1/31
XC9265
Series
Ultra Low Power S ynchronous Step-Down PFM DC/DC Convert e r
GreenOperation Compatible
ETR05053-00
6
TYPICAL PER FORMANCE
CHARACTERISTICS
Efficiency vs. Output Current
TYPICAL APPLICATION CIRCUIT
GENERAL DESCRIPTION
XC9265 series are Ultra Low Power synchronous-rectification type PFM step down DC/DC converters with a built-in 0.
(TYP.) Pch driver and 0.4Ω (TYP.) Nch synchronous switching transistor, designed to allow the use of ceramic capacitor.
PFM control enables a low quiescent curre nt, mak ing the se products ideal for battery operated devices that require high
efficiency and long battery life.
Only inductor, CIN and CL capacitors are needed as external parts to make a step down DC/DC circuit.
Operation voltage range is from 2.0V to 6.0V. This product has fixed output voltage from 1.0V to 4.0V(accuracy: ±2.0%) in
increments of 0.05V .
During stand-by, all circuits are shutdown to reduce consumption to as low as 0.1μA(TYP.) or less.
With the built-in UVLO (Under Voltage Lock Out) function, the internal P-channel MOS driver transistor is forced OFF when
input voltage gets lower than UVLO detection voltage. Besides, XC9265 series has UVLO release volt age of 1.8V (Typ.).
The product with CL di sch arge funct ion ca n disc harge CL capacitor during stand-by mode due to the internal resistance by turning
on the internal switch between VOUT -GND. This enables output voltage restored to GND level fast.
FEATURES
Input Voltage Range : 2.0V~6.0V
Output Voltage Setting : 1.0V~4.0V (±2.0%, 0.05V step increme nts)
:
200mA(XC9265A/C)
50mA(XC9265B/D)
Driver Transistor : 0.4Ω (Pch Driver Tr)
0.4Ω (Nch Synchronous rectifier Switch Tr)
Supply Current
: 0.50μA @ VOUT(T)=1 .8V (TYP.)
Control Method : PFM control
:
50mV (V
IN
=3.6V, V
OUT
=1.8V, I
OUT
=10μA→50mA)
:
330mA(XC9265A/C), 180mA(XC9265B/D)
:
Short Protection
CL Discharge(XC9265C/ D)
UVLO
Ceramic Capacitor Compatible
Operation Ambient Temperature
: -40+85
:
SOT-25, USP-6EL
:
EU RoHS compliant, Pb Free
APPLICATIONS
Wearable Devices
Smart meters
Bluetooth unit s
Energy Harvest dev ice s
Back up power supply circuits
Portable game con so les
Devices with 1 Lithium cell
L
X
V
IN
V
OUT
GND
CE
V
IN
C
IN
(Ceramic) C
L
(Ceramic)
V
OUT
L
0
20
40
60
80
100
0.01 0.1 110 100
Out put C urrent : I OUT (m A)
Efficiency : EFFI (%)
XC9265B181xR-G(VOUT=1.8V)
L=10μH(VLF302512M-100M),CIN=10μF(LMK107BJ106MA),
CL=22μF(JMK107BJ226MA)
VIN=3.6V
VIN=2.7V
VIN=4.2V
2/31
XC9265 Series
BLOCK DIAGRAM
-
+PFM
Controller
Current
Sense
V
REF
PFM
Comparator
CE Controller Logic
CE
V
OUT
GND
L
X
C
L
Discharge
R
FB1
R
FB2
FB
C
FB
Synch
Buffer
Driver
PFM Comparator Unit
V
DD
UVLO
V
IN
start up
Controller
Short
protection
V
IN
* Diodes inside the circuit are an ESD protecti on diode and a parasitic diode.
XC9265C / XC9265D Type
XC9265A / XC9265B Type
-
+PFM
Controller
Current
Sense
V
REF
PFM
Comparator
CE Controller Logic
CE
V
OUT
GND
L
X
R
FB1
R
FB2
FB
C
FB
Synch
Buffer
Driver
PFM Comparator Unit
V
DD
UVLO
V
IN
start up
Controller
Short
protection
V
IN
* Diodes inside the circuit are an ESD protecti on diode and a parasitic diode.
3/31
XC9265
Series
PRODUCT CLASSIFICATION
Ordering infor mat ion
XC9265①②③④⑤⑥-
DESIGNATOR
ITEM
SYMBOL
DESCRIPTION
Product Type
A
I
OUT
=200mA Without C
L
Discharge
B IOUT=50mA Without CL Discharge
C IOUT=200mA With CL Discharge
D IOUT=50mA With CL Discharge
②③ Output Voltage 10 40 Output Voltage : e.g. VOUT=1.80V=1, =8
Output Voltage Range: 1.0V4.0V (0.05V step)
Output Voltage Type
1
Output Voltage {x.x0V} (the 2nd decimal place is “0”)
B
Output Voltage {x.x5V} (the 2nd decimal place is “5”)
⑤⑥-(*1) Packages (Order Unit)
4R-G
USP-6EL (3,000pcs/Reel)
MR-G
SOT-25 (3,000pcs/Reel)
(*1) The “-G” suffix denotes Halogen and Antimony free as well as being fully EU RoHS compliant.
4/31
XC9265 Series
PIN CONFIGURATION
PIN ASSIGNMENT
PIN NUMBER
PIN NAME FUNCTIONS
USP-6EL
SOT-25
1
5
L
X
Switching
2
2
GND
Ground
3
4
V
OUT
Output Voltage
4
3
CE
Chip Enable
5
-
NC
No Connection
6
1
V
IN
Power Input
PIN FUNCTION ASSIGNMENT
PIN
NAME
SIGNAL STATUS
CE
H
Operation (All Series)
L
Standby (All Series)
* Please do not leave the CE pin open.
ABSOLU TE M AXIMUM RATINGS Ta=25˚C
PARAMETER
SYMBOL
RATINGS
UNITS
V
IN
Pin Voltage
V
N
-0.3 ~ +7.0
V
LX Pin Voltage VLX -0.3 ~ VIN+0.3 or +7.0 (*1) V
V
OUT
Pin Voltage
V
OUT
-0.3 ~ V
IN
+0.3 or +7.0
(*1)
V
CE Pin Voltage VCE -0.3 ~ +7.0 V
L
X
Pin Current
I
LX
1000
mA
Power Dissipation SOT-25 Pd
250
mW
600 (40mm x 40mm Standard board) (*2)
USP-6EL
(DAF)
120
750 (40mm x 40mm Standard board)
(*2)
Operating A mbient Tempera ture
Topr
-40 ~ +85
˚C
Storage Temperature
Tstg
-55 ~ +125
˚C
* All voltages are descri bed based on the GND.
(*1) The maximum value is the lower of either VIN + 0.3 or +7.0.
(*2) The power dissipation figure shown is PCB mounted and is for reference only.
The mounting condition is please refer to PACKAGING INFORMATION.
* The dissipati on pad for the USP-6EL package should be solder-plated in recommended
mount pattern and metal masking so as to enhance mounting strength and heat rel ease.
The mount pattern should be connect ed to GND pin (No.2).
13
2
5 4
VIN
VOUT
SOT-25
(TOP VIEW)
LX
CEGND
USP-6EL
(BOTTOM VIEW)
34
2
1
5
6
V
IN
CE
L
X
GND
V
OUT
NC
5/31
XC9265
Series
ELECTRICAL CHARACTERISTICS
XC9265Axxx Type, without CL discharge function Ta=25˚C
PARAMETER
SYMBOL
CONDITIONS
MIN.
TYP.
MAX.
UNITS
CIRCUIT
Input Voltage
VIN
-
2.0
-
6.0
V
Output Voltage VOUT(E) (*2) Resistor connected with LX pin.
Voltage which LX pin changes “L” to “H” level
while VOUT is decreasing. E1 V
UVLO Release Voltage VUVLO(E) VCE=VIN, VOUT=0V. Resistor connected with LX pin.
Voltage which LX pin changes “L” to “H” level
while VIN is increasing. 1.65 1.8 1.95 V
UVLO Hysteresis
Voltage VHYS(E) VCE=VIN, VOUT=0V. Resistor connected with LX pin.
VUVLO(E) - Voltage which LX pin changes “H” t o “L”
level while VIN is decreasing. 0.11 0.15 0.24 V
Supply Current Iq VIN=VCE=VOUT(T)+0.5V (*1),
VIN=2.0V, if VOUT(T)1.5V (*1),
VOUT=VOUT(T)+0.5V (*1), LX=Open. E2 μA
Standby Current ISTB VIN=5.0V, VCE=VOUT=0V, L X=Open. - 0.1 1.0 μA
LX SW “H” Leak Current ILEAKH VIN=5.0V, VCE=VOUT=0V, VLX=0V. - 0.1 1.0 μA
L
X
SW “L” Leak Current
I
LEAKL
V
IN
=5.0V, V
CE
=V
OUT
=0V, V
LX
=5.0V.
-
0.1
1.0
μA
PFM Switching Current
IPFM
VIN=VCE=VOUT(T)+2.0V
(*1)
, IOUT=10mA.
260
330
400
mA
Maximum Dut y Ratio (*3) MAXDTY VIN=VOUT=VOUT()×0.95V(*1), VCE=1.2V
Resistor connected with LX pin. 100 - - %
Efficiency (*4) EFFI VIN=VCE=5.0V,
VOUT(T)=4.0V (*1), IOUT=30mA. - 93 - %
Efficiency (*4) EFFI VIN=VCE=3.6V,
VOUT(T)=3.3V (*1), IOUT=30mA. - 93 - %
Efficiency (*4) EFFI VIN=VCE=3.6V,
VOUT(T)=1.8V (*1), IOUT=30mA. - 87 - %
L X SW “Pch”
ON Resistance
(*5)
RLXP VIN=VCE=5.0V, VOUT=0V, ILX=100mA. - 0.4 0.65 Ω
L X SW “Nch
ON Resistance RLXN VIN=VCE=5.0V. - 0.4 (*6) - Ω -
Output Voltage
Temperature
Characteristics
ΔVOUT/
(V
OUT
・Δ
Topr)
-40℃≦Topr85. - ±100 - ppm/
CE “High” Voltage VCEH VOUT=0V. Resistor connected with LX pin.
Voltage which LX pin changes “L” to “H” level
while V
CE
=0.2
1.5V.
1.2 - 6.0 V
CE “Low” Voltage VCEL VOUT=0V. Resistor connected with LX pin.
Voltage which LX pin changes “H” to “L” level
while VCE=1.5
0.2V.
GND - 0.3 V
CE “High” Current
ICEH
VIN=VCE=5.0V, VOUT=0V, LX=Open.
-0.1
-
0.1
μA
CE “Low” Current
ICEL
VIN=5.0V, VCE=VOUT=0V, LX=Open.
-0.1
-
0.1
μA
Short Protection
Threshold Voltage VSHORT Resistor connec t ed with LX pin.
Voltage which LX pin changes “H” to “L” level
while VOUT= VOUT(T)+0.1V0V(*1). 0.4 0.5 0.6 V
Unless otherwise stated, VIN=VCE=5.0V
(*1) VOUT(T)=Nominal Out put Voltage
(*2) VOUT(E)=Effective Output Voltage
The actual output voltage value VOUT(E) is the PFM comparator threshold voltage in the IC.
Therefore, t he DC/DC circuit output voltage, incl udi ng the peripheral c omponents, is boosted by the ripple voltage average value.
Please refer to the characteristic example.
(*3) Not appl i cable to the products with VOUT(T) < 2.15V since it is out of operational volatge range.
(*4) EFFI=[{ (Output Voltage)×(Output Current)] / [(Input Voltage)×(Input Current)}]×100
(*5) LX S W “Pch” ON resistance = (VIN – VLX pin measurement voltage) / 100mA
(*6) Designed value
6/31
XC9265 Series
ELECTRICAL CHARACTERISTICS (Continued)
XC9265Bxxx Type, without C L discharge function Ta=25˚C
PARAMETER SYMBOL CONDITIONS MIN. TYP. MAX. UNITS CIRCUIT
Input Voltage VIN - 2.0 - 6.0 V
Output Voltage VOUT(E) (*2) Resistor connected with LX pin.
Voltage which LX pin changes “L” to “H” level
while VOUT is decreasing. E1 V
UVLO Release Voltage VUVLO(E) VCE=VIN, VOUT=0V. Resistor connected with LX pin.
Voltage which LX pin changes “L” to “H” level
while VIN is increasing. 1.65 1.8 1.95 V
UVLO Hysteresis Voltage VHYS(E) VCE=VIN, VOUT=0V. Resistor connected with LX pin.
VUVLO(E) - Voltage which LX pin changes “H” t o “L”
level while VIN is decreasing. 0.11 0.15 0.24 V
Supply Current Iq VIN=VCE=VOUT(T)+0.5V (*1),
VIN=2.0V, if VOUT(T)1.5V (*1),
VOUT=VOUT(T)+0.5V (*1), LX=Open. E2 μA
Standby Current ISTB VIN=5.0V, VCE=VOUT=0V, LX=Open. - 0.1 1.0 μA
LX SW “H” Leak Current ILEAKH VIN=5.0V, VCE=VOUT=0V, VLX=0V. - 0.1 1.0 μA
LX SW “L” Leak Current ILEAKL VIN=5.0V, VCE=VOUT=0V, VLX=5.0V. - 0.1 1.0 μA
PFM Switching Current IPFM VIN=VCE=VOUT(T)+2.0V (*1), IOUT=10mA. 115 180 250 mA
Maximum Dut y Ratio (*3) MAXDTY VIN=VOUT=VOUT()×0.95V(*1), VCE=1.2V
Resistor connected with LX pin. 100 - - %
Efficiency (*4) EFFI VIN=VCE=5.0V,
VOUT(T)=4.0V
(*1)
, IOUT=30mA.
- 95 - %
Efficiency (*4) EFFI VIN=VCE=3.6V,
VOUT(T)=3.3V (*1), IOUT=30mA. - 95 - %
Efficiency (*4) EFFI VIN=VCE=3.6V,
VOUT(T)=1.8V (*1), IOUT=30mA. - 89 - %
L X SW “Pch”
ON Resistance (*5) RLXP VIN=VCE=5.0V, VOUT=0V, ILX=100mA. - 0.4 0.65 Ω
L X SW “Nch
ON Resistance RLXN VIN=VCE=5.0V. - 0.4 (*6) - Ω -
Output Voltage
Temperature
Characteristics
ΔVOUT/
(V
OUT
・Δ
Topr)
-40℃≦Topr85. - ±100 - ppm/
CE “High” Voltage VCEH VOUT=0V. Resistor connected with LX pin.
Voltage which LX pin changes “L” to “H” level while
V
CE
=0.2
1.5V.
1.2 - 6.0 V
CE “Low” Voltage VCEL VOUT=0V. Resistor connected with LX pin.
Voltage which LX pin changes “H” to “L” level while
VCE=1.5
0.2V.
GND - 0.3 V
CE “High” Current ICEH VIN=VCE=5.0V, VOUT=0V, LX=Open. -0.1 - 0.1 μA
CE “Low” Current ICEL VIN=5.0V, VCE=VOUT=0V, LX=Open. -0.1 - 0.1 μA
Short Protection
Threshold Voltage VSHORT Resistor connec t ed with LX pin.
Voltage which LX pin changes “H” to “L” level while
VOUT= VOUT(T)+0.1V0V(*1). 0.4 0.5 0.6 V
Unless otherwise stated, VIN=VCE=5.0V
(*1) VOUT(T)=Nominal Out put Voltage
(*2) VOUT(E)=Effective Output Voltage
The actual output voltage value VOUT(E) is the PFM comparator threshold voltage in the IC.
Therefore, t he DC/DC circuit output voltage, incl udi ng the peripheral c omponents, is boosted by the ripple voltage average value.
Please refer to the characteristic example.
(*3) Not applicable to the products with VOUT(T) < 2.15V since it is out of operati onal vol at ge range.
(*4) EFFI=[{ (Output Voltage)×(Output Current)] / [(Input Voltage)×(Input Current)}]×100
(*5) LX S W “Pch” ON resistance = (VIN – VLX pin measurement voltage) / 100mA
(*6) Designed value
7/31
XC9265
Series
ELECTRICAL CHARACTERISTICS (Continued)
XC9265CxxxTypewith CL Discharge Function
PARAMETER SYMBOL CONDITIONS MIN. TYP. MAX. UNITS CIRCUIT
Input Voltage VIN - 2.0 - 6.0 V
Output Voltage VOUT(E) (*2) Resistor connected with LX pin.
Voltage which LX pin changes “L” to “H” level
while VOUT is decreasing. E1 V
UVLO Release Voltage VUVLO(E) VCE=VIN, VOUT=0V. Resistor connected with LX pin.
Voltage which LX pin changes “L” to “H” level
while VIN is increasing. 1.65 1.8 1.95 V
UVLO Hysteresis Voltage VHYS(E) VCE=VIN, VOUT=0V. Resistor connected with LX pin.
VUVLO(E) - Voltage which LX pin changes “H” t o “L”
level while VIN is decreasing. 0.11 0.15 0.24 V
Supply Current Iq VIN=VCE=VOUT(T)+0.5V (*1),
VIN=2.0V, if VOUT(T)1.5V (*1),
VOUT=VOUT(T)+0.5V (*1), LX=Open. E2 μA
Standby Current ISTB VIN=5.0V, VCE=VOUT=0V, LX=Open. - 0.1 1.0 μA
LX SW “H” Leak Current ILEAKH VIN=5.0V, VCE=VOUT=0V, VLX=0V. - 0.1 1.0 μA
LX SW “L” Leak Current ILEAKL VIN=5.0V, VCE=VOUT=0V, VLX=5.0V. - 0.1 1.0 μA
PFM Switching Current IPFM VIN=VCE=VOUT(T)+2.0V (*1), IOUT=10mA. 260 330 400 mA
Maximum Dut y Ratio (*3) MAXDTY VIN=VOUT=VOUT()×0.95V(*1), VCE=1.2V
Resistor connected with LX pin. 100 - - %
Efficiency (*4) EFFI VIN=VCE=5.0V,
VOUT(T)=4.0V
(*1)
, IOUT=30mA.
- 93 - %
Efficiency (*4) EFFI VIN=VCE=3.6V,
VOUT(T)=3.3V (*1), IOUT=30mA. - 93 - %
Efficiency (*4) EFFI VIN=VCE=3.6V,
VOUT(T)=1.8V (*1), IOUT=30mA. - 87 - %
L X SW “Pch”
ON Resistance (*5) RLXP VIN=VCE=5.0V, VOUT=0V, ILX=100mA. - 0.4 0.65 Ω
L X SW “Nch
ON Resistance RLXN VIN=VCE=5.0V. - 0.4 (*6) - Ω -
Output Voltage
Temperature
Characteristics
ΔVOUT/
(V
OUT
・Δ
Topr)
-40℃≦Topr85. - ±100 - ppm/
CE “High” Voltage VCEH VOUT=0V. Resistor connected with LX pin.
Voltage which LX pin changes “L” to “H” level while
V
CE
=0.2
1.5V.
1.2 - 6.0 V
CE “Low” Voltage VCEL VOUT=0V. Resistor connected with LX pin.
Voltage which LX pin changes “H” to “L” level while
VCE=1.5
0.2V.
GND - 0.3 V
CE “High” Current ICEH VIN=VCE=5.0V, VOUT=0V, LX=Open. -0.1 - 0.1 μA
CE “Low” Current ICEL VIN=5.0V, VCE=VOUT=0V, LX=Open. -0.1 - 0.1 μA
Short Protection
Threshold Voltage VSHORT Resistor connec t ed with LX pin.
Voltage which LX pin changes “H” to “L” level while
VOUT= VOUT(T)+0.1V0V(*1). 0.4 0.5 0.6 V
CL Discharge RDCHG VIN=VOUT=5.0V, VCE=0V, LX=Open. 55 80 105 Ω
Unless otherwise stated, VIN=VCE=5.0V
(*1) VOUT(T)=Nominal Out put Voltage
(*2) VOUT(E)=Effective Output Voltage
The actual output voltage value VOUT(E) is the PFM comparator threshold voltage in the IC.
Therefore, t he DC/DC circuit output voltage, incl udi ng the peripheral c omponents, is boosted by the ripple voltage average value.
Please refer to the characteristic example.
(*3) Not applicable to the products with VOUT(T) < 2.15V since it is out of operati onal vol at ge range.
(*4) EFFI=[{ (Output Voltage)×(Out put Current )] / [(Input Voltage)×(Input Current)}]×100
(*5) LX SW “Pch” ON resistance = (VIN – VLX pin measurement voltage) / 100mA
(*6) Designed value
Ta=25˚C
8/31
XC9265 Series
ELECTRICAL CHARACTERISTICS (Continued)
XC9265Dxxx Type, with CL Dischar ge fun ctio n
PARAMETER SYMBOL CONDITIONS MIN. TYP. MAX. UNITS CIRCUIT
Input Voltage VIN - 2.0 - 6.0 V
Output Voltage VOUT(E) (*2) Resistor connect ed with LX pin.
Voltage which LX pin changes “L” to “H” level
while VOUT is decreasing. E1 V
UVLO Release Voltage VUVLO(E) VCE=VIN, VOUT=0V. Resistor connected with LX pin.
Voltage which LX pin changes “L” to “H” level
while VIN is increasing. 1.65 1.8 1.95 V
UVLO Hysteresis Voltage VHYS(E) VCE=VIN, VOUT=0V. Resistor connected with LX pin.
VUVLO(E) - Voltage which LX pin changes “H” t o “L”
level while VIN is decreasing. 0.11 0.15 0.24 V
Supply Current Iq VIN=VCE=VOUT(T)+0.5V (*1),
VIN=2.0V, if VOUT(T)1.5V (*1),
VOUT=VOUT(T)+0.5V (*1), LX=Open. E2 μA
Standby Current ISTB VIN=5.0V, VCE=VOUT=0V, LX=Open. - 0.1 1.0 μA
LX SW “H” Leak Current ILEAKH VIN=5.0V, VCE=VOUT=0V, VLX=0V. - 0.1 1.0 μA
LX SW “L” Leak Current ILEAKL VIN=5.0V, VCE=VOUT=0V, VLX=5.0V. - 0.1 1.0 μA
PFM Switching Current IPFM VIN=VCE=VOUT(T)+2.0V (*1), IOUT=10mA. 115 180 250 mA
Maximum Dut y Ratio (*3) MAXDTY VIN=VOUT=VOUT()×0.95V(*1), VCE=1.2V
Resistor connected with LX pin. 100 - - %
Efficiency (*4) EFFI VIN=VCE=5.0V,
VOUT(T)=4.0V
(*1)
, IOUT=30mA.
- 95 - %
Efficiency (*4) EFFI VIN=VCE=3.6V,
VOUT(T)=3.3V (*1), IOUT=30mA. - 95 - %
Efficiency (*4) EFFI VIN=VCE=3.6V,
VOUT(T)=1.8V (*1), IOUT=30mA. - 89 - %
L X SW “Pch”
ON Resistance (*5) RLXP VIN=VCE=5.0V, VOUT=0V, ILX=100mA. - 0.4 0.65 Ω
L X SW “Nch
ON Resistance RLXN VIN=VCE=5.0V. - 0.4 (*6) - Ω -
Output Voltage
Temperature
Characteristics
ΔVOUT/
(V
OUT
・Δ
Topr)
-40℃≦Topr85. - ±100 - ppm/
CE “High” Voltage VCEH VOUT=0V. Resistor connected with LX pin.
Voltage which LX pin changes “L” to “H” level while
V
CE
=0.2
1.5V.
1.2 - 6.0 V
CE “Low” Voltage VCEL VOUT=0V. Resistor connected with LX pin.
Voltage which LX pin changes “H” to “L” level while
VCE=1.5
0.2V.
GND - 0.3 V
CE “High” Current ICEH VIN=VCE=5.0V, VOUT=0V, LX=Open. -0.1 - 0.1 μA
CE “Low” Current ICEL VIN=5.0V, VCE=VOUT=0V, LX=Open. -0.1 - 0.1 μA
Short Protection
Threshold Voltage VSHORT Resistor connec t ed with LX pin.
Voltage which LX pin changes “H” to “L” level while
VOUT= VOUT(T)+0.1V0V(*1). 0.4 0.5 0.6 V
CL Discharge RDCHG VIN=VOUT=5.0V, VCE=0V, LX=Open. 55 80 105 Ω
Unless otherwise stated, VIN=VCE=5.0V
(*1) VOUT(T)=Nominal Out put Voltage
(*2) VOUT(E)=Effective Output Voltage
The actual output voltage value VOUT(E) is the PFM comparator threshold voltage in the IC.
Therefore, t he DC/DC circuit output voltage, incl udi ng the peripheral c omponents, is boosted by the ripple voltage average value.
Please refer to the characteristic example.
(*3) Not applicable to the products with VOUT(T) < 2.15V since it is out of operational volatge range.
(*4) EFFI=[{ (Output Voltage)×(Out put Current)] / [(Input Voltage)×(Input Current)}]×100
(*5) L X SW “Pch” ON resistance = (VIN – VLX pin measurement voltage) / 100mA
(*6) Designed value
Ta=25˚C
9/31
XC9265
Series
ELECTRICAL CHARACTERISTICS (Continued)
XC9265 series voltage chart
SYMBOL E1 E2
PARAMETER Output Voltage Supply Current
UNITS: V UNITS: V UNITS: μA
OUTPUT
VOLTAGE
MIN. MAX. TYP. MAX.
1.00 0.980 1.020
0.5 0.8
1.05 1.029 1.071
1.10 1.078 1.122
1.15 1.127 1.173
1.20 1.176 1.224
1.25 1.225 1.275
1.30 1.274 1.326
1.35 1.323 1.377
1.40 1.372 1.428
1.45 1.421 1.479
1.50 1.470 1.530
0.5 0.9
1.55 1.519 1.581
1.60 1.568 1.632
1.65 1.617 1.683
1.70 1.666 1.734
1.75 1.715 1.785
1.80 1.764 1.836
1.85 1.813 1.887
1.90 1.862 1.938
1.95 1.911 1.989
2.00 1.960 2.040
0.6 1.1
2.05 2.009 2.091
2.10 2.058 2.142
2.15 2.107 2.193
2.20 2.156 2.244
2.25 2.205 2.295
2.30 2.254 2.346
2.35 2.303 2.397
2.40 2.352 2.448
2.45 2.401 2.499
2.50 2.450 2.550
0.7 1.5
2.55 2.499 2.601
2.60 2.548 2.652
2.65 2.597 2.703
2.70 2.646 2.754
2.75 2.695 2.805
2.80 2.744 2.856
2.85 2.793 2.907
10/31
XC9265 Series
ELECTRICAL CHARACTERISTICS (Continued)
XC9265 series voltage chart
SYMBOL E1 E2
PARAMETER Output Voltage Supply Current
UNITS: V UNITS: V UNITS: μA
OUTPUT
VOLTAGE MIN. MAX. TYP. MAX.
2.90 2.842 2.958 0.7 1.5
2.95
2.891
3.009
3.00 2.940 3.060
0.8 2.1
3.05 2.989 3.111
3.10 3.038 3.162
3.15 3.087 3.213
3.20 3.136 3.264
3.25 3.185 3.315
3.30 3.234 3.366
3.35 3.283 3.417
3.40 3.332 3.468
3.45 3.381 3.519
3.50 3.430 3.570
1.5 3.0
3.55 3.479 3.621
3.60 3.528 3.672
3.65 3.577 3.723
3.70 3.626 3.774
3.75 3.675 3.825
3.80 3.724 3.876
3.85 3.773 3.927
3.90 3.822 3.978
3.95 3.871 4.029
4.00 3.920 4.080
11/31
XC9265
Series
TEST CIRCUITS
< Test Circuit No.1 >
V
IN
L
X
GND
CE V
OUT
C
IN
V
I
OUT
C
L
L
Wave Form Measure Point
※ External Components
   L : 10uH
   C
IN
: 10uF (ceramic)
   C
L
: 22uF (ceramic)
A
< Test Circuit No.2 >
C
IN
Rpulldown
 External Components
  R : 100Ω
Wave Form Measure Point
V
V
IN
L
X
GND
CE V
OUT
< Test Circuit No.3 >
A
C
IN
AA
 External Components
  C
IN
: 10uF
V
IN
L
X
GND
CE V
OUT
< Test Circuit No.4 >
V
IS
V
IN
L
X
GND
CE V
OUT
C
IN
< Test Circuit No.5 >
C
IN
A
ICEL
ICEH
Rpulldown
Wave Form Measure Point
 External Components
  C
IN
: 10uF
  R : 100Ω
V
IN
L
X
GND
CE V
OUT
※ External Components
  C
IN
: 10uF
12/31
XC9265 Series
TYPICAL APPLICA TION CIRCUIT
Typical Examples
MANUFACTURE PRODUCT NU MBER VALUE
L
TDK VLF302512M-100M 10μH
Coilcraft LPS3015-103MRB 10μH
Murata 1239AS-H-100M 10μH
CIN TAI YO YU DE N LMK107BJ106MA 10μF/10V
CL TAIYO YU D E N JMK107BJ226MA 22μF/6.3V
* Take capacitance loss, withstand voltage, and other condit i ons into cons i deration when select i ng components .
* Characterist ics are dependent on deviat i ons in the coil inductanc e value. Test fully using the actual device.
* A value of 10μH is recommended for the coil inductance.
* If a tantalum or electrolytic capacitor is used for the load capacitance CL, ripple voltage will i ncreas e, and there is a possibility that operation will
become unstable. Test fully using the actual devic e.
LX
VIN
VOUT
GND
CE
VIN
CIN
(Ceramic) CL
(Ceramic)
VOUT
L
13/31
XC9265
Series
OPERATIONAL EXPLANATION
The XC9265 series consists of a reference voltage supply, PFM comparator, Pch driver Tr, Nch synch r ono us r ec tif i ca ti on s wit ch
Tr, current sensing circuit, PFM control circuit, CE control circuit, and others. (Refer to the block diagram below.)
An ultra-low quiescent current circuit and synchronous rectification enable a significant reduction of dissipation in the IC, and the
IC operates with high efficiency at both light loads and heavy loads. Current limit PFM is used for the control method, and even
when sw itchin g current superposition oc cur s, increases of ou tput v oltage ripple ar e s uppressed, al low ing u se ov er a wide voltage
and current range. The IC is compatible with low-capacitance ceramic capacitors, and a small, high-performance step-down DC-
DC converter can be crea ted.
The actual output voltage VOUT(E) in the electrical characteristics is the threshold voltage of the PFM comparator in the block
diagram. Therefore the average output voltage of the step-down circuit, including peripheral components, depends on the ripple
voltage. Before use, test fully using the actual device.
<Reference voltage supply (VREF)>
Reference voltage for stabilization of the output voltage of the IC.
<PFM control>
(1) The feedback voltage (FB voltage) is the voltage that results from dividing the output voltage with the IC internal dividing
resistors RFB1 and RFB2. The PFM comparator co mpares this FB voltage to VREF. When the FB voltage is l ower than VREF, the PFM
comparator se nds a s igna l to t he buffer dr iv er thr o ugh t he P F M control circuit to tur n on t he P ch driv er Tr . Whe n the FB v ol tage i s
higher than VREF, the PFM comparator sends a signal to prevent the Pch driver Tr from turning on.
(2) When the Pch driver Tr is on, the current sense circuit monitors the current that flows through the Pch driver Tr connected to the
Lx pin. W hen the current reaches the set PFM switching current (IPFM), the current sense circuit sends a signal to the buffer driver
through the PFM control circuit. T his signal turns off the Pch dri v er Tr and turns on the Nc h sy nchronous rect ification switch Tr .
(3) The on time (off time) of the Nch synchronous rectification switch Tr is dynamically optimized inside the IC. After the off time
elapses and th e PFM compara tor dete cts that th e VOUT voltage is hi gher t han the set voltage, the PFM comparat or sends a signa l
to the PFM control circuit tha t prev ents the Pch driver T r from turning on . Howev er , if the VOUT voltage is l ower than the set v oltage,
the PFM comparator starts Pch driver Tr on.
By continuously adjusting the interval of the linked operation of (1), (2) and (3) above in response to the load current, the output
voltage is stabilized with high efficiency from light loads to heavy loads
V
LX
V
OUT
I
LX
V
LX
V
OUT
I
LX
V
IN
=V
CE
=3.6VV
OUT
=1.8VI
OUT
=5mAL=10μHC
L
=22uFTa=25
V
IN
=V
CE
=3.6VV
OUT
=1.8VI
OUT
=30mAL=10μHC
L
=22uFTa=25
V
OUT(E)
Voltage
V
LX
: 2[V/d iv]
V
OUT
: 50[mV/div]
I
LX
: 100[mA/div]
10[μs/div]
10[μs/div]
I
PFM
-
+PFM
Controller
Current
Sense
V
REF
PFM
Comparator
CE Controller LogicCE
V
OUT
GND
L
X
C
L
Discharge
R
FB1
R
FB2
FB
C
FB
Synch
Buffer
Driver
PFM Comparator Unit
V
DD
UVLO
V
IN
start up
Controller
Short
protection
V
IN
-
+PFM
Controller
Current
Sense
V
REF
PFM
Comparator
CE Controller LogicCE
V
OUT
GND
L
X
R
FB1
R
FB2
FB
C
FB
Synch
Buffer
Driver
PFM Comparator Unit
V
DD
UVLO
V
IN
start up
Controller
Short
protection
V
IN
XC9265Axxx/XC9265Bxxx
XC9265Cxxx/XC9265xxx
14/31
XC9265 Series
OPERATIONAL EXPLANATION (Continued)
.
<PFM Switching Current >
The PFM switching current monitors the current th at flows throu gh the Pch driver T r , and is a value that l imits the Pch driver T r current.
The Pch driv er Tr remains on until t he coil current reac hes the PFM switching current (IPFM). An approximate v alue for this on-time
tON can be calculated using the following equation:
tON = L × IPFM / (VIN – VOUT)
<Maxim um on-time function>
To avoid excessive ripple voltage in the event that the coil current does not reach the PFM switching current within a certain
interval even though the Pch driver Tr has turned on and the FB voltage is above VREF, the Pch driver Tr can be turned off at any
timing using the maximum on-time f unction of th e PFM con trol circuit. If the Pc h driver Tr turns off by the max imum on-time function
instead of the current sense circuit, the Nch synchronous rectification switch Tr will not turn on and the coil current will flow to the
VOUT pin by means of the parasite diode of the Nch synchronous rectification switch Tr.
<Through mode >
When the VIN voltage is lower than the output voltage, through mode automatically activates and the Pch driver Tr stays on
continuously.
(1) In through mode, when the load current is increased and the current that flows through the Pch driver Tr reaches a load current
that is several tens of mA lower than the set PFM switching current (IPFM), the current sense circuit sends a signal through the PFM
control circuit to the bu ffer driver. T his signal turns of f the Pch d r iv er Tr and turns on the Nch synchronous r e ctificati on sw itch Tr .
(2) After the on-time (off-time) of the Nch synchronous rectification switch Tr, the Pch driver Tr turns on until the current reaches
the set PFM switching current (IPFM) again.
If the load curr ent i s large as d escribed above, op erati ons (1) and (2) above are r epeat ed. If the load curr ent i s several t ens of mA
lower than the PFM switching current (IPFM), the Pch driver Tr stays on continuously.
<VIN start mode>
When the VIN voltage rises, VIN start mode stops the short-circuit protection function during the interval until the FB voltage
approaches VREF. After the VIN voltage rises and the FB voltage approaches VREF by step-down operation, VIN start mode is
released. In order to prevent an excessive rush current while VIN start mode is activated, the coil current flows to the VOUT pin by
means of the parasitic diode of the Nch synchronous rectification Tr. In VIN start mode as well, the coil current is limited by the
PFM switching current.
<Short-circuit prote cti on funct ion>
The short-c irc uit pr ot ec tio n fun ctio n mo nit or s the VOUT voltage. In the event t ha t the V OUT pin is acciden t ally s hor te d to G N D or an
excessive load current causes the VOUT voltage to drop below the set short-circuit protection voltage, the short-circuit protection
function activates, and tur n s off and latches the Pch driv er Tr at any se lect ed t i ming . O n ce in the latched stat e, the IC i s t urned of f
and then restarted from the CE pin, or operation is started by re-applying the VIN voltage.
<UVLO function>
When the VIN pin voltage drops below the UVLO detection voltage, the IC stops switching operation at any selected timing, turns
off the P ch driver T r and Nch s ynchronous rectif ication sw itch T r (UVLO mode). When the VIN pin voltage re covers and rises abov e
the UVLO release voltage, the IC restarts operation.
<CL discharge function>
On the X C9265 series, a CL di sch arge fu nction is available a s an option (XC9265C/XC9265D types). T his function enabl es qui c k
discharging of the CL lo ad capacit ance when L voltage i s i nput into the C E pin by the N c h Tr connected between the VOUT-GND
pins, or in UVLO mode. This prevents malfunctioning of the application in the event that a charge remains on CL when the IC is
stopped. The discharge ti me is determine d by CL and the CL discharge r esistance RDCHG, in cluding the Nch T r (refer to the diagra m
below). Using this time constant τ= CL×RDCHG, the discharge time of the output voltage is calculated by means of the eq u a tion
below.
V = VOUT × e - t /τ, or in terms of t, t = τIn(VOUT / V)
V: Output voltage after di sch ar ge
VOUT : Set output voltage
: Discharge time
CL: Value of load capacitan ce (CL)
RDCHG : Value of CL discharge resistance Varies by power supply voltage.
τ: CL × RDCHG
The CL discharge function is not available on the XC9265A/XC9265B types.
RDCHG = R + RON
CE / UVLO
Signal
VOUT
R
RON
15/31
XC9265
Series
NOTE ON USE
1. Be careful not to exceed the absolute maximum ratings for externally connected components and this IC.
2. The DC/DC converter characteristics greatly depend not only on the characteristics of this IC but also on those of externally
connected components, so refer to the specifications of each component and be careful when selecting the components. Be
especially care ful of th e char acter istics of the c apacit or u sed f or the load capa city CL and use a capa citor w ith B chara cter istic s
(JIS Standard) or an X7R/X5R (EIA Standard) ceramic capacitor.
3. Use a ground w ire of sufficie nt strength. Groun d potential fluctu ation caused by the groun d current during sw itching could cause
the IC operation to become unstable, so reinforce the area around the GND pin of the IC in particular.
4. Mount the externally connected components in the vicinity of the IC. Also use short, thick wires to reduce the wire impedance.
5. When the v olta ge d ifferen ce bet w een V IN and VOUT is sm all , switching energy in cre ase s a nd t her e i s a pos si bility that the ripple
voltage will be too large. Before use, test fully using the actual device.
6. The CE pin does not have an internal pull-up or pull-down, etc. Apply the prescribed voltage to the CE pin.
7. If other than the recommended inductance and capacitance values are used, excessive ripple voltage or a drop in efficiency
may result.
8. If other than the recommended inductance and c apacitance values are used, a drop in output voltage w hen the load is excessive
may cause the short-circuit protection function to activate. Before use, test fully using the actual device.
9. At high temp eratur e, ex cessi ve rippl e volt age may occ ur an d cause a dr op in output volt age and ef fi ciency. Before u sing at high
temperature, test fully using the actual device
10. At light loads or when IC operation is stopped, leakage current from the Pch driver Tr may cause the output voltage to rise.
11. The average output voltage may vary due to the effects of output voltage ripple caused by the load current. Before use , t est
fully using the actual device.
12. If the CL capacitance or load current is large, the output voltage rise time will lengthen when the IC is started, and coil current
overlay may occur during the interval until the output voltage reaches the set voltage (refer to the diagram below).
13. When the IC i s st art ed , the short -circuit protection functi on does not operate during the i nt erv al unt il th e VOUT voltage r each es
a value near the set voltage.
14. If the IC is started at a VIN voltage that activates through mode, it is possible that the short-circuit protection function will not
operate. Before use, test fully using the actual device.
15. I f th e load current is ex cessively l arge when the IC is s tarted, it is po ssible that the VOUT voltage will n ot r ise to the set voltage.
Before use, test fully using the actual device.
200[μs/div]
5[μs/div]
XC9265A ーズV
IN
=V
CE
=06.0VV
OUT
=1.0VI
OUT
=200mAL=10μHC
L
=22uFTa=25
Zoom
V
IN
V
OUT
I
LX
V
LX
V
IN
V
OUT
I
LX
V
LX
I
PFM
V
IN
: 5[V/div ]
V
IN
: 5[V/div ]
V
OUT
: 1[V/div ]
V
OUT
: 1[V/div ]
I
L
: 200[ m A/ div]
V
LX
: 10[ V/ div]
V
LX
: 10[ V/ div]
I
L
: 200[ m A/ div]
XC9265A series
16/31
XC9265 Series
NOTE ON USE (Continued)
16. In actual o peration, t he max imum on-time depen ds on the periph eral co mponents, i nput voltage, and load curre nt. Befo re use,
test fully using the actual device.
17. When the VIN voltage is turned on and of f co nt in uou sly, excessiv e rush current may occur w hile the v oltage is on. Befor e use ,
test fully using the actual device.
18. W hen the VIN voltage is high, the Pch driver may change from on to off before the coil current reaches the PFM switching
current (IPFM), or before the maximum on-time elapses. Before use, test fully using the actual device.
19. When the IC change to the Through Mode at light load, the supply current of this IC can increase in some cases.
20. For temporary, transitional voltage drop or voltage rising phenomenon, the IC is liable to malfunction should the ratings be
exceeded.
21. Torex places an importance on improving our products and their reliability.
We request that users incorporate fail-safe designs and post-aging protection treatment when using Torex products in their
systems.
22. The UVLO function can be activated when the UVLO hysteresis width gets to about 0mV and after several tens ms elapses
at light loads.Before use, test fully using the actual device.
17/31
XC9265
Series
NOTE ON USE (Continued)
Instructions of pattern layouts
1. To suppress fluctuations in the VIN potential, connect a bypass capacitor (CIN) in the shortest path between the VIN pin and
ground pin.
2. Please mount each external component as close to the IC as possible.
3. Wire external components as close to the IC as possible and use thick, short connecting traces to reduce the circuit
impedance.
4. Make sure that the ground traces are as thick as possible, as variations in ground potential caused by high ground currents
at the time of switching may result in instability of the IC.
5. Internal driver transistors bring on heat because of the transistor current and ON resistance of the driver transistors.
Recommended Pattern Layout (USP-6EL)
Top view Bottom view
Recommended Pattern Layout (SOT-25)
18/31
XC9265 Series
Top view Bottom view
TYPICAL PER FORMANCE CHARACTERI STICS
(1) Efficiency vs. Output Current
0
20
40
60
80
100
0.01 0.1 110 100 1000
Out put C urrent : I
OUT
(m A)
Efficiency : EFFI (%)
XC9265A301
L=10μH(VLF302512M-100M),CIN =10μF(LMK107BJ106MA),
CL=44μF(JMK107BJ226M2)
VIN=3.6V
VIN=4.2V
0
20
40
60
80
100
0.01 0.1 110 100 1000
Out put C urrent : I
OUT
(m A)
Efficiency : EFFI (%)
VIN=3.6V
VIN=4.2V
XC9265A301
L=10μH(VLF302512M-100M),CIN =10μF(LMK107BJ106MA),
CL=22μF(JMK107BJ226MA)
0
20
40
60
80
100
0.01 0.1 110 100
Out put C urrent : I
OUT
(m A)
Efficiency : EFFI (%)
XC9265B181
L=10μH(VLF302512M-100M),CIN =10μF(LMK107BJ106MA),
CL=44μF(JMK107BJ226M2)
VIN=3.6V
VIN=2.7V
VIN=4.2V
0
20
40
60
80
100
0.01 0.1 110 100
Out put C urrent : I
OUT
(m A)
Efficiency : EFFI (%)
XC9265B181
L=10μH(VLF302512M-100M),CIN =10μF(LMK107BJ106MA),
CL=22μF(JMK107BJ226MA)
VIN=3.6V
VIN=2.7V
VIN=4.2V
0
20
40
60
80
100
0.01 0.1 110 100 1000
Out put C urrent : I
OUT
(m A)
Efficiency : EFFI (%)
VIN=4.2V
XC9265A181
L=10μH(VLF302512M-100M),CIN =10μF(LMK107BJ106MA),
CL=44μF(JMK107BJ226M2)
VIN=2.7V
VIN=3.6V
0
20
40
60
80
100
0.01 0.1 110 100 1000
Out put C urrent : I
OUT
(m A)
Efficiency : EFFI (%)
VIN=3.6V
VIN=2.7V
VIN=4.2V
XC9265A181
L=10μH(VLF302512M-100M),CIN =10μF(LMK107BJ106MA),
CL=22μF(JMK107BJ226MA)
19/31
XC9265
Series
TYPICAL PER FORMANCE CHARACTERI STICS ( C ontinued)
(1) Efficiency vs. Output Current
20/31
XC9265 Series
(2) Output Voltage vs. Output Current
TYPICAL PER FORMANCE CHARACTERI STICS ( C ontinued)
(2) Output Voltage vs. Output Current
1.2
1.4
1.6
1.8
2.0
2.2
0.01 0.1 110 100
Out put C urrent : I
OUT
(m A)
Out put Volt age : V
OUT
(V)
XC9265B181
L=10μH(VLF302512M-100M),C
IN
=10μF(LMK107BJ106MA),
C
L
=44μF(JMK107BJ226M2)
V
IN
=2.7V,3.6V,4.2V
1.2
1.4
1.6
1.8
2.0
2.2
0.01 0.1 110 100
Out put C urrent : I
OUT
(m A)
Out put Volt age : V
OUT
(V)
XC9265B181
L=10μH(VLF302512M-100M),C
IN
=10μF(LMK107BJ106MA),
C
L
=22μF(JMK107BJ226MA)
V
IN
=2.7V,3.6V,4.2V
1.2
1.4
1.6
1.8
2.0
2.2
0.01 0.1 110 100 1000
Out put C urrent : I
OUT
(m A)
Out put Volt age : V
OUT
(V)
XC9265A181
L=10μH(VLF302512M-100M),C
IN
=10μF(LMK107BJ106MA),
C
L
=44μF(JMK107BJ226M2)
V
IN
=2.7V,3.6V,4.2V
1.2
1.4
1.6
1.8
2.0
2.2
0.01 0.1 110 100 1000
Out put C urrent : I
OUT
(m A)
Out put Volt age : V
OUT
(V)
V
IN
=2.7V,3.6V,4.2V
XC9265A181
L=10μH(VLF302512M-100M),C
IN
=10μF(LMK107BJ106MA),
C
L
=22μF(JMK107BJ226MA)
0
20
40
60
80
100
0.01 0.1 110 100
Out put C urrent : I
OUT
(m A)
Efficiency : EFFI (%)
XC9265B301
L=10μH(VLF302512M-100M),C
IN
=10μF(LMK107BJ106MA),
C
L
=44μF(JMK107BJ226M2)
V
IN
=3.6V
V
IN
=4.2V
0
20
40
60
80
100
0.01 0.1 110 100
Out put C urrent : I
OUT
(m A)
Efficiency : EFFI (%)
V
IN
=3.6V
V
IN
=4.2V
XC9265B301
L=10μH(VLF302512M-100M),C
IN
=10μF(LMK107BJ106MA),
C
L
=22μF(JMK107BJ226MA)
21/31
XC9265
Series
TYPICAL PER FORMANCE CHARACTERI STICS ( C ontinued)
(3) Ripple Voltage vs. Output Current
0
50
100
150
200
250
300
0.01 0.1 110 100 1000
Out put C urrent : I
OUT
(m A)
R ipple Volt age : Vr (m V)
XC9265A181
L=10μH(VLF302512M-100M),C
IN
=10μF(LMK107BJ106MA),
C
L
=44μF(JMK107BJ226M2)
V
IN
=4.2V
V
IN
=2.7V
V
IN
=3.6V
0
50
100
150
200
250
300
0.01 0.1 110 100 1000
Out put C urrent : I
OUT
(m A)
R ipple Volt age : Vr (m V)
XC9265A181
L=10μH(VLF302512M-100M),C
IN
=10μF(LMK107BJ106MA),
C
L
=22μF(JMK107BJ226MA)
V
IN
=4.2V
V
IN
=2.7V
V
IN
=3.6V
2.4
2.6
2.8
3.0
3.2
3.4
0.01 0.1 110 100
Out put C urrent : I
OUT
(m A)
Out put Volt age : V
OUT
(V)
XC9265B301
L=10μH(VLF302512M-100M),C
IN
=10μF(LMK107BJ106MA),
C
L
=44μF(JMK107BJ226M2)
V
IN
=3.6V,4.2V
2.4
2.6
2.8
3.0
3.2
3.4
0.01 0.1 110 100
Out put C urrent : I
OUT
(m A)
Out put Volt age : V
OUT
(V)
XC9265B301
L=10μH(VLF302512M-100M),C
IN
=10μF(LMK107BJ106MA),
C
L
=22μF(JMK107BJ226MA)
V
IN
=3.6V,4.2V
2.4
2.6
2.8
3.0
3.2
3.4
0.01 0.1 110 100 1000
Out put C urrent : I
OUT
(mA)
Out put Volt age : V
OUT
(V)
XC9265A301
L=10μH(VLF302512M-100M),C
IN
=10μF(LMK107BJ106MA),
C
L
=44μF(JMK107BJ226M2)
V
IN
=3.6V,4.2V
2.4
2.6
2.8
3.0
3.2
3.4
0.01 0.1 110 100 1000
Out put C urrent : I
OUT
(mA)
Out put Volt age : V
OUT
(V)
V
IN
=3.6V,4.2V
XC9265A301
L=10μH(VLF302512M-100M),C
IN
=10μF(LMK107BJ106MA),
C
L
=22μF(JMK107BJ226MA)
XC9265B181
L=10μH(VLF302512M-100M),C
IN
=10μF(LMK107BJ106MA),
C
L
=44μF(JMK107BJ226M2)
XC9265B181
L=10μH(VLF302512M-100M),C
IN
=10μF(LMK107BJ106MA),
C22 F(JMK107BJ226MA)
22/31
XC9265 Series
TYPICAL PER FORMANCE CHARACTERI STICS ( C ontinued)
(4) Output Voltage Vs. Ambient Temperature
23/31
XC9265
Series
(5) Supply Cur rent vs. A mbient Temperature
(6) Stand-by Current vs. Ambient Temperat ure
TYPICAL PER FORMANCE CHARACTERI STICS ( C ontinued)
(7) UVLO Release V oltage vs. Ambient Temper ature
0.0
0.5
1.0
1.5
2.0
2.5
3.0
-50 -25 025 50 75 100
Am bient Tem perat ure: Ta()
St andby C urrent : I
STB
(μA)
XC9265x301
V
IN
=5.0V,3.6V
0.0
0.5
1.0
1.5
2.0
2.5
3.0
-50 -25 025 50 75 100
Am bient Tem perat ure: Ta()
St andby C urrent : I
STB
(μA)
XC9265x181
V
IN
=5.0V,3.6V,2.3V
0.0
0.5
1.0
1.5
2.0
2.5
3.0
-50 -25 025 50 75 100
Am bient Tem perat ure: Ta()
Supply C urrent : I q (μA)
XC9265x301
V
IN
=3.5V
0.0
0.5
1.0
1.5
2.0
2.5
3.0
-50 -25 025 50 75 100
Am bient Tem perat ure: Ta()
Supply C urrent : I q (μA)
XC9265x181
V
IN
=2.3V
2.7
2.8
2.9
3.0
3.1
3.2
3.3
-50 -25 025 50 75 100
Am bient Tem perat ure: Ta()
Out put Volt age : V
OUT
(V)
XC9265x301
V
IN
=5.0V
1.5
1.6
1.7
1.8
1.9
2.0
2.1
-50 -25 025 50 75 100
Am bient Tem perat ure: Ta()
Out put Volt age : V
OUT
(V)
XC9265x181
V
IN
=5.0V
24/31
XC9265 Series
(8) PFM Switching Current vs. Ambient Temperature
0
100
200
300
400
500
-50 -25 025 50 75 100
Am bient Tem perat ure: Ta ()
PFM Switching Current: I
PFM
(m A)
XC9265B301
L=10μH(VLF302512M-100M),CIN =10μF(LMK107BJ106MA),
CL=22μF(JMK107BJ226MA)
VIN=3.6V
VIN=5.0V
0
100
200
300
400
500
-50 -25 025 50 75 100
Am bient Tem perat ure: Ta ()
PFM Switching Current: I
PFM
(m A)
XC9265B181
L=10μH(VLF302512M-100M),CIN =10μF(LMK107BJ106MA),
CL=22μF(JMK107BJ226MA)
VIN=5.0V
VIN=2.3V
VIN=3.6V
0
100
200
300
400
500
600
-50 -25 025 50 75 100
Am bient Tem perat ure: Ta ()
PFM Switching Current: I
PFM
(m A)
XC9265A301
L=10μH(VLF302512M-100M),CIN =10μF(LMK107BJ106MA),
CL=22μF(JMK107BJ226MA)
VIN=5.0V,3.6V
0
100
200
300
400
500
600
-50 -25 025 50 75 100
Am bient Tem perat ure: Ta ()
PFM Switching Current: I
PFM
(m A)
XC9265A181
L=10μH(VLF302512M-100M),CIN =10μF(LMK107BJ106MA),
CL=22μF(JMK107BJ226MA)
VIN=5.0V,3.6V
VIN=2.3V
1.60
1.65
1.70
1.75
1.80
1.85
1.90
1.95
2.00
-50 -25 025 50 75 100
Am bient Tem perat ure: Ta()
U VLO R eleas e Volt age: V
RELEASE
(V)
XC9265x301
VRELEASE (T) =1.8V
1.60
1.65
1.70
1.75
1.80
1.85
1.90
1.95
2.00
-50 -25 025 50 75 100
Am bient Tem perat ure: Ta()
U VLO R eleas e Volt age: V
RELEASE
(V)
XC9265x181
VRELEASE (T) =1.8V
25/31
XC9265
Series
TYPICAL PER FORMANCE CHARACTERI STICS (Continued)
(9) Ma ximum Frequency vs. Ambient Temperature
0
500
1,000
1,500
2,000
2,500
3,000
-50 -25 025 50 75 100
Am bient Tem perat ure: Ta()
Maximum Frequency (kHz)
XC9265B401
L=10μH(VLF302512M-100M),C
IN
=10μF(LMK107BBJ106MA),
C
L
=22μF(JMK107BJ226MA)
V
IN
=6.0V
V
IN
=5.5V
V
IN
=5.0V
0
500
1,000
1,500
2,000
2,500
3,000
-50 -25 025 50 75 100
Am bient Tem perat ure: Ta()
Maximum Frequency (kHz)
XC9265B251
L=10μH(VLF302512M-100M),C
IN
=10μF(LMK107BBJ106MA),
C
L
=22μF(JMK107BJ226MA)
V
IN
=3.6V
V
IN
=4.2V
V
IN
=5.0V
0
500
1,000
1,500
2,000
2,500
3,000
-50 -25 025 50 75 100
Am bient Tem perat ure: Ta()
Maximum Frequency (kHz)
XC9265B101
L=10μH(VLF302512M-100M),C
IN
=10μF(LMK107BBJ106MA),
C
L
=22μF(JMK107BJ226MA)
V
IN
=2.0V
V
IN
=2.7V
V
IN
=3.6V
V
IN
=5.0V
0
500
1,000
1,500
2,000
2,500
3,000
-50 -25 025 50 75 100
Am bient Tem perat ure: Ta()
Maximum Frequency (kHz)
XC9265A401
L=10μH(VLF302512M-100M),C
IN
=10μF(LMK107BBJ106MA),
C
L
=22μF(JMK107BJ226MA)
V
IN
=5.0V
V
IN
=5.5V
V
IN
=6.0V
0
500
1,000
1,500
2,000
2,500
3,000
-50 -25 025 50 75 100
Am bient Tem perat ure: Ta()
Maximum Frequency (kHz)
XC9265A251
L=10μ H(VLF302512M- 100M),CIN= 10μ F( LMK107BBJ106M A) ,
CL= 22μF(JM K107BJ226M A)
V
IN
=5.0V
V
IN
=4.2V
V
IN
=3.6V
0
500
1,000
1,500
2,000
2,500
3,000
-50 -25 025 50 75 100
Am bient Tem perat ure: Ta()
Maximum Frequency (kHz)
XC9265A101
L=10μ H(VLF302512M- 100M),CIN= 10μ F( LMK107BBJ106M A) ,
CL= 22μF(JM K107BJ226M A)
V
IN
=5.0V
V
IN
=2.0V
V
IN
=2.7V
V
IN
=3.6V
26/31
XC9265 Series
TYPICAL PER FORMANCE CHARACTERI STICS ( C ontinued)
(10) Pch Driver ON Resistance vs. Ambient Temperature (11) Nch Driver ON Resistance vs. Ambient Temperature
(12) Lx SW "H" Leakage Current vs. Ambient Temperature (13) Lx SW "L" Leakage Current vs. Ambient Temperature
(14) CE "High" Voltage vs. Ambient Temperature (15) CE "Low" Voltage vs. Ambient Temperature
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
I nput Volt age : V
IN
(V)
LX SW “Pch” ON Resistance: R
LXP
(Ω)
V
IN
=V
CE
,V
OUT
=0V,I
LX
=100mA
Topr=85
XC9265
Topr=25
Topr=-40
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
I nput Volt age : V
IN
(V)
LX SW “Nch” ON Resistance: R
LXN
(Ω)
XC9265
V
IN
=V
CE
Topr=85
Topr=25
Topr=-40
0.0
0.5
1.0
1.5
2.0
2.5
3.0
-50 -25 025 50 75 100
Ambient Temperature: Ta ()
LX Leak C urrent : I
LXL
(μA)
V
IN
=5.0V
XC9265
V
OUT
=V
CE
=0V,V
LX
=5.0V
0.0
0.5
1.0
1.5
2.0
2.5
3.0
-50 -25 025 50 75 100
Am bient Tem perat ure: Ta ()
LX Leak C urrent : I
LXL
(μA)
XC9265
V
IN
=5.0V
V
OUT
=V
CE
=0V,V
LX
=0V
0.0
0.2
0.4
0.6
0.8
1.0
-50 -25 025 50 75 100
Am bient Tem perat ure: Ta ()
C E “Low ” Volt age: V
CEL
(V)
XC9265
VIN=3.6V
VIN=2.0V
VIN=5.0V
0.0
0.2
0.4
0.6
0.8
1.0
-50 -25 025 50 75 100
Am bient Tem perat ure: Ta ()
C E “H igh” Volt age: V
CEH
(V)
XC9265
VIN=3.6V
VIN=2.0V
VIN=5.0V
27/31
XC9265
Series
TYPICAL PER FORMANCE CHARACTERI STICS (Continued)
(16) CL Discharge vs. Ambient Temperature (17) Short Protection Thrreshold vs. Ambient Temperature
(18) Rising Output Voltage
0.0
0.2
0.4
0.6
0.8
1.0
-50 -25 025 50 75 100
Am bient Tem perat ure: Ta ()
Short Prot ec t ion T hrres hold Volage(V)
XC9265
VIN=5.0V,3.6V,2.0V
VIN=VCE
0
100
200
300
400
500
600
-50 -25 025 50 75 100
Am bient Tem perat ure: Ta ()
CL Discharge Resistance: (Ω)
XC9265C/D
VIN=2.0V
VIN=VOUT,VCE=0V
VIN=4.0V
VIN=6.0V
XC9265A181
V
IN
=V
CE
=03.6V,I
OUT
=10uA
V
OUT
:1V/div,V
IN
:5V/div,V
LX
:2V/div,I
LX
:500mA/div,Time:100μs/div
L=10μH(VLF302512M-100M),C
IN
=10μF(LMK107BBJ106MA),
C
L
=22μF(JMK107BJ226MA)
V
OUT
V
IN
V
LX
I
Lx
XC9265A181
V
IN
=V
CE
=03.6V,I
OUT
=100mA
V
OUT
:1V/div,V
IN
:5V/div,V
LX
:2V/div,I
LX
:500mA/div,Time:100μs/div
L=10μH(VLF302512M-100M),C
IN
=10μF(LMK107BBJ106MA),
C
L
=22μF(JMK107BJ226MA)
V
OUT
V
IN
V
LX
I
Lx
XC9265B181
V
IN
=V
CE
=03.6V,I
OUT
=10uA
V
OUT
V
IN
V
LX
I
Lx
XC9265B181x
V
IN
=V
CE
=03.6V,I
OUT
=50mA
V
OUT
:1V/div,V
IN
:5V/div,V
LX
:2V/div,I
LX
:500mA/div,Time:100μs/div
L=10μH(VLF302512M-100M),C
IN
=10μF(LMK107BBJ106MA),
C
L
=22μF(JMK107BJ226MA)
V
OUT
:1V/div,V
IN
:5V/div,V
LX
:2V/div,I
LX
:500mA/div,Time:100μs/div
L=10μH(VLF302512M-100M),C
IN
=10μF(LMK107BBJ106MA),
C
L
=22μF(JMK107BJ226MA)
V
OUT
V
IN
V
LX
I
Lx
XC9265B181
28/31
XC9265 Series
TYPICAL PER FORMANCE CHARACTERI STICS ( C ontinued)
(19) Load Transient Respon se
XC9625A301
V
IN
=3.6V, I
OUT
=10uA100mA
V
OUT
:200mV/div,I
OUT
:100mA/div,V
LX
:5V/div,I
LX
:200mA/div,Time:100μs/div
L=10μH(VLF302512M-100M),C
IN
=10μF(LMK107BJ106MA),
C
L
=22μF(JMK107BJ226MA)
XC9265A301
V
IN
=3.6V I
OUT
=10uA100mA
V
OUT
:200mV/div,I
OUT
:100mA/div,V
LX
:5V/div,I
LX
:200mA/div,Time:100μs/div
L=10μH(VLF302512M-100M),C
IN
=10μF(LMK107BJ106MA),
C
L
=44μF(JMK107BJ226M2)
XC9265B301
V
IN
=3.6V, I
OUT
=10uA50mA
V
OUT
:200mV/div,I
OUT
:50mA/div,V
LX
:5V/div,I
LX
:200mA/div,Time:100μs/div
L=10μH(VLF302512M-100M),C
IN
=10μF(LMK107BJ106MA),
C
L
=22μF(JMK107BJ226MA)
V
OUT
I
out
V
LX
I
Lx
V
OUT
I
out
V
LX
I
Lx
V
OUT
I
out
V
LX
I
Lx
XC9265B301
V
IN
=3.6V, I
OUT
=10uA50mA
V
OUT
:200mV/div,I
OUT
:50mA/div,V
LX
:5V/div,I
LX
:200mA/div,Time:100μs/div
L=10μH(VLF302512M-100M),C
IN
=10μF(LMK107BJ106MA),
C
L
=44μF(JMK107BJ226M2)
V
OUT
I
out
V
LX
I
Lx
XC9265A181
V
IN
=3.6V, I
OUT
=10uA100mA
V
OUT
:100mV/div,I
OUT
:100mA/div,V
LX
:5V/div,
ILX
:200mA/div,Time:100μs/div
L=10μH(VLF302512M-100M),C
IN
=10μF(LMK107BJ106MA),
C
L
=22μF(JMK107BJ226MA)
XC9265A181
V
IN
=3.6V I
OUT
=10uA100mA
V
OUT
:100mV/div,I
OUT
:100mA/div,V
LX
:5V/div,I
LX
:200mA/div,Time:100μs/div
L=10μH(VLF302512M-100M),C
IN
=10μF(LMK107BJ106MA),
C
L
=44μF(JMK107BJ226M2)
V
OUT
I
out
V
LX
I
Lx
V
OUT
I
out
V
LX
I
Lx
29/31
XC9265
Series
TYPICAL PER FORMANCE CHARACTERI STICS ( C ontinued)
(19) Load Transient Response
XC9265B181
VIN=3.6V IOUT=10uA50mA
VOUT:100mV/div,IOUT:50mA/div,VLX:5V/div,ILX:200mA/div,Time:100μs/div
L=10μH(VLF302512M-100M),CIN =10μF(LMK107BJ106MA),
CL=22μF(JMK107BJ226MA)
VOUT
Iout
VLX
ILx
XC9265B181
VIN=3.6V IOUT=10uA50mA
VOUT:100mV/div,IOUT:50mA/div,VLX:5V/div,ILX:200mA/div,Time:100μs/div
L=10μH(VLF302512M-100M),CIN =10μF(LMK107BJ106MA),
CL=44μF(JMK107BJ226M2)
VOUT
Iout
VLX
ILx
30/31
XC9265 Series
PACKAGING INFORMATION
For the latest package information go to, www.torexsemi.com/technical-support/packages
PACKAGE OUTLINE / LAND PATTERN THERMAL CHARACTERISTICS
SOT-25 SOT-25 PKG Standard Board SOT-25 Power Dissipation
USP-6EL(DAF) USP-6EL PKG Standard Board USP-6EL Power Dissipation
31/31
XC9265
Series
MARKING RULE MARK represents produ ct serie s
SOT-25 Under dot
MARK represents output voltag e
MARK represents output voltage range
MARK④⑤ represents production lot number
01090A0Z119ZA1A9AAAZB1ZZ
(G, I, J, O, Q, W excluded and no character inversion used)
MARK
PRODUCT SERIES
C XC9265A/B/C/D*****-G
MARK OUTPUT VOLTAGE PRODUCT SERIES
0
-
1.9
2.9
3.9
-
1.95
2.95
3.95
XC9265A/B*****-G
1
1.0
2.0
3.0
4.0
1.05
2.05
3.05
-
2
1.1
2.1
3.1
-
1.15
2.15
3.15
-
3
1.2
2.2
3.2
-
1.25
2.25
3.25
-
4
1.3
2.3
3.3
-
1.35
2.35
3.35
-
5
1.4
2.4
3.4
-
1.45
2.45
3.45
-
6
1.5
2.5
3.5
-
1.55
2.55
3.55
-
7
1.6
2.6
3.6
-
1.65
2.65
3.65
-
8
1.7
2.7
3.7
-
1.75
2.75
3.75
-
9
1.8
2.8
3.8
-
1.85
2.85
3.85
-
A
-
1.9
2.9
3.9
-
1.95
2.95
3.95
XC9265C/D*****-G
B
1.0
2.0
3.0
4.0
1.05
2.05
3.05
-
C
1.1
2.1
3.1
-
1.15
2.15
3.15
-
D 1.2 2.2 3.2 - 1.25 2.25 3.25 -
E 1.3 2.3 3.3 - 1.35 2.35 3.35 -
F 1.4 2.4 3.4 - 1.45 2.45 3.45 -
H 1.5 2.5 3.5 - 1.55 2.55 3.55 -
K 1.6 2.6 3.6 - 1.65 2.65 3.65 -
L 1.7 2.7 3.7 - 1.75 2.75 3.75 -
M 1.8 2.8 3.8 - 1.85 2.85 3.85 -
MARK OUTPUT
VOLTAGE P RODUCT SERIES
A
1.0
1.8V
XC9265A/C**1**-G
B
1.9
2.8V
C
2.9
3.8V
D 3.94.0V
E 1.01.8V
XC9265B/D**1**-G
F 1.92.8V
H 2.93.8V
K
3.9
4.0V
P 1.051.85V
XC9265A/C**B**-G
R 1.952.85V
S 2.953.85V
T
3.95V
U
1.05
1.85V
XC9265B/D**B**-G
V 1.952.85V
X 2.953.85V
Y 3.95V
1
2
3
6
5
4
USP-6EL
1
2
3
5
4
拡大
SOT-25(Under dot仕様)
SOT-25(Under dot)
USP-6EL
Zoom
32/31
XC9265 Series
1. The product and product specifications contained herein are subject to change without notice to
improve performance characteristics. Consult us, or our representatives before use, to confirm that
the information in this datasheet is up to date.
2. The information in this datasheet is intended to illustrate the operation and characteristics of our
products. We neither make warranties or representations with respect to the accuracy or
completeness of the information contained in this datasheet nor grant any license to any intellectual
property rights of ours or any third party concerning with the information in this datasheet.
3. Applicable export control laws and regulations should be complied and the procedures required by
such laws and regulations should also be followed, when the product or any information contained in
this datasheet is exported.
4. The product is neither intended nor warranted for use in equipment of systems which require
extremely high levels of quality and/or reliability and/or a malfunction or failure which may cause loss
of human life, bodily injury, serious pro perty damage i ncluding but not li mited to dev ice s or equip ment
used in 1) nuclear facilities, 2) aerospace industry, 3) medical facilities, 4) automobile industry and
other transportation industry and 5) safety devices and safety equipment to control combustions and
explosions. Do not use the product for the above use unless agreed by us in writing in advance.
5. Although we make continuous efforts to improve the quality and reliability of our products;
neverthel ess Semiconduct ors are likely to fail with a certain pr obability. So in order t o prevent pers onal
injury and/or property damage resulting from such failure, customers are required to incorporate
adequate safety measur es in their d esign s, such as sy stem fail safes, r edu ndancy and fir e preventio n
features.
6. Our products are not designed to be Radiation-resistant.
7. Please use the product listed in this datasheet within the specified ranges.
8. We assume no responsibility for damage or loss due to abnormal use.
9. All rights reserved. No part of this datasheet may be c opied or reproduced unless agreed by Torex
Semiconductor Ltd in writing in advance.
TOREX SEMICONDUCTOR LTD.