
LM90
www.ti.com
SNIS126A –MAY 2004–REVISED MARCH 2013
OPEN-DRAIN OUTPUTS
The SMBData, ALERT and T_CRIT_A outputs are open-drain outputs and do not have internal pull-ups. A “high”
level will not be observed on these pins until pull-up current is provided by some external source, typically a pull-
up resistor. Choice of resistor value depends on many system factors but, in general, the pull-up resistor should
be as large as possible. This will minimize any internal temperature reading errors due to internal heating of the
LM90. The maximum resistance of the pull-up to provide a 2.1V high level, based on LM90 specification for High
Level Output Current with the supply voltage at 3.0V, is 82kΩ(5%) or 88.7kΩ(1%).
DIODE FAULT DETECTION
The LM90 is equipped with operational circuitry designed to detect fault conditions concerning the remote diode.
In the event that the D+ pin is detected as shorted to VDD or floating, the Remote Temperature High Byte (RTHB)
register is loaded with +127°C, the Remote Temperature Low Byte (RTLB) register is loaded with 0, and the
OPEN bit (D2) in the status register is set. As a result, if the Remote T_CRIT setpoint register (RCS) is set to a
value less than +127°C the ALERT output pin will be pulled low, if the Alert Mask is disabled. If the Remote
HIGH Setpoint High Byte Register (RHSHB) is set to a value less than +127°C then ALERT will be pulled low, if
the Alert Mask is disabled. The OPEN bit itself will not activate the ALERT or T_CRIT_A outputs. If the remote
temperature reading is greater than its T_CRIT level when the OPEN bit is set the T_CRIT_A will remain
inactive.
In the event that the D+ pin is shorted to ground or D−, the Remote Temperature High Byte (RTHB) register is
loaded with −128°C (1000 0000) and the OPEN bit (D2) in the status register will not be set. Since operating the
LM90 at −128°C is beyond it's operational limits, this temperature reading represents this shorted fault condition.
If the value in the Remote Low Setpoint High Byte Register (RLSHB) is more than −128°C and the Alert Mask is
disabled, ALERT will be pulled low.
Remote diode temperature sensors that have been previously released and are competitive with the LM90 output
a code of 0°C if the external diode is short-circuited. This change is an improvement that allows a reading of 0°C
to be truly interpreted as a genuine 0°C reading and not a fault condition.
COMMUNICATING with the LM90
The data registers in the LM90 are selected by the Command Register. At power-up the Command Register is
set to “00”, the location for the Read Local Temperature Register. The Command Register latches the last
location it was set to. Each data register in the LM90 falls into one of four types of user accessibility:
1. Read only
2. Write only
3. Read/Write same address
4. Read/Write different address
AWrite to the LM90 will always include the address byte and the command byte. A write to any register requires
one data byte.
Reading the LM90 can take place either of two ways:
1. If the location latched in the Command Register is correct (most of the time it is expected that the Command
Register will point to one of the Read Temperature Registers because that will be the data most frequently
read from the LM90), then the read can simply consist of an address byte, followed by retrieving the data
byte.
2. If the Command Register needs to be set, then an address byte, command byte, repeat start, and another
address byte will accomplish a read.
The data byte has the most significant bit first. At the end of a read, the LM90 can accept either acknowledge or
No Acknowledge from the Master (No Acknowledge is typically used as a signal for the slave that the Master has
read its last byte). It takes the LM90 31.25ms to measure the temperature of the remote diode and internal diode.
When retrieving all 10 bits from a previous remote diode temperature measurement, the master must insure that
all 10 bits are from the same temperature conversion. This may be achieved by using one-shot mode or by
setting the conversion rate and monitoring the busy bit such that no conversion occurs in between reading the
MSB and LSB of the last temperature conversion.
Copyright © 2004–2013, Texas Instruments Incorporated Submit Documentation Feedback 13
Product Folder Links: LM90