This is information on a product in full production.
April 2015 DocID027628 Rev 2 1/43
I3G4250D
MEMS motion sensor:
3-axis digital output gyroscope
Datasheet - production data
Features
Wide supply voltage: 2.4 V to 3.6 V
Selectable full scale (245/500/2000 dps)
I2C/SPI digital output interface
16-bit rate value data output
8-bit temperature data output
Two digital output lines (interrupt and data
ready)
Integrated low- and high-pass filters with user-
selectable bandwidth
Ultra-stable over temperature and time
Low-voltage-compatible IOs (1.8 V)
Embedded power-down and sleep mode
Embedded temperature sensor
Embedded FIFO
High shock survivability
Extended operating temperature range
(-40 °C to +85 °C)
ECOPACK®, RoHS and “Green” compliant
Applications
Industrial applications
Navigation systems and telematics
Motion control with MMI (man-machine
interface)
Appliances and robotics
Description
The I3G4250D is a low-power 3-axis angular rate
sensor able to provide unprecedented stability at
zero-rate level and sensitivity over temperature
and time. It includes a sensing element and an IC
interface capable of providing the measured
angular rate to the application through a standard
SPI digital interface. An I2C compatible interface
is also available.
The sensing element is manufactured using a
dedicated micromachining process developed by
STMicroelectronics to produce inertial sensors
and actuators on silicon wafers.
The IC interface is manufactured using a CMOS
process that allows a high level of integration to
design a dedicated circuit which is trimmed to
better match the characteristics of the sensing
element.
The I3G4250D has a selectable full scale
245500/±2000 dps) and is capable of
measuring rates with a user-selectable
bandwidth.
The I3G4250D is available in a plastic land grid
array (LGA) package and can operate within a
temperature range of -40 °C to +85 °C.
/*$
[[PP
Table 1. Device summary
Order code Temperature range (°C) Package Packing
I3G4250D -40 to +85 LGA-16 (4x4x1.1 mm3) Tray
I3G4250DTR -40 to +85 LGA-16 (4x4x1.1 mm3) Tape and reel
www.st.com
Contents I3G4250D
2/43 DocID027628 Rev 2
Contents
1 Block diagram and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.1 Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2 Mechanical and electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . 10
2.1 Mechanical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4 Communication interface characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4.1 SPI - serial peripheral interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4.2 I2C - inter IC control interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.5 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.6 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.6.1 Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.6.2 Zero-rate level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.6.3 Stability over temperature and time . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.7 Soldering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3 Main digital blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.1 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2 FIFO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2.1 Bypass mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2.2 FIFO mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2.3 Stream mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2.4 Retrieving data from FIFO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4 Application hints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5 Digital interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.1 I2C serial interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.1.1 I2C operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.2 SPI bus interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.2.1 SPI read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25
5.2.2 SPI write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26
DocID027628 Rev 2 3/43
I3G4250D Contents
43
5.2.3 SPI read in 3-wire mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27
6 Output register mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
7 Register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
7.1 WHO_AM_I (0Fh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
7.2 CTRL_REG1 (20h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
7.3 CTRL_REG2 (21h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
7.4 CTRL_REG3 (22h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
7.5 CTRL_REG4 (23h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
7.6 CTRL_REG5 (24h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
7.7 REFERENCE/DATACAPTURE (25h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
7.8 OUT_TEMP (26h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
7.9 STATUS_REG (27h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
7.10 OUT_X_L (28h), OUT_X_H (29h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
7.11 OUT_Y_L (2Ah), OUT_Y_H (2Bh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
7.12 OUT_Z_L (2Ch), OUT_Z_H (2Dh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
7.13 FIFO_CTRL_REG (2Eh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
7.14 FIFO_SRC_REG (2Fh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
7.15 INT1_CFG (30h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
7.16 INT1_SRC (31h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
7.17 INT1_THS_XH (32h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
7.18 INT1_THS_XL (33h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
7.19 INT1_THS_YH (34h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
7.20 INT1_THS_YL (35h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
7.21 INT1_THS_ZH (36h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
7.22 INT1_THS_ZL (37h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
7.23 INT1_DURATION (38h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
8 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
8.1 LGA-16 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
9 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
List of tables I3G4250D
4/43 DocID027628 Rev 2
List of tables
Table 1. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Table 2. Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Table 3. Filter values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Table 4. Mechanical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Table 5. Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Table 6. Temp. sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Table 7. SPI slave timing values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Table 8. I2C slave timing values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Table 9. Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Table 10. PLL low-pass filter component values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Table 11. Serial interface pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Table 12. I2C terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21
Table 13. SAD+read/write patterns. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Table 14. Transfer when master is writing one byte to slave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Table 15. Transfer when master is writing multiple bytes to slave . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Table 16. Transfer when master is receiving (reading) one byte of data from slave . . . . . . . . . . . . . 23
Table 17. Transfer when master is receiving (reading) multiple bytes of data from slave . . . . . . . . . 23
Table 18. Register address map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Table 19. WHO_AM_I register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Table 20. CTRL_REG1 register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Table 21. CTRL_REG1 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Table 22. DR and BW configuration setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30
Table 23. Power mode selection configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Table 24. CTRL_REG2 register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Table 25. CTRL_REG2 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Table 26. High-pass filter mode configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32
Table 27. High-pass filter cutoff frequency configuration [Hz] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Table 28. CTRL_REG1 register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Table 29. CTRL_REG3 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Table 30. CTRL_REG4 register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Table 31. CTRL_REG4 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Table 32. Self-test mode configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Table 33. CTRL_REG5 register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Table 34. CTRL_REG5 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Table 35. Out_Sel configuration settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Table 36. INT_SEL configuration settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34
Table 37. REFERENCE register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Table 38. REFERENCE register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Table 39. OUT_TEMP register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Table 40. OUT_TEMP register description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Table 41. STATUS_REG register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Table 42. STATUS_REG description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35
Table 43. FIFO_CTRL_REG register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36
Table 44. FIFO_CTRL_REG register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Table 45. FIFO mode configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Table 46. FIFO_SRC register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Table 47. FIFO_SRC register description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36
Table 48. INT1_CFG register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
DocID027628 Rev 2 5/43
I3G4250D List of tables
43
Table 49. INT1_CFG description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Table 50. INT1_SRC register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Table 51. INT1_SRC description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Table 52. INT1_THS_XH register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Table 53. INT1_THS_XH description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Table 54. INT1_THS_XL register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Table 55. INT1_THS_XL description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Table 56. INT1_THS_YH register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Table 57. INT1_THS_YH description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Table 58. INT1_THS_YL register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Table 59. INT1_THS_YL description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Table 60. INT1_THS_ZH register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Table 61. INT1_THS_ZH description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Table 62. INT1_THS_ZL register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Table 63. INT1_THS_ZL description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Table 64. INT1_DURATION register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39
Table 65. INT1_DURATION description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Table 66. Document revision history. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
List of figures I3G4250D
6/43 DocID027628 Rev 2
List of figures
Figure 1. Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Figure 2. Pin connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Figure 3. I3G4250D external low-pass filter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Figure 4. SPI slave timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Figure 5. I2C slave timing diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Figure 6. Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Figure 7. Bypass mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Figure 8. FIFO mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Figure 9. Stream mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Figure 10. FIFO access sequence in asynchronous mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Figure 11. I3G4250D electrical connections and external component values . . . . . . . . . . . . . . . . . . . 20
Figure 12. Read and write protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Figure 13. SPI read protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Figure 14. Multiple byte SPI read protocol (2-byte example). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Figure 15. SPI write protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Figure 16. Multiple byte SPI write protocol (2-byte example). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Figure 17. SPI read protocol in 3-wire mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Figure 18. INT1_Sel and Out_Sel configuration block diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Figure 19. Wait disabled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Figure 20. Wait enabled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Figure 21. LGA-16 package outline and mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
DocID027628 Rev 2 7/43
I3G4250D Block diagram and pin description
43
1 Block diagram and pin description
Figure 1. Block diagram
The vibration of the structure is maintained by drive circuitry in a feedback loop. The sensing
signal is filtered and appears as a digital signal at the output.
1.1 Pin description
Figure 2. Pin connections
),)2
75,00,1*
&,5&8,76
5()(5(1&(
0,;(5
&+$5*(
$03
&/2&.
/2:3$66
),/7(5
[\]
,&
63,
&6
6&/63&
6'$6'26',
6'2
<
=
<
=
;
;
'5,9,1*0$66
)HHGEDFNORRS
0
8
;
$
'
'
&
,
*
,
7
$
/
)
,
/
7
(
5
,
1
*
&21752//2*,&
,17(55837*(1
,17
'5'<,17
$
'
&
7
(
0
3
(
5
$
7
8
5
(
6
(
1
6
2
5
3+$6(*(1(5$725
Ȱ
7239,(:
',5(&7,2162)7+(
'(7(&7$%/(
$1*8/$55$7(6
;
9GGB,2
6&/63&
6'$6',6'2
6'26$
5(6
5(6
5(6
5(6
,17
'5'<,17
&6
5(6
3//),/7
5(6
9GG
*1'

 
=
;
%27720
9,(:
<
Ȱ
Ȱ
Ȱ
Block diagram and pin description I3G4250D
8/43 DocID027628 Rev 2
Figure 3. I3G4250D external low-pass filter
Note: Pin 14 PLLFILT maximum voltage level is equal to Vdd.
Table 2. Pin description
Pin# Name Function
1 Vdd_IO Power supply for I/O pins
2SCL
SPC
I2C serial clock (SCL)
SPI serial port clock (SPC)
3
SDA
SDI
SDO
I2C serial data (SDA)
SPI serial data input (SDI)
3-wire interface serial data output (SDO)
4SDO
SA0
SPI serial data output (SDO)
I2C least significant bit of the device address (SA0)
5CS
SPI enable
I2C/SPI mode selection (1: SPI idle mode / I2C communication
enabled; 0: SPI communication mode / I2C disabled)
6 DRDY/INT2 Data ready/FIFO interrupt
7 INT1 Programmable interrupt
8 Reserved Connect to GND
9 Reserved Connect to GND
10 Reserved Connect to GND
11 Reserved Connect to GND
12 Reserved Connect to GND
13 GND 0 V supply
14 PLLFILT Phase-locked loop filter (see Figure 3)
15 Reserved Connect to Vdd
16 Vdd Power supply
&
5&
&DSDFLWRUIRU
WRSLQ
*1'
/RZSDVVILOWHU
DocID027628 Rev 2 9/43
I3G4250D Block diagram and pin description
43
Table 3. Filter values
Parameter Typical value
C1 10 nF
C2 470 nF
R2 10 k
Mechanical and electrical characteristics I3G4250D
10/43 DocID027628 Rev 2
2 Mechanical and electrical characteristics
2.1 Mechanical characteristics
@ Vdd = 3.0 V, T = +25 °C, unless otherwise noted(a).
a. The product is factory calibrated at 3.0 V. The operational power supply range is specified in Table 5.
Table 4. Mechanical characteristics
Symbol Parameter Test condition Min.(1) Typ.(2) Max.(1) Unit
FS Measurement range(3) User-selectable
±245
dps±500
±2000
So Sensitivity(4)
FS = 245 dps 7.4 8.75 10.1
mdps/digitFS = 500 dps 14.8 17.50 19.8
FS = 2000 dps 59.2 70 79.3
SoDr Sensitivity change vs.
temperature From -40°C to +85°C ±2 %
DVoff Digital zero-rate level(4)
FS = 245 dps -25 ±10 +25
dpsFS = 500 dps -37.5 ±15 +37.5
FS = 2000 dps -187.5 ±75 +187.5
OffDr Zero-rate level change
vs. temperature
FS = 245 dps ±0.03 dps/°C
FS = 2000 dps ±0.04
NL Non linearity(3) Best fit straight line -5 0.2 +5 % FS
DST Self-test output change
FS = 245 dps 130
dpsFS = 500 dps 200
FS = 2000 dps 530
Rn Rate noise density BW = 50 Hz 0.03 dps/
sqrt(Hz)
ODR Digital output data rate 105/208/
420/840 Hz
Top Operating temperature
range -40 +85 °C
1. Minimum and maximum values are not guaranteed; based on characterization data.
2. Typical specifications are not guaranteed; typical values at +25 °C.
3. Guaranteed by design.
4. Min/Max values for DVoff are across temperature (-40°C to 85°C) and after MSL3 preconditioning. Based on
characterization data. Not guaranteed and not tested in production.
DocID027628 Rev 2 11/43
I3G4250D Mechanical and electrical characteristics
43
2.2 Electrical characteristics
@ Vdd = 3.0 V, T = +25 °C, unless otherwise noted (b).
2.3 Temperature sensor characteristics
@ Vdd = 3.0 V, T = 25 °C, unless otherwise noted (b).
b. The product is factory calibrated at 3.0 V.
Table 5. Electrical characteristics
Symbol Parameter Test condition Min.(1) Typ.(2) Max.(1) Unit
Vdd Supply voltage 2.4 3.0 3.6 V
Vdd_IO I/O pins supply voltage(3) 1.71 Vdd+0.1 V
Idd Supply current 6.1 mA
IddSL Supply current
in sleep mode(4)
Selectable by digital
interface 1.5 mA
IddPdn Supply current in
power-down mode(5)
Selectable by digital
interface 5μA
Top Operating temperature
range -40 +85 °C
1. Minimum and maximum values are not guaranteed; based on characterization data.
2. Typical specifications are not guaranteed; typical values at +25 °C.
3. It is possible to remove Vdd maintaining Vdd_IO without blocking the communication busses, in this condition the
measurement chain is powered off.
4. Sleep mode introduces a faster turn-on time compared to power-down mode.
5. Verified at wafer level.
Table 6. Temp. sensor characteristics
Symbol Parameter Test condition Min. Typ.(1) Max. Unit
TSDr
Temperature sensor
output change vs.
temperature
-1 °C/digit
TODR Temperature refresh rate 1 Hz
Top Operating temperature
range -40 +85 °C
1. Typical specifications are not guaranteed; typical values at +25 °C.
Mechanical and electrical characteristics I3G4250D
12/43 DocID027628 Rev 2
2.4 Communication interface characteristics
2.4.1 SPI - serial peripheral interface
Subject to general operating conditions for Vdd and Top.
Figure 4. SPI slave timing diagram
Note: Measurement points are done at 0.2·Vdd_IO and 0.8·Vdd_IO, for both input and output
ports.
Table 7. SPI slave timing values
Symbol Parameter
Value(1)
Unit
Min. Max.
tc(SPC) SPI clock cycle 100 ns
fc(SPC) SPI clock frequency 10 MHz
tsu(CS) CS setup time 5
ns
th(CS) CS hold time 8
tsu(SI) SDI input setup time 5
th(SI) SDI input hold time 15
tv(SO) SDO valid output time 50
th(SO) SDO output hold time 6
tdis(SO) SDO output disable time 50
1. Values are guaranteed at 10 MHz clock frequency for SPI with both 4 and 3 wires, based on characterization results; not
tested in production.
63&
&6
6',
6'2
W
VX&6
W
Y62
W
K62
W
K6,
W
VX6,
W
K&6
W
GLV62
W
F63&
06%,1
06%287 /6%287
/6%,1








DocID027628 Rev 2 13/43
I3G4250D Mechanical and electrical characteristics
43
2.4.2 I2C - inter IC control interface
Subject to general operating conditions for Vdd and Top.
Figure 5. I2C slave timing diagram
Note: Measurement points are done at 0.2·Vdd_IO and 0.8·Vdd_IO, for both ports.
Table 8. I2C slave timing values
Symbol Parameter
I2C standard mode(1) I2C fast mode(1)
Unit
Min. Max. Min. Max.
f(SCL) SCL clock frequency 0 100 0 400 kHz
tw(SCLL) SCL clock low time 4.7 1.3
μs
tw(SCLH) SCL clock high time 4.0 0.6
tsu(SDA) SDA setup time 250 100 ns
th(SDA) SDA data hold time 0 3.45 0 0.9 μs
th(ST) START condition hold time 4 0.6
μs
tsu(SR) Repeated START condition
setup time 4.7 0.6
tsu(SP) STOP condition setup time 4 0.6
tw(SP:SR) Bus free time between STOP
and START condition 4.7 1.3
1. Data based on standard I2C protocol requirement; not tested in production.
6'$
6&/
W
I6'$
W
VX63
W
Z6&//
W
VX6'$
W
U6'$
W
VX65
W
K67
W
Z6&/+
W
K6'$
W
U6&/
W
I6&/
W
Z6365
67$57
5(3($7('
67$57
6723
67$57
Mechanical and electrical characteristics I3G4250D
14/43 DocID027628 Rev 2
2.5 Absolute maximum ratings
Any stress above that listed as “Absolute maximum ratings” may cause permanent damage
to the device. This is a stress rating only and functional operation of the device under these
conditions is not implied. Exposure to maximum rating conditions for extended periods may
affect device reliability.
Table 9. Absolute maximum ratings
Symbol Ratings Maximum value Unit
Vdd Supply voltage -0.3 to 4.8 V
TSTG Storage temperature range -40 to +125 °C
Sg Acceleration g for 0.1 ms 10,000 g
ESD Electrostatic discharge protection 2 (HBM) kV
This device is sensitive to mechanical shock, improper handling can cause
permanent damage to the part
This device is sensitive to electrostatic discharge (ESD), improper handling can
cause permanent damage to the part
DocID027628 Rev 2 15/43
I3G4250D Mechanical and electrical characteristics
43
2.6 Terminology
2.6.1 Sensitivity
An angular rate gyroscope is a device that produces a positive-going digital output for
counter-clockwise rotation around the axis considered. Sensitivity describes the gain of the
sensor and can be determined by applying a defined angular velocity to it. This value
changes very little over temperature and time.
2.6.2 Zero-rate level
The zero-rate level describes the actual output signal if there is no angular rate present. The
zero-rate level of precise MEMS sensors is, to some extent, a result of stress to the sensor
and, therefore, the zero-rate level can slightly change after mounting the sensor onto a
printed circuit board or after exposing it to extensive mechanical stress. This value changes
very little over temperature and time.
2.6.3 Stability over temperature and time
Thanks to the unique single-driving mass approach and optimized design, ST gyroscopes
are able to guarantee a perfect match of the MEMS mechanical mass and the ASIC
interface, and deliver unprecedented levels of stability over temperature and time.
With the zero-rate level and sensitivity performance, up to ten times better than equivalent
products currently available on the market, the I3G4250D allows the user to avoid any
further compensation and calibration during production for a faster time-to-market, easy
implementation in applications, higher performance, and cost saving.
2.7 Soldering information
The LGA package is compliant with the ECOPACK®, RoHS and “Green” standard.
It is qualified for soldering heat resistance according to JEDEC J-STD-020.
Leave “pin 1 indicator” unconnected during soldering.
Land pattern and soldering recommendations are available at www.st.com/.
Main digital blocks I3G4250D
16/43 DocID027628 Rev 2
3 Main digital blocks
3.1 Block diagram
Figure 6. Block diagram
3.2 FIFO
The I3G4250D embeds a 32-slot, 16-bit data FIFO for each of the three output channels:
yaw, pitch, and roll. This allows consistent power saving for the system, as the host
processor does not need to continuously poll data from the sensor. Instead, it can wake up
only when needed and burst the significant data out from the FIFO. This buffer can work in
three different modes. Each mode is selected by the FIFO_MODE bits in FIFO_CTRL_REG
(2Eh). Programmable watermark level, FIFO_empty or FIFO_Full events can be enabled to
generate dedicated interrupts on the DRDY/INT2 pin (configured through CTRL_REG3
(22h)), and event detection information is available in FIFO_SRC_REG (2Fh). The
watermark level can be configured using the WTM4:0 bits in FIFO_CTRL_REG (2Eh).
$'&
/3) +3)
+3HQ
/3) 



2XWB6HO
'DWD5HJ




,QWHUUXSW
JHQHUDWRU
,17B6HO
,
&
63,
,17
6&55(*
&21)5(*
),)2
[[
DocID027628 Rev 2 17/43
I3G4250D Main digital blocks
43
3.2.1 Bypass mode
In Bypass mode, the FIFO is not operational and for this reason it remains empty. As
illustrated in Figure 7, only the first address is used for each channel. The remaining FIFO
slots are empty. When new data is available, the old data is overwritten.
Figure 7. Bypass mode
3.2.2 FIFO mode
In FIFO mode, data from the yaw, pitch, and roll channels are stored in the FIFO. A
watermark interrupt can be enabled (I2_WMK bit in CTRL_REG3 (22h)), which is triggered
when the FIFO is filled to the level specified by the WTM 4:0 bits of FIFO_CTRL_REG
(2Eh). The FIFO continues filling until it is full (32 slots of 16-bit data for yaw, pitch, and roll).
When full, the FIFO stops collecting data from the input channels. To restart data collection,
it is necessary to write FIFO_CTRL_REG (2Eh) back to Bypass mode.
FIFO mode is represented in Figure 8.
Figure 8. FIFO mode
[\]
\
[\]
[\]
[ \ ]
[L\L]L
HPSW\
[\]
\
[\]
[\]
[ \ ]
[L\L]L
Main digital blocks I3G4250D
18/43 DocID027628 Rev 2
3.2.3 Stream mode
In Stream mode, data from yaw, pitch, and roll measurements are stored in the FIFO. A
watermark interrupt can be enabled and set as in FIFO mode. The FIFO continues filling
until full (32 slots of 16-bit data for yaw, pitch, and roll). When full, the FIFO discards the
older data as the new data arrives. Programmable watermark level events can be enabled
to generate dedicated interrupts on the DRDY/INT2 pin (configured through CTRL_REG3
(22h)).
Stream mode is represented in Figure 9.
Figure 9. Stream mode
3.2.4 Retrieving data from FIFO
FIFO data is read from the OUT_X, OUT_Y, and OUT_Z registers. When the FIFO is in
Stream, Bypass or FIFO mode, a read operation to the OUT_X, OUT_Y or OUT_Z registers
provides the data stored in the FIFO. Each time data is read from the FIFO, the oldest pitch,
roll, and yaw data are placed in the OUT_X, OUT_Y and OUT_Z registers, and both single
read and read-burst (X, Y & Z with auto-incremental address) operations can be used. In
read-burst mode, when data included in OUT_Z_H is read, the system again starts to read
information from OUT_X_L.
[\]
[\]
[\]
[ \ ]
[L\L]L
[ \ ]
DocID027628 Rev 2 19/43
I3G4250D Main digital blocks
43
The read from FIFO may be executed either in synchronous or asynchronous mode. For
correct data acquisition, the following points must be respected:
1. If reading is synchronous, all data should be acquired within one ODR cycle
2. If reading is asynchronous, an appropriate FIFO access sequence must be applied:
a) Single read from register 28h
b) Multi-read: sequentially reading 2Ah, 2Bh, 2Ch, 2Dh, 28h, 29h
c) This procedure must be repeated for each dataset (X/Y/Z) in the FIFO:
FSS times, if FSS 31
(FSS + 1) times, if (FSS = 31) & (OVR =1)
Figure 10 illustrates the correct sequence with a flow diagram:
Figure 10. FIFO access sequence in asynchronous mode
If the above sequence is not followed, the acquisition from FIFO may lead to corrupted data.
Application hints I3G4250D
20/43 DocID027628 Rev 2
4 Application hints
Figure 11. I3G4250D electrical connections and external component values
Power supply decoupling capacitors (100 nF ceramic or polyester +10 μF) should be placed
as near as possible to the device (common design practice).
If Vdd and Vdd_IO are not connected together, power supply decoupling capacitors
(100 nF and 10 μF between Vdd and common ground, 100 nF between Vdd_IO and
common ground) should be placed as near as possible to the device (common design
practice).
The I3G4250D IC includes a PLL (phase-locked loop) circuit to synchronize driving and
sensing interfaces. Capacitors and resistors must be connected to the PLLFILT pin (as
shown in Figure 11) to implement a second-order low-pass filter. Table 10 summarizes the
PLL low-pass filter component values.
Table 10. PLL low-pass filter component values
Component Value
C1 10 nF ± 10%
C2 470 nF ± 10%
R2 10 k ± 10%
Q)
N2KP Q)
9G G *1'
&
5 &
*1'
)
6&/63&
&6 '5
6'26$
6'$B6',B6'2
Q)
9GGB,2
3//),/7
9GG



723
9,(:
3//), /7
*1'
,17
*1'
7239,(:
',5(&7,2162)7+(
'(7(&7$%/(
$1*8/$55$7(6
;
=
;
<
9G G ,&E XV
5SXN2KP5SX
6&/63&
6'$B6',B6'2
3XOOXSWREHDGGHGZKHQ,&LQWHUIDFHLVXVHG
Ȱ
Ȱ
Ȱ
DocID027628 Rev 2 21/43
I3G4250D Digital interfaces
43
5 Digital interfaces
The registers embedded in the I3G4250D may be accessed through both the I2C and SPI
serial interfaces. The latter may be software-configured to operate either in 3-wire or 4-wire
interface mode.
The serial interfaces are mapped to the same pins. To select/exploit the I2C interface, the
CS line must be tied high (i.e., connected to Vdd_IO).
5.1 I2C serial interface
The I3G4250D I2C is a bus slave. The I2C is employed to write data to registers whose
content can also be read back.
The relevant I2C terminology is given in the table below.
There are two signals associated with the I2C bus: the serial clock line (SCL) and the serial
data line (SDA). The latter is a bi-directional line used for sending and receiving the data
to/from the interface. Both lines must be connected to Vdd_IO through an external pull-up
resistor. When the bus is free both the lines are high.
The I2C interface is compliant with fast mode (400 kHz) I2C standards as well as with
normal mode.
Table 11. Serial interface pin description
Pin name Pin description
CS
SPI enable
I2C/SPI mode selection (1: SPI idle mode / I2C communication enabled;
0: SPI communication mode / I2C disabled)
SCL/SPC I2C serial clock (SCL)
SPI serial port clock (SPC)
SDA/SDI/SDO
I2C serial data (SDA)
SPI serial data input (SDI)
3-wire interface serial data output (SDO)
SDO SPI serial data output (SDO)
I2C least significant bit of the device address
Table 12. I2C terminology
Term Description
Transmitter The device which sends data to the bus
Receiver The device which receives data from the bus
Master The device which initiates a transfer, generates clock signals and terminates a
transfer
Slave The device addressed by the master
Digital interfaces I3G4250D
22/43 DocID027628 Rev 2
5.1.1 I2C operation
The transaction on the bus is started through a START (ST) signal. A START condition is
defined as a HIGH to LOW transition on the data line while the SCL line is held HIGH. After
this has been transmitted by the master, the bus is considered busy. The next byte of data
transmitted after the start condition contains the address of the slave in the first 7 bits and
the eighth bit tells whether the master is receiving data from the slave or transmitting data to
the slave. When an address is sent, each device in the system compares the first 7 bits after
a start condition with its address. If they match, the device considers itself addressed by the
master.
The slave address (SAD) associated with the I3G4250D is 110100xb. The SDO pin can be
used to modify the least significant bit (LSb) of the device address. If the SDO pin is
connected to the voltage supply, LSb is ‘1’ (address 1101001b). Otherwise, when the SDO
pin is connected to ground, the LSb value is ‘0’ (address 1101000b). This solution permits
the connection and addressing of two different gyroscopes to the same I2C bus.
Data transfer with acknowledge is mandatory. The transmitter must release the SDA line
during the acknowledge pulse. The receiver must then pull the data line LOW so that it
remains stable low during the HIGH period of the acknowledge clock pulse. A receiver
which has been addressed is obliged to generate an acknowledge after each byte of data
received.
The I2C embedded in the I3G4250D behaves like a slave device, and the following protocol
must be adhered to. After the START (ST) condition, a slave address is sent. Once a slave
acknowledge (SAK) has been returned, an 8-bit sub-address is transmitted. The 7 LSb
represent the actual register address while the MSb enables address auto-increment. If the
MSb of the SUB field is 1, the SUB (register address) is automatically incremented to allow
multiple data read/write.
The slave address is completed with a read/write bit. If the bit is ‘1’ (read), a REPEATED
START (SR) condition must be issued after the two sub-address bytes; if the bit is ‘0’ (write)
the master transmits to the slave with the direction unchanged. Table 13 describes how the
SAD+read/write bit pattern is composed, listing all the possible configurations.
Table 13. SAD+read/write patterns
Command SAD[6:1] SAD[0] = SDO R/W SAD+R/W
Read 110100 0 1 11010001 (D1h)
Write 110100 0 0 11010000 (D0h)
Read 110100 1 1 11010011 (D3h)
Write 110100 1 0 11010010 (D2h)
Table 14. Transfer when master is writing one byte to slave
Master ST SAD + W SUB DATA SP
Slave SAK SAK SAK
DocID027628 Rev 2 23/43
I3G4250D Digital interfaces
43
Data are transmitted in byte format (DATA). Each data transfer contains 8 bits. The number
of bytes transferred per transfer is unlimited. Data is transferred with the most significant bit
(MSb) first. If a receiver cannot receive another complete byte of data until it has performed
some other function, it can hold the clock line SCL LOW to force the transmitter into a wait
state. Data transfer only continues when the receiver is ready for another byte and releases
the data line. If a slave receiver does not acknowledge the slave address (i.e., it is not able
to receive because it is performing some real-time function) the data line must be left HIGH
by the slave. The master can then abort the transfer. A LOW to HIGH transition on the SDA
line while the SCL line is HIGH is defined as a STOP condition. Each data transfer must be
terminated by the generation of a STOP (SP) condition.
In order to read multiple bytes, it is necessary to assert the most significant bit of the sub-
address field. In other words, SUB(7) must be equal to 1, while SUB(6-0) represents the
address of the first register to be read.
In the presented communication format, MAK is “master acknowledge” and NMAK is “no
master acknowledge”.
Table 15. Transfer when master is writing multiple bytes to slave
Master ST SAD + W SUB DATA DATA SP
Slave SAK SAK SAK SAK
Table 16. Transfer when master is receiving (reading) one byte of data from slave
Master ST SAD + W SUB SR SAD + R NMAK SP
Slave SAK SAK SAK DATA
Table 17. Transfer when master is receiving (reading) multiple bytes of data from slave
Master ST SAD+W SUB SR SAD+R MAK MAK NMAK SP
Slave SAK SAK SAK DATA DATA DATA
Digital interfaces I3G4250D
24/43 DocID027628 Rev 2
5.2 SPI bus interface
The SPI is a bus slave. The SPI allows writing to and reading from the device registers. The
serial interface interacts with the application through 4 wires: CS, SPC, SDI, and SDO.
Figure 12. Read and write protocol
CS is the serial port enable and is controlled by the SPI master. It goes low at the start of the
transmission and returns to high at the end. SPC is the serial port clock and is controlled by
the SPI master. It is stopped high when CS is high (no transmission). SDI and SDO are,
respectively, the serial port data input and output. These lines are driven at the falling edge
of SPC and should be captured at the rising edge of SPC.
Both the read register and write register commands are completed in 16 clock pulses, or in
multiples of 8 in case of multiple read/write bytes. Bit duration is the time between two falling
edges of SPC. The first bit (bit 0) starts at the first falling edge of SPC after the falling edge
of CS while the last bit (bit 15, bit 23, etc.) starts at the last falling edge of SPC just before
the rising edge of CS.
Bit 0: RW bit. When 0, the data DI(7:0) is written to the device. When 1, the data DO(7:0)
from the device is read. In the latter case, the chip drives SDO at the start of bit 8.
Bit 1: MS bit. When 0, the address remains unchanged in multiple read/write commands.
When 1, the address is auto-incremented in multiple read/write commands.
Bit 2-7: address AD(5:0). This is the address field of the indexed register.
Bit 8-15: data DI(7:0) (write mode). This is the data that is written to the device (MSb first).
Bit 8-15: data DO(7:0) (read mode). This is the data that is read from the device (MSb first).
In multiple read/write commands, further blocks of 8 clock periods are added. When the MS
bit is 0, the address used to read/write data remains the same for every block. When the MS
bit is 1, the address used to read/write data is incremented at every block.
The function and the behavior of SDI and SDO remain unchanged.
&6
63&
6',
6'2
5:
$' $' $' $' $' $'
', ', ', ', ', ', ', ',
'2 '2 '2 '2 '2 '2 '2 '2
06
DocID027628 Rev 2 25/43
I3G4250D Digital interfaces
43
5.2.1 SPI read
Figure 13. SPI read protocol
The SPI read command is performed with 16 clock pulses. A multiple byte read command is
performed by adding blocks of 8 clock pulses to the previous one.
Bit 0: READ bit. The value is 1.
Bit 1: MS bit. When 0, does not increment address; when 1, increments address in multiple
reads.
Bit 2-7: address AD(5:0). This is the address field of the indexed register.
Bit 8-15: data DO(7:0) (read mode). This is the data that is read from the device (MSb first).
Bit 16-...: data DO(...-8). Further data in multiple byte reads.
Figure 14. Multiple byte SPI read protocol (2-byte example)
&6
63&
6',
6'2
5:
'2 '2 '2 '2 '2 '2 '2 '2
$' $' $' $' $' $'
06
&6
63&
6',
6'2
5:
'2 '2 '2 '2 '2 '2 '2 '2
$' $' $' $' $' $'
'2'2'2'2'2'2'2 '2
06
Digital interfaces I3G4250D
26/43 DocID027628 Rev 2
5.2.2 SPI write
Figure 15. SPI write protocol
The SPI write command is performed with 16 clock pulses. A multiple byte write command
is performed by adding blocks of 8 clock pulses to the previous one.
Bit 0: WRITE bit. The value is 0.
Bit 1: MS bit. When 0, does not increment address; when 1, increments address in multiple
writes.
Bit 2 -7: address AD(5:0). This is the address field of the indexed register.
Bit 8-15: data DI(7:0) (write mode). This is the data that is written to the device (MSb first).
Bit 16-...: data DI(...-8). Further data in multiple byte writes.
Figure 16. Multiple byte SPI write protocol (2-byte example)
&6
63&
6',
5: ', ', ', ', ', ', ', ',
$' $' $' $' $' $'06
&6
63&
6',
5:
$' $' $' $' $' $'
', ', ', ', ', ', ', ', ',',',',',',', ',
06
DocID027628 Rev 2 27/43
I3G4250D Digital interfaces
43
5.2.3 SPI read in 3-wire mode
3-wire mode is entered by setting the SIM (SPI serial interface mode selection) bit to 1 in
CTRL_REG2 (21h).
Figure 17. SPI read protocol in 3-wire mode
The SPI read command is performed with 16 clock pulses:
Bit 0: READ bit. The value is 1.
Bit 1: MS bit. When 0, does not increment address; when 1, increments address in multiple
reads.
Bit 2-7: address AD(5:0). This is the address field of the indexed register.
Bit 8-15: data DO(7:0) (read mode). This is the data that is read from the device (MSb first).
A multiple read command is also available in 3-wire mode.
Note: If the I3G4250D is used in a multi-SPI slave environment (several devices sharing the same
SPI bus), the gyroscope can be forced by software to remain in SPI mode. This objective
can be achieved by sending, at the beginning of the SPI communication, the following
sequence to the device:
a = read(0x05)
write(0x05, (0x20 OR a))
The programming of this register makes it possible to enhance the robustness of the SPI.
&6
63&
6',2
5: '2 '2 '2 '2 '2 '2 '2 '2
$' $' $' $' $' $'
06
Output register mapping I3G4250D
28/43 DocID027628 Rev 2
6 Output register mapping
Table 18 below provides a list of the 8-bit registers embedded in the device and the
corresponding addresses.
Table 18. Register address map
Name Type
Register address
Default
Hex Binary
Reserved - 00-0E - -
WHO_AM_I r 0F 000 1111 11010011
Reserved - 10-1F - -
CTRL_REG1 rw 20 010 0000 00000111
CTRL_REG2 rw 21 010 0001 00000000
CTRL_REG3 rw 22 010 0010 00000000
CTRL_REG4 rw 23 010 0011 00000000
CTRL_REG5 rw 24 010 0100 00000000
REFERENCE/DATACAPTURE rw 25 010 0101 00000000
OUT_TEMP r 26 010 0110 Output
STATUS_REG r 27 010 0111 Output
OUT_X_L r 28 010 1000 Output
OUT_X_H r 29 010 1001 Output
OUT_Y_L r 2A 010 1010 Output
OUT_Y_H r 2B 010 1011 Output
OUT_Z_L r 2C 010 1100 Output
OUT_Z_H r 2D 010 1101 Output
FIFO_CTRL_REG rw 2E 010 1110 00000000
FIFO_SRC_REG r 2F 010 1111 Output
INT1_CFG rw 30 011 0000 00000000
INT1_SRC r 31 011 0001 Output
INT1_THS_XH rw 32 011 0010 00000000
INT1_THS_XL rw 33 011 0011 00000000
INT1_THS_YH rw 34 011 0100 00000000
INT1_THS_YL rw 35 011 0101 00000000
INT1_THS_ZH rw 36 011 0110 00000000
INT1_THS_ZL rw 37 011 0111 00000000
INT1_DURATION rw 38 011 1000 00000000
DocID027628 Rev 2 29/43
I3G4250D Output register mapping
43
Registers marked as Reserved must not be changed. Writing to those registers may change
calibration data and therefore lead to device malfunction.
The content of the registers that are loaded at boot should not be changed. They contain the
factory calibration values. Their content is automatically restored when the device is
powered up.
Register description I3G4250D
30/43 DocID027628 Rev 2
7 Register description
The device contains a set of registers which are used to control its behavior and to retrieve
rate data. The register addresses, made up of 7 bits, are used to identify them and to write
the data through the serial interface.
7.1 WHO_AM_I (0Fh)
Device identification register.
7.2 CTRL_REG1 (20h)
DR[1:0] is used to set ODR selection. BW [1:0] is used to set bandwidth selection.
In the following table (Table 22) all frequencies resulting in a combination of DR / BW bits
are given.
Table 19. WHO_AM_I register
11010011
Table 20. CTRL_REG1 register
DR1 DR0 BW1 BW0 PD Zen Yen Xen
Table 21. CTRL_REG1 description
DR1-DR0 Output data rate selection. Refer to Table 22
BW1-BW0 Bandwidth selection. Refer to Table 22
PD Power-down mode enable. Default value: 0
(0: power-down mode, 1: normal mode or sleep mode)
Zen Z-axis enable. Default value: 1
(0: Z-axis disabled; 1: Z-axis enabled)
Yen Y-axis enable. Default value: 1
(0: Y-axis disabled; 1: Y-axis enabled)
Xen X-axis enable. Default value: 1
(0: X-axis disabled; 1: X-axis enabled)
Table 22. DR and BW configuration setting
DR [1:0] BW [1:0] ODR [Hz] Cutoff
00 00 100 12.5
00 01 100 25
00 10 100 25
00 11 100 25
DocID027628 Rev 2 31/43
I3G4250D Register description
43
A combination of PD, Zen, Yen, and Xen are used to set the device in different modes
(power-down / normal / sleep mode) according to the following table.
7.3 CTRL_REG2 (21h)
01 00 200 12.5
01 01 200 25
01 10 200 50
01 11 200 70
10 00 400 20
10 01 400 25
10 10 400 50
10 11 400 110
11 00 800 30
11 01 800 35
11 10 800 50
11 11 800 110
Table 23. Power mode selection configuration
Mode PD Zen Yen Xen
Power-down 0 - - -
Sleep 1 0 0 0
Normal 1 - - -
Table 22. DR and BW configuration setting (continued)
DR [1:0] BW [1:0] ODR [Hz] Cutoff
Table 24. CTRL_REG2 register
0(1)
1. Value loaded at boot. This value must not be changed.
0(1) HPM1 HPM0 HPCF3 HPCF2 HPCF1 HPCF0
Table 25. CTRL_REG2 description
HPM1-
HPM0
High-pass filter mode selection. Default value: 00
Refer to Table 26
HPCF3-
HPCF0
High-pass filter cutoff frequency selection
Refer to Table 28
Register description I3G4250D
32/43 DocID027628 Rev 2
7.4 CTRL_REG3 (22h)
Table 26. High-pass filter mode configuration
HPM1 HPM0 High-pass filter mode
0 0 Normal mode (reset by reading the REFERENCE register)
0 1 Reference signal for filtering
1 0 Normal mode (reset by reading the REFERENCE register)
1 1 Autoreset on interrupt event
Table 27. High-pass filter cutoff frequency configuration [Hz]
HPCF[3:0] ODR= 100 Hz ODR= 200 Hz ODR= 400 Hz ODR= 800 Hz
0000 8 15 30 56
0001 4 8 15 30
0010 2 4 8 15
0011 1 2 4 8
0100 0.5 1 2 4
0101 0.2 0.5 1 2
0110 0.1 0.2 0.5 1
0111 0.05 0.1 0.2 0.5
1000 0.02 0.05 0.1 0.2
1001 0.01 0.02 0.05 0.1
Table 28. CTRL_REG1 register
I1_Int1 I1_Boot H_Lactive PP_OD I2_DRDY I2_WTM I2_ORun I2_Empty
Table 29. CTRL_REG3 description
I1_Int1 Interrupt enable on the INT1 pin. Default value 0. (0: disable; 1: enable)
I1_Boot Boot status available on INT1. Default value 0. (0: disable; 1: enable)
H_Lactive Interrupt active configuration on INT1. Default value 0. (0: high; 1: low)
PP_OD Push-pull / open drain. Default value: 0. (0: push-pull; 1: open drain)
I2_DRDY Date ready on DRDY/INT2. Default value 0. (0: disable; 1: enable)
I2_WTM FIFO watermark interrupt on DRDY/INT2. Default value: 0. (0: disable; 1: enable)
I2_ORun FIFO overrun interrupt on DRDY/INT2 Default value: 0. (0: disable; 1: enable)
I2_Empty FIFO empty interrupt on DRDY/INT2. Default value: 0. (0: disable; 1: enable)
DocID027628 Rev 2 33/43
I3G4250D Register description
43
7.5 CTRL_REG4 (23h)
7.6 CTRL_REG5 (24h)
Table 30. CTRL_REG4 register
0 BLE FS1 FS0 - ST1 ST0 SIM
Table 31. CTRL_REG4 description
BLE Big/little endian data selection. Default value 0.
(0: data LSB @ lower address; 1: data MSB @ lower address)
FS1 - FS0 Full scale selection. Default value: 00
(00: 245 dps; 01: 500 dps; 10: 2000 dps; 11: 2000 dps)
ST1-ST0 Self-test enable. Default value: 00
(00: self-test disabled; Other: see Table )
SIM SPI serial interface mode selection. Default value: 0
(0: 4-wire interface; 1: 3-wire interface).
Table 32. Self-test mode configuration
ST1 ST0 Self-test mode
0 0 Normal mode
0 1 Self-test 0 (+)(1)
1. DST sign (absolute value in Table 4).
10--
1 1 Self-test 1 (-)(1)
Table 33. CTRL_REG5 register
BOOT FIFO_EN -- HPen INT1_Sel1 INT1_Sel0 Out_Sel1 Out_Sel0
Table 34. CTRL_REG5 description
BOOT Reboot memory content. Default value: 0
(0: normal mode; 1: reboot memory content)
FIFO_EN FIFO enable. Default value: 0
(0: FIFO disabled; 1: FIFO enabled)
HPen High-pass filter enable. Default value: 0
(0: HPF disabled; 1: HPF enabled (see Figure 19)
INT1_Sel1-
INT1_Sel0
INT1 selection configuration. Default value: 0
(see Figure 19)
Out_Sel1-
Out_Sel0
Out selection configuration. Default value: 0
(see Figure 19)
Register description I3G4250D
34/43 DocID027628 Rev 2
Figure 18. INT1_Sel and Out_Sel configuration block diagram
Table 35. Out_Sel configuration settings
HPen Out_Sel1 Out_Sel0 Description
x00
Data in DataReg and FIFO are not high-pass
filtered
x01
Data in DataReg and FIFO are high-pass
filtered
01x
Data in DataReg and FIFO are low-pass
filtered by LPF2
11x
Data in DataReg and FIFO are high-pass and
low-pass filtered by LPF2
Table 36. INT_SEL configuration settings
HPen INT_Sel1 INT_Sel2 Description
x00
Non-high-pass-filtered data are used for
interrupt generation
x01
High-pass-filtered data are used for interrupt
generation
01x
Low-pass-filtered data are used for interrupt
generation
11x
High-pass and low-pass-filtered data are
used for interrupt generation
$'&
/3) +3)
+3HQ
/3)




2XWB6HO>@
'DWD5HJ
),)2
[[




,QWHUUXSW
JHQHUDWRU
,17B6HO>@
DocID027628 Rev 2 35/43
I3G4250D Register description
43
7.7 REFERENCE/DATACAPTURE (25h)
7.8 OUT_TEMP (26h)
7.9 STATUS_REG (27h)
Table 37. REFERENCE register
Ref7 Ref6 Ref5 Ref4 Ref3 Ref2 Ref1 Ref0
Table 38. REFERENCE register description
Ref 7-Ref0 Reference value for interrupt generation. Default value: 0
Table 39. OUT_TEMP register
Temp7 Temp6 Temp5 Temp4 Temp3 Temp2 Temp1 Temp0
Table 40. OUT_TEMP register description
Temp7-Temp0 Temperature data.
Table 41. STATUS_REG register
ZYXOR ZOR YOR XOR ZYXDA ZDA YDA XDA
Table 42. STATUS_REG description
ZYXOR
X-, Y-, Z-axis data overrun. Default value: 0
(0: no overrun has occurred; 1: new data has overwritten the previous data before it was
read)
ZOR Z-axis data overrun. Default value: 0
(0: no overrun has occurred; 1: new data for the Z-axis has overwritten the previous data)
YOR Y-axis data overrun. Default value: 0
(0: no overrun has occurred; 1: a new data for the Y-axis has overwritten the previous data)
XOR X-axis data overrun. Default value: 0
(0: no overrun has occurred; 1: a new data for the X-axis has overwritten the previous data)
ZYXDA X, Y, Z-axis new data available. Default value: 0
(0: a new set of data is not yet available; 1: a new set of data is available)
ZDA Z-axis new data available. Default value: 0
(0: new data for the Z-axis is not yet available; 1: new data for the Z-axis is available)
YDA Y-axis new data available. Default value: 0
(0: new data for the Y-axis is not yet available; 1: new data for the Y-axis is available)
XDA X-axis new data available. Default value: 0
(0: new data for the X-axis is not yet available; 1: new data for the X-axis is available)
Register description I3G4250D
36/43 DocID027628 Rev 2
7.10 OUT_X_L (28h), OUT_X_H (29h)
X-axis angular rate data. The value is expressed as 2’s complement.
7.11 OUT_Y_L (2Ah), OUT_Y_H (2Bh)
Y-axis angular rate data. The value is expressed as 2’s complement.
7.12 OUT_Z_L (2Ch), OUT_Z_H (2Dh)
Z-axis angular rate data. The value is expressed as 2’s complement.
7.13 FIFO_CTRL_REG (2Eh)
7.14 FIFO_SRC_REG (2Fh)
Table 43. FIFO_CTRL_REG register
FM2 FM1 FM0 WTM4 WTM3 WTM2 WTM1 WTM0
Table 44. FIFO_CTRL_REG register description
FM2-FM0 FIFO mode selection. Default value: 000
WTM4-WTM0 FIFO threshold. Watermark level setting
Table 45. FIFO mode configuration
FM2 FM1 FM0 FIFO mode
0 0 0 Bypass mode
0 0 1 FIFO mode
0 1 0 Stream mode
Table 46. FIFO_SRC register
WTM OVRN EMPTY FSS4 FSS3 FSS2 FSS1 FSS0
Table 47. FIFO_SRC register description
WTM Watermark status. (0: FIFO filling is lower than WTM level; 1: FIFO filling is equal
to or higher than WTM level)
OVRN Overrun bit status.
(0: FIFO is not completely filled; 1: FIFO is completely filled)
EMPTY FIFO empty bit.
(0: FIFO not empty; 1: FIFO empty)
FSS4-FSS1 FIFO stored data level
DocID027628 Rev 2 37/43
I3G4250D Register description
43
7.15 INT1_CFG (30h)
Configuration register for interrupt source.
7.16 INT1_SRC (31h)
Table 48. INT1_CFG register
AND/OR LIR ZHIE ZLIE YHIE YLIE XHIE XLIE
Table 49. INT1_CFG description
AND/OR AND/OR combination of interrupt events. Default value: 0
(0: OR combination of interrupt events 1: AND combination of interrupt events
LIR
Latch interrupt request. Default value: 0
(0: interrupt request not latched; 1: interrupt request latched)
Cleared by reading INT1_SRC (31h).
ZHIE
Enable interrupt generation on Z high event. Default value: 0
(0: disable interrupt request; 1: enable interrupt request on measured rate value
higher than preset threshold)
ZLIE
Enable interrupt generation on Z low event. Default value: 0
(0: disable interrupt request; 1: enable interrupt request on measured rate value lower
than preset threshold)
YHIE
Enable interrupt generation on Y high event. Default value: 0
(0: disable interrupt request; 1: enable interrupt request on measured rate value
higher than preset threshold)
YLIE
Enable interrupt generation on Y low event. Default value: 0
(0: disable interrupt request; 1: enable interrupt request on measured rate value lower
than preset threshold)
XHIE
Enable interrupt generation on X high event. Default value: 0
(0: disable interrupt request; 1: enable interrupt request on measured rate value
higher than preset threshold)
XLIE
Enable interrupt generation on X low event. Default value: 0
(0: disable interrupt request; 1: enable interrupt request on measured rate value lower
than preset threshold)
Table 50. INT1_SRC register
0 IA ZHZLYHYLXHXL
Register description I3G4250D
38/43 DocID027628 Rev 2
Interrupt source register. Read-only register.
Reading at this address clears the INT1_SRC IA bit (and eventually the interrupt signal on
the INT1 pin) and allows the refresh of data in the INT1_SRC register if the latched option is
chosen.
7.17 INT1_THS_XH (32h)
7.18 INT1_THS_XL (33h)
7.19 INT1_THS_YH (34h)
Table 51. INT1_SRC description
IA Interrupt active. Default value: 0
(0: no interrupt has been generated; 1: one or more interrupts have been generated)
ZH Z high. Default value: 0 (0: no interrupt, 1: Z high event has occurred)
ZL Z low. Default value: 0 (0: no interrupt; 1: Z low event has occurred)
YH Y high. Default value: 0 (0: no interrupt, 1: Y high event has occurred)
YL Y low. Default value: 0 (0: no interrupt, 1: Y low event has occurred)
XH X high. Default value: 0 (0: no interrupt, 1: X high event has occurred)
XL X low. Default value: 0 (0: no interrupt, 1: X low event has occurred)
Table 52. INT1_THS_XH register
- THSX14 THSX13 THSX12 THSX11 THSX10 THSX9 THSX8
Table 53. INT1_THS_XH description
THSX14 - THSX8 Interrupt threshold. Default value: 0000 0000
Table 54. INT1_THS_XL register
THSX7 THSX6 THSX5 THSX4 THSX3 THSX2 THSX1 THSX0
Table 55. INT1_THS_XL description
THSX7 - THSX0 Interrupt threshold. Default value: 0000 0000
Table 56. INT1_THS_YH register
- THSY14 THSY13 THSY12 THSY11 THSY10 THSY9 THSY8
Table 57. INT1_THS_YH description
THSY14 - THSY8 Interrupt threshold. Default value: 0000 0000
DocID027628 Rev 2 39/43
I3G4250D Register description
43
7.20 INT1_THS_YL (35h)
7.21 INT1_THS_ZH (36h)
7.22 INT1_THS_ZL (37h)
7.23 INT1_DURATION (38h)
The D6 - D0 bits set the minimum duration of the interrupt event to be recognized. Duration
steps and maximum values depend on the ODR chosen.
The WAIT bit has the following meaning:
Wait = ’0’: the interrupt falls immediately if the signal crosses the selected threshold.
Wait = ’1’: if the signal crosses the selected threshold, the interrupt falls only after the
duration has counted a number of samples at the selected data rate, written into the
duration counter register.
Table 58. INT1_THS_YL register
THSR7 THSY6 THSY5 THSY4 THSY3 THSY2 THSY1 THSY0
Table 59. INT1_THS_YL description
THSY7 - THSY0 Interrupt threshold. Default value: 0000 0000
Table 60. INT1_THS_ZH register
- THSZ14 THSZ13 THSZ12 THSZ11 THSZ10 THSZ9 THSZ8
Table 61. INT1_THS_ZH description
THSZ14 - THSZ8 Interrupt threshold. Default value: 0000 0000
Table 62. INT1_THS_ZL register
THSZ7 THSZ6 THSZ5 THSZ4 THSZ3 THSZ2 THSZ1 THSZ0
Table 63. INT1_THS_ZL description
THSZ7 - THSZ0 Interrupt threshold. Default value: 0000 0000
Table 64. INT1_DURATION register
WAIT D6 D5 D4 D3 D2 D1 D0
Table 65. INT1_DURATION description
WAIT WAIT enable. Default value: 0 (0: disable; 1: enable)
D6 - D0 Duration value. Default value: 000 0000
Register description I3G4250D
40/43 DocID027628 Rev 2
Figure 19. Wait disabled
Figure 20. Wait enabled
:DLW ELW µ¶Æ
Æ
,QWHUUXSWGLVDEOHGDVVRRQDVFRQGLWLRQ
LVQRORQJHUYDOLGH[5DWHYDOXHEHORZWKUHVKROG
5DWH
GSV
5DWH
7KUHVKROG
WQ
WQ
WQ
,QWHUUXSW
&RXQWHU
'XUDWLRQ
9DOXH
³:DLW´
'LVDEOHG
:DLW ELW µ¶Æ
Æ
,QWHUUXSWGLVDEOHGDIWHUGXUDWLRQ
VDPSOHVRUWRIK\VWHUHVLV
5DWH
GSV
5DWH
7KUHVKROG
WQ
WQ
WQ
,QWHUUXSW
&RXQWHU
'XUDWLRQ
9DOXH
³:DLW´
(QDEOHG
'XUDWLRQYDOXHLVWKHVDPHXVHGWRYDOLGDWHLQWHUUXSW
DocID027628 Rev 2 41/43
I3G4250D Package information
43
8 Package information
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK
specifications, grade definitions and product status are available at www.st.com.
ECOPACK is an ST trademark.
8.1 LGA-16 package information
Figure 21. LGA-16 package outline and mechanical data
'LPHQVLRQV
$ 
$ 
$ 
G 
'   
(   
/ 
0 
1 
1 
3 
3 
7 
7 
N 
/*$[[PP
/DQG*ULG$UUD\3DFNDJH
B$
Revision history I3G4250D
42/43 DocID027628 Rev 2
9 Revision history
Table 66. Document revision history
Date Revision Changes
20-Apr-2015 1 Initial release
21-Apr-2015 2 First public release
DocID027628 Rev 2 43/43
I3G4250D
43
IMPORTANT NOTICE – PLEASE READ CAREFULLY
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.
No license, express or implied, to any intellectual property right is granted by ST herein.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.
ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.
© 2015 STMicroelectronics – All rights reserved
Mouser Electronics
Authorized Distributor
Click to View Pricing, Inventory, Delivery & Lifecycle Information:
STMicroelectronics:
I3G4250DTR