that follow are
ignored.
Figure 4-9 illustrates the serial read mode timing diagram. To initiate a read sequence, the signal on terminal XCS
goes low before the falling edge of SCLK. On each falling edge of SCLK, the 12 bits consisting of SB = 1, OP = 1,
and the10-bit address are written to the serial input shift register of the M21131/M21151. On the first rising edge
following the address LSB, the SB and eight bits of the data are shifted out on SDO. The first bit output on SDO for
a read operation is always 0.
In a read cycle, all extra clock cycles will result in invalid data. For invalid SB/OP, the operation is undefined. The
falling edge of XCS always resets the serial operation for a new read/write cycle.
Ta bl e 4 - 3 contains the timing specifications for the serial programming interface.
Figure 4-7. Serial Word Format
1
rw
A[9:0] D[7:0]
19 18 17 8 7 0
Start Bit Read/Write
Address Data
LSBMSB MSB LSB
Functional Description
211x1-DSH-001-I Mindspeed Technologies®51
Mindspeed Proprietary and Confidential
Figure 4-8. Serial Write Mode
Figure 4-9. Serial Read Mode
11
T
dw
Tens
T
clk
T
wclk
SCLK
SDI
T
cs
T
ch
xCS T
ds
T
dh
wr a6a7a8a9 a5 d7a0a1 d4d5d6 d3 d2 d1 d0
X X X X X X X X1 1
0
X
SCLK
xCS
T
rdd
T
rds
T
dw
Tens T
ds
T
dh
T
wclk
T
clk
T
cs
T
ch
SD O
SDI
rd a2 a1 a0
d6d7 d5 d 4 d3 d0d1d2
a6a7a8a9
Functional Description
211x1-DSH-001-I Mindspeed Technologies®52
Mindspeed Proprietary and Confidential
4.3.4 Switch Setting
Crosspoint functions and options are accessed through hardware terminals, or software via the serial/parallel
interface. In some cases, both software and hardware can access the same function. This section describes these
functions in detail and Ta bl e 3 - 1 lists register functions.
The setting parameters are summarized in Ta bl e 3 - 1 , which contains the allowable addresses for the M21131/
M21151 crosspoint switch. The INCHSEL#n register controls the crosspoint connectivity. Its register address,
INCHSEL#n, is mapped to the output channel number and its associated data is the input connected to the output
N. Output channels 0 through 71/0 through 143 are mapped to register addresses = 00h through 37h/00h through
8Fh with the output N = address.
For example, if register address = 05h and DATA = 02h (5h = 02h), then output #5 gets input #2. Any output can be
routed to the internal PRBS receiver input and the internal PRBS transmitter output can be routed to any of the
inputs. To Read the current switch state (CSS) of the ACL, the selected channel is specified by register address
and the resulting data is the input channel number routed to the selected output. The Next Switch State (NSS) in
the ICL, if different from the ACL, cannot be read back. The default state after power on is channel 0 broadcast to
all outputs (all registers cleared).
4.3.5 Input/Output Enable and Output Logic Swing
The inputs and outputs have both a hardware global enable and a software global enable as well as individual I/O
software controls.
Terminals XINDIS and XOUTDIS control the inputs and outputs, and are active low (disabled) with internal pull-
downs (100 KΩ). When terminals XINDIS = L and/or XOUTDIS = L all inputs and/or outputs are globally disabled,
respectively (default). Hardware disable has priority over all software controls. If the I/Os are not disabled via the
hardware terminals, XINDIS and/or XOUTDIS = H, then the IOENABLE register selects the control status. With
IOENABLE[4] = 0 (default), the software global enable/disable bits (IOENABLE[1:0] for global input) and
Table 4-3. Serial Interface Timing—Specified at Recommended Operating Conditions
Symbol Item Notes Minimum Typical Maximum Units
tdw Data width 14 ns
tdh Data hold time 5 ns
tds Data setup time 5 ns
tens Enable setup time 5 ns
tcs Chip select setup time 2 Tclk - 2 ns
tch Chip select hold time 2 ns
trDD Read data output delay 1 14 ns
trds Read data valid 9 ns
tclk SCLK period width 40 ns
twclk SCLK minimum low duration 5 Tclk - 5 ns
trOutput rise time 1 1 4 ns
tfOutput fall time 1 1 4 ns
NOTES:
1. Edge rate in the high edge-rate mode.
Functional Description
211x1-DSH-001-I Mindspeed Technologies®53
Mindspeed Proprietary and Confidential
(IOENABLE[3:2] for global output) are selected. The individual global input and output register values default to
disable.
With IOENABLE[4] = 1, the 72/144 CHANCFG#n registers control the enable/disable status of each channel input
and output buffer. The CHANCFG#n address is computed with N+100h, with the variable N mapped to both the
input and output channel. Consequently, CHANCFG#n[3:2] controls the enable/disable status of output N, and
CHANCFG#n[1:0] controls the enable/disable status of input N. With IOENABLE[4] = 1, IOENABLE[3:2] and
IOENABLE[1:0] have no meaning.
For both inputs and outputs, a disabled state implies turning off the current sources of the I/O buffer to save power.
With the built-in pull-up resistors, both “p” and “n” nodes of the differential output will default to the high logic state
when disabled; however, the logic levels of the “p” and “n” inputs to the switch core are undetermined.
An additional input signal inhibit function is included in the IN_CHAN_CTRL[3] registers (200h–237h/200h–28Fh)
of the M21131/M21151. With IN_CHAN_CTRL[3] = 1, the “p” inputs to the switch core are clamped to a logic low
and the “n” inputs are clamped to a logic high.
The output drive level is programmable on either a global or individual basis. With IOENABLE[4] = 0 (default),
IOENABLE[3:2] = 00b selects a global default 500 mVp–p differential output level, and IOENABLE[3:2] = 01b
selects a global default 900 mVp–p differential output level. With IOENABLE[3:2] = 10b a global 1200 mV
differential output level is selected (1200 mV should not be used at AVDD_IO = 2.5 V). With IOENABLE[3:2] = 11b
(default) all outputs are disabled. A 500 mVp–p differential output implies a 250 mVp–p single-ended output. With
IOENABLE[4] = 1, CHANCFG#n[3:2] selects the output level of each channel individually.
The global enable, disable, and output swing level registers minimize the software setup overhead of the crosspoint
switch after resetting; however, individual control of enable/disable and output swing level is provided for maximum
flexibility in some applications.
4.3.6 Programmable Input Equalization
In order to compensate for lossy external interconnects, the input buffers include a programmable equalization
function. Register CHANCFG#n[6:5] as listed in Ta bl e 4 - 4 , controls channel equalization for each input
independently.
4.3.7 Programmable Output De-Emphasis
Similar to input equalization, each output buffer and PRBS transmitter has a programmable output de-emphasis
(PE) function included. When enabled, the PE will provide a high frequency boost to the output signal, such that the
data eye will be improved (more open) after a long external interconnect.
With IOENABLE[4] = 0 (address BAh), CORECTRL[2] (address BBh) globally enables/disables the PE for all
outputs. CORECTRL[2] defaults to 0, PE off. The PE for PRBS transmitters are not dependant on IOENABLE[4],
i.e., PRBSTXCTRL2_N[5:3] always control PE for the PRBS transmitters. With IOENABLE[4] = 0 and
CORECTRL[2] = 1, PE is globally enabled and CORECTRL[4:3] (address BBh) globally control the PE amplitude
and duration for all outputs. The default PE amplitude and duration settings are CORECTRL[4] = 0 and
Table 4-4. Equalization Control Bits
CHANCFG#n[6:5] Description
00 Minimum EQ ( 9 dB)
01 Small EQ ( 12 dB) (default)
10 Medium EQ ( 15 dB)
11 Large EQ ( 18 dB)
Functional Description
211x1-DSH-001-I Mindspeed Technologies®54
Mindspeed Proprietary and Confidential
CORECTRL[3] = 1 which globally enable a PE of 50% for a duration of approximately 600 ps (see Figure 4-10). For
example, if the output drive level is set for 1200 mV, when there is a data transition (1-to-0 or 0-to-1) the beginning
of each pulse will start at 1200 mV and decay to 600 mV in approximately 600 ps. Setting CORECTRL[4] = 1
(PRBSTXCTRL2_N[5] = 1) enables a higher boost of 67%. For example, if the output drive level is set for 1200 mV,
the beginning of each pulse will start at 1200 mV and decay to 400 mV. CORECTRL[3] = 0 and
PRBSTXCTRL2_N[3] = 0 (default is 1) enable a longer decay time of approximately 1200 ps, corresponding to
lower frequency boost. This is for interconnects which exhibit attenuation at lower frequencies.
With IOENABLE[4] = 1 (address BAh), PE on each output is individually enabled/disabled by CHANCFG#n[4].
CHANCFG#n[4] defaults to 0, PE off. The amplitude and duration of the PE on all of outputs are still controlled by
CORECTRL[4:3]. The amplitude and duration of the PE on PRBS transmitters are controlled by
PRBSTXCTRL2_N[5, 3].
Table 4-5. De-Emphasis Control Bits
Register BBh[4:3] Description
00 50% Amplitude, 1200 ps duration.
01 50% Amplitude, 600 ps duration (default).
10 67% Amplitude, 1200 ps duration.
11 67% Amplitude, 600 ps duration.
Figure 4-10. Definition of De-Emphasis Levels and Duration
Duration
B
V
S
V
Pre-Emphasis Level =
B
V
S
Vx 100
Functional Description
211x1-DSH-001-I Mindspeed Technologies®55
Mindspeed Proprietary and Confidential
4.3.8 Duty Cycle Distortion (Offset) Circuit on Inputs to Switch
Each input channel has an offset circuit that can be enabled to correct for DC offset. This circuit is designed to
correct duty cycle distortion (DCD) that may be present on either a single ended or differential signal at the input of
the switch. It also compensates for common mode drift of the input stage over temperature and power supply
variation for single ended inputs. When enabled, the offset feature removes DCD thus improving the quality of the
data eye pattern. CHANCFG#n[7] at addresses 100h–137h/100h–18Fh enables the offset function.
4.3.9 Input Signal Activity Monitor
For operation at data rates of 1.0 Gbps to 1.6 Gbps and 2.0 Gbps to 3.2 Gbps, a loss of signal (LOS) circuit is
included on each input and detects whether valid data is present. The 19.44 MHz RXREFCLK clock must be
provided to the M21131/M21151 and the data rate of the signal must be programmed for the LOS feature to
function properly. LOS acts as an alarm and can be used to inhibit the signal into the switch core when the data to
the input terminal is lost. If the input signal is clamped high or low, or if the difference between the input data rate
and the programmed data rate is greater than approximately ±100 Mbps, the LOS alarm will be activated.
Whenever valid data is present at the input, the LOS alarm is deactivated. The LOS circuit is disabled if register
IN_CHAN_CTRL#[1] = 0 (default 1) (addresses 200h–237h/200h–28Fh). The data rate range is selected using
LOS_DR_SEL#n[6] and the data rate is programmed using LOS_DR_SEL#n[5:0] (addresses 300h–337h/300h
38Fh). When register IN_CHAN_CTRL#[3] = 1 (default) a LOS alarm issues an inhibit signal which forces the
switch input to a low state. This minimizes any noise propagating to the switch in the LOS condition.
4.3.9.1 LOS Data Rate Programming
The LOS circuit for each input channel operates independently and employs an external 19.44 MHz clock
reference, RXREFCLK. The LOS circuit can be programmed to any rate between 2.0 GHz and 3.2 GHz or between
1.0 GHz and 1.6 GHz using register LOS_DR_SEL#n[6:0] (300h–337h/300h–38Fh). To select a desired rate, it is
necessary to set LOS_DR_SEL#n[6:0] to the value closest to the desired rate. For example if 2.64 GHz is the
desired rate: LOS_DR_SEL#n[6] = 0 and the code to be selected (LOS_DR_SEL#n[5:0]) is 100010 (136d), which
corresponds to 2.6438 GHz. The programmed frequency is exactly equal to the reference frequency multiplied by
the decimal equivalent of the binary value programmed in register LOS_DR_SEL#n[5:0] + 102d. For 1.0 Gbps to
1.6 Gbps operation, the dr_range bit, LOS_DR_SEL#n[6] must be set to 1. This bit causes the multiplier set by
LOS_DR_SEL#n[5:0] to be divided by two.
Figure 4-11. LOS Architecture
Input Data
Reference Clock (RXREFCLK)
data_rate LOS
Inhibit Enable
Loss of Signal Detection
To Xpoint
MUX
0
Functional Description
211x1-DSH-001-I Mindspeed Technologies®56
Mindspeed Proprietary and Confidential
4.3.9.2 LOS Signal Busing
Although each input channel has an individual LOS alarm, the alarms for all of the channels are wired OR on chip
to create the global LOS alarm; therefore, an active LOS from one or more channels will generate a logic high on
the global LOS terminal and set an alarm bit. The alarm bit can be immediately read from los_statn[7:0]. Toggling
register GLOBAL_CTRL[0] from 0 to 1 then back to 0 will clear all alarm bits (unless a particular alarm persists, in
which case this bit will remain high).
4.3.10 Power-Up Sequence and Device Reset
There are no power supplies sequence requirements for the M21131/M21151. Proper hardware reset assertion will
ensure that the device will operate properly regardless of power supply sequence.
The XRST terminal is a hardware reset to be used after power-up or as a general reset. Before and during power-
up, XRST must be set LOW.
If the device is configured to use the parallel interface for programming the registers, then upon device power-up,
the XRST terminal must be held LOW for a minimum of TRESET = 10 µs after all power supplies have reached the
expected voltage level. Once XRST is set HIGH following TRESET
, the device reset is complete. Any hardware reset
of the device after power-up can be achieved by setting terminal XRST LOW for TRESET > 10 µs and returning it to
HIGH.
Table 4-6. Allowed Data Rates with 19.44 MHz External Reference
RXCDR_CTRLB_N[5:0] Notes Bit Rate in Gbps Multiplier
000000 1 1.983 102
000001 1 2.002 103
000010 2.022 104
……
011010 2.488 128
……
111111 1 3.208 165
NOTE:
1. For decimal multiplier values which are not 104, 112, 120, 128, 136, 144, 152, or 160, more programming steps are required and are outlined in
the “Settings for Non-Standard Rates” section and Table 4-7.
Figure 4-12. Reset Timing in Parallel Programming Mode
TRESET
>10µs
TRESET
>10µs
All power supplies
XRST
100%
95%
Functional Description
211x1-DSH-001-I Mindspeed Technologies®57
Mindspeed Proprietary and Confidential
If the device is configured to use the serial interface for programming the registers (SPI), then a valid SPI clock
(SCLK) must be present at the time of reset. The XRST terminal must be held LOW for a minimum of TRESET >= 4
SCLK cycles, after a valid clock signal is applied. Once XRST is set HIGH following TRESET
, the device reset is
complete. Any hardware reset of the device after power up can be achieved by setting terminal XRST LOW for at
least TRESET > 4 SCLK cycles and returning it to HIGH.
Following reset, the device will be in the following condition:
• All registers will be set to the default values.
• A software global disables of all input and output channels will be asserted (through the I/O enable register).
• Input channel 0 will be broadcast to all outputs (the ICL and ACL are cleared).
• The PRBS TX and RX will be disabled.
• All error flags will be cleared
If XTEST = L after reset, all inputs and outputs are globally enabled and the switch is set with channel 0 broadcast
to all outputs. Mindspeed uses these features for internal die testing, but for normal operation, terminals XTEST =
H and XRST = H. To enable a software reset, two consecutive writes to the SOFTRESET register (address, BFh)
value (AAh) are required. If the second write is not to the SOFTRESET register, the register will be cleared and two
additional consecutive writes of (AAh) will be needed to enable a software reset. Hardware reset has priority over
software reset. A third write of any value is required to bring the switch out of reset.
4.3.11 Product and Revision Codes
A read to the read-only PRODCODE register causes a readback of the M21131/M21151 product code number. A
read to the read-only CHIPREV register causes a readback of the version number of the chip. The contents of
these registers can be used by software drivers to determine the appropriate driver routine to be used. See
Section 3.1.3 for details.
4.3.12 Core Power Saving
The CORECTRL register enables the core power-saving modes. Register CORECTRL[1] = 0 powers down the
switch core and the PRBS TX/RX (default power on).
Figure 4-13. Reset Timing in Serial Programming Mode
TRESET TRESET
SCLK
XRST
All power supplies
Functional Description
211x1-DSH-001-I Mindspeed Technologies®58
Mindspeed Proprietary and Confidential
Register CORECTRL[0] = 1 enables the SmartPower core control (default).
SmartPower automatically disables portions of the core mux circuitry that are not active for certain switch
configurations. This results in a significant power savings compared to operations when the core mux is fully
powered. The actual power savings will vary across configurations.
Enabling SmartPower will slightly increase the settling time of the device when a new switch core configuration is
implemented, so for applications where the minimum configuration time of the switch is desired, SmartPower
should be disabled. Most applications will use the M21131/M21151 with SmartPower enabled.
4.3.13 PRBS Transmitter and Receiver
Internally, the switch core input terminals (INP and INN) and output terminals (OUTP and OUTN) are grouped into
odd and even sections, as shown in the PRBS TX and RX Functional Block Diagram, Figure 4-14. Likewise, there
are two PRBS transmitter (TX) and receiver (RX) sections:
An odd (1) section which operates with the odd numbered Inputs (INP1, 3, 5, etc. and INN1, 3, 5, etc.) and
Outputs (OUTP1, 3. 5, etc. and OUTN1, 3, 5, etc.)
An even (0) section which operates with the even numbered Inputs (INP0, 2, 4, etc. and INN0, 2, 4, etc.) and
Outputs (OUTP0, 2, 4, etc. and OUTN0, 2, 4, etc.).
As a result, there are two sets of PRBS control terminals, interface terminals and control registers. See Ta bl e 3 - 1 ,
Register Summary, (addresses A0 B7) for additional information.
The references to PRBS control registers in this section apply to either the odd or even PRBS registers. As an
example:
Terminal DOTXP/N[1] is the PRBS TX output of the odd (1) section and can only be routed to the odd
numbered inputs. If an even numbered input is selected for PRBSTXCHSEL_ODD[7:0], the PRBS TX output
will not be connected to any odd numbered input (to connect a PRBS signal to an even numbered input, the
even (0) PRBS TX section must be enabled and the PRBSTXCHSEL_EVEN[7:0] register must be properly
programmed).
Similarly, the even (0) PRBS RX section can only accept even numbered outputs (OUTP0, 2. 4, etc.). If an odd
numbered output is selected for the even (0) PRBS RX, no PRBS output signal will be connected to the even
(0) PRBS RX block (invalid output).
Also, note that since the RX and TX functions are completely duplicated, they can be used simultaneously in
parallel. For instance, PRBS signals can be simultaneously routed into input 1 and input 71/input 1 and input 143.
These two PRBS signals can then be switched to any even and any odd outputs, respectively. The respective odd
and even outputs that were selected can be connected to the PRBS RX blocks. The PRBS TX and RX sections
operate from 1.0 Gbps to 1.6 Gbps and 2.0 Gbps to 3.2 Gbps.
4.3.13.1 PRBS TX Pattern Generation
The 223-1 PRBS TX (with polynomial D23+D18+1) provides a NRZ PRBS pattern. The PRBS TX is enabled with
register PRBSTXCTRL1[3] = 1 (default 0) or with terminal XENTX = L (CMOS level, internal pull-up). An
asynchronous reset can be performed by setting PRBSTXCTRL1[4] = 1 and then bringing it low again. The data
rate is determined by the external clock on terminal CLKTXP/N (PCML), by an external reference clock CLKTXREF
(~19.44MHz, CMOS level) or by the recovered clock from the PRBS RX block, which is derived from its preceding
CDR).
Register PRBSTXCTRL1[6:5] = 10b (default) selects the high-speed clock input, PRBSTXCTRL1[6:5] = 00b
selects the low-frequency reference clock input and PRBSTXCTRL1[6:5] = 01b selects the recovered PRBS RX
clock. For the case where an external low frequency clock is provided, register PRBSTXCTRL1[1] = 0 enables the
TX PLL and PLL_CTRLB[6:0] sets the actual internal clock frequency into the PRBS TX. For a 19.44 MHz
Functional Description
211x1-DSH-001-I Mindspeed Technologies®59
Mindspeed Proprietary and Confidential
reference input, the PLL output frequency programming is described in “PRBS CDR Control Parameters” on
page 59. Register PLL_CTRLB[7] provides a PLL software reset if required.
4.3.13.2 Additional Test Patterns
The PRBS TX can also output a 0101 or a 0011 pattern. By setting register PRBSTXCTRL2[1] = 1 (default 0) this
mode is selected. If PRBSTXCTRL2[2] = 1 then a 0011 pattern is generated otherwise a 0101 pattern is created
(default).
4.3.13.3 PRBS Output Data
The output data is updated with each rising edge of CLKTXP. The output terminal Trig (CLKTXP/N divided by 16) is
used as a scope trigger to observe the 223-1 pattern and can be disabled with Register PRBSTXCTRL2[0 = 0
(default). It is a single ended PCML output with 50Ω on chip source termination and 450 mVp–p single ended
swing into an external 50Ω load.
The PRBS TX data can be observed at terminals DOTXP and DOTXN (PCML output with 50Ω on chip source
termination and 900 mVp–p differential swing into an external 50Ω load) and can be routed internally to any of the
inputs. When routing PRBSTX through the crosspoint core, DOTXP/N needs to be terminated with 50Ω load.
Register PRBSTXCTRL1[2] = 0 disables the PRBS TX output to be routed to any input; with PRBSTXCTRL1[2] = 1
(default).
Register PRBSTXCHSEL[7:0] selects the input to which the PRBS TX will be routed. Input channel N is selected
by setting PRBSTXCHSEL[7:0] = Nh. If an invalid input is selected (N>71/143), then the PRBS TX will not be
routed to any input.
Note that the PRBS TX signal will be forced into the input terminals (the on-chip PRBS buffers are operating in
current mode); a portion of the PRBS signal will egress from the input terminal to which the PRBS transmitter is
connected. The device normally connected to these terminals may need to be powered down (it is acceptable to
have the 50Ω source termination still present) or temporarily disconnected during PRBS operation.
4.3.13.4 PRBS RX Control Parameters
A 223-1 PRBS RX takes in a NRZ PRBS pattern (with polynomial D23+D18+1) and checks for any bit errors. The
PRBS RX includes an integrated CDR which uses RXREFCLK as a low-speed reference clock.
The PRBS RX will be enabled with register PRBSRXCTRL[3] = 1 (default 0) or with terminal XENRX = L (CMOS
level, internal pull-up). When enabled, the PRBS RX takes its input directly from any of the odd or even core
outputs as enabled by PRBSRXCTRL[5] = 0, or from external inputs DIRXP/N enabled by PRBSRXCTRL[5] = 1
(default).
Register PRBSRXCTRL[2] = 0 prevents any of the core outputs from being connected to the PRBS RX. If register
PRBSRXCTRL[2] = 1 (default), then PRBSRXCHSEL[7:0] selects which core output channel goes to the PRBS
RX. In either case, the input to the PRBS RX is first routed into a dedicated CDR to resample the data and to
extract a clock for the PRBS RX. Register PRBSRXCTRL[1] = 0 (default 1) enables the CDR.
4.3.13.5 PRBS CDR Control Parameters
Register CDR: RXCDR_CTRLB[6:0] controls the desired bit rate, and CDR: RXCDR_CTRLB[7] provides a means
for a software reset. The CDR must be in lock before valid data can be passed on to the actual PRBS RX circuit.
Register RXCDR_ALARMS[1:0] contain the normal CDR alarms; these bits need to be 0 for the PRBS RX to
produce valid error counts. For this reason the PRBS RX needs to remain in reset while the CDR is acquiring lock.
This can be done by setting register XRSTRX = L (CMOS level, internal pull-up) or with PRBSRXCTRL[4] = 1
(default 0).
Functional Description
211x1-DSH-001-I Mindspeed Technologies®60
Mindspeed Proprietary and Confidential
The operation of the CDR for the PRBS RX section is controlled through the PRBS RX CDR Control A and Control
B registers (addresses A4h, A5h, B0h, and B1h). The CDR for the PRBS RX can be reset through
RXCDR_CTRLB[7]. This bit must be set to a 1 and then set back to a 0 to issue a software reset. The LOS circuit
for the PRBS RX CDR can be enabled/disabled with RXCDR_CTRLA[1]. Bits 5, 4, 3, 2, and 0 of this register are
Mindspeed reserved bits and should not be used. Bits 5, 4, and 3 should be set to 0 and bits 2 and 0 should be set
to 1.
4.3.14 PRBS CDR Data Rate Programming
For the CDR to achieve a correct frequency acquisition, a frequency acquisition loop is present. The frequency
acquisition loop employs an external clock reference, REFCLK. The external reference clock frequency should be
19.44 MHz ±50 ppm. The CDR is able to lock the VCO to any rate between 2.0 GHz and 3.2 GHz or from between
1.0 GHz and 1.6 GHz using register RXCDR_CTRLB_N[6:0] (A5h and B1h). To select a desired rate, it is
necessary to set RXCDR_CTRLB_N[6:0] to the value closest to the desired rate. For example if 2.64 GHz is the
desired rate: RXCDR_CTRLB_N[6] = 0 and the code to be selected (RXCDR_CTRLB_N[5:0]) is 100010 (136d),
which corresponds to 2.6438 GHz. The programmed frequency is exactly equal to the reference frequency
multiplied by the decimal equivalent of the binary value programmed in register RXCDR_CTRLB_N[5:0] + 102d.
For 1.0–1.6 GHz operation, the half rate bit, RXCDR_CTRLB_N[6] must be set to 1. This bit causes the multiplier
set by RXCDR_CTRLB_N[5:0] to be divided by two.
The Frequency Acquisition Loop is activated if the frequency difference between VCO (divided down) and the
external reference clock is more than a certain value called Frequency Window. More precisely, if LOL = H this
value is called Narrow Frequency Window (NFW) and when LOL = L it is called Wide Frequency Window (WFW)
(WIN_INLCK_LOL[7:0]/WIN_OUTLCK_LOL[7:0]) (addresses C3h/C4h). The WFW is typically larger then NFW to
provide hysteresis for the locking process. With CDRX_CTRLA[3] = 1 (default) a LOL alarm issues the CDR inhibit
which forces the CDR output to a low-logic state. When LOL = L the frequency acquisition loop is turned off to
reduce jitter generation and to optimize phase lock. A Frequency Window Detector determines whether the VCO
frequency is inside or outside the Narrow/Wide Frequency Window.
The Narrow Frequency Window and Wide Frequency Window are calculated as follows:
The default values for the narrow and wide window are 03h and 1Eh, which corresponds to 100 ppm and 1000 ppm
frequency windows. The frequency acquisition time is about 1.65 ms and is limited by the 100 ppm accuracy.
4.3.14.1 Settings for Non-Standard Rates
If a data rate is selected, which does not correspond to a multiplier of 104, 112, 120, 128, 136, 144, 152, or 160,
then an additional write sequence is required for proper operation:
1. The VCO counter needs to have a start value different from the default value (00h). To accomplish this, the
appropriate value for diff_start from Ta b le 4 - 7 should be written into RXCDR_CTRLB_N[7:0].
2. RXCDR_CTRLA_N[7:6] should be changed to 11b, i.e., CFh should be written to RXCDR_CTRLA_N[7:0]
(initial value can be 00, 01, or 10); this latches the contents of RXCDR_CTRLB_N into a dedicated register.
strtref
inlkw
withfNFW refclk _
_
,1
)1(
1=
±
=
α
α
strtref
inlkw
withfWFW refclk _
_
,1
)1(
1=
±
=
α
α
Functional Description
211x1-DSH-001-I Mindspeed Technologies®61
Mindspeed Proprietary and Confidential
3. RXCDR_CTRLB_N can be used as defined in the register map in Ta bl e 4 - 6 .
4. RXCDR_CTRLA_N[7:6] should be reset back to 00, 01, or 10.
An individual channel soft reset will not clear the results of the diff_start register but this write sequence must be
repeated after a hardware reset or power down.
For example, for a data rate of 2.605 Gbps for the even PRBS receive CDR, the multiplier would be 134 and the
following register commands would be required:
1. Write data 5Fh into register address A5h
2. Write data CFh into register address A4h
3. Write data 20h into register address A5h
4. Write data 0Fh into register address A4h
The diff_start values as a function of the multiplier ratio are shown in Ta bl e 4 - 7 .
Table 4-7. Diff_start Values as a Function of the Multiplier (1 of 3)
Multiplier Bit Rate in Gbps RXCDR_CTRLB[7:0] = diff_start[7:0]
102 1.983 7Fh
103 2.002 7Fh
104 2.022 00h (default)
105 2.041 13h
106 2.061 27h
107 2.080 3Bh
108 2.099 4Eh
109 2.119 62h
110 2.138 75h
111 2.158 7Fh
112 2.177 00h (default)
113 2.197 12h
114 2.216 24h
115 2.236 36h
116 2.255 49h
117 2.274 5Bh
118 2.294 6Dh
119 2.313 7Fh
120 2.333 00h (default)
121 2.352 11h
122 2.372 22h
123 2.391 33h
124 2.411 44h
125 2.430 55h
Functional Description
211x1-DSH-001-I Mindspeed Technologies®62
Mindspeed Proprietary and Confidential
126 2.449 66h
127 2.469 77h
128 2.488 00h (default)
129 2.508 10h
130 2.527 20h
131 2.547 30h
132 2.566 40h
133 2.586 4Fh
134 2.605 5Fh
135 2.624 6Fh
136 2.644 00h (default)
137 2.663 0Fh
138 2.683 1Eh
139 2.702 2Dh
140 2.722 3Ch
141 2.741 4Bh
142 2.760 5Ah
143 2.780 69h
144 2.799 00h (default)
145 2.819 0Eh
146 2.838 1Ch
147 2.858 2Ah
148 2.877 38h
149 2.897 47h
150 2.916 55h
151 2.935 36h
152 2.955 00h (default)
153 2.974 0Dh
154 2.994 1Bh
155 3.013 28h
156 3.033 35h
157 3.052 43h
158 3.072 50h
159 3.091 5Eh
160 3.110 00h (default)
161 3.130 0Ch
Table 4-7. Diff_start Values as a Function of the Multiplier (2 of 3)
Multiplier Bit Rate in Gbps RXCDR_CTRLB[7:0] = diff_start[7:0]
Functional Description
211x1-DSH-001-I Mindspeed Technologies®63
Mindspeed Proprietary and Confidential
Because of finite resolution in the diff_start values, the value for WIN_OUTLCK_LOL[7:0] should be changed to at
least 0Ah (default is 03h).
If rates are required which correspond to a non-integer multiplier (in between 2 consecutive multipliers), the CDRs
can still lock to this input, as long as the closest integer multiplier is selected, and the narrow and wide frequency
windows are changed to wider settings. For this purpose, each CDR has 2 individual large frequency window
settings (lolwinctrl[1:0]): RXCDR_CTRLA_N[7:6] = 01 selects 2200/2600 ppm for the narrow and wide window of
CDRx; RXCDR_CTRLA_N[7:6] = 10 selects 4400/5200 ppm. RXCDR_CTRLA_N[7:6] = 00 (default) selects the
global frequency window settings of 100 ppm/1000 ppm (default).
4.3.14.2 PRBS Error Detection
When the PRBS RX detects an error, terminal PERROR will go high. The first and every additional error
increments an internal 8-bit counter (PRBSERROR[7:0]). If the number of errors exceeds 255 (counter overflow),
the counter will remain at 255 until a hardware or software reset (powering down and then powering up) occurs.
Reading the receiver error counter register requires a write of any value to copy the current contents of the error
register into the PRBS error register. Subsequently, a read will yield the current error count as of the last write.
While the counter value is being read out, no additional errors will be counted. Upon PRBS reset, the PRBS
receiver error counter is cleared and PERROR is reset. Register PRBSERROR[7:0] will always contain the current
number of error counts The value divided by the time of the test can be used to calculate a first order estimate of
the bit error rate. If there have been more than 255 errors, the PRBSERROR register will always read FFh until
cleared.
The PRBS RX can also be configured to detect all patterns that the PRBS TX can generate. Register
PRBSRXCTRL[7] = 1 (default 0) selects this mode. The input data has to be a 0101 or a 0011 repeating pattern. If
it does not correspond to one of them, errors will be counted.
162 3.149 19h
163 3.169 26h
164 3.188 33h
165 3.208 3Fh
NOTE: If these wide window settings are not selected, a CDR with a data rate in between, for
instance 2.488 Gbps and 2.508 Gbps, will never go out of frequency acquisition, since the
frequency acquisition loop pulls the VCO to either 2.488 GHz or 2.508 GHz (depending on
which multiplier was chosen) and the phase loop will pull the VCO to the exact data rate
which is seen as an LOL condition (if the data rate is more than 1000 ppm away from
2.488 Gbps or 2.508 Gbps).
NOTE: The PERROR terminal is gated with the RXCDR alarms, so that if no stable data is
presented to the PRBS receiver (LOS or LOL alarm is high), this terminal will go high and
will stay high until all the alarms are cleared and the PRBS receiver error counter is
cleared. This enables the PRBS receiver to detect the all zeros case as an error condition.
Table 4-7. Diff_start Values as a Function of the Multiplier (3 of 3)
Multiplier Bit Rate in Gbps RXCDR_CTRLB[7:0] = diff_start[7:0]
Functional Description
211x1-DSH-001-I Mindspeed Technologies®64
Mindspeed Proprietary and Confidential
Figure 4-14. PRBS TX and RX Functional Block Diagram
PRBS TX
(1)
Clk_in
PLL
...
50
50
...
CDR PRBS RX
data
clk
CDR PRBS RX
data
clk
PRBS RX Cell 0
PRBS RX Cell 1
(8-Bit Counter)
(8-Bit Counter)
...
Crosspoint Switch Core
PRBS RX Control
Register (ACh)
50
...
PRBS TX
(0)
PRBS_OUT
PLL
CLKRXP/N[0]
PRBS TX Cell 1
PRBS TX Cell 0
PRBS RX Channel Select
(even/odd)
Register:
ADh (even), A1 (odd)
XRSTTX<0>
X
XENTX<0>
PRBS TXChannel Select
(even/odd)
Register:
A9h (even), B5 (odd)
CLKTXP/N<0>
CLKTXREF<0>
PLL_CTRL_EVENB[7:0]
PRBSTXCTRL_EVEN1[6:5]
CLK_IN
TRIG<0>
DOTXP/N<0>
PRBSTXCTRL_EVEN[2]
CLKRXP/N[1] CLKTXP/N<1>
CLKTXREF<1>
PLL_CTRLB_ODD[7:0]
PRBSTXCTRL1_ODD[6:5]
XENTX<1>
PRBS_OUT
XRSTTX<1>
TRIG<1>
DOTXP/N<1>
PRBSTXCTRL1_ODD[2]
OUTP/N<0>
OUTP/N<70>
OUTP/N<71>/
OUTP/N<143>
INP/N<0>
INP/N<1>
INP/N<71>/
INP/N<143>
DIRXP/N<0>
DIRXP/N<1>
PERROR<1>
PERROR<0>
XRSTRX<1>
XENRX<0>
XRSTRX<0>
XENRX<1>
PRBSRXCTRL_ODD[5]
RXCDR_CTRLB_ODD[7:0]
RXCDR_CTRLB_EVEN[7:0]
PRBSRXCTRL_EVEN[5]
PRBSERROR[7:0]
PRBSERROR[7:0]
www.mindspeed.com
General Information:
Telephone: (949) 579-3000
Headquarters - Newport Beach
4000 MacArthur Blvd., East Tower
Newport Beach, CA 92660
© 2012 Mindspeed Technologies®, Inc. All rights reserved.
Information in this document is provided in connection with Mindspeed Technologies® ("Mindspeed®") products.
These materials are provided by Mindspeed as a service to its customers and may be used for informational
purposes only. Except as provided in Mindspeed’s Terms and Conditions of Sale for such products or in any
separate agreement related to this document, Mindspeed assumes no liability whatsoever. Mindspeed assumes
no responsibility for errors or omissions in these materials. Mindspeed may make changes to specifications and
product descriptions at any time, without notice. Mindspeed makes no commitment to update the information and
shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to its
specifications and product descriptions. No license, express or implied, by estoppel or otherwise, to any
intellectual property rights is granted by this document.
THESE MATERIALS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, RELATING TO SALE AND/OR USE OF MINDSPEED PRODUCTS INCLUDING LIABILITY OR
WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, CONSEQUENTIAL OR INCIDENTAL
DAMAGES, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER
INTELLECTUAL PROPERTY RIGHT. MINDSPEED FURTHER DOES NOT WARRANT THE ACCURACY OR
COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE
MATERIALS. MINDSPEED SHALL NOT BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS,
WHICH MAY RESULT FROM THE USE OF THESE MATERIALS.
Mindspeed products are not intended for use in medical, lifesaving or life sustaining applications. Mindspeed
customers using or selling Mindspeed products for use in such applications do so at their own risk and agree to
fully indemnify Mindspeed for any damages resulting from such improper use or sale.
211x1-DSH-001-I Mindspeed Technologies®65
Mindspeed Proprietary and Confidential