DS153 (v1.6) February 11, 2011 www.xilinx.com
Product Specification 1
© 2009–2011 Xilinx, Inc. XILINX, the Xilinx logo, Virtex, Spartan, ISE, and other designated brands included herein are trademarks of Xilinx in the United States and other
countries. All other trademarks are the property of their respective owners.
General Description
Virtex®-6 CXT FPGAs provide designers needing power-optimized 3.75 Gb/s transceiver performance with an optimized
ratio of built-in system-level blocks. These include 36 Kb block RAM/FIFOs, up to 15 Mb of block RAM, up to 768 DSP48E1
slices, enhanced mixed-mode clock management blocks, PCI Express® (GEN 1) compatible integrated blocks, a tri-mode
Ethernet media access controller (MAC), up to 241K logic cells, and strong IP support. Using the third generation ASMBL™
(Advanced Silicon Modular Block) column-based architecture, the Virtex-6 CXT family also contains SelectIO™ technology
with built-in digitally controlled impedance, ChipSync™ source-synchronous interface blocks, enhanced mixed-mode clock
management blocks, and advanced configuration options. Customers needing higher transceiver speeds, greater I/O
performance, additional Ethernet MACs, or greater capacity should instead use the Virtex-6 LXT or SXT families. Built on a
40 nm state-of-the-art copper process technology, Virtex-6 CXT FPGAs are a programmable alternative to custom ASIC
technology. Virtex-6 CXT FPGAs are the programmable silicon foundation for Targeted Design Platforms that deliver
integrated software and hardware components to enable designers to focus on innovation as soon as their development
cycle begins.
Summary of Virtex-6 CXT FPGA Features
Advanced, high-performance, FPGA Logic
Real 6-input look-up table (LUT) technology
Dual LUT5 (5-input LUT) option
LUT/dual flip-flop pair for applications requiring rich
register mix
Improved routing efficiency
64-bit (or 32 x 2-bit) distributed LUT RAM option
SRL32/dual SRL16 with registered outputs option
Powerful mixed-mode clock managers (MMCM)
MMCM blocks provide zero-delay buffering, frequency
synthesis, clock-phase shifting, input-jitter filtering, and
phase-matched clock division
36-Kb block RAM/FIFOs
Dual-port RAM blocks
Programmable
-Dual-port widths up to 36 bits
-Simple dual-port widths up to 72 bits
Enhanced programmable FIFO logic
Built-in optional error-correction circuitry
Optionally use each block as two independent 18 Kb
blocks
High-performance parallel SelectIO technology
1.2 to 2.5V I/O operation
Source-synchronous interfacing using
ChipSync™ technology
Digitally controlled impedance (DCI) active termination
Flexible fine-grained I/O banking
High-speed memory interface support with integrated
write-leveling capability
Advanced DSP48E1 slices
25 x 18, two's complement multiplier/accumulator
Optional pipelining
New optional pre-adder to assist filtering applications
Optional bitwise logic functionality
Dedicated cascade connections
Flexible configuration options
SPI and Parallel Flash interface
Multi-bitstream support with dedicated fallback
reconfiguration logic
Automatic bus width detection
Integrated interface blocks for PCI Express designs
Compliant to the PCI Express Base Specification 2.0
Gen1 Endpoint (2.5 Gb/s) support with GTX transceivers
x1, x2, x4, or x8 lane support per block
One virtual channel, eight traffic classes
GTX transceivers: 150 Mb/s to 3.75 Gb/s
Integrated 10/100/1000 Mb/s Ethernet MAC block
Supports 1000BASE-X PCS/PMA and SGMII using
GTX transceivers
Supports MII, GMII, and RGMII using SelectIO
technology resources
40 nm copper CMOS process technology
1.0V core voltage
Two speed grades (-1 and -2)
Two temperature grades (commercial and industrial)
High signal-integrity flip-chip packaging available in standard
or Pb-free package options
Compatibility across sub-families: CXT, LXT, and SXT
devices are footprint compatible in the same package
52
Virtex-6 CXT Family Data Sheet
DS153 (v1.6) February 11, 2011 Product Specification
Virtex-6 CXT Family Data Sheet
DS153 (v1.6) February 11, 2011 www.xilinx.com
Product Specification 2
Virtex-6 CXT FPGA Feature Summary
Virtex-6 CXT FPGA Device-Package Combinations and Maximum I/Os
Virtex-6 CXT FPGA package combinations with the maximum available I/Os per package are shown in Ta bl e 2 .
Virtex-6 CXT FPGA Ordering Information
The Virtex-6 CXT FPGA ordering information shown in Figure 1 applies to all packages including Pb-Free.
Tabl e 1: Virtex-6 CXT FPGA Feature Summary by Device
Device Logic
Cells
Configurable Logic
Blocks (CLBs)
DSP48E1
Slices(2)
Block RAM Blocks
MMCMs(4) Interface
Blocks for
PCI Express
Ethernet
MACs(5)
Maximum
GTX
Transceivers
Total
I/O
Banks(6)
Max
User
I/O(7)
Slices(1) Max
Distributed
RAM (Kb)
18 Kb(3) 36 Kb Max (Kb)
XC6VCX75T 74,496 11,640 1,045 288 312 156 5,616 6 1 1 12 9 360
XC6VCX130T 128,000 20,000 1,740 480 528 264 9,504 10 2 1 16 15 600
XC6VCX195T 199,680 31,200 3,040 640 688 344 12,384 10 2 1 16 15 600
XC6VCX240T 241,152 37,680 3,650 768 832 416 14,976 12 2 1 16 18 600
Notes:
1. Each Virtex-6 CXT FPGA slice contains four LUTs and eight flip-flops, only some slices can use their LUTs as distributed RAM or SRLs.
2. Each DSP48E1 slice contains a 25 x 18 multiplier, an adder, and an accumulator.
3. Block RAMs are fundamentally 36 Kbits in size. Each block can also be used as two independent 18 Kb blocks.
4. Each CMT contains two mixed-mode clock managers (MMCM).
5. This table lists individual Ethernet MACs per device.
6. Does not include configuration Bank 0.
7. This number does not include GTX transceivers.
Tabl e 2: Virtex-6 CXT FPGA Device-Package Combinations and Maximum Available I/Os
Package FF484
FFG484
FF784
FFG784
FF1156
FFG1156
Size(mm) 23x23 29x29 35x35
Device GTs I/O GTs I/O GTs I/O
XC6VCX75T 8 GTXs 240 12 GTXs 360
XC6VCX130T 8 GTXs 240 12 GTXs 400 16 GTXs 600
XC6VCX195T 12 GTXs 400 16 GTXs 600
XC6VCX240T 12 GTXs 400 16 GTXs 600
Notes:
1. Flip-chip packages are also available in Pb-Free versions (FFG).
X-Ref Target - Figure 1
Figure 1: Virtex-6 CXT FPGA Ordering Information
Example: XC6VCX240T-1FFG1156C
Device Type
Temperature Range:
C = Commercial (TJ = 0°C to +8C)
I = Industrial (TJ = –40°C to +100°C)
Number of Pins
Package Type
Speed Grade
(-1, -2)
Pb-Free
DS153_01_062109
Virtex-6 CXT Family Data Sheet
DS153 (v1.6) February 11, 2011 www.xilinx.com
Product Specification 3
Virtex-6 CXT FPGA Documentation
In addition to the data sheet information found herein, complete and up-to-date documentation of the Virtex-6 family of
FPGAs is available on the Xilinx website and available for download:
Virtex-6 FPGA Configuration Guide (UG360)
This all-encompassing configuration guide includes
chapters on configuration interfaces (serial and parallel),
multi-bitstream management, bitstream encryption,
boundary-scan and JTAG configuration, and reconfiguration
techniques.
Virtex-6 FPGA SelectIO Resources User Guide (UG361)
This guide describes the SelectIO™ resources available in
all the Virtex-6 CXT devices.
Virtex-6 FPGA Clocking Resources User Guide (UG362)
This guide describes the clocking resources available in all
the Virtex-6 CXT devices, including the MMCM and clock
buffers.
Virtex-6 FPGA Memory Resources User Guide (UG363)
This guide describes the Virtex-6 CXT device block RAM
and FIFO capabilities.
Virtex-6 FPGA CLB User Guide (UG364)
This guide describes the capabilities of the configurable
logic blocks (CLB) available in all Virtex-6 CXT devices.
Virtex-6 FPGA DSP48E1 Slice User Guide (UG369)
This guide describes the architecture of the DSP48E1 slice
in Virtex-6 CXT FPGAs and provides configuration
examples.
Virtex-6 FPGA GTX Transceivers User Guide (UG366)
This guide describes the GTX transceivers available in all
the Virtex-6 CXT FPGAs.
Virtex-6 FPGA Tri-Mode Ethernet MAC User Guide
(UG368)
This guide describes the dedicated tri-mode Ethernet
media access controller (TEMAC) available in all the
Virtex-6 CXT FPGAs.
Virtex-6 FPGA Data Sheet: DC and Switching
Characteristics (DS152)
Reference this data sheet when considering device
migration to the Virtex-6 LXT and SXT families. It contains
the DC and Switching Characteristic specifications
specifically for the Virtex-6 LXT and SXT families.
Virtex-6 FPGA Packaging and Pinout Specifications
(UG365)
These specifications includes the tables for device/package
combinations and maximum I/Os, pin definitions, pinout
tables, pinout diagrams, mechanical drawings, and thermal
specifications of the Virtex-6 LXT and SXT families.
Reference these specifications when considering device
migration to the Virtex-6 LXT and SXT families.
Configuration Bitstream Overview for CXT Devices
This section contains two tables similar to those in the Virtex-6 FPGA Configuration Guide only updated for the CXT family.
The Virtex-6 CXT FPGA bitstream contains commands to the FPGA configuration logic as well as configuration data.
Ta bl e 3 gives a typical bitstream length and Ta bl e 4 gives the specific device ID codes for the Virtex-6 CXT devices.
Tabl e 3: Virtex-6 CXT FPGA Bitstream Length
Device Total Number of Configuration Bits
XC6VCX75T 26,239,328
XC6VCX130T 43,719,776
XC6VCX195T 61,552,736
XC6VCX240T 73,859,552
Tabl e 4 : Virtex-6 CXT FPGA Device ID Codes
Device ID Code (Hex)
XC6VCX75T 0x042C4093
XC6VCX130T 0x042CA093
XC6VCX195T 0x042CC093
XC6VCX240T 0x042D0093
Virtex-6 CXT Family Data Sheet
DS153 (v1.6) February 11, 2011 www.xilinx.com
Product Specification 4
CLB Overview for CXT Devices
Ta bl e 5 , updated specifically for the CXT family from a similar table in the Virtex-6 FPGA CLB User Guide, shows the
available resources in all Virtex-6 CXT FPGA CLBs.
Regional Clock Management for CXT Devices
Ta bl e 6 , updated from the Virtex-6 FPGA Clocking Resources User Guide specifically for the CXT family, shows the number
of clock regions in all Virtex-6 CXT FPGA CLBs.
CXT Packaging Specifications
Ta bl e 7 , updated from the Virtex-6 FPGA Packaging and Pinout Specifications specifically for the CXT family, shows the
number of GTX transceiver I/O channels. Ta bl e 8 shows the number of available I/Os and the number of differential I/O pairs
for each Virtex-6 device/package combination.
Tabl e 5: Virtex-6 CXT FPGA Logic Resources Available in All CLBs
Device Total
Slices SLICELs SLICEMs Number of
6-Input LUTs
Maximum
Distributed RAM (Kb)
Shift
Register (Kb)
Number of
Flip-Flops
XC6VCX75T 11,640 7,460 4,180 46,560 1045 522.5 93,120
XC6VCX130T 20,000 13,040 6,960 80,000 1740 870 160,000
XC6VCX195T 31,200 19,040 12,160 124,800 3140 1570 249,600
XC6VCX240T 37,680 23,080 14,600 150,720 3770 1885 301,440
Tabl e 6: Virtex-6 CXT FPGA Clock Regions
Device Number of Clock Regions
XC6VCX75T 6
XC6VCX130T 10
XC6VCX195T 10
XC6VCX240T 12
Tabl e 7: Number of Serial Transceivers (GTs) I/O Channels/Device
I/O
Channels
Device
CX75T(1) CX130T(2) CX195T(3) CX240T(4)
MGTRXP 8 or 12 8, 12, or 16 12 or 16 12 or 16
MGTRXN 8 or 12 8, 12, or 16 12 or 16 12 or 16
MGTTXP 8 or 12 8, 12, or 16 12 or 16 12 or 16
MGTTXN 8 or 12 8, 12, or 16 12 or 16 12 or 16
Notes:
1. The XC6VCX75T has 8 GTX I/O channels in the FF484/FFG484 package and 12 GTX I/O channels in the FF784/FFG784 package.
2. The XC6VCX130T has 8 GTX I/O channels in the FF484/FFG484 package, 12 GTX I/O channels in the FF784/FFG784 package, and 16
GTX I/O channels in the FF1156/FFG1156 package.
3. The XC6VCX195T has 12 GTX I/O channels in the FF784/FFG784 package and 16 GTX I/O channels in the FF1156/FFG1156 package.
4. The XC6VCX240T has 12 GTX I/O channels in the FF784/FFG784 package and 16 GTX I/O channels in the FF1156/FFG1156 package.
Virtex-6 CXT Family Data Sheet
DS153 (v1.6) February 11, 2011 www.xilinx.com
Product Specification 5
GTX Transceivers in CXT Devices
CXT devices have between 8 to 16 gigabit transceiver circuits. Each GTX transceiver is a combined transmitter and receiver
capable of operating at a data rate between 480 Mb/s and 3.75 Gb/s. Lower data rates can be achieved using FPGA logic-
based oversampling. The transmitter and receiver are independent circuits that use separate PLLs to multiply the reference
frequency input by certain programmable numbers between 2 and 25, to become the bit-serial data clock. Each GTX
transceiver has a large number of user-definable features and parameters. All of these can be defined during device
configuration, and many can also be modified during operation.
Tabl e 8: Available I/O Pin/Device/Package Combinations
Virtex-6 CXT Device User I/O Pins Virtex-6 CXT FPGA Package
FF484 FF784 FF1156
XC6VCX75T Available User I/Os 240 360
Differential I/O Pairs 120 180
XC6VCX130T Available User I/Os 240 400 600
Differential I/O Pairs 120 200 300
XC6VCX195T Available User I/Os 400 600
Differential I/O Pairs 200 300
XC6VCX240T Available User I/Os 400 600
Differential I/O Pairs 200 300
Virtex-6 CXT Family Data Sheet
DS153 (v1.6) February 11, 2011 www.xilinx.com
Product Specification 6
FF484 Package Placement Diagrams
Figure 2 and Figure 3 show the placement diagrams for the GTX transceivers in the FF484 package.
Note: Unbonded locations in the FF484 package are:
CX75T: X0Y8, X0Y9, X0Y10, X0Y11
CX130T: X0Y0, X0Y1, X0Y2, X0Y3, and X0Y12, X0Y13, X0Y14, X0Y15
X-Ref Target - Figure 2
Figure 2: Placement Diagram for the FF484 Package
(1 of 2)
CX75T: GTXE1_X0Y7
CX130T: GTXE1_X0Y11
CX75T: GTXE1_X0Y6
CX130T: GTXE1_X0Y10
QUAD_115
CX75T: GTXE1_X0Y5
CX130T: GTXE1_X0Y9
CX75T: GTXE1_X0Y4
CX130T: GTXE1_X0Y8
B1
B2
D1
D2
C3
C4
F1
F2
J4
J3
L4
L3
E3
E4
H1
H2
G3
G4
K1
K2
MGTRXP3_115
MGTRXN3_115
MGTTXP3_115
MGTTXN3_115
MGTRXP2_115
MGTRXN2_115
MGTTXP2_115
MGTTXN2_115
MGTREFCLK1P_115
MGTREFCLK1N_115
MGTREFCLK0P_115
MGTREFCLK0N_115
MGTRXP1_115
MGTRXN1_115
MGTTXP1_115
MGTTXN1_115
MGTRXP0_115
MGTRXN0_115
MGTTXP0_115
MGTTXN0_115
ds153_02_041510
X-Ref Target - Figure 3
Figure 3: Placement Diagram for the FF484 Package
(2 of 2)
CX75T: GTXE1_X0Y3
CX130T: GTXE1_X0Y7
CX75T: GTXE1_X0Y2
CX130T: GTXE1_X0Y6
QUAD_114
CX75T: GTXE1_X0Y1
CX130T: GTXE1_X0Y5
CX75T: GTXE1_X0Y0
CX130T: GTXE1_X0Y4
W3
W4
M1
M2
Y1
Y2
P1
P2
R4
R3
U4
U3
AA3
AA4
T1
T2
AB1
AB2
V1
V2
MGTRXP3_114
MGTRXN3_114
MGTTXP3_114
MGTTXN3_114
MGTRXP2_114
MGTRXN2_114
MGTTXP2_114
MGTTXN2_114
MGTREFCLK1P_114
MGTREFCLK1N_114
MGTREFCLK0P_114
MGTREFCLK0N_114
MGTRXP1_114
MGTRXN1_114
MGTTXP1_114
MGTTXN1_114
MGTRXP0_114
MGTRXN0_114
MGTTXP0_114
MGTTXN0_114
ds153_03_041510
Virtex-6 CXT Family Data Sheet
DS153 (v1.6) February 11, 2011 www.xilinx.com
Product Specification 7
FF784 Package Placement Diagrams
Figure 4 through Figure 6 show the placement diagrams for the GTX transceivers in the FF784 package.
Note: Unbonded locations in the FF784 package are:
CX130T: X0Y0, X0Y1, X0Y2, X0Y3
CX195T: X0Y0, X0Y1, X0Y2, X0Y3
CX240T: X0Y0, X0Y1, X0Y2, X0Y3
X-Ref Target - Figure 4
Figure 4: Placement Diagram for the FF784 Package
(1 of 3)
CX75T: GTXE1_X0Y11
CX130T: GTXE1_X0Y15
CX195T: GTXE1_X0Y15
CX240T: GTXE1_X0Y15
CX75T: GTXE1_X0Y10
CX130T: GTXE1_X0Y14
CX195T: GTXE1_X0Y14
CX240T: GTXE1_X0Y14
QUAD_116
CX75T: GTXE1_X0Y9
CX130T: GTXE1_X0Y13
CX195T: GTXE1_X0Y13
CX240T: GTXE1_X0Y13
CX75T: GTXE1_X0Y8
CX130T: GTXE1_X0Y12
CX195T: GTXE1_X0Y12
CX240T: GTXE1_X0Y12 K1
K2
E3
E4
H1
H2
C3
C4
J4
J3
G4
G3
F1
F2
B1
B2
D1
D2
A3
A4
MGTRXP3_116
MGTRXN3_116
MGTTXP3_116
MGTTXN3_116
MGTRXP2_116
MGTRXN2_116
MGTTXP2_116
MGTTXN2_116
MGTREFCLK1P_116
MGTREFCLK1N_116
MGTREFCLK0P_116
MGTREFCLK0N_116
MGTRXP1_116
MGTRXN1_116
MGTTXP1_116
MGTTXN1_116
MGTRXP0_116
MGTRXN0_116
MGTTXP0_116
MGTTXN0_116
ds153_04_041510
X-Ref Target - Figure 5
Figure 5: Placement Diagram for the FF784 Package
(2 of 3)
CX75T: GTXE1_X0Y7
CX130T: GTXE1_X0Y11
CX195T: GTXE1_X0Y11
CX240T: GTXE1_X0Y11
CX75T: GTXE1_X0Y6
CX130T: GTXE1_X0Y10
CX195T: GTXE1_X0Y10
CX240T: GTXE1_X0Y10
QUAD_115
CX75T: GTXE1_X0Y5
CX130T: GTXE1_X0Y9
CX195T: GTXE1_X0Y9
CX240T: GTXE1_X0Y9
CX75T: GTXE1_X0Y4
CX130T: GTXE1_X0Y8
CX195T: GTXE1_X0Y8
CX240T: GTXE1_X0Y8
L3
L4
M1
M2
N3
N4
P1
P2
P6
P5
T6
T5
R3
R4
T1
T2
U3
U4
V1
V2
MGTRXP3_115
MGTRXN3_115
MGTTXP3_115
MGTTXN3_115
MGTRXP2_115
MGTRXN2_115
MGTTXP2_115
MGTTXN2_115
MGTREFCLK1P_115
MGTREFCLK1N_115
MGTREFCLK0P_115
MGTREFCLK0N_115
MGTRXP1_115
MGTRXN1_115
MGTTXP1_115
MGTTXN1_115
MGTRXP0_115
MGTRXN0_115
MGTTXP0_115
MGTTXN0_115
ds153_05_041510
Virtex-6 CXT Family Data Sheet
DS153 (v1.6) February 11, 2011 www.xilinx.com
Product Specification 8
X-Ref Target - Figure 6
Figure 6: Placement Diagram for the FF784 Package
(3 of 3)
CX75T: GTXE1_X0Y3
CX130T: GTXE1_X0Y7
CX195T: GTXE1_X0Y7
CX240T: GTXE1_X0Y7
CX75T: GTXE1_X0Y2
CX130T: GTXE1_X0Y6
CX195T: GTXE1_X0Y6
CX240T: GTXE1_X0Y6
QUAD_114
CX75T: GTXE1_X0Y1
CX130T: GTXE1_X0Y5
CX195T: GTXE1_X0Y5
CX240T: GTXE1_X0Y5
CX75T: GTXE1_X0Y0
CX130T: GTXE1_X0Y4
CX195T: GTXE1_X0Y4
CX240T: GTXE1_X0Y4
AC3
AC4
Y1
Y2
AE3
AE4
AB1
AB2
W4
W3
AA4
AA3
AG3
AG4
AD1
AD2
AH1
AH2
AF1
AF2
MGTRXP3_114
MGTRXN3_114
MGTTXP3_114
MGTTXN3_114
MGTRXP2_114
MGTRXN2_114
MGTTXP2_114
MGTTXN2_114
MGTREFCLK1P_114
MGTREFCLK1N_114
MGTREFCLK0P_114
MGTREFCLK0N_114
MGTRXP1_114
MGTRXN1_114
MGTTXP1_114
MGTTXN1_114
MGTRXP0_114
MGTRXN0_114
MGTTXP0_114
MGTTXN0_114
ds153_06_041510
Virtex-6 CXT Family Data Sheet
DS153 (v1.6) February 11, 2011 www.xilinx.com
Product Specification 9
FF1156 Package Placement Diagrams
Figure 7 through Figure 10 show the placement diagrams for the GTX transceivers in the FF1156 package.
X-Ref Target - Figure 7
Figure 7: Placement Diagram for the FF1156 Package
(1 of 4)
CX130T: GTXE1_X0Y15
CX195T: GTXE1_X0Y15
CX240T: GTXE1_X0Y15
CX130T: GTXE1_X0Y14
CX195T: GTXE1_X0Y14
CX240T: GTXE1_X0Y14
CX130T: GTXE1_X0Y13
CX195T: GTXE1_X0Y13
CX240T: GTXE1_X0Y13
CX130T: GTXE1_X0Y12
CX195T: GTXE1_X0Y12
CX240T: GTXE1_X0Y12
QUAD_116
B5
B6
A3
A4
D5
D6
B1
B2
F6
F5
H6
H5
E3
E4
C3
C4
G3
G4
D1
D2
MGTRXP3_116
MGTRXN3_116
MGTTXP3_116
MGTTXN3_116
MGTRXP2_116
MGTRXN2_116
MGTTXP2_116
MGTTXN2_116
MGTREFCLK1P_116
MGTREFCLK1N_116
MGTREFCLK0P_116
MGTREFCLK0N_116
MGTRXP1_116
MGTRXN1_116
MGTTXP1_116
MGTTXN1_116
MGTRXP0_116
MGTRXN0_116
MGTTXP0_116
MGTTXN0_116
ds153_07_020210
X-Ref Target - Figure 8
Figure 8: Placement Diagram for the FF1156 Package
(2 of 4)
CX130T: GTXE1_X0Y11
CX195T: GTXE1_X0Y11
CX240T: GTXE1_X0Y11
CX130T: GTXE1_X0Y10
CX195T: GTXE1_X0Y10
CX240T: GTXE1_X0Y10
QUAD_115
CX130T: GTXE1_X0Y9
CX195T: GTXE1_X0Y9
CX240T: GTXE1_X0Y9
CX130T: GTXE1_X0Y8
CX195T: GTXE1_X0Y8
CX240T: GTXE1_X0Y8
J3
J4
F1
F2
K5
K6
H1
H2
M6
M5
P6
P5
L3
L4
K1
K2
N3
N4
M1
M2
MGTRXP3_115
MGTRXN3_115
MGTTXP3_115
MGTTXN3_115
MGTRXP2_115
MGTRXN2_115
MGTTXP2_115
MGTTXN2_115
MGTREFCLK1P_115
MGTREFCLK1N_115
MGTREFCLK0P_115
MGTREFCLK0N_115
MGTRXP1_115
MGTRXN1_115
MGTTXP1_115
MGTTXN1_115
MGTRXP0_115
MGTRXN0_115
MGTTXP0_115
MGTTXN0_115
ds153_08_020210
Virtex-6 CXT Family Data Sheet
DS153 (v1.6) February 11, 2011 www.xilinx.com
Product Specification 10
X-Ref Target - Figure 9
Figure 9: Placement Diagram for the FF1156 Package
(3 of 4)
CX130T: GTXE1_X0Y7
CX195T: GTXE1_X0Y7
CX240T: GTXE1_X0Y7
CX130T: GTXE1_X0Y6
CX195T: GTXE1_X0Y6
CX240T: GTXE1_X0Y6
QUAD_114
CX130T: GTXE1_X0Y5
CX195T: GTXE1_X0Y5
CX240T: GTXE1_X0Y5
CX130T: GTXE1_X0Y4
CX195T: GTXE1_X0Y4
CX240T: GTXE1_X0Y4
R3
R4
P1
P2
U3
U4
T1
T2
T6
T5
V6
V5
W3
W4
V1
V2
AA3
AA4
Y1
Y2
MGTRXP3_114
MGTRXN3_114
MGTTXP3_114
MGTTXN3_114
MGTRXP2_114
MGTRXN2_114
MGTTXP2_114
MGTTXN2_114
MGTREFCLK1P_114
MGTREFCLK1N_114
MGTREFCLK0P_114
MGTREFCLK0N_114
MGTRXP1_114
MGTRXN1_114
MGTTXP1_114
MGTTXN1_114
MGTRXP0_114
MGTRXN0_114
MGTTXP0_114
MGTTXN0_114
ds153_09_020210
X-Ref Target - Figure 10
Figure 10: Placement Diagram for the FF1156 Package
(4 of 4)
CX130T: GTXE1_X0Y3
CX195T: GTXE1_X0Y3
CX240T: GTXE1_X0Y3
CX130T: GTXE1_X0Y2
CX195T: GTXE1_X0Y2
CX240T: GTXE1_X0Y2
QUAD_113
CX130T: GTXE1_X0Y1
CX195T: GTXE1_X0Y1
CX240T: GTXE1_X0Y1
CX130T: GTXE1_X0Y0
CX195T: GTXE1_X0Y0
CX240T: GTXE1_X0Y0
AC3
AC4
AB1
AB2
AE3
AE4
AD1
AD2
AB6
AB5
AD6
AD5
AF5
AF6
AF1
AF2
AG3
AG4
AH1
AH2
MGTRXP3_113
MGTRXN3_113
MGTTXP3_113
MGTTXN3_113
MGTRXP2_113
MGTRXN2_113
MGTTXP2_113
MGTTXN2_113
MGTREFCLK1P_113
MGTREFCLK1N_113
MGTREFCLK0P_113
MGTREFCLK0N_113
MGTRXP1_113
MGTRXN1_113
MGTTXP1_113
MGTTXN1_113
MGTRXP0_113
MGTRXN0_113
MGTTXP0_113
MGTTXN0_113
ds153_10_020210
Virtex-6 CXT Family Data Sheet
DS153 (v1.6) February 11, 2011 www.xilinx.com
Product Specification 11
Virtex-6 CXT FPGA Electrical Characteristics Introduction
Virtex-6 CXT FPGAs are available in -2 and -1 speed grades, with -2 having the highest performance. Virtex-6 CXT FPGA
DC and AC characteristics are specified for both commercial and industrial grades. Except the operating temperature range
or unless otherwise noted, all the DC and AC electrical parameters are the same for a particular speed grade (that is, the
timing characteristics of a -1 speed grade industrial device are the same as for a -1 speed grade commercial device).
However, only selected speed grades and/or devices might be available in the industrial range.
All supply voltage and junction temperature specifications are representative of worst-case conditions. The parameters
included are common to popular designs and typical applications.
All specifications are subject to change without notice.
Virtex-6 CXT FPGA DC Characteristics
Tabl e 9: Absolute Maximum Ratings(1)
Symbol Description Units
VCCINT Internal supply voltage relative to GND –0.5 to 1.1 V
VCCAUX Auxiliary supply voltage relative to GND –0.5 to 3.0 V
VCCO Output drivers supply voltage relative to GND –0.5 to 3.0 V
VBATT Key memory battery backup supply –0.5 to 3.0 V
VFS External voltage supply for eFUSE programming(2) –0.5 to 3.0 V
VREF Input reference voltage –0.5 to 3.0 V
VIN(3) 2.5V or below I/O input voltage relative to GND(4) (user and dedicated I/Os) –0.5 to VCCO 0.5 V
VTS Voltage applied to 3-state 2.5V or below output(4) (user and dedicated I/Os) 0.5 to VCCO 0.5 V
TSTG Storage temperature (ambient) –65 to 150 °C
TSOL Maximum soldering temperature(5) 220 °C
TjMaximum junction temperature(5) 125 °C
Notes:
1. Stresses beyond those listed under Absolute Maximum Ratings might cause permanent damage to the device. These are stress ratings
only, and functional operation of the device at these or any other conditions beyond those listed under Operating Conditions is not implied.
Exposure to Absolute Maximum Ratings conditions for extended periods of time might affect device reliability.
2. When not programming eFUSE, connect VFS to GND.
3. 2.5V I/O absolute maximum limit applied to DC and AC signals.
4. For I/O operation, refer to the Virtex-6 FPGA SelectIO Resources User Guide.
5. For soldering guidelines and thermal considerations, see Virtex-6 FPGA Packaging and Pinout Specification.
Virtex-6 CXT Family Data Sheet
DS153 (v1.6) February 11, 2011 www.xilinx.com
Product Specification 12
Tabl e 10 : Recommended Operating Conditions
Symbol Description Min Max Units
VCCINT
Internal supply voltage relative to GND, Tj=0C to +85C0.951.05V
Internal supply voltage relative to GND, Tj=–40C to +100C0.951.05V
VCCAUX
Auxiliary supply voltage relative to GND, Tj=0C to +85C 2.375 2.625 V
Auxiliary supply voltage relative to GND, Tj=–40C to +100C 2.375 2.625 V
VCCO(1)(2)(3) Supply voltage relative to GND, Tj=0C to +85C 1.14 2.625 V
Supply voltage relative to GND, Tj= –40C to +100C 1.14 2.625 V
VIN
2.5V supply voltage relative to GND, Tj=0C to +85C GND 0.20 2.625 V
2.5V supply voltage relative to GND, Tj=–40C to +100C GND 0.20 2.625 V
2.5V and below supply voltage relative to GND, Tj=0C to +85CGND0.20V
CCO 0.2 V
2.5V and below supply voltage relative to GND, Tj=–40C to +100CGND0.20V
CCO 0.2 V
IIN(4) Maximum current through any pin in a powered or unpowered bank when forward
biasing the clamp diode.
–10mA
VBATT(5) Battery voltage relative to GND, Tj=0C to +85C1.02.5V
Battery voltage relative to GND, Tj= –40C to +100C1.02.5V
VFS(6) External voltage supply for eFUSE programming 2.375 2.625 V
Notes:
1. Configuration data is retained even if VCCO drops to 0V.
2. Includes VCCO of 1.2V, 1.5V, 1.8V, and 2.5V.
3. The configuration supply voltage VCC_CONFIG is also known as VCCO_0.
4. A total of 100 mA per bank should not be exceeded.
5. VBATT is required only when using bitstream encryption. If battery is not used, connect VBATT to either ground or VCCAUX.
6. When not programming eFUSE, connect VFS to GND.
7. All voltages are relative to ground.
Tabl e 11 : DC Characteristics Over Recommended Operating Conditions(1)(2)
Symbol Description Min Typ Max Units
VDRINT Data retention VCCINT voltage (below which configuration data might be lost) 0.75 V
VDRI Data retention VCCAUX voltage (below which configuration data might be lost) 2.0 V
IREF VREF leakage current per pin 10 µA
ILInput or output leakage current per pin (sample-tested) 10 µA
CIN(3) Die input capacitance at the pad 8 pF
IRPU
Pad pull-up (when selected) @ VIN =0V, V
CCO = 2.5V 20 80 µA
Pad pull-up (when selected) @ VIN =0V, V
CCO =1.8V 8 40 µA
Pad pull-up (when selected) @ VIN =0V, V
CCO =1.5V 5 30 µA
Pad pull-up (when selected) @ VIN =0V, V
CCO =1.2V 1 20 µA
IRPD Pad pull-down (when selected) @ VIN = 2.5V 3 80 µA
IBATT Battery supply current 150 nA
n Temperature diode ideality factor 1.0002 n
r Series resistance –5
Notes:
1. Typical values are specified at nominal voltage, 25°C.
2. Maximum value specified for worst case process at 25°C.
3. This measurement represents the die capacitance at the pad, not including the package.
Virtex-6 CXT Family Data Sheet
DS153 (v1.6) February 11, 2011 www.xilinx.com
Product Specification 13
Quiescent Supply Current: Important Note
Typical values for quiescent supply current are specified at nominal voltage, 85°C junction temperatures (Tj). Xilinx
recommends analyzing static power consumption at Tj= 85°C because the majority of designs operate near the high end of
the commercial temperature range. Quiescent supply current is specified by speed grade for Virtex-6 CXT devices. Use the
XPOWER™ Estimator (XPE) spreadsheet tool (download at http://www.xilinx.com/power) to calculate static power
consumption for conditions other than those specified in Ta bl e 1 2 .
Tabl e 12 : Typical Quiescent Supply Current
Symbol Description Device Speed and Temperature Grade Units
-2 (C & I) -1 (C & I)
ICCINTQ Quiescent VCCINT supply current
XC6VCX75T 927 927 mA
XC6VCX130T 1563 1563 mA
XC6VCX195T 2059 2059 mA
XC6VCX240T 2478 2478 mA
ICCOQ Quiescent VCCO supply current
XC6VCX75T 1 1 mA
XC6VCX130T 1 1 mA
XC6VCX195T 1 1 mA
XC6VCX240T 2 2 mA
ICCAUXQ Quiescent VCCAUX supply current
XC6VCX75T 45 45 mA
XC6VCX130T 75 75 mA
XC6VCX195T 113 113 mA
XC6VCX240T 135 135 mA
Notes:
1. Typical values are specified at nominal voltage, 85°C junction temperatures (Tj). Industrial (I) grade devices have the same typical values as
commercial (C) grade devices at 85°C, but higher values at 100°C. Use the XPE tool to calculate 100°C values.
2. Typical values are for blank configured devices with no output current loads, no active input pull-up resistors, all I/O pins are 3-state and
floating.
3. If DCI or differential signaling is used, more accurate quiescent current estimates can be obtained by using the XPOWER Estimator (XPE)
or XPOWER Analyzer (XPA) tools.
Virtex-6 CXT Family Data Sheet
DS153 (v1.6) February 11, 2011 www.xilinx.com
Product Specification 14
Power-On Power Supply Requirements
Xilinx FPGAs require a certain amount of supply current during power-on to insure proper device initialization. The actual
current consumed depends on the power-on ramp rate of the power supply.
Virtex-6 CXT devices require a power-on sequence of VCCINT
, VCCAUX, and VCCO. If the requirement can not be met, then
VCCAUX must always be powered prior to VCCO. VCCAUX and VCCO can be powered by the same supply, therefore, both
VCCAUX and VCCO are permitted to ramp simultaneously. Similarly, for the power-down sequence, VCCO must be powered
down prior to VCCAUX or if powered by the same supply, VCCAUX and VCCO power-down simultaneously.
Ta bl e 1 3 shows the minimum current, in addition to ICCQ, that are required by Virtex-6 CXT devices for proper power-on and
configuration. If the current minimums shown in Ta b le 1 2 and Ta bl e 1 3 are met, the device powers on after all three supplies
have passed through their power-on reset threshold voltages. The FPGA must be configured after VCCINT is applied.
Once initialized and configured, use the XPOWER tools to estimate current drain on these supplies.
Tabl e 13 : Power-On Current for Virtex-6 CXT Devices
Device ICCINTMIN ICCAUXMIN ICCOMIN Units
Typ(1) Typ(1) Typ(1)
XC6VCX75T See ICCINTQ in Ta bl e 1 2 ICCAUXQ +10 I
CCOQ + 30 mA per bank mA
XC6VCX130T See ICCINTQ in Ta bl e 1 2 ICCAUXQ +10 I
CCOQ + 30 mA per bank mA
XC6VCX195T See ICCINTQ in Ta bl e 1 2 ICCAUXQ +40 I
CCOQ + 30 mA per bank mA
XC6VCX240T See ICCINTQ in Ta bl e 1 2 ICCAUXQ +40 I
CCOQ + 30 mA per bank mA
Notes:
1. Typical values are specified at nominal voltage, 25°C.
2. Use the XPOWER™ Estimator (XPE) spreadsheet tool (download at http://www.xilinx.com/power) to calculate maximum power-on currents.
Tabl e 14 : Power Supply Ramp Time
Symbol Description Ramp Time Units
VCCINT Internal supply voltage relative to GND 0.20 to 50.0 ms
VCCO Output drivers supply voltage relative to GND 0.20 to 50.0 ms
VCCAUX Auxiliary supply voltage relative to GND 0.20 to 50.0 ms
Virtex-6 CXT Family Data Sheet
DS153 (v1.6) February 11, 2011 www.xilinx.com
Product Specification 15
SelectIO™ DC Input and Output Levels
Values for VIL and VIH are recommended input voltages. Values for IOL and IOH are guaranteed over the recommended
operating conditions at the VOL and VOH test points. Only selected standards are tested. These are chosen to ensure that
all standards meet their specifications. The selected standards are tested at a minimum VCCO with the respective VOL and
VOH voltage levels shown. Other standards are sample tested.
Tabl e 15 : SelectIO DC Input and Output Levels
I/O Standard VIL VIH VOL VOH IOL IOH
V, Min V, Max V, Min V, Max V, Max V, Min mA mA
LVCMOS25,
LVDCI25
–0.3 0.7 1.7 VCCO +0.3 0.4 V
CCO 0.4 Note(3) Note(3)
LVCMOS18,
LVDCI18
–0.3 35% VCCO 65% VCCO VCCO + 0.3 0.45 VCCO 0.45 Note(4) Note(4)
LVCMOS15,
LVDCI15
–0.3 35% VCCO 65% VCCO VCCO + 0.3 25% VCCO 75% VCCO Note(4) Note(4)
LVCMOS12 –0.3 35% VCCO 65% VCCO VCCO + 0.3 25% VCCO 75% VCCO Note(5) Note(5)
HSTL I_12 –0.3 VREF –0.1 V
REF +0.1 V
CCO + 0.3 25% VCCO 75% VCCO 6.3 6.3
HSTL I(2) –0.3 VREF –0.1 V
REF +0.1 V
CCO +0.3 0.4 V
CCO –0.4 8 8
HSTL II(2) –0.3 VREF –0.1 V
REF +0.1 V
CCO +0.3 0.4 V
CCO –0.4 16 16
HSTL III(2) –0.3 VREF –0.1 V
REF +0.1 V
CCO +0.3 0.4 V
CCO 0.4 24 –8
DIFF HSTL I(2) –0.3 50% VCCO 0.1 50% VCCO +0.1 V
CCO +0.3
DIFF HSTL II(2) –0.3 50% VCCO 0.1 50% VCCO +0.1 V
CCO +0.3
SSTL2 I –0.3 VREF –0.15 V
REF +0.15 V
CCO +0.3 V
TT –0.61 V
TT + 0.61 8.1 –8.1
SSTL2 II –0.3 VREF –0.15 V
REF +0.15 V
CCO +0.3 V
TT –0.81 V
TT + 0.81 16.2 –16.2
DIFF SSTL2 I –0.3 50%
VCCO –0.15
50%
VCCO +0.15
VCCO +0.3
DIFF SSTL2 II –0.3 50%
VCCO –0.15
50%
VCCO +0.15
VCCO +0.3
SSTL18 I –0.3 VREF 0.125 VREF + 0.125 VCCO +0.3 V
TT –0.47 V
TT + 0.47 6.7 –6.7
SSTL18 II –0.3 VREF 0.125 VREF +0.125 V
CCO +0.3 V
TT –0.60 V
TT + 0.60 13.4 –13.4
DIFF SSTL18 I –0.3 50%
VCCO –0.125
50%
VCCO +0.125
VCCO +0.3
DIFF SSTL18 II –0.3 50%
VCCO –0.125
50%
VCCO +0.125
VCCO +0.3
SSTL15 –0.3 VREF –0.1 V
REF +0.1 V
CCO +0.3 V
TT –0.175 V
TT + 0.175 14.3 14.3
Notes:
1. Tested according to relevant specifications.
2. Applies to both 1.5V and 1.8V HSTL.
3. Using drive strengths of 2, 4, 6, 8, 12, 16, or 24 mA.
4. Using drive strengths of 2, 4, 6, 8, 12, or 16 mA.
5. Supported drive strengths of 2, 4, 6, or 8 mA.
6. For detailed interface specific DC voltage levels, see the Virtex-6 FPGA SelectIO Resources User Guide.
Virtex-6 CXT Family Data Sheet
DS153 (v1.6) February 11, 2011 www.xilinx.com
Product Specification 16
HT DC Specifications (HT_25)
LVDS DC Specifications (LVDS_25)
Extended LVDS DC Specifications (LVDSEXT_25)
Tabl e 16 : HT DC Specifications
Symbol DC Parameter Conditions Min Typ Max Units
VCCO Supply Voltage 2.38 2.5 2.63 V
VOD Differential Output Voltage RT = 100 across Q and Q signals 480 600 885 mV
VOD Change in VOD Magnitude –15 15 mV
VOCM Output Common Mode Voltage RT = 100 across Q and Q signals 480 600 885 mV
VOCM Change in VOCM Magnitude –15 15 mV
VID Input Differential Voltage 200 600 1000 mV
VID Change in VID Magnitude –15 15 mV
VICM Input Common Mode Voltage 440 600 780 mV
VICM Change in VICM Magnitude –15 15 mV
Tabl e 17 : LVDS DC Specifications
Symbol DC Parameter Conditions Min Typ Max Units
VCCO Supply Voltage 2.38 2.5 2.63 V
VOH Output High Voltage for Q and Q RT = 100 across Q and Q signals 1.675 V
VOL Output Low Voltage for Q and Q RT = 100 across Q and Q signals 0.825 V
VODIFF Differential Output Voltage (Q Q),
Q = High (Q –Q), Q = High
RT = 100 across Q and Q signals 247 350 600 mV
VOCM Output Common-Mode Voltage RT = 100 across Q and Q signals 1.075 1.250 1.425 V
VIDIFF Differential Input Voltage (Q Q),
Q = High (Q –Q), Q = High
100 350 600 mV
VICM Input Common-Mode Voltage 0.3 1.2 2.2 V
Tabl e 18 : Extended LVDS DC Specifications
Symbol DC Parameter Conditions Min Typ Max Units
VCCO Supply Voltage 2.38 2.5 2.63 V
VOH Output High Voltage for Q and Q RT = 100 across Q and Q signals 1.785 V
VOL Output Low Voltage for Q and Q RT = 100 across Q and Q signals 0.715 V
VODIFF Differential Output Voltage (Q Q),
Q = High (Q –Q), Q = High
RT = 100 across Q and Q signals 350 840 mV
VOCM Output Common-Mode Voltage RT = 100 across Q and Q signals 1.075 1.250 1.425 V
VIDIFF Differential Input Voltage (Q Q),
Q = High (Q –Q), Q = High
Common-mode input voltage = 1.25V 100 1000 mV
VICM Input Common-Mode Voltage Differential input voltage = ±350 mV 0.3 1.2 2.2 V
Virtex-6 CXT Family Data Sheet
DS153 (v1.6) February 11, 2011 www.xilinx.com
Product Specification 17
LVPECL DC Specifications (LVPECL_25)
These values are valid when driving a 100 differential load only, i.e., a 100 resistor between the two receiver pins. The
VOH levels are 200 mV below standard LVPECL levels and are compatible with devices tolerant of lower common-mode
ranges. Ta b l e 1 9 summarizes the DC output specifications of LVPECL. For more information on using LVPECL, see the
Virtex-6 FPGA SelectIO Resources User Guide.
eFUSE Read Endurance
Ta bl e 2 0 lists the maximum number of read cycle operations expected. For more information, see the Virtex-6 FPGA
Configuration User Guide.
GTX Transceiver Specifications
GTX Transceiver DC Characteristics
Tabl e 19 : LVPECL DC Specifications
Symbol DC Parameter Min Typ Max Units
VOH Output High Voltage VCC 1.025 1.545 VCC –0.88 V
VOL Output Low Voltage VCC 1.81 0.795 VCC –1.62 V
VICM Input Common-Mode Voltage 0.6 2.2 V
VIDIFF Differential Input Voltage(1)(2) 0.100 1.5 V
Notes:
1. Recommended input maximum voltage not to exceed VCCAUX +0.2V.
2. Recommended input minimum voltage not to go below –0.5V.
Tabl e 20 : eFUSE Read Endurance
Symbol Description Speed Grade Units
-3 -2 -1 -1L
DNA_CYCLES Number of DNA_PORT READ operations or JTAG ISC_DNA read
command operations. Unaffected by SHIFT operations. 30,000,000 Read
Cycles
AES_CYCLES Number of JTAG FUSE_KEY or FUSE_CNTL read command
operations. Unaffected by SHIFT operations.
30,000,000 Read
Cycles
Tabl e 21 : Absolute Maximum Ratings for GTX Transceivers(1)
Symbol Description Min Max Units
MGTAVCC Analog supply voltage for the GTX transmitter and receiver circuits relative to
GND
–0.5 1.1 V
MGTAVTT Analog supply voltage for the GTX transmitter and receiver termination
circuits relative to GND
–0.5 1.32 V
MGTAVTTRCAL Analog supply voltage for the resistor calibration circuit of the GTX
transceiver column
–0.5 1.32 V
VIN Receiver (RXP/RXN) and Transmitter (TXP/TXN) absolute input voltage –0.5 1.32 V
VMGTREFCLK Reference clock absolute input voltage –0.5 1.32 V
Notes:
1. Stresses beyond those listed under Absolute Maximum Ratings might cause permanent damage to the device. These are stress ratings
only, and functional operation of the device at these or any other conditions beyond those listed under Operating Conditions is not implied.
Exposure to Absolute Maximum Ratings conditions for extended periods of time might affect device reliability.
Virtex-6 CXT Family Data Sheet
DS153 (v1.6) February 11, 2011 www.xilinx.com
Product Specification 18
Tabl e 22 : Recommended Operating Conditions for GTX Transceivers(1)(2)
Symbol Description Min Typ Max Units
MGTAVCC Analog supply voltage for the GTX transmitter and receiver circuits relative
to GND
0.95 1.0 1.06 V
MGTAVTT Analog supply voltage for the GTX transmitter and receiver termination
circuits relative to GND
1.14 1.2 1.26 V
MGTAVTTRCAL Analog supply voltage for the resistor calibration circuit of the GTX
transceiver column
1.14 1.2 1.26 V
Notes:
1. Each voltage listed requires the filter circuit described in Virtex-6 FPGA GTX Transceivers User Guide.
2. Voltages are specified for the temperature range of Tj = –40°C to +100°C.
Tabl e 23 : GTX Transceiver Supply Current (per Lane) (1)(2)
Symbol Description Typ Max Units
IMGTAVTT MGTAVTT supply current for one GTX transceiver 55.9 Note 2 mA
IMGTAVCC MGTAVCC supply current for one GTX transceiver 56.1 mA
MGTRREF Precision reference resistor for internal calibration termination 100.0 ± 1% tolerance
Notes:
1. Typical values are specified at nominal voltage, 25°C, with a 3.125 Gb/s line rate.
2. Values for currents other than the values specified in this table can be obtained by using the XPOWER Estimator (XPE) or XPOWER
Analyzer (XPA) tools.
Tabl e 24 : GTX Transceiver Quiescent Supply Current (per Lane)(1)(2)(3)
Symbol Description Typ(4) Max Units
IMGTAVTTQ Quiescent MGTAVTT supply current for one GTX transceiver 0.9 Note 2 mA
IMGTAVCCQ Quiescent MGTAVCC supply current for one GTX transceiver 3.5 mA
Notes:
1. Device powered and unconfigured.
2. Currents for conditions other than values specified in this table can be obtained by using the XPOWER Estimator (XPE) or XPOWER
Analyzer (XPA) tools.
3. GTX transceiver quiescent supply current for an entire device can be calculated by multiplying the values in this table by the number of
available GTX transceivers.
4. Typical values are specified at nominal voltage, 25°C.
Virtex-6 CXT Family Data Sheet
DS153 (v1.6) February 11, 2011 www.xilinx.com
Product Specification 19
GTX Transceiver DC Input and Output Levels
Ta bl e 2 5 summarizes the DC output specifications of the GTX transceivers in Virtex-6 CXT FPGAs. Consult the Virtex-6
FPGA GTX Transceivers User Guide for further details.
Tabl e 25 : GTX Transceiver DC Specifications
Symbol DC Parameter Conditions Min Typ Max Units
DVPPIN Differential peak-to-peak input
voltage
External AC coupled 125 2000 mV
VIN Absolute input voltage DC coupled
MGTAVTT = 1.2V
–400 MGTAVTT mV
VCMIN Common mode input voltage DC coupled
MGTAVTT = 1.2V
2/3 MGTAVTT mV
DVPPOUT Differential peak-to-peak output
voltage(1) Transmitter output swing is set to
maximum setting
1000 mV
VCMOUTDC DC common mode output voltage Equation based MGTAVTT DVPPOUT/4 mV
RIN Differential input resistance 80 100 130
ROUT Differential output resistance 80 100 120
TOSKEW Transmitter output pair (TXP and TXN) intra-pair skew 2 8 ps
CEXT Recommended external AC coupling capacitor(2) 100 nF
Notes:
1. The output swing and preemphasis levels are programmable using the attributes discussed in Virtex-6 FPGA GTX Transceivers User Guide
and can result in values lower than reported in this table.
2. Other values can be used as appropriate to conform to specific protocols and standards.
X-Ref Target - Figure 11
Figure 11: Single-Ended Peak-to-Peak Voltage
X-Ref Target - Figure 12
Figure 12: Differential Peak-to-Peak Voltage
0
+V
–V
P–N
ds153_12_041410
Differential
Voltage
Virtex-6 CXT Family Data Sheet
DS153 (v1.6) February 11, 2011 www.xilinx.com
Product Specification 20
Ta bl e 2 6 summarizes the DC specifications of the clock input of the GTX transceiver. Consult theVirtex-6 FPGA GTX
Transceivers User Guide for further details.
GTX Transceiver Switching Characteristics
Consult Virtex-6 FPGA GTX Transceivers User Guide for further information.
Tabl e 26 : GTX Transceiver Clock DC Input Level Specification
Symbol DC Parameter Conditions Min Typ Max Units
VIDIFF Differential peak-to-peak input voltage 210 800 2000 mV
RIN Differential input resistance 90 100 130
CEXT Required external AC coupling capacitor 100 nF
Tabl e 27 : GTX Transceiver Performance
Symbol Description Speed Grade Units
-2 -1
FGTXMAX Maximum GTX transceiver data rate 3.75 3.75 Gb/s
FGPLLMAX Maximum PLL frequency 2.5 2.5 GHz
FGPLLMIN Minimum PLL frequency 1.2 1.2 GHz
Tabl e 28 : GTX Transceiver Dynamic Reconfiguration Port (DRP) Switching Characteristics
Symbol Description Speed Grade Units
-2 -1
FGTXDRPCLK GTXDRPCLK maximum frequency 100 100 MHz
Tabl e 29 : GTX Transceiver Reference Clock Switching Characteristics
Symbol Description Conditions All Speed Grades Units
Min Typ Max
FGCLK Reference clock frequency range 67.5 375 MHz
TRCLK Reference clock rise time 20% 80% 200 ps
TFCLK Reference clock fall time 80% 20% 200 ps
TDCREF Reference clock duty cycle Transceiver PLL only 45 50 55 %
TLOCK Clock recovery frequency acquisition
time
Initial PLL lock 1 ms
TPHASE Clock recovery phase acquisition time Lock to data after PLL has locked to
the reference clock
200 µs
X-Ref Target - Figure 13
Figure 13: Reference Clock Timing Parameters
ds153_13_041410
80%
20%
T
FCLK
T
RCLK
Virtex-6 CXT Family Data Sheet
DS153 (v1.6) February 11, 2011 www.xilinx.com
Product Specification 21
Tabl e 30 : GTX Transceiver User Clock Switching Characteristics(1)
Symbol Description Conditions Speed Grade Units
-2 -1
FTXOUT TXOUTCLK maximum frequency Internal 20-bit data path 187.5 187.5 MHz
Internal 16-bit data path 234.38 234.38 MHz
FRXREC RXRECCLK maximum frequency Internal 20-bit data path 187.5 187.5 MHz
Internal 16-bit data path 234.38 234.38 MHz
TRX RXUSRCLK maximum frequency 234.38 234.38 MHz
TRX2 RXUSRCLK2 maximum frequency
1 byte interface 376 312.5 MHz
2 byte interface 234.38 234.38 MHz
4 byte interface 117.19 117.19 MHz
TTX TXUSRCLK maximum frequency 234.38 234.38 MHz
TTX2 TXUSRCLK2 maximum frequency
1 byte interface 376 312.5 MHz
2 byte interface 234.38 234.38 MHz
4 byte interface 117.19 117.19 MHz
Notes:
1. Clocking must be implemented as described in Virtex-6 FPGA GTX Transceivers User Guide.
Tabl e 31 : GTX Transceiver Transmitter Switching Characteristics
Symbol Description Condition Min Typ Max Units
FGTXTX Serial data rate range 0.480 FGTXMAX Gb/s
TRTX TX Rise time 20%–80% 120 ps
TFTX TX Fall time 80%–20% 120 ps
TLLSKEW TX lane-to-lane skew(1) 350 ps
VTXOOBVDPP Electrical idle amplitude 15 mV
TTXOOBTRANSITION Electrical idle transition time 75 ns
TJ3.75 Total Jitter(2)(3) 3.75 Gb/s 0.34 UI
DJ3.75 Deterministic Jitter(2)(3) 0.16 UI
TJ3.125 Total Jitter(2)(3) 3.125 Gb/s 0.2 UI
DJ3.125 Deterministic Jitter(2)(3) ––0.1UI
TJ3.125L Total Jitter(2)(3) 3.125 Gb/s(4) 0.35 UI
DJ3.125L Deterministic Jitter(2)(3) 0.16 UI
TJ2.5 Total Jitter(2)(3) 2.5 Gb/s(5) 0.20 UI
DJ2.5 Deterministic Jitter(2)(3) 0.08 UI
TJ1.25 Total Jitter(2)(3) 1.25 Gb/s(6) 0.15 UI
DJ1.25 Deterministic Jitter(2)(3) 0.06 UI
TJ600 Total Jitter(2)(3) 600 Mb/s 0.1 UI
DJ600 Deterministic Jitter(2)(3) 0.03 UI
Virtex-6 CXT Family Data Sheet
DS153 (v1.6) February 11, 2011 www.xilinx.com
Product Specification 22
TJ480 Total Jitter(2)(3) 480 Mb/s 0.1 UI
DJ480 Deterministic Jitter(2)(3) 0.03 UI
Notes:
1. Using same REFCLK input with TXENPMAPHASEALIGN enabled for up to four consecutive GTX transceiver sites.
2. Using PLL_DIVSEL_FB = 2, 20-bit internal data width. These values are NOT intended for protocol specific compliance determinations.
3. All jitter values are based on a bit-error ratio of 1e-12.
4. PLL frequency at 1.5625 GHz and OUTDIV = 1.
5. PLL frequency at 2.5 GHz and OUTDIV = 2.
6. PLL frequency at 2.5 GHz and OUTDIV = 4.
Tabl e 32 : GTX Transceiver Receiver Switching Characteristics
Symbol Description Min Typ Max Units
FGTXRX Serial data rate RX oversampler not enabled 0.600 FGTXMAX Gb/s
RX oversampler enabled 0.480 0.600 Gb/s
TRXELECIDLE TIme for RXELECIDLE to respond to loss or restoration of data 75 ns
RXOOBVDPP OOB detect threshold peak-to-peak 60 150 mV
RXSST Receiver spread-spectrum
tracking(1) Modulated @ 33 KHz –5000 0 ppm
RXRL Run length (CID) Internal AC capacitor bypassed 512 UI
RXPPMTOL Data/REFCLK PPM offset
tolerance
CDR 2nd-order loop disabled –200 200 ppm
CDR 2nd-order loop enabled –2000 2000 ppm
SJ Jitter Tolerance(2)
JT_SJ3.75 Sinusoidal Jitter(3) 3.75 Gb/s 0.44 UI
JT_SJ3.125 Sinusoidal Jitter(3) 3.125 Gb/s 0.45 UI
JT_SJ3.125L Sinusoidal Jitter(3) 3.125 Gb/s(4) 0.45 UI
JT_SJ2.5 Sinusoidal Jitter(3) 2.5 Gb/s(5) 0.5 UI
JT_SJ1.25 Sinusoidal Jitter(3) 1.25 Gb/s(6) 0.5 UI
JT_SJ675 Sinusoidal Jitter(3) 675 Mb/s 0.4 UI
JT_SJ480 Sinusoidal Jitter(3) 480 Mb/s 0.4 UI
SJ Jitter Tolerance with Stressed Eye(2)
JT_TJSE3.125 Total Jitter with Stressed
Eye(7) 3.125 Gb/s 0.70 UI
JT_SJSE3.125 Sinusoidal Jitter with
Stressed Eye(7)
3.125 Gb/s 0.1 UI
Notes:
1. Using PLL_RXDIVSEL_OUT = 1, 2, and 4.
2. All jitter values are based on a bit-error ratio of 1e–12.
3. The frequency of the injected sinusoidal jitter is 80 MHz.
4. PLL frequency at 1.5625 GHz and OUTDIV = 1.
5. PLL frequency at 2.5 GHz and OUTDIV = 2.
6. PLL frequency at 2.5 GHz and OUTDIV = 4.
7. Composite jitter with RX equalizer enabled. DFE disabled.
Tabl e 31 : GTX Transceiver Transmitter Switching Characteristics (Cont’d)
Symbol Description Condition Min Typ Max Units
Virtex-6 CXT Family Data Sheet
DS153 (v1.6) February 11, 2011 www.xilinx.com
Product Specification 23
Ethernet MAC Switching Characteristics
Consult Virtex-6 FPGA Embedded Tri-mode Ethernet MAC User Guide for further information.
Integrated Interface Block for PCI Express Designs Switching Characteristics
More information and documentation on solutions for PCI Express designs can be found at:
http://www.xilinx.com/technology/protocols/pciexpress.htm
Tabl e 33 : Maximum Ethernet MAC Performance
Symbol Description Conditions Speed Grade Units
-2 -1
FTEMACCLIENT Client interface maximum frequency
10 Mb/s – 8-bit width 2.5(1) 2.5(1) MHz
100 Mb/s – 8-bit width 25(2) 25(2) MHz
1000 Mb/s – 8-bit width 125 125 MHz
1000 Mb/s – 16-bit width 62.5 62.5 MHz
FTEMACPHY Physical interface maximum frequency
10 Mb/s – 4-bit width 2.5 2.5 MHz
100 Mb/s – 4-bit width 25 25 MHz
1000 Mb/s – 8-bit width 125 125 MHz
Notes:
1. When not using clock enable, the FMAX is lowered to 1.25 MHz.
2. When not using clock enable, the FMAX is lowered to 12.5 MHz.
Tabl e 34 : Maximum Performance for PCI Express Designs
Symbol Description Speed Grade Units
-2 -1
FPIPECLK Pipe clock maximum frequency 125 125 MHz
FUSERCLK User clock maximum frequency 250 250 MHz
FDRPCLK DRP clock maximum frequency 250 250 MHz
Virtex-6 CXT Family Data Sheet
DS153 (v1.6) February 11, 2011 www.xilinx.com
Product Specification 24
Performance Characteristics
This section provides the performance characteristics of some common functions and designs implemented in Virtex-6 CXT
devices. The numbers reported here are worst-case values; they have all been fully characterized. These values are subject
to the same guidelines as the Switching Characteristics, page 25.
Tabl e 35 : Interface Performances
Description Speed Grade
-2 -1
Networking Applications
SDR LVDS transmitter (using OSERDES; DATA_WIDTH = 4 to 8) 650 Mb/s 625 Mb/s
DDR LVDS transmitter (using OSERDES; DATA_WIDTH = 4 to 10) 1.25 Gb/s 1.0 Gb/s
SDR LVDS receiver (SFI-4.1)(1) 650 Mb/s 625 Mb/s
DDR LVDS receiver (SFI-4.2)(1) 1.0 Gb/s 0.9 Gb/s
Maximum Physical Interface (PHY) Rate for Memory Interfaces(2)(3)
DDR2 666 Mb/s 666 Mb/s
DDR3 800 Mb/s 666 Mb/s
QDR II + SRAM 250 MHz 250 MHz
Notes:
1. LVDS receivers are typically bounded with certain applications where specific DPA algorithms dominate deterministic performance.
2. Based on Xilinx memory characterization platforms designed according to the guidelines in the Virtex-6 FPGA Memory Interface Solutions
User Guide.
3. Consult the Virtex-6 FPGA Memory Interface Solutions Data Sheet for performance and feature information on memory interface cores
(controller plus PHY).
Virtex-6 CXT Family Data Sheet
DS153 (v1.6) February 11, 2011 www.xilinx.com
Product Specification 25
Switching Characteristics
All values represented in this data sheet are based on the
speed specification (version 1.08). Switching characteristics
are specified on a per-speed-grade basis and can be
designated as Advance, Preliminary, or Production. Each
designation is defined as follows:
Advance
These specifications are based on simulations only and are
typically available soon after device design specifications
are frozen. Although speed grades with this designation are
considered relatively stable and conservative, some under-
reporting might still occur.
Preliminary
These specifications are based on complete ES
(engineering sample) silicon characterization. Devices and
speed grades with this designation are intended to give a
better indication of the expected performance of production
silicon. The probability of under-reporting delays is greatly
reduced as compared to Advance data.
Production
These specifications are released once enough production
silicon of a particular device family member has been
characterized to provide full correlation between
specifications and devices over numerous production lots.
There is no under-reporting of delays, and customers
receive formal notification of any subsequent changes.
Typically, the slowest speed grades transition to Production
before faster speed grades.
All specifications are always representative of worst-case
supply voltage and junction temperature conditions.
Since individual family members are produced at different
times, the migration from one category to another depends
completely on the status of the fabrication process for each
device.
Ta b le 3 6 correlates the current status of each Virtex-6 CXT
device on a per speed grade basis.
Testing of Switching Characteristics
All devices are 100% functionally tested. Internal timing
parameters are derived from measuring internal test
patterns. Listed below are representative values.
For more specific, more precise, and worst-case
guaranteed data, use the values reported by the static
timing analyzer and back-annotate to the simulation net list.
Unless otherwise noted, values apply to all Virtex-6 CXT
devices.
Production Silicon and ISE Software Status
In some cases, a particular family member (and speed
grade) is released to production before a speed
specification is released with the correct label (Advance,
Preliminary, Production). Any labeling discrepancies are
corrected in subsequent speed specification releases.
Ta bl e 3 7 lists the production released Virtex-6 family
member, speed grade, and the minimum corresponding
supported speed specification version and ISE software
revisions. The ISE® software and speed specifications
listed are the minimum releases required for production. All
subsequent releases of software and speed specifications
are valid.
Tabl e 3 6 : Virtex-6 CXT Device/Speed Grade
Designations
Device Speed Grade Designations
Advance Preliminary Production
XC6VCX75T -2, -1
XC6VCX130T -2, -1
XC6VCX195T -2, -1
XC6VCX240T -2, -1
Tabl e 3 7 : Virtex-6 CXT Device/Production Software
and Speed Specification Release
Device Speed Grade Designations
-2 -1
XC6VCX75T ISE 12.2 (with speed file patch) v1.06
XC6VCX130T ISE 12.1 v1.04
XC6VCX195T ISE 12.2 (with speed file patch) v1.06
XC6VCX240T ISE 12.1 v1.04
Notes:
1. Blank entries indicate a device and/or speed grade in advance or
preliminary status.
Virtex-6 CXT Family Data Sheet
DS153 (v1.6) February 11, 2011 www.xilinx.com
Product Specification 26
IOB Pad Input/Output/3-State Switching Characteristics
Ta bl e 3 8 summarizes the values of standard-specific data
input delay adjustments, output delays terminating at pads
(based on standard) and 3-state delays.
TIOPI is described as the delay from IOB pad through the
input buffer to the I-pin of an IOB pad. The delay varies
depending on the capability of the SelectIO input buffer.
TIOOP is described as the delay from the O pin to the IOB
pad through the output buffer of an IOB pad. The delay
varies depending on the capability of the SelectIO output
buffer.
TIOTP is described as the delay from the T pin to the IOB
pad through the output buffer of an IOB pad, when 3-state is
disabled. The delay varies depending on the SelectIO
capability of the output buffer.
Ta b le 3 9 summarizes the value of TIOTPHZ. TIOTPHZ is
described as the delay from the T pin to the IOB pad
through the output buffer of an IOB pad, when 3-state is
enabled (i.e., a high impedance state).
Tabl e 38 : IOB Switching Characteristics
I/O Standard
TIOPI TIOOP TIOTP
UnitsSpeed Grade Speed Grade Speed Grade
-2 -1 -2 -1 -2 -1
LVDS_25 1.09 1.09 1.68 1.68 1.68 1.68 ns
LVDSEXT_25 1.09 1.09 1.84 1.84 1.84 1.84 ns
HT_25 1.09 1.09 1.78 1.78 1.78 1.78 ns
BLVDS_25 1.09 1.09 1.67 1.67 1.67 1.67 ns
RSDS_25 (point to point) 1.09 1.09 1.68 1.68 1.68 1.68 ns
HSTL_I 1.06 1.06 1.73 1.73 1.73 1.73 ns
HSTL_II 1.06 1.06 1.74 1.74 1.74 1.74 ns
HSTL_III 1.06 1.06 1.71 1.71 1.71 1.71 ns
HSTL_I_18 1.06 1.06 1.75 1.75 1.75 1.75 ns
HSTL_II_18 1.06 1.06 1.81 1.81 1.81 1.81 ns
HSTL_III_18 1.06 1.06 1.71 1.71 1.71 1.71 ns
SSTL2_I 1.06 1.06 1.77 1.77 1.77 1.77 ns
SSTL2_II 1.06 1.06 1.72 1.72 1.72 1.72 ns
SSTL15 1.06 1.06 1.71 1.71 1.71 1.71 ns
LVCMOS25, Slow, 2 mA 0.66 0.66 6.01 6.01 6.01 6.01 ns
LVCMOS25, Slow, 4 mA 0.66 0.66 3.79 3.79 3.79 3.79 ns
LVCMOS25, Slow, 6 mA 0.66 0.66 3.08 3.08 3.08 3.08 ns
LVCMOS25, Slow, 8 mA 0.66 0.66 2.72 2.72 2.72 2.72 ns
LVCMOS25, Slow, 12 mA 0.66 0.66 2.17 2.17 2.17 2.17 ns
LVCMOS25, Slow, 16 mA 0.66 0.66 2.29 2.29 2.29 2.29 ns
LVCMOS25, Slow, 24 mA 0.66 0.66 2.02 2.02 2.02 2.02 ns
LVCMOS25, Fast, 2 mA 0.66 0.66 6.04 6.04 6.04 6.04 ns
LVCMOS25, Fast, 4 mA 0.66 0.66 3.82 3.82 3.82 3.82 ns
LVCMOS25, Fast, 6 mA 0.66 0.66 2.99 2.99 2.99 2.99 ns
LVCMOS25, Fast, 8 mA 0.66 0.66 2.65 2.65 2.65 2.65 ns
LVCMOS25, Fast, 12 mA 0.66 0.66 2.08 2.08 2.08 2.08 ns
LVCMOS25, Fast, 16 mA 0.66 0.66 2.13 2.13 2.13 2.13 ns
LVCMOS25, Fast, 24 mA 0.66 0.66 1.99 1.99 1.99 1.99 ns
Virtex-6 CXT Family Data Sheet
DS153 (v1.6) February 11, 2011 www.xilinx.com
Product Specification 27
LVCMOS18, Slow, 2 mA 0.71 0.71 4.87 4.87 4.87 4.87 ns
LVCMOS18, Slow, 4 mA 0.71 0.71 3.21 3.21 3.21 3.21 ns
LVCMOS18, Slow, 6 mA 0.71 0.71 2.64 2.64 2.64 2.64 ns
LVCMOS18, Slow, 8 mA 0.71 0.71 2.27 2.27 2.27 2.27 ns
LVCMOS18, Slow, 12 mA 0.71 0.71 2.15 2.15 2.15 2.15 ns
LVCMOS18, Slow, 16 mA 0.71 0.71 2.11 2.11 2.11 2.11 ns
LVCMOS18, Fast, 2 mA 0.71 0.71 4.57 4.57 4.57 4.57 ns
LVCMOS18, Fast, 4 mA 0.71 0.71 2.97 2.97 2.97 2.97 ns
LVCMOS18, Fast, 6 mA 0.71 0.71 2.46 2.46 2.46 2.46 ns
LVCMOS18, Fast, 8 mA 0.71 0.71 2.13 2.13 2.13 2.13 ns
LVCMOS18, Fast, 12 mA 0.71 0.71 1.97 1.97 1.97 1.97 ns
LVCMOS18, Fast, 16 mA 0.71 0.71 1.91 1.91 1.91 1.91 ns
LVCMOS15, Slow, 2 mA 0.85 0.85 4.29 4.29 4.29 4.29 ns
LVCMOS15, Slow, 4 mA 0.85 0.85 3.10 3.10 3.10 3.10 ns
LVCMOS15, Slow, 6 mA 0.85 0.85 2.68 2.68 2.68 2.68 ns
LVCMOS15, Slow, 8 mA 0.85 0.85 2.23 2.23 2.23 2.23 ns
LVCMOS15, Slow, 12 mA 0.85 0.85 2.13 2.13 2.13 2.13 ns
LVCMOS15, Slow, 16 mA 0.85 0.85 2.04 2.04 2.04 2.04 ns
LVCMOS15, Fast, 2 mA 0.85 0.85 4.28 4.28 4.28 4.28 ns
LVCMOS15, Fast, 4 mA 0.85 0.85 2.78 2.78 2.78 2.78 ns
LVCMOS15, Fast, 6 mA 0.85 0.85 2.42 2.42 2.42 2.42 ns
LVCMOS15, Fast, 8 mA 0.85 0.85 2.11 2.11 2.11 2.11 ns
LVCMOS15, Fast, 12 mA 0.85 0.85 1.97 1.97 1.97 1.97 ns
LVCMOS15, Fast, 16 mA 0.85 0.85 1.96 1.96 1.96 1.96 ns
LVCMOS12, Slow, 2 mA 0.93 0.93 3.75 3.75 3.75 3.75 ns
LVCMOS12, Slow, 4 mA 0.93 0.93 2.93 2.93 2.93 2.93 ns
LVCMOS12, Slow, 6 mA 0.93 0.93 2.41 2.41 2.41 2.41 ns
LVCMOS12, Slow, 8 mA 0.93 0.93 2.25 2.25 2.25 2.25 ns
LVCMOS12, Fast, 2 mA 0.93 0.93 3.39 3.39 3.39 3.39 ns
LVCMOS12, Fast, 4 mA 0.93 0.93 2.51 2.51 2.51 2.51 ns
LVCMOS12, Fast, 6 mA 0.93 0.93 2.11 2.11 2.11 2.11 ns
LVCMOS12, Fast, 8 mA 0.93 0.93 2.02 2.02 2.02 2.02 ns
LVDCI_25 0.66 0.66 2.26 2.26 2.26 2.26 ns
LVDCI_18 0.71 0.71 2.47 2.47 2.47 2.47 ns
LVDCI_15 0.85 0.85 2.24 2.24 2.24 2.24 ns
LVDCI_DV2_25 0.66 0.66 2.01 2.01 2.01 2.01 ns
LVDCI_DV2_18 0.71 0.71 2.00 2.00 2.00 2.00 ns
LVDCI_DV2_15 0.85 0.85 1.91 1.91 1.91 1.91 ns
Tabl e 38 : IOB Switching Characteristics (Cont’d)
I/O Standard
TIOPI TIOOP TIOTP
UnitsSpeed Grade Speed Grade Speed Grade
-2 -1 -2 -1 -2 -1
Virtex-6 CXT Family Data Sheet
DS153 (v1.6) February 11, 2011 www.xilinx.com
Product Specification 28
LVPECL_25 1.09 1.09 1.65 1.65 1.65 1.65 ns
HSTL_I_12 1.06 1.06 1.78 1.78 1.78 1.78 ns
HSTL_I_DCI 1.06 1.06 1.66 1.66 1.66 1.66 ns
HSTL_II_DCI 1.06 1.06 1.68 1.68 1.68 1.68 ns
HSTL_II_T_DCI 1.06 1.06 1.66 1.66 1.66 1.66 ns
HSTL_III_DCI 1.06 1.06 1.62 1.62 1.62 1.62 ns
HSTL_I_DCI_18 1.06 1.06 1.68 1.68 1.68 1.68 ns
HSTL_II_DCI_18 1.06 1.06 1.62 1.62 1.62 1.62 ns
HSTL_II _T_DCI_18 1.06 1.06 1.68 1.68 1.68 1.68 ns
HSTL_III_DCI_18 1.06 1.061.691.691.691.69 ns
DIFF_HSTL_I_18 1.09 1.09 1.75 1.75 1.75 1.75 ns
DIFF_HSTL_I_DCI_18 1.09 1.09 1.68 1.68 1.68 1.68 ns
DIFF_HSTL_I 1.09 1.09 1.73 1.73 1.73 1.73 ns
DIFF_HSTL_I_DCI 1.09 1.09 1.66 1.66 1.66 1.66 ns
DIFF_HSTL_II_18 1.09 1.09 1.81 1.81 1.81 1.81 ns
DIFF_HSTL_II_DCI_18 1.09 1.09 1.62 1.62 1.62 1.62 ns
DIFF_HSTL_II _T_DCI_18 1.091.091.681.681.681.68 ns
DIFF_HSTL_II 1.09 1.09 1.74 1.74 1.74 1.74 ns
DIFF_HSTL_II_DCI 1.09 1.09 1.68 1.68 1.68 1.68 ns
SSTL2_I_DCI 1.06 1.06 1.70 1.70 1.70 1.70 ns
SSTL2_II_DCI 1.06 1.06 1.67 1.67 1.67 1.67 ns
SSTL2_II_T_DCI 1.06 1.06 1.70 1.70 1.70 1.70 ns
SSTL18_I 1.06 1.06 1.75 1.75 1.75 1.75 ns
SSTL18_II 1.06 1.06 1.67 1.67 1.67 1.67 ns
SSTL18_I_DCI 1.06 1.06 1.67 1.67 1.67 1.67 ns
SSTL18_II_DCI 1.06 1.06 1.63 1.63 1.63 1.63 ns
SSTL18_II_T_DCI 1.06 1.06 1.67 1.67 1.67 1.67 ns
SSTL15_T_DCI 1.06 1.06 1.68 1.68 1.68 1.68 ns
SSTL15_DCI 1.06 1.06 1.68 1.68 1.68 1.68 ns
DIFF_SSTL2_I 1.09 1.09 1.77 1.77 1.77 1.77 ns
DIFF_SSTL2_I_DCI 1.09 1.09 1.70 1.70 1.70 1.70 ns
DIFF_SSTL2_II 1.09 1.09 1.72 1.72 1.72 1.72 ns
DIFF_SSTL2_II_DCI 1.09 1.09 1.67 1.67 1.67 1.67 ns
DIFF_SSTL2_II_T_DCI 1.09 1.09 1.70 1.70 1.70 1.70 ns
DIFF_SSTL18_I 1.09 1.09 1.75 1.75 1.75 1.75 ns
DIFF_SSTL18_I_DCI 1.09 1.09 1.67 1.67 1.67 1.67 ns
DIFF_SSTL18_II 1.09 1.09 1.67 1.67 1.67 1.67 ns
DIFF_SSTL18_II_DCI 1.09 1.09 1.63 1.63 1.63 1.63 ns
Tabl e 38 : IOB Switching Characteristics (Cont’d)
I/O Standard
TIOPI TIOOP TIOTP
UnitsSpeed Grade Speed Grade Speed Grade
-2 -1 -2 -1 -2 -1
Virtex-6 CXT Family Data Sheet
DS153 (v1.6) February 11, 2011 www.xilinx.com
Product Specification 29
I/O Standard Adjustment Measurement Methodology
Input Delay Measurements
Ta bl e 4 0 shows the test setup parameters used for measuring input delay.
DIFF_SSTL18_II_T_DCI 1.09 1.09 1.67 1.67 1.67 1.67 ns
DIFF_SSTL15 1.06 1.06 1.71 1.71 1.71 1.71 ns
DIFF_SSTL15_DCI 1.06 1.06 1.68 1.68 1.68 1.68 ns
DIFF_SSTL15_T_DCI 1.06 1.06 1.68 1.68 1.68 1.68 ns
Tabl e 39 : IOB 3-state ON Output Switching Characteristics (TIOTPHZ)
Symbol Description Speed Grade Units
-2 -1
TIOTPHZ T input to Pad high-impedance 0.99 0.99 ns
Tabl e 38 : IOB Switching Characteristics (Cont’d)
I/O Standard
TIOPI TIOOP TIOTP
UnitsSpeed Grade Speed Grade Speed Grade
-2 -1 -2 -1 -2 -1
Tabl e 40 : Input Delay Measurement Methodology
Description I/O Standard Attribute VL(1)(2) VH(1)(2) VMEAS
(1,4,5)
VREF
(1,3,5)
LVCMOS, 2.5V LVCMOS25 0 2.5 1.25
LVCMOS, 1.8V LVCMOS18 0 1.8 0.9
LVCMOS, 1.5V LVCMOS15 0 1.5 0.75
HSTL (High-Speed Transceiver Logic),
Class I & II
HSTL_I, HSTL_II VREF –0.5 V
REF +0.5 V
REF 0.75
HSTL, Class III HSTL_III VREF –0.5 V
REF +0.5 V
REF 0.90
HSTL, Class I & II, 1.8V HSTL_I_18, HSTL_II_18 VREF –0.5 V
REF +0.5 V
REF 0.90
HSTL, Class III 1.8V HSTL_III_18 VREF –0.5 V
REF +0.5 V
REF 1.08
SSTL (Stub Terminated Transceiver Logic),
Class I & II, 3.3V
SSTL3_I, SSTL3_II VREF –1.00 V
REF +1.00 V
REF 1.5
SSTL, Class I & II, 2.5V SSTL2_I, SSTL2_II VREF –0.75 V
REF +0.75 V
REF 1.25
SSTL, Class I & II, 1.8V SSTL18_I, SSTL18_II VREF –0.5 V
REF +0.5 V
REF 0.90
LVDS (Low-Voltage Differential Signaling), 2.5V LVDS_25 1.2 0.125 1.2 + 0.125 0(6)
LVDSEXT (LVDS Extended Mode), 2.5V LVDSEXT_25 1.2 0.125 1.2 + 0.125 0(6)
HT (HyperTransport), 2.5V LDT_25 0.6 0.125 0.6 + 0.125 0(6)
Notes:
1. The input delay measurement methodology parameters for LVDCI are the same for LVCMOS standards of the same voltage. Input delay
measurement methodology parameters for HSLVDCI are the same as for HSTL_II standards of the same voltage. Parameters for all other
DCI standards are the same for the corresponding non-DCI standards.
2. Input waveform switches between VLand VH.
3. Measurements are made at typical, minimum, and maximum VREF values. Reported delays reflect worst case of these measurements. VREF
values listed are typical.
4. Input voltage level from which measurement starts.
5. This is an input voltage reference that bears no relation to the VREF / VMEAS parameters found in IBIS models and/or noted in Figure 14.
6. The value given is the differential output voltage.
Virtex-6 CXT Family Data Sheet
DS153 (v1.6) February 11, 2011 www.xilinx.com
Product Specification 30
Output Delay Measurements
Output delays are measured using a Tektronix P6245
TDS500/600 probe (< 1 pF) across approximately 4" of FR4
microstrip trace. Standard termination was used for all
testing. The propagation delay of the 4" trace is
characterized separately and subtracted from the final
measurement, and is therefore not included in the
generalized test setups shown in Figure 14 and Figure 15.
Measurements and test conditions are reflected in the IBIS
models except where the IBIS format precludes it.
Parameters VREF, RREF, CREF, and VMEAS fully describe
the test conditions for each I/O standard. The most accurate
prediction of propagation delay in any given application can
be obtained through IBIS simulation, using the following
method:
1. Simulate the output driver of choice into the generalized
test setup, using values from Ta b l e 4 1 .
2. Record the time to VMEAS.
3. Simulate the output driver of choice into the actual PCB
trace and load, using the appropriate IBIS model or
capacitance value to represent the load.
4. Record the time to VMEAS.
5. Compare the results of steps 2 and 4. The increase or
decrease in delay yields the actual propagation delay of
the PCB trace.
X-Ref Target - Figure 14
Figure 14: Single Ended Test Setup
VREF
RREF
VMEAS
(voltage level when taking
delay measurement)
CREF
(probe capacitance)
FPGA Output
ds152_06_042109
X-Ref Target - Figure 15
Figure 15: Differential Test Setup
RREF VMEAS
+
CREF
FPGA Output
ds152_07_042109
Tabl e 41 : Output Delay Measurement Methodology
Description I/O Standard
Attribute
RREF
()
CREF(1)
(pF)
VMEAS
(V)
VREF
(V)
LVCMOS, 2.5V LVCMOS25 1M 0 1.25 0
LVCMOS, 1.8V LVCMOS18 1M 0 0.9 0
LVCMOS, 1.5V LVCMOS15 1M 0 0.75 0
LVCMOS, 1.2V LVCMOS12 1M 0 0.75 0
HSTL (High-Speed Transceiver Logic), Class I HSTL_I 50 0 VREF 0.75
HSTL, Class II HSTL_II 25 0 VREF 0.75
HSTL, Class III HSTL_III 50 0 0.9 1.5
HSTL, Class I, 1.8V HSTL_I_18 50 0 VREF 0.9
HSTL, Class II, 1.8V HSTL_II_18 25 0 VREF 0.9
HSTL, Class III, 1.8V HSTL_III_18 50 0 1.1 1.8
SSTL (Stub Series Terminated Logic), Class I, 1.8V SSTL18_I 50 0 VREF 0.9
SSTL, Class II, 1.8V SSTL18_II 25 0 VREF 0.9
SSTL, Class I, 2.5V SSTL2_I 50 0 VREF 1.25
SSTL, Class II, 2.5V SSTL2_II 25 0 VREF 1.25
LVDS (Low-Voltage Differential Signaling), 2.5V LVDS_25 100 0 0(2) 1.2
LVDSEXT (LVDS Extended Mode), 2.5V LVDS_25 100 0 0(2) 1.2
BLVDS (Bus LVDS), 2.5V BLVDS_25 100 0 0(2) 0
Virtex-6 CXT Family Data Sheet
DS153 (v1.6) February 11, 2011 www.xilinx.com
Product Specification 31
Input/Output Logic Switching Characteristics
HT (HyperTransport), 2.5V LDT_25 100 0 0(2) 0.6
LVPECL (Low-Voltage Positive Emitter-Coupled Logic),
2.5V
LVPECL_25 100 0 0(2) 0
LVDCI/HSLVDCI, 2.5V LVDCI_25, HSLVDCI_25 1M 0 1.25 0
LVDCI/HSLVDCI, 1.8V LVDCI_18, HSLVDCI_18 1M 0 0.9 0
LVDCI/HSLVDCI, 1.5V LVDCI_15, HSLVDCI_15 1M 0 0.75 0
HSTL (High-Speed Transceiver Logic), Class I & II, with DCI HSTL_I_DCI, HSTL_II_DCI 50 0 VREF 0.75
HSTL, Class III, with DCI HSTL_III_DCI 50 0 0.9 1.5
HSTL, Class I & II, 1.8V, with DCI HSTL_I_DCI_18, HSTL_II_DCI_18 50 0 VREF 0.9
HSTL, Class III, 1.8V, with DCI HSTL_III_DCI_18 50 0 1.1 1.8
SSTL (Stub Series Termi.Logic), Class I & II, 1.8V, with DCI SSTL18_I_DCI, SSTL18_II_DCI 50 0 VREF 0.9
SSTL, Class I & II, 2.5V, with DCI SSTL2_I_DCI, SSTL2_II_DCI 50 0 VREF 1.25
Notes:
1. CREF is the capacitance of the probe, nominally 0 pF.
2. The value given is the differential output voltage.
Tabl e 42 : ILOGIC Switching Characteristics
Symbol Description Speed Grade Units
-2 -1
Setup/Hold
TICE1CK/TICKCE1 CE1 pin Setup/Hold with respect to CLK 0.27/0.04 0.27/0.04 ns
TISRCK/TICKSR SR pin Setup/Hold with respect to CLK 0.96/–0.10 0.96/–0.10 ns
TIDOCK/TIOCKD D pin Setup/Hold with respect to CLK without Delay 0.10/0.54 0.10/0.54 ns
TIDOCKD/TIOCKDD DDLY pin Setup/Hold with respect to CLK (using IODELAY) 0.14/0.42 0.14/0.40 ns
Combinatorial
TIDI D pin to O pin propagation delay, no Delay 0.20 0.20 ns
TIDID DDLY pin to O pin propagation delay (using IODELAY) 0.25 0.25 ns
Sequential Delays
TIDLO D pin to Q1 pin using flip-flop as a latch without Delay 0.64 0.64 ns
TIDLOD DDLY pin to Q1 pin using flip-flop as a latch (using IODELAY) 0.68 0.68 ns
TICKQ CLK to Q outputs 0.71 0.71 ns
TRQ_ILOGIC SR pin to OQ/TQ out 1.15 1.15 ns
TGSRQ_ILOGIC Global Set/Reset to Q outputs 10.51 10.51 ns
Set/Reset
TRPW_ILOGIC Minimum Pulse Width, SR inputs 1.20 1.20 ns, Min
Tabl e 41 : Output Delay Measurement Methodology (Cont’d)
Description I/O Standard
Attribute
RREF
()
CREF(1)
(pF)
VMEAS
(V)
VREF
(V)
Virtex-6 CXT Family Data Sheet
DS153 (v1.6) February 11, 2011 www.xilinx.com
Product Specification 32
Input Serializer/Deserializer Switching Characteristics
Tabl e 43 : OLOGIC Switching Characteristics
Symbol Description Speed Grade Units
-2 -1
Setup/Hold
TODCK/TOCKD D1/D2 pins Setup/Hold with respect to CLK 0.54/–0.11 0.54/–0.11 ns
TOOCECK/TOCKOCE OCE pin Setup/Hold with respect to CLK 0.22/–0.05 0.22/–0.05 ns
TOSRCK/TOCKSR SR pin Setup/Hold with respect to CLK 0.71/–0.29 0.71/–0.29 ns
TOTCK/TOCKT T1/T2 pins Setup/Hold with respect to CLK 0.56/–0.10 0.56/–0.10 ns
TOTCECK/TOCKTCE TCE pin Setup/Hold with respect to CLK 0.21/–0.05 0.21/–0.05 ns
Combinatorial
TDOQ D1 to OQ out or T1 to TQ out 1.01 1.01 ns
Sequential Delays
TOCKQ CLK to OQ/TQ out 0.71 0.71 ns
TRQ SR pin to OQ/TQ out 1.05 1.05 ns
TGSRQ Global Set/Reset to Q outputs 10.51 10.51 ns
Set/Reset
TRPW Minimum Pulse Width, SR inputs 1.20 1.20 ns, Min
Tabl e 44 : ISERDES Switching Characteristics
Symbol Description Speed Grade Units
-2 -1
Setup/Hold for Control Lines
TISCCK_BITSLIP/ TISCKC_BITSLIP BITSLIP pin Setup/Hold with respect to CLKDIV 0.09/0.17 0.09/0.17 ns
TISCCK_CE / TISCKC_CE(2) CE pin Setup/Hold with respect to CLK (for CE1) 0.27/0.04 0.27/0.04 ns
TISCCK_CE2 / TISCKC_CE2(2) CE pin Setup/Hold with respect to CLKDIV (for CE2) –0.06/0.31 –0.06/0.31 ns
Setup/Hold for Data Lines
TISDCK_D /TISCKD_D D pin Setup/Hold with respect to CLK 0.09/0.11 0.09/0.11 ns
TISDCK_DDLY /TISCKD_DDLY DDLY pin Setup/Hold with respect to CLK (using
IODELAY)(1)
0.14/0.07 0.14/0.07 ns
TISDCK_D_DDR /TISCKD_D_DDR D pin Setup/Hold with respect to CLK at DDR mode 0.09/0.11 0.09/0.11 ns
TISDCK_DDLY_DDR
TISCKD_DDLY_DDR
D pin Setup/Hold with respect to CLK at DDR mode
(using IODELAY)(1)
0.14/0.07 0.14/0.07 ns
Sequential Delays
TISCKO_Q CLKDIV to out at Q pin 0.75 0.75 ns
Propagation Delays
TISDO_DO D input to DO output pin 0.25 0.25 ns
Notes:
1. Recorded at 0 tap value.
2. TISCCK_CE2 and TISCKC_CE2 are reported as TISCCK_CE/TISCKC_CE in a TRACE report.
Virtex-6 CXT Family Data Sheet
DS153 (v1.6) February 11, 2011 www.xilinx.com
Product Specification 33
Output Serializer/Deserializer Switching Characteristics
Tabl e 45 : OSERDES Switching Characteristics
Symbol Description Speed Grade Units
-2 -1
Setup/Hold
TOSDCK_D/TOSCKD_D D input Setup/Hold with respect to CLKDIV 0.31/–0.12 0.31/–0.12 ns
TOSDCK_T/TOSCKD_T(1) T input Setup/Hold with respect to CLK 0.56/–0.08 0.56/–0.08 ns
TOSDCK_T2/TOSCKD_T2(1) T input Setup/Hold with respect to CLKDIV 0.31/–0.08 0.31/–0.08 ns
TOSCCK_OCE/TOSCKC_OCE OCE input Setup/Hold with respect to CLK 0.22/–0.05 0.22/–0.05 ns
TOSCCK_S SR (Reset) input Setup with respect to CLKDIV 0.07 0.07 ns
TOSCCK_TCE/TOSCKC_TCE TCE input Setup/Hold with respect to CLK 0.21/–0.05 0.21/–0.05 ns
Sequential Delays
TOSCKO_OQ Clock to out from CLK to OQ 0.82 0.82 ns
TOSCKO_TQ Clock to out from CLK to TQ 0.82 0.82 ns
Combinatorial
TOSDO_TTQ T input to TQ Out 0.97 0.97 ns
Notes:
1. TOSDCK_T2 and TOSCKD_T2 are reported as TOSDCK_T/TOSCKD_T in the TRACE report.
Virtex-6 CXT Family Data Sheet
DS153 (v1.6) February 11, 2011 www.xilinx.com
Product Specification 34
Input/Output Delay Switching Characteristics
CLB Switching Characteristics
Tabl e 46 : Input/Output Delay Switching Characteristics
Symbol Description Speed Grade Units
-2 -1
IDELAYCTRL
TDLYCCO_RDY Reset to Ready for IDELAYCTRL 3 3 µs
FIDELAYCTRL_REF REFCLK frequency 200 200 MHz
IDELAYCTRL_REF_PRECISION REFCLK precision ±10 ±10 MHz
TIDELAYCTRL_RPW Minimum Reset pulse width 50 50 ns
IODELAY
TIDELAYRESOLUTION IODELAY Chain Delay Resolution 1/(32 x 2 x FREF)ps
TIDELAYPAT_JIT
Pattern dependent period jitter in delay chain for clock
pattern.(1)
00ps
per tap
Pattern dependent period jitter in delay chain for
random data pattern.(2) ±5 ±5 ps
per tap
Pattern dependent period jitter in delay chain for
random data pattern.(3)
±9 ±9 ps
per tap
TIODELAY_CLK_MAX Maximum frequency of CLK input to IODELAY 300 300 MHz
TIODCCK_CE / TIODCKC_CE CE pin Setup/Hold with respect to CK 0.65/–0.09 0.65/–0.09 ns
TIODCK_INC/ TIODCKC_INC INC pin Setup/Hold with respect to CK 0.31/–0.00 0.31/–0.00 ns
TIODCCK_RST/ TIODCKC_RST RST pin Setup/Hold with respect to CK 0.69/–0.08 0.69/–0.08 ns
TIODDO_T TSCONTROL delay to MUXE/MUXF switching and
through IODELAY
Note 4 Note 4 ps
TIODDO_IDATAIN Propagation delay through IODELAY Note 4 Note 4 ps
TIODDO_ODATAIN Propagation delay through IODELAY Note 4 Note 4 ps
Notes:
1. When HIGH_PERFORMANCE mode is set to TRUE or FALSE.
2. When HIGH_PERFORMANCE mode is set to TRUE
3. When HIGH_PERFORMANCE mode is set to FALSE.
4. Delay depends on IODELAY tap setting. See the TRACE report for actual values.
Tabl e 47 : CLB Switching Characteristics
Symbol Description Speed Grade Units
-2 -1
Combinatorial Delays
TILO An Dn LUT address to A 0.08 0.08 ns, Max
An Dn LUT address to AMUX/CMUX 0.23 0.25 ns, Max
An Dn LUT address to BMUX_A 0.37 0.41 ns, Max
TITO An Dn inputs to A D Q outputs 0.79 0.91 ns, Max
TAXA AX inputs to AMUX output 0.42 0.48 ns, Max
TAXB AX inputs to BMUX output 0.47 0.53 ns, Max
TAXC AX inputs to CMUX output 0.52 0.60 ns, Max
TAXD AX inputs to DMUX output 0.55 0.63 ns, Max
Virtex-6 CXT Family Data Sheet
DS153 (v1.6) February 11, 2011 www.xilinx.com
Product Specification 35
TBXB BX inputs to BMUX output 0.39 0.45 ns, Max
TBXD BX inputs to DMUX output 0.50 0.58 ns, Max
TCXB CX inputs to CMUX output 0.34 0.38 ns, Max
TCXD CX inputs to DMUX output 0.40 0.45 ns, Max
TDXD DX inputs to DMUX output 0.38 0.44 ns, Max
TOPCYA An input to COUT output 0.42 0.47 ns, Max
TOPCYB Bn input to COUT output 0.42 0.47 ns, Max
TOPCYC Cn input to COUT output 0.35 0.39 ns, Max
TOPCYD Dn input to COUT output 0.33 0.37 ns, Max
TAXCY AX input to COUT output 0.33 0.38 ns, Max
TBXCY BX input to COUT output 0.28 0.32 ns, Max
TCXCY CX input to COUT output 0.20 0.23 ns, Max
TDXCY DX input to COUT output 0.19 0.22 ns, Max
TBYP CIN input to COUT output 0.08 0.09 ns, Max
TCINA CIN input to AMUX output 0.28 0.32 ns, Max
TCINB CIN input to BMUX output 0.29 0.34 ns, Max
TCINC CIN input to CMUX output 0.30 0.34 ns, Max
TCIND CIN input to DMUX output 0.33 0.38 ns, Max
Sequential Delays
TCKO Clock to AQ DQ outputs 0.39 0.44 ns, Max
TSHCKO Clock to AMUX – DMUX outputs 0.47 0.54 ns, Max
Setup and Hold Times of CLB Flip-Flops Before/After Clock CLK
TDICK/TCKDI A D input to CLK on A D Flip Flops 0.43/0.20 0.50/0.23 ns, Min
TCECK_CLB/
TCKCE_CLB
CE input to CLK on A D Flip Flops 0.32/–0.01 0.37/–0.01 ns, Min
TSRCK/TCKSR SR input to CLK on A D Flip Flops 0.52/–0.08 0.60/–0.08 ns, Min
TCINCK/TCKCIN CIN input to CLK on A D Flip Flops 0.24/0.17 0.27/0.19 ns, Min
Set/Reset
TSRMIN SR input minimum pulse width 0.97 0.97 ns, Min
TRQ Delay from SR input to AQ DQ flip-flops 0.68 0.78 ns, Max
TCEO Delay from CE input to AQ DQ flip-flops 0.59 0.67 ns, Max
FTOG Toggle frequency (for export control) 1098.00 1098.00 MHz
Notes:
1. A Zero “0” Hold Time listing indicates no hold time or a negative hold time. Negative values can not be guaranteed “best-case”, but if a “0”
is listed, there is no positive hold time.
2. These items are of interest for Carry Chain applications.
Tabl e 47 : CLB Switching Characteristics (Cont’d)
Symbol Description Speed Grade Units
-2 -1
Virtex-6 CXT Family Data Sheet
DS153 (v1.6) February 11, 2011 www.xilinx.com
Product Specification 36
CLB Distributed RAM Switching Characteristics (SLICEM Only)
CLB Shift Register Switching Characteristics (SLICEM Only)
Tabl e 48 : CLB Distributed RAM Switching Characteristics
Symbol Description Speed Grade Units
-2 -1
Sequential Delays
TSHCKO Clock to A B outputs 1.36 1.56 ns, Max
TSHCKO_1 Clock to AMUX BMUX outputs 1.71 1.96 ns, Max
Setup and Hold Times Before/After Clock CLK
TDS/TDH A D inputs to CLK 0.88/0.22 1.01/0.26 ns, Min
TAS/TAH Address An inputs to clock 0.27/0.70 0.31/0.80 ns, Min
TWS/TWH WE input to clock 0.40/–0.01 0.46/0.00 ns, Min
TCECK/TCKCE CE input to CLK 0.41/–0.02 0.48/–0.01 ns, Min
Clock CLK
TMPW Minimum pulse width 1.00 1.15 ns, Min
TMCP Minimum clock period 2.00 2.30 ns, Min
Notes:
1. A Zero “0” Hold Time listing indicates no hold time or a negative hold time. Negative values cannot be guaranteed “best-case”, but if a “0” is
listed, there is no positive hold time.
2. TSHCKO also represents the CLK to XMUX output. Refer to the TRACE report for the CLK to XMUX path.
Tabl e 49 : CLB Shift Register Switching Characteristics
Symbol Description Speed Grade Units
-2 -1
Sequential Delays
TREG Clock to A D outputs 1.58 1.82 ns, Max
TREG_MUX Clock to AMUX DMUX output 1.93 2.22 ns, Max
TREG_M31 Clock to DMUX output via M31 output 1.55 1.78 ns, Max
Setup and Hold Times Before/After Clock CLK
TWS/TWH WE input 0.09/–0.01 0.10/0.00 ns, Min
TCECK/TCKCE CE input to CLK 0.10/–0.02 0.11/–0.01 ns, Min
TDS/TDH A D inputs to CLK 0.94/0.24 1.08/0.28 ns, Min
Clock CLK
TMPW Minimum pulse width 0.85 0.98 ns, Min
Notes:
1. A Zero “0” Hold Time listing indicates no hold time or a negative hold time. Negative values cannot be guaranteed “best-case”, but if a “0” is
listed, there is no positive hold time.
Virtex-6 CXT Family Data Sheet
DS153 (v1.6) February 11, 2011 www.xilinx.com
Product Specification 37
Block RAM and FIFO Switching Characteristics
Tabl e 50 : Block RAM and FIFO Switching Characteristics
Symbol Description Speed Grade Units
-2 -1
Block RAM and FIFO Clock-to-Out Delays
TRCKO_DO and TRCKO_DO_REG(1) Clock CLK to DOUT output (without output register)(2)(3) 2.08 2.39 ns, Max
Clock CLK to DOUT output (with output register)(4)(5) 0.75 0.86 ns, Max
TRCKO_DO_ECC and
TRCKO_DO_ECC_REG
Clock CLK to DOUT output with ECC
(without output register)(2)(3)
3.30 3.79 ns, Max
Clock CLK to DOUT output with ECC (with output register)(4)(5) 0.86 0.98 ns, Max
TRCKO_CASC and
TRCKO_CASC_REG
Clock CLK to DOUT output with Cascade
(without output register)(2)
3.18 3.65 ns, Max
Clock CLK to DOUT output with Cascade (with output register)(4) 1.58 1.81 ns, Max
TRCKO_FLAGS Clock CLK to FIFO flags outputs(6) 0.91 1.05 ns, Max
TRCKO_POINTERS Clock CLK to FIFO pointers outputs(7) 1.09 1.25 ns, Max
TRCKO_RDCOUNT Clock CLK to FIFO Read Counter 1.09 1.25 ns, Max
TRCKO_WRCOUNT Clock CLK to FIFO Write Counter 1.09 1.25 ns, Max
TRCKO_SDBIT_ECC and
TRCKO_SDBIT_ECC_REG
Clock CLK to BITERR (with output register) 0.76 0.87 ns, Max
Clock CLK to BITERR (without output register) 2.84 3.26 ns, Max
TRCKO_PARITY_ECC Clock CLK to ECCPARITY in ECC encode only mode 1.06 1.21 ns, Max
TRCKO_RDADDR_ECC and
TRCKO_RDADDR_ECC_REG
Clock CLK to RDADDR output with ECC (without output register) 0.90 1.03 ns, Max
Clock CLK to RDADDR output with ECC (with output register) 0.92 1.06 ns, Max
Setup and Hold Times Before/After Clock CLK
TRCCK_ADDR/TRCKC_ADDR ADDR inputs(8) 0.62/0.32 0.72/0.37 ns, Min
TRDCK_DI/TRCKD_DI DIN inputs(9) 1.11/0.34 1.28/0.39 ns, Min
TRDCK_DI_ECC/TRCKD_DI_ECC DIN inputs with block RAM ECC in standard mode(9) 0.59/0.34 0.68/0.39 ns, Min
DIN inputs with block RAM ECC encode only(9) 0.85/0.34 0.97/0.39 ns, Min
DIN inputs with FIFO ECC in standard mode(9) 1.02/0.34 1.17/0.39 ns, Min
TRCCK_CLK/TRCKC_CLK Inject single/double bit error in ECC mode 1.20/0.29 1.38/0.33 ns, Min
TRCCK_RDEN/TRCKC_RDEN Block RAM Enable (EN) input 0.41/0.30 0.47/0.34 ns, Min
TRCCK_REGCE/TRCKC_REGCE CE input of output register 0.22/0.31 0.25/0.35 ns, Min
TRCCK_RSTREG/TRCKC_RSTREG Synchronous RSTREG input 0.28/0.26 0.32/0.29 ns, Min
TRCCK_RSTRAM/TRCKC_RSTRAM Synchronous RSTRAM input 0.41/0.27 0.47/0.31 ns, Min
TRCCK_WE/TRCKC_WE Write Enable (WE) input (block RAM only) 0.52/0.35 0.60/0.40 ns, Min
TRCCK_WREN/TRCKC_WREN WREN FIFO inputs 0.55/0.30 0.64/0.34 ns, Min
TRCCK_RDEN/TRCKC_RDEN RDEN FIFO inputs 0.55/0.30 0.63/0.34 ns, Min
Reset Delays
TRCO_FLAGS Reset RST to FIFO Flags/Pointers(10) 1.10 1.27 ns, Max
TRCCK_RSTREG/TRCKC_RSTREG FIFO reset timing(11) 0.28/0.26 0.32/0.29 ns, Min
Virtex-6 CXT Family Data Sheet
DS153 (v1.6) February 11, 2011 www.xilinx.com
Product Specification 38
Maximum Frequency
FMAX Block RAM
(Write First and No Change modes)
400 350 MHz
Block RAM (Read First mode) 400 347 MHz
Block RAM (SDP mode)(12) 400 347 MHz
FMAX_CASCADE Block RAM Cascade
(Write First and No Change modes)
400 347 MHz
Block RAM Cascade (Read First mode) 350 304 MHz
FMAX_FIFO FIFO in all modes 400 350 MHz
FMAX_ECC Block RAM and FIFO in ECC configuration 325 282 MHz
Notes:
1. TRACE will report all of these parameters as TRCKO_DO.
2. TRCKO_DOR includes TRCKO_DOW, TRCKO_DOPR, and TRCKO_DOPW as well as the B port equivalent timing parameters.
3. These parameters also apply to synchronous FIFO with DO_REG = 0.
4. TRCKO_DO includes TRCKO_DOP as well as the B port equivalent timing parameters.
5. These parameters also apply to multirate (asynchronous) and synchronous FIFO with DO_REG = 1.
6. TRCKO_FLAGS includes the following parameters: TRCKO_AEMPTY
, TRCKO_AFULL, TRCKO_EMPTY
, TRCKO_FULL, TRCKO_RDERR, TRCKO_WRERR.
7. TRCKO_POINTERS includes both TRCKO_RDCOUNT and TRCKO_WRCOUNT.
8. The ADDR setup and hold must be met when EN is asserted (even when WE is deasserted). Otherwise, block RAM data corruption is
possible.
9. TRCKO_DI includes both A and B inputs as well as the parity inputs of A and B.
10. TRCO_FLAGS includes the following flags: AEMPTY, AFULL, EMPTY, FULL, RDERR, WRERR, RDCOUNT, and WRCOUNT.
11. The FIFO reset must be asserted for at least three positive clock edges.
12. When using ISE software v12.4 or later, if the RDARRDR_COLLISION_HWCONFIG attribute is set to PERFORMANCE or the block RAM
is in single-port operation, then the faster FMAX for WRITE_FIRST/NO_CHANGE modes apply.
Tabl e 50 : Block RAM and FIFO Switching Characteristics (Contd)
Symbol Description Speed Grade Units
-2 -1
Virtex-6 CXT Family Data Sheet
DS153 (v1.6) February 11, 2011 www.xilinx.com
Product Specification 39
DSP48E1 Switching Characteristics
Tabl e 51 : DSP48E1 Switching Characteristics
Symbol Description Speed Grade Units
-2 -1
Setup and Hold Times of Data/Control Pins to the Input Register Clock
TDSPDCK_{A, ACIN; B, BCIN}_{AREG; BREG}/
TDSPCKD_{A, ACIN; B, BCIN}_{AREG; BREG}
{A, ACIN, B, BCIN} input to {A, B} register CLK 0.35/0.34 0.41/0.39 ns
TDSPDCK_C_CREG/TDSPCKD_C_CREG C input to C register CLK 0.22/0.24 0.26/0.27 ns
TDSPDCK_D_DREG/TDSPCKD_D_DREG D input to D register CLK 0.15/0.39 0.17/0.44 ns
Setup and Hold Times of Data Pins to the Pipeline Register Clock
TDSPDCK_{A, ACIN, B, BCIN}_PREG_MULT/
TDSPCKD_{A, ACIN, B, BCIN}_PREG_MULT
{A, ACIN, B, BCIN} input to M register CLK 3.21/0.02 3.69/0.02 ns
TDSPDCK_{A, D}_ADREG/ TDSPCKD_{A, D}_ADREG {A, D} input to AD register CLK 1.69/0.13 1.94/0.15 ns
Setup and Hold Times of Data/Control Pins to the Output Register Clock
TDSPDCK_{A, ACIN, B, BCIN}_PREG_MULT/
TDSPCKD_{A, ACIN, B, BCIN}_PREG_MULT
{A, ACIN, B, BCIN} input to P register CLK using
multiplier
5.20/–0.19 5.97/–0.22 ns
TDSPDCK_D_DREG_MULT/ TDSPCKD_D_DREG_MULT D input to P register CLK 4.90/–0.65 5.63/–0.75 ns
TDSPDCK_{A, ACIN, B, BCIN}_PREG/
TDSPCKD_{A, ACIN, B, BCIN}_PREG
{A, ACIN, B, BCIN} input to P register CLK not
using multiplier
2.15/–0.19 2.47/–0.22 ns
TDSPDCK_C_PREG/ TDSPCKD_C_PREG C input to P register CLK 1.91/–0.14 2.19/–0.17 ns
TDSPDCK_{PCIN, CARRYCASCIN, MULTSIGNIN}_PREG/
TDSPCKD_{PCIN, CARRYCASCIN, MULTSIGNIN}_PREG
{PCIN, CARRYCASCIN, MULTSIGNIN} input to
P register CLK
1.67/–0.04 1.92/–0.05 ns
Setup and Hold Times of the CE Pins
TDSPDCK_{CEA; CEB}_{AREG; BREG}/
TDSPCKD_{CEA; CEB}_{AREG; BREG}
{CEA; CEB} input to {A; B} register CLK 0.22/0.25 0.25/0.29 ns
TDSPDCK_CEC_CREG/ TDSPCKD_CEC_CREG CEC input to C register CLK 0.24/0.23 0.28/0.27 ns
TDSPDCK_CED_DREG/ TDSPCKD_CED_DREG CED input to D register CLK 0.31/0.14 0.35/0.16 ns
TDSPDCK_CEM_MREG/ TDSPCKD_CEM_MREG CEM input to M register CLK 0.26/0.25 0.30/0.28 ns
TDSPDCK_CEP_PREG/ TDSPCKD_CEP_PREG CEP input to P register CLK 0.46/0.03 0.53/0.03 ns
Setup and Hold Times of the RST Pins
TDSPDCK_{RSTA; RSTB}_{AREG; BREG}/
TDSPCKD_{RSTA; RSTB}_{AREG; BREG}
{RSTA, RSTB} input to {A, B} register CLK 0.38/0.22 0.43/0.25 ns
TDSPDCK_RSTC_CREG/ TDSPCKD_RSTC_CREG RSTC input to C register CLK 0.23/0.09 0.27/0.11 ns
TDSPDCK_RSTD_DREG/ TDSPCKD_RSTD_DREG RSTD input to D register CLK 0.38/0.19 0.44/0.21 ns
TDSPDCK_RSTM_MREG/ TDSPCKD_RSTM_MREG RSTM input to M register CLK 0.26/0.30 0.30/0.35 ns
TDSPDCK_RSTP_PREG/ TDSPCKD_RSTP_PREG RSTP input to P register CLK 0.33/0.05 0.41/0.06 ns
Combinatorial Delays from Input Pins to Output Pins
TDSPDO_{A, B}_{P, CARRYOUT}_MULT {A, B} input to {P, CARRYOUT} output using
multiplier
5.08 5.84 ns
TDSPDO_D_{P, CARRYOUT}_MULT D input to {P, CARRYOUT} output using
multiplier
4.82 5.54 ns
TDSPDO_{A, B}_{P, CARRYOUT} {A, B} input to {P, CARRYOUT} output not using
multiplier
2.07 2.38 ns
TDSPDO_{C, CARRYIN}_{P, CARRYOUT} {C, CARRYIN} input to {P, CARRYOUT} output 1.83 2.10 ns
Virtex-6 CXT Family Data Sheet
DS153 (v1.6) February 11, 2011 www.xilinx.com
Product Specification 40
Combinatorial Delays from Input Pins to Cascading Output Pins
TDSPDO_{A; B}_{ACOUT; BCOUT} {A, B} input to {ACOUT, BCOUT} output 0.65 0.75 ns
TDSPDO_{A, B}_{PCOUT, CARRYCASCOUT,
MULTSIGNOUT}_MULT
{A, B} input to {PCOUT, CARRYCASCOUT,
MULTSIGNOUT} output using multiplier
5.24 6.03 ns
TDSPDO_D_{PCOUT, CARRYCASCOUT,
MULTSIGNOUT}_MULT
D input to {PCOUT, CARRYCASCOUT,
MULTSIGNOUT} output using multiplier
4.94 5.68 ns
TDSPDO_{A, B}_{PCOUT, CARRYCASCOUT,
MULTSIGNOUT}
{A, B} input to {PCOUT, CARRYCASCOUT,
MULTSIGNOUT} output not using multiplier
2.19 2.52 ns
TDSPDO__{C, CARRYIN}_{PCOUT,
CARRYCASCOUT,MULTSIGNOUT}
{C, CARRYIN} input to {PCOUT,
CARRYCASCOUT, MULTSIGNOUT} output
1.95 2.25 ns
Combinatorial Delays from Cascading Input Pins to All Output Pins
TDSPDO_{ACIN, BCIN}_{P, CARRYOUT}_MULT {ACIN, BCIN} input to {P, CARRYOUT} output
using multiplier
4.97 5.72 ns
TDSPDO_{ACIN, BCIN}_{P, CARRYOUT {ACIN, BCIN} input to {P, CARRYOUT} output
not using multiplier
1.92 2.21 ns
TDSPDO_{ACIN; BCIN}_{ACOUT; BCOUT} {ACIN, BCIN} input to {ACOUT, BCOUT} output 0.49 0.57 ns
TDSPDO_{ACIN, BCIN}_{PCOUT, CARRYCASCOUT,
MULTSIGNOUT}_MULT
{ACIN, BCIN} input to {PCOUT,
CARRYCASCOUT, MULTSIGNOUT} output
using multiplier
5.10 5.86 ns
TDSPDO_{ACIN, BCIN}_{PCOUT, CARRYCASCOUT,
MULTSIGNOUT}
{ACIN, BCIN} input to {PCOUT,
CARRYCASCOUT, MULTSIGNOUT} output not
using multiplier
2.05 2.35 ns
TDSPDO_{PCIN, CARRYCASCIN, MULTSIGNIN}_
{P, CARRYOUT}
{PCIN, CARRYCASCIN, MULTSIGNIN} input to
{P, CARRYOUT} output
1.60 1.83 ns
TDSPDO_{PCIN, CARRYCASCIN, MULTSIGNIN}_ {PCOUT,
CARRYCASCOUT, MULTSIGNOUT}
{PCIN, CARRYCASCIN, MULTSIGNIN} input to
{PCOUT, CARRYCASCOUT, MULTSIGNOUT}
output
1.72 1.98 ns
Clock to Outs from Output Register Clock to Output Pins
TDSPCKO_{P, CARRYOUT}_PREG CLK (PREG) to {P, CARRYOUT} output 0.50 0.57 ns
TDSPCKO_{PCOUT, CARRYCASCOUT,
MULTSIGNOUT}_PREG
CLK (PREG) to {CARRYCASCOUT, PCOUT,
MULTSIGNOUT} output
0.50 0.66 ns
Clock to Outs from Pipeline Register Clock to Output Pins
TDSPCKO_{P, CARRYOUT}_MREG CLK (MREG) to {P, CARRYOUT} output 2.30 2.65 ns
TDSPCKO_{PCOUT, CARRYCASCOUT,
MULTSIGNOUT}_MREG
CLK (MREG) to {PCOUT, CARRYCASCOUT,
MULTSIGNOUT} output
2.43 2.79 ns
TDSPCKO_{P, CARRYOUT}_ADREG_MULT CLK (ADREG) to {P, CARRYOUT} output 3.72 4.72 ns
TDSPCKO_{PCOUT, CARRYCASCOUT,
MULTSIGNOUT}_ADREG_MULT
CLK (ADREG) to {PCOUT, CARRYCASCOUT,
MULTSIGNOUT} output
3.84 4.42 ns
Clock to Outs from Input Register Clock to Output Pins
TDSPCKO_{P, CARRYOUT}_{AREG, BREG}_MULT CLK (AREG, BREG) to {P, CARRYOUT} output
using multiplier
5.36 6.16 ns
TDSPCKO_{P, CARRYOUT}_{AREG, BREG} CLK (AREG, BREG) to {P, CARRYOUT} output
not using multiplier
2.27 2.61 ns
TDSPCKO_{P, CARRYOUT}_CREG CLK (CREG) to {P, CARRYOUT} output 2.27 2.61 ns
TDSPCKO_{P, CARRYOUT}_DREG_MULT CLK (DREG) to {P, CARRYOUT} output 5.25 6.04 ns
Tabl e 51 : DSP48E1 Switching Characteristics (Cont’d)
Symbol Description Speed Grade Units
-2 -1
Virtex-6 CXT Family Data Sheet
DS153 (v1.6) February 11, 2011 www.xilinx.com
Product Specification 41
Clock to Outs from Input Register Clock to Cascading Output Pins
TDSPCKO_{ACOUT; BCOUT}_{AREG; BREG} CLK (AREG, BREG) to {P, CARRYOUT} output 0.89 1.02 ns
TDSPCKO_{PCOUT, CARRYCASCOUT,
MULTSIGNOUT}_{AREG, BREG}_MULT
CLK (AREG, BREG) to {PCOUT,
CARRYCASCOUT, MULTSIGNOUT} output
using multiplier
5.49 6.31 ns
TDSPCKO_{PCOUT, CARRYCASCOUT,
MULTSIGNOUT}_{AREG, BREG}
CLK (AREG, BREG) to {PCOUT,
CARRYCASCOUT, MULTSIGNOUT} output not
using multiplier
2.40 2.76 ns
TDSPCKO_{PCOUT, CARRYCASCOUT,
MULTSIGNOUT}_DREG_MULT
CLK (DREG) to {PCOUT, CARRYCASCOUT,
MULTSIGNOUT} output using multiplier
5.38 6.18 ns
TDSPCKO_{PCOUT, CARRYCASCOUT,
MULTSIGNOUT}_CREG
CLK (CREG) to {PCOUT, CARRYCASCOUT,
MULTSIGNOUT} output
2.40 2.76 ns
Maximum Frequency
FMAX With all registers used 350 275 MHz
FMAX_PATDET With pattern detector 350 275 MHz
FMAX_MULT_NOMREG Two register multiply without MREG 262 227 MHz
FMAX_MULT_NOMREG_PATDET Two register multiply without MREG with pattern
detect
241 209 MHz
FMAX_PREADD_MULT_NOADREG Without ADREG 292 253 MHz
FMAX_PREADD_MULT_NOADREG_PATDET Without ADREG with pattern detect 292 253 MHz
FMAX_NOPIPELINEREG Without pipeline registers (MREG, ADREG) 196 170 MHz
FMAX_NOPIPELINEREG_PATDET Without pipeline registers (MREG, ADREG)
with pattern detect
184 160 MHz
Tabl e 51 : DSP48E1 Switching Characteristics (Cont’d)
Symbol Description Speed Grade Units
-2 -1
Virtex-6 CXT Family Data Sheet
DS153 (v1.6) February 11, 2011 www.xilinx.com
Product Specification 42
Configuration Switching Characteristics
Tabl e 52 : Configuration Switching Characteristics
Symbol Description Speed Grade Units
-2 -1
Power-up Timing Characteristics
TPL(1) Program Latency 3 3 ms, Max
TPOR(1) Power-on-Reset 15/55 15/55 ms, Min/Max
TICCK CCLK (output) delay 400 400 ns, Min
TPROGRAM Program Pulse Width 250 250 ns, Min
Master/Slave Serial Mode Programming Switching(1)
TDCCK/TCCKD DIN Setup/Hold, slave mode 4.0/0.0 4.0/0.0 ns, Min
TDSCCK/TSCCKD DIN Setup/Hold, master mode 4.0/0.0 4.0/0.0 ns, Min
TCCO DOUT at 2.5V 6 6 ns, Max
DOUT at 1.8V 6 6 ns, Max
FMCCK Maximum CCLK frequency, serial modes 100 100 MHz, Max
FMCCKTOL Frequency Tolerance, master mode with respect to
nominal CCLK
55 55 %
FMSCCK Slave mode external CCLK 100 100 MHz
SelectMAP Mode Programming Switching
TSMDCCK/TSMCCKD SelectMAP Data Setup/Hold 4.0/0.0 4.0/0.0 ns, Min
TSMCSCCK/TSMCCKCS CSI_B Setup/Hold 4.0/0.0 4.0/0.0 ns, Min
TSMCCKW/TSMWCCK RDWR_B Setup/Hold 10.0/0.0 10.0/0.0 ns, Min
TSMCKCSO CSO_B clock to out
(330 pull-up resistor required)
77ns, Min
TSMCO CCLK to DATA out in readback at 2.5V 8 8 ns, Max
CCLK to DATA out in readback at 1.8V 8 8 ns, Max
TSMCKBY CCLK to BUSY out in readback at 2.5V 6 6 ns, Max
CCLK to BUSY out in readback at 1.8V 6 6 ns, Max
FSMCCK Maximum Frequency with respect to nominal CCLK 100 100 MHz, Max
FRBCCK Maximum Readback Frequency with respect to nominal
CCLK
100 100 MHz, Max
FMCCKTOL Frequency Tolerance with respect to nominal CCLK 55 55 %
Boundary-Scan Port Timing Specifications
TTAPTCK/TTCKTAP TMS and TDI Setup time before TCK/ Hold time after
TCK
3.0/2.0 3.0/2.0 ns, Min
TTCKTDO TCK falling edge to TDO output valid at 2.5V 6 6 ns, Max
TCK falling edge to TDO output valid at 1.8V 6 6 ns, Max
FTCK Maximum configuration TCK clock frequency 66 66 MHz, Max
FTCKB_MIN Minimum boundary-scan TCK clock frequency when
using IEEE Std 1149.6 (AC-JTAG). Minimum operating
temperature for IEEE Std 1149.6 is 0°C.
15 15 MHz, Min
FTCKB Maximum boundary-scan TCK clock frequency 66 66 MHz, Max
Virtex-6 CXT Family Data Sheet
DS153 (v1.6) February 11, 2011 www.xilinx.com
Product Specification 43
BPI Master Flash Mode Programming Switching
TBPICCO(2) ADDR[25:0], RS[1:0], FCS_B, FOE_B, FWE_B outputs
valid after CCLK rising edge at 2.5V
66 ns
ADDR[25:0], RS[1:0], FCS_B, FOE_B, FWE_B outputs
valid after CCLK rising edge at 1.8V
66 ns
TBPIDCC/TBPICCD Setup/Hold on D[15:0] data input pins 4.0/0.0 4.0/0.0 ns
TINITADDR Minimum period of initial ADDR[25:0] address cycles 3 3 CCLK cycles
SPI Master Flash Mode Programming Switching
TSPIDCC/TSPIDCCD DIN Setup/Hold before/after the rising CCLK edge 3.0/0.0 3.0/0.0 ns
TSPICCM MOSI clock to out at 2.5V 6 6 ns
MOSI clock to out at 1.8V 6 6 ns
TSPICCFC FCS_B clock to out at 2.5V 6 6 ns
FCS_B clock to out at 1.8V 6 6 ns
TFSINIT/TFSINITH FS[2:0] to INIT_B rising edge Setup and Hold 2 2 µs
CCLK Output (Master Modes)
TMCCKL Master CCLK clock Low time duty cycle 45/55 45/55 %, Min/Max
TMCCKH Master CCLK clock High time duty cycle 45/55 45/55 %, Min/Max
CCLK Input (Slave Modes)
TSCCKL Slave CCLK clock minimum Low time 2.5 2.5 ns, Min
TSCCKH Slave CCLK clock minimum High time 2.5 2.5 ns, Min
Dynamic Reconfiguration Port (DRP) for MMCM Before and After DCLK
FDCK Maximum frequency for DCLK 200 200 MHz
TMMCMDCK_DADDR/
TMMCMCKD_DADDR
DADDR Setup/Hold 1.63/0.00 1.63/0.00 ns
TMMCMDCK_DI/TMMCMCKD_DI DI Setup/Hold 1.63/0.00 1.63/0.00 ns
TMMCMDCK_DEN/TMMCMCKD_DEN DEN Setup/Hold time 1.63/0.00 1.63/0.00 ns
TMMCMDCK_DWE/TMMCMCKD_DWE DWE Setup/Hold time 1.63/0.00 1.63/0.00 ns
TMMCMCKO_DO CLK to out of DO(3) 3.64 3.64 ns
TMMCMCKO_DRDY CLK to out of DRDY 0.38 0.38 ns
Notes:
1. To support longer delays in configuration, use the design solutions described in Virtex-6 FPGA Configuration Guide.
2. Only during configuration, the last edge is determined by a weak pull-up/pull-down resistor in the I/O.
3. DO will hold until next DRP operation.
Tabl e 52 : Configuration Switching Characteristics (Cont’d)
Symbol Description Speed Grade Units
-2 -1
Virtex-6 CXT Family Data Sheet
DS153 (v1.6) February 11, 2011 www.xilinx.com
Product Specification 44
Clock Buffers and Networks
Tabl e 53 : Global Clock Switching Characteristics (Including BUFGCTRL)
Symbol Description Speed Grade Units
-2 -1
TBCCCK_CE/TBCCKC_CE(1) CE pins Setup/Hold 0.16/0.00 0.16/0.00 ns
TBCCCK_S/TBCCKC_S(1) S pins Setup/Hold 0.16/0.00 0.16/0.00 ns
TBCCKO_O(2) BUFGCTRL delay from I0/I1 to O 0.10 0.10 ns
Maximum Frequency
FMAX Global clock tree (BUFG) 700 700 MHz
Notes:
1. TBCCCK_CE and TBCCKC_CE must be satisfied to assure glitch-free operation of the global clock when switching between clocks. These
parameters do not apply to the BUFGMUX_VIRTEX4 primitive that assures glitch-free operation. The other global clock setup and hold
times are optional; only needing to be satisfied if device operation requires simulation matches on a cycle-for-cycle basis when switching
between clocks.
2. TBGCKO_O (BUFG delay from I0 to O) values are the same as TBCCKO_O values.
Tabl e 54 : Input/Output Clock Switching Characteristics (BUFIO)
Symbol Description Speed Grade Units
-2 -1
TBIOCKO_O Clock to out delay from I to O 0.18 0.18 ns
Maximum Frequency
FMAX I/O clock tree (BUFIO) 710 710 MHz
Virtex-6 CXT Family Data Sheet
DS153 (v1.6) February 11, 2011 www.xilinx.com
Product Specification 45
MMCM Switching Characteristics
Tabl e 55 : Regional Clock Switching Characteristics (BUFR)
Symbol Description Speed Grade Units
-2 -1
TBRCKO_O Clock to out delay from I to O
0.75 0.75 ns
0.75 0.75 ns
0.75 0.75 ns
0.75 0.75 ns
TBRCKO_O_BYP Clock to out delay from I to O with Divide Bypass attribute set
0.37 0.37 ns
0.37 0.37 ns
0.37 0.37 ns
0.37 0.37 ns
TBRDO_O Propagation delay from CLR to O 0.83 0.83 ns
Maximum Frequency
FMAX Regional clock tree (BUFR) 300 300 MHz
Tabl e 56 : Horizontal Clock Buffer Switching Characteristics (BUFH)
Symbol Description Speed Grade Units
-2 -1
TBHCKO_O BUFH delay from I to O 0.13 0.13 ns
TBHCCK_CE/TBHCKC_CE CE pin Setup and Hold 0.05/0.05 0.05/0.05 ns
Maximum Frequency
FMAX Horizontal clock buffer (BUFH) 700 700 MHz
Tabl e 57 : MMCM Specification
Symbol Description Speed Grade Units
-2 -1
FINMAX Maximum Input Clock Frequency(1) 700 700 MHz
FINMIN Minimum Input Clock Frequency 10 10 MHz
FINJITTER Maximum Input Clock Period Jitter < 20% of clock input period or 1 ns
Max
FINDUTY Allowable Input Duty Cycle: 10—49 MHz 25/75 %
Allowable Input Duty Cycle: 50—199 MHz 30/70 %
Allowable Input Duty Cycle: 200—399 MHz 35/65 %
Allowable Input Duty Cycle: 400—499 MHz 40/60 %
Allowable Input Duty Cycle: >500 MHz 45/55 %
FMIN_PSCLK Minimum Dynamic Phase Shift Clock Frequency 0.01 0.01 MHz
FMAX_PSCLK Maximum Dynamic Phase Shift Clock Frequency 450 450 MHz
FVCOMIN Minimum MMCM VCO Frequency 600 600 MHz
FVCOMAX Maximum MMCM VCO Frequency 1200 1200 MHz
FBANDWIDTH Low MMCM Bandwidth at Typical(2) 1.00 1.00 MHz
High MMCM Bandwidth at Typical(2) 4.00 4.00 MHz
Virtex-6 CXT Family Data Sheet
DS153 (v1.6) February 11, 2011 www.xilinx.com
Product Specification 46
TSTATPHAOFFSET Static Phase Offset of the MMCM Outputs(3) 0.12 0.12 ns
TOUTJITTER MMCM Output Jitter(4) Note 1
TOUTDUTY MMCM Output Clock Duty Cycle Precision(5) 0.20 0.20 ns
TLOCKMAX MMCM Maximum Lock Time 100 100 µs
FOUTMAX MMCM Maximum Output Frequency 700 700 MHz
FOUTMIN MMCM Minimum Output Frequency(6)(7) 4.69 4.69 MHz
TEXTFDVAR External Clock Feedback Variation < 20% of clock input period or 1 ns
Max
RSTMINPULSE Minimum Reset Pulse Width 1.5 1.5 ns
FPFDMAX Maximum Frequency at the Phase Frequency Detector
with Bandwidth Set to High or Optimized(8)
450 450 MHz
Maximum Frequency at the Phase Frequency Detector
with Bandwidth Set to Low
300 300 MHz
FPFDMIN Minimum Frequency at the Phase Frequency Detector
with Bandwidth Set to High or Optimized
135 135 MHz
Minimum Frequency at the Phase Frequency Detector
with Bandwidth Set to Low
10.00 10.00 MHz
TFBDELAY Maximum Delay in the Feedback Path 3 ns Max or one CLKIN cycle
TMMCMDCK_PSEN/
TMMCMCKD_PSEN
Setup and Hold of Phase Shift Enable 1.04/0.00 1.04/0.00 ns
TMMCMDCK_PSINCDEC/
TMMCMCKD_PSINCDEC
Setup and Hold of Phase Shift Increment/Decrement 1.04/0.00 1.04/0.00 ns
TMMCMCKO_PSDONE Phase Shift Clock-to-Out of PSDONE 0.38 0.38 ns
Notes:
1. When DIVCLK_DIVIDE = 3 or 4, FINMAX is 315 MHz.
2. The MMCM does not filter typical spread-spectrum input clocks because they are usually far below the bandwidth filter frequencies.
3. The static offset is measured between any MMCM outputs with identical phase.
4. Values for this parameter are available in the Architecture Wizard.
5. Includes global clock buffer.
6. Calculated as FVCO/128 assuming output duty cycle is 50%.
7. When CASCADE4_OUT = TRUE, FOUTMIN is 0.036 MHz.
8. In ISE software 12.3 (or earlier versions supporting the Virtex-6 family), the phase frequency detector Optimized bandwidth setting is
equivalent to the High bandwidth setting. Starting with ISE software 12.4, the Optimized bandwidth setting is automatically adjusted to Low
when the software can determine that the phase frequency detector input is less than 135 MHz.
Tabl e 57 : MMCM Specification (Cont’d)
Symbol Description Speed Grade Units
-2 -1
Virtex-6 CXT Family Data Sheet
DS153 (v1.6) February 11, 2011 www.xilinx.com
Product Specification 47
Virtex-6 CXT Device Pin-to-Pin Output Parameter Guidelines
All devices are 100% functionally tested. The representative values for typical pin locations and normal clock loading are
listed in Ta bl e 5 8 . Values are expressed in nanoseconds unless otherwise noted.
Tabl e 58 : Global Clock Input to Output Delay Without MMCM
Symbol Description Device Speed Grade Units
-2 -1
LVCMOS25 Global Clock Input to Output Delay using Output Flip-Flop, 12mA, Fast Slew Rate, without MMCM.
TICKOF Global Clock input and OUTFF without MMCM XC6VCX75T 5.88 5.88 ns
XC6VCX130T 6.00 6.00 ns
XC6VCX195T 6.13 6.13 ns
XC6VCX240T 6.13 6.13 ns
Notes:
1. Listed above are representative values where one global clock input drives one vertical clock line in each accessible column, and where all
accessible IOB and CLB flip-flops are clocked by the global clock net.
Tabl e 59 : Global Clock Input to Output Delay With MMCM
Symbol Description Device Speed Grade Units
-2 -1
LVCMOS25 Global Clock Input to Output Delay using Output Flip-Flop, 12mA, Fast Slew Rate, with MMCM.
TICKOFMMCMGC Global Clock Input and OUTFF with MMCM XC6VCX75T 2.77 2.77 ns
XC6VCX130T 2.78 2.78 ns
XC6VCX195T 2.78 2.78 ns
XC6VCX240T 2.79 2.79 ns
Notes:
1. Listed above are representative values where one global clock input drives one vertical clock line in each accessible column, and where all
accessible IOB and CLB flip-flops are clocked by the global clock net.
2. MMCM output jitter is already included in the timing calculation.
Tabl e 60 : Clock-Capable Clock Input to Output Delay With MMCM
Symbol Description Device Speed Grade Units
-2 -1
LVCMOS25 Clock-capable Clock Input to Output Delay using Output Flip-Flop, 12mA, Fast Slew Rate, with MMCM.
TICKOFMMCMCC Clock-capable Clock Input and OUTFF with
MMCM
XC6VCX75T 2.63 2.63 ns
XC6VCX130T 2.65 2.65 ns
XC6VCX195T 2.65 2.65 ns
XC6VCX240T 2.65 2.65 ns
Notes:
1. Listed above are representative values where one global clock input drives one vertical clock line in each accessible column, and where all
accessible IOB and CLB flip-flops are clocked by the global clock net.
2. MMCM output jitter is already included in the timing calculation.
Virtex-6 CXT Family Data Sheet
DS153 (v1.6) February 11, 2011 www.xilinx.com
Product Specification 48
Virtex-6 CXT Device Pin-to-Pin Input Parameter Guidelines
All devices are 100% functionally tested. The representative values for typical pin locations and normal clock loading are
listed in Ta bl e 6 1 . Values are expressed in nanoseconds unless otherwise noted.
Tabl e 61 : Global Clock Input Setup and Hold Without MMCM
Symbol Description Device Speed Grade Units
-2 -1
Input Setup and Hold Time Relative to Global Clock Input Signal for LVCMOS25 Standard.(1)
TPSFD/ TPHFD Full Delay (Legacy Delay or Default Delay)
Global Clock Input and IFF(2) without MMCM
XC6VCX75T 1.75/–0.01 1.75/–0.01 ns
XC6VCX130T 1.88/–0.11 1.88/–0.11 ns
XC6VCX195T 1.97/–0.14 1.97/–0.14 ns
XC6VCX240T 1.97/–0.14 1.97/–0.14 ns
Notes:
1. Setup and Hold times are measured over worst case conditions (process, voltage, temperature). Setup time is measured relative to the
Global Clock input signal using the slowest process, highest temperature, and lowest voltage. Hold time is measured relative to the Global
Clock input signal using the fastest process, lowest temperature, and highest voltage.
2. IFF = Input Flip-Flop or Latch.
3. A Zero "0" Hold Time listing indicates no hold time or a negative hold time. Negative values can not be guaranteed "best-case", but if a "0"
is listed, there is no positive hold time.
Tabl e 62 : Global Clock Input Setup and Hold With MMCM
Symbol Description Device Speed Grade Units
-2 -1
Input Setup and Hold Time Relative to Global Clock Input Signal for LVCMOS25 Standard.(1)
TPSMMCMGC/
TPHMMCMGC
No Delay Global Clock Input and IFF(2) with MMCM XC6VCX75T 1.72/–0.22 1.72/–0.22 ns
XC6VCX130T 1.81/–0.21 1.81/–0.21 ns
XC6VCX195T 1.82/–0.20 1.82/–0.20 ns
XC6VCX240T 1.82/–0.20 1.82/–0.20 ns
Notes:
1. Setup and Hold times are measured over worst case conditions (process, voltage, temperature). Setup time is measured relative to the
Global Clock input signal using the slowest process, highest temperature, and lowest voltage. Hold time is measured relative to the Global
Clock input signal using the fastest process, lowest temperature, and highest voltage.
2. IFF = Input Flip-Flop or Latch.
3. Use IBIS to determine any duty-cycle distortion incurred using various standards.
Tabl e 63 : Clock-Capable Clock Input Setup and Hold With MMCM
Symbol Description Device Speed Grade Units
-2 -1
Input Setup and Hold Time Relative to Clock-capable Clock Input Signal for LVCMOS25 Standard.(1)
TPSMMCMCC/
TPHMMCMCC
No Delay Clock-capable Clock Input and IFF(2)
with MMCM
XC6VCX75T 1.86/–0.28 1.86/–0.28 ns
XC6VCX130T 1.93/–0.28 1.93/–0.28 ns
XC6VCX195T 1.96/–0.27 1.96/–0.27 ns
XC6VCX240T 1.96/–0.27 1.96/–0.27 ns
Notes:
1. Setup and Hold times are measured over worst case conditions (process, voltage, temperature). Setup time is measured relative to the
Global Clock input signal using the slowest process, highest temperature, and lowest voltage. Hold time is measured relative to the Global
Clock input signal using the fastest process, lowest temperature, and highest voltage.
2. IFF = Input Flip-Flop or Latch.
3. Use IBIS to determine any duty-cycle distortion incurred using various standards.
Virtex-6 CXT Family Data Sheet
DS153 (v1.6) February 11, 2011 www.xilinx.com
Product Specification 49
Clock Switching Characteristics
The parameters in this section provide the necessary values for calculating timing budgets for Virtex-6 CXT FPGA clock
transmitter and receiver data-valid windows.
Tabl e 64 : Duty Cycle Distortion and Clock-Tree Skew
Symbol Description Device Speed Grade Units
-2 -1
TDCD_CLK Global Clock Tree Duty Cycle Distortion(1) All 0.12 0.12 ns
TCKSKEW Global Clock Tree Skew(2) XC6VCX75T 0.18 0.18 ns
XC6VCX130T 0.29 0.29 ns
XC6VCX195T 0.31 0.31 ns
XC6VCX240T 0.31 0.31 ns
TDCD_BUFIO I/O clock tree duty cycle distortion All 0.08 0.08 ns
TBUFIOSKEW I/O clock tree skew across one clock region All 0.03 0.03 ns
TBUFIOSKEW2 I/O clock tree skew across three clock regions All 0.22 0.22 ns
TDCD_BUFR Regional clock tree duty cycle distortion All 0.15 0.15 ns
Notes:
1. These parameters represent the worst-case duty cycle distortion observable at the pins of the device using LVDS output buffers. For cases
where other I/O standards are used, IBIS can be used to calculate any additional duty cycle distortion that might be caused by asymmetrical
rise/fall times.
2. The TCKSKEW value represents the worst-case clock-tree skew observable between sequential I/O elements. Significantly less clock-tree
skew exists for I/O registers that are close to each other and fed by the same or adjacent clock-tree branches. Use the Xilinx FPGA_Editor
and Timing Analyzer tools to evaluate clock skew specific to your application.
Tabl e 65 : Package Skew
Symbol Description Device Package Value Units
TPKGSKEW Package Skew(1) XC6VCX75T FF484 ps
FF784 ps
XC6VCX130T FF484 95 ps
FF784 146 ps
FF1156 165 ps
XC6VCX195T FF784 ps
FF1156 ps
XC6VCX240T FF784 146 ps
FF1156 182 ps
Notes:
1. These values represent the worst-case skew between any two SelectIO resources in the package: shortest flight time to longest flight time
from Pad to Ball (7.0 ps per mm).
2. Package trace length information is available for these device/package combinations. This information can be used to deskew the package.
Virtex-6 CXT Family Data Sheet
DS153 (v1.6) February 11, 2011 www.xilinx.com
Product Specification 50
Revision History
The following table shows the revision history for this document:
Tabl e 66 : Sample Window
Symbol Description Device Speed Grade Units
-2 -1
TSAMP Sampling Error at Receiver Pins(1) All 610 610 ps
TSAMP_BUFIO Sampling Error at Receiver Pins using BUFIO(2) All 400 400 ps
Notes:
1. This parameter indicates the total sampling error of Virtex-6 CXT FPGA DDR input registers, measured across voltage, temperature, and
process. The characterization methodology uses the MMCM to capture the DDR input registers’ edges of operation. These measurements
include:
- CLK0 MMCM jitter
- MMCM accuracy (phase offset)
- MMCM phase shift resolution
These measurements do not include package or clock tree skew.
2. This parameter indicates the total sampling error of Virtex-6 CXT FPGA DDR input registers, measured across voltage, temperature, and
process. The characterization methodology uses the BUFIO clock network and IODELAY to capture the DDR input registers’ edges of
operation. These measurements do not include package or clock tree skew.
Tabl e 67 : Pin-to-Pin Setup/Hold and Clock-to-Out
Symbol Description Speed Grade Units
-2 -1
Data Input Setup and Hold Times Relative to a Forwarded Clock Input Pin Using BUFIO
TPSCS/TPHCS Setup/Hold of I/O clock –0.33/1.31 –0.33/1.31 ns
Pin-to-Pin Clock-to-Out Using BUFIO
TICKOFCS Clock-to-Out of I/O clock 5.19 5.19 ns
Date Version Description of Revisions
07/08/09 1.0 Initial Xilinx release.
02/05/10 1.1 Removed Figure 11: Placement Diagram for the FF1156 Package (5 of 5) from page 11 as there are
only 16 GTX transceivers in the FF1156 package. Corrected the placement diagrams in Figure 2
through Figure 10.
Virtex-6 CXT Family Data Sheet
DS153 (v1.6) February 11, 2011 www.xilinx.com
Product Specification 51
06/08/10 1.2 Revised GTX Transceivers in CXT Devices, page 5.
Added VFS and revised the VIN and VTS values in Table 9, page 11.
Added VFS and note 6 to Ta b le 1 0 . Revised description of CIN in Ta bl e 1 1 , including adding note 3.
Updated Ta b l e 1 3 including adding note 2.
Removed DIFF SSTL15 and added values to SSTL15 in Ta bl e 1 5 .
Updated Ta b l e 1 6 through Ta b le 1 9 .
Added eFUSE Read Endurance section.
Updated entire GTX Transceivers in CXT Devices section.
Changed specifications of PCI Express in Ta b le 3 4 .
In Ta b l e 3 5 , removed RLDRAM II and revised and added values to other interface performance
specifications.
Updated speed specification to v1.04 with appropriate changes to Ta b l e 3 6 .
Revised the IOB switching characteristics in Ta b l e 3 8 .
Updated values in Ta bl e 3 9 and note 4 in Ta b l e 4 1 .
ILOGIC (Ta bl e 4 2 ), OLOGIC (Ta b l e 4 3 ), ISERDES (Ta b l e 4 4 ), and OSERDES (Ta b l e 4 5 ) switching
characteristics changes.
Revised TIODELAY_CLK_MAX and TIDELAYPAT_JIT in Ta b l e 4 6 .
Revised CLB switching characteristics and added TSHCKO to Ta bl e 4 7 and revised CLB switching
characteristics in Ta b l e 4 8 and Ta b l e 4 9 .
In Ta bl e 5 0, removed TRCKO_RDCOUNT and TRCKO_WRCOUNT
, removed TRCKO_PARITY_ECC: Clock CLK
to ECCPARITY in standard ECC mode, revised TRDCK_DI_ECC/TRCKD_DI_ECC, TRCKO_POINTERS, and
revised FMAX and FMAX_CASCADE switching characteristics.
Multiple changes to configuration specifications in Ta b l e 5 2 .
Revised switching characteristics and global clock tree (BUFG) FMAX in Ta bl e 5 3 .
Revised switching characteristics and I/O clock tree (BUFIO) FMAX in Ta b le 5 4 .
Added note 1 to Ta b l e 5 5 .
Revised the FMAX horizontal clock tree (BUFH) in Ta bl e 5 6 .
Multiple changes to MMCM specifications in Ta bl e 5 7 including FINMAX and FOUTMAX.
Updated switching characteristics in Ta b l e 5 8 through Ta b l e 6 3 .
Removed TDCD_BUFH and TBUFHSKEW from Ta bl e 6 4 .
06/30/10 1.3 Production release of XC6VCX130T and XC6VCX240T in Ta bl e 36 and Ta bl e 37 . Updated -1 speed
grade SDR values in Tab le 3 5. Updated BUFIO FMAX specification in Ta b l e 5 4 . Added Note 6 to
Ta b le 5 7 .
07/28/10 1.4 Production release of XC6VCX75T and XC6VCX195T in Ta bl e 3 6 and Ta bl e 3 7 using ISE 12.2
software with speed file v1.06 using the Speed File Patch. Updated PCI compliance on page 1. Added
values to Ta bl e 1 3 . In Ta b l e 2 5 , update VCMOUTDC equation to MGTAVTT DVPPOUT/4. Updated FMAX
in Ta bl e 5 3 , Ta bl e 5 4 , and Ta bl e 5 6 . Updated FINMAX and FOUTMAX in Ta b l e 5 7 . Updated values in
Ta b le 6 1 , Ta b l e 6 2 , and Ta b l e 6 3 .
10/14/10 1.5 Moved data sheet to Production status on the first page. Updated speed file with ISE 12.3 software with
speed file v1.08 using the Speed File Patch. In Ta bl e 5 1 , updated values for TDSPCKO_{PCOUT,
CARRYCASCOUT, MULTSIGNOUT}_PREG.
02/11/11 1.6 Updated Ta b l e 1 0 to include the industrial range specifications. Added Note 12 to Ta b l e 5 0 . Revised
TBPICCO values in Ta bl e 5 2 . Updated range description for FINDUTY in Ta b le 5 7 and added note 8.
The following revisions are due to specification changes as described in XCN11009, Virtex-6 FPGA:
Data Sheet, User Guides, and JTAG ID Updates.
In Ta b l e 5 2 , updated the values for TSMCCKW, TSPIDCC, TSPICCM, and TSPICCFC. In Tabl e 5 7: MMCM
Specification, added bandwidth settings to FPFDMIN and added note 1.
Date Version Description of Revisions
Virtex-6 CXT Family Data Sheet
DS153 (v1.6) February 11, 2011 www.xilinx.com
Product Specification 52
Notice of Disclaimer
THE XILINX HARDWARE FPGA AND CPLD DEVICES REFERRED TO HEREIN (“PRODUCTS”) ARE SUBJECT TO THE TERMS AND
CONDITIONS OF THE XILINX LIMITED WARRANTY WHICH CAN BE VIEWED AT http://www.xilinx.com/warranty.htm. THIS LIMITED
WARRANTY DOES NOT EXTEND TO ANY USE OF PRODUCTS IN AN APPLICATION OR ENVIRONMENT THAT IS NOT WITHIN THE
SPECIFICATIONS STATED IN THE XILINX DATA SHEET. ALL SPECIFICATIONS ARE SUBJECT TO CHANGE WITHOUT NOTICE.
PRODUCTS ARE NOT DESIGNED OR INTENDED TO BE FAIL-SAFE OR FOR USE IN ANY APPLICATION REQUIRING FAIL-SAFE
PERFORMANCE, SUCH AS LIFE-SUPPORT OR SAFETY DEVICES OR SYSTEMS, OR ANY OTHER APPLICATION THAT INVOKES
THE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL
APPLICATIONS”). USE OF PRODUCTS IN CRITICAL APPLICATIONS IS AT THE SOLE RISK OF CUSTOMER, SUBJECT TO
APPLICABLE LAWS AND REGULATIONS.
CRITICAL APPLICATIONS DISCLAIMER
XILINX PRODUCTS (INCLUDING HARDWARE, SOFTWARE AND/OR IP CORES) ARE NOT DESIGNED OR INTENDED TO BE FAIL-
SAFE, OR FOR USE IN ANY APPLICATION REQUIRING FAIL-SAFE PERFORMANCE, SUCH AS IN LIFE-SUPPORT OR SAFETY
DEVICES OR SYSTEMS, CLASS III MEDICAL DEVICES, NUCLEAR FACILITIES, APPLICATIONS RELATED TO THE DEPLOYMENT
OF AIRBAGS, OR ANY OTHER APPLICATIONS THAT COULD LEAD TO DEATH, PERSONAL INJURY OR SEVERE PROPERTY OR
ENVIRONMENTAL DAMAGE (INDIVIDUALLY AND COLLECTIVELY, “CRITICAL APPLICATIONS”). FURTHERMORE, XILINX
PRODUCTS ARE NOT DESIGNED OR INTENDED FOR USE IN ANY APPLICATIONS THAT AFFECT CONTROL OF A VEHICLE OR
AIRCRAFT, UNLESS THERE IS A FAIL-SAFE OR REDUNDANCY FEATURE (WHICH DOES NOT INCLUDE USE OF SOFTWARE IN
THE XILINX DEVICE TO IMPLEMENT THE REDUNDANCY) AND A WARNING SIGNAL UPON FAILURE TO THE OPERATOR.
CUSTOMER AGREES, PRIOR TO USING OR DISTRIBUTING ANY SYSTEMS THAT INCORPORATE XILINX PRODUCTS, TO
THOROUGHLY TEST THE SAME FOR SAFETY PURPOSES. TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW,
CUSTOMER ASSUMES THE SOLE RISK AND LIABILITY OF ANY USE OF XILINX PRODUCTS IN CRITICAL APPLICATIONS.
AUTOMOTIVE APPLICATIONS DISCLAIMER
XILINX PRODUCTS ARE NOT DESIGNED OR INTENDED TO BE FAIL-SAFE, OR FOR USE IN ANY APPLICATION REQUIRING FAIL-
SAFE PERFORMANCE, SUCH AS APPLICATIONS RELATED TO: (I) THE DEPLOYMENT OF AIRBAGS, (II) CONTROL OF A
VEHICLE, UNLESS THERE IS A FAIL-SAFE OR REDUNDANCY FEATURE (WHICH DOES NOT INCLUDE USE OF SOFTWARE IN
THE XILINX DEVICE TO IMPLEMENT THE REDUNDANCY) AND A WARNING SIGNAL UPON FAILURE TO THE OPERATOR, OR (III)
USES THAT COULD LEAD TO DEATH OR PERSONAL INJURY. CUSTOMER ASSUMES THE SOLE RISK AND LIABILITY OF ANY
USE OF XILINX PRODUCTS IN SUCH APPLICATIONS.