© 2009 Microchip Technology Inc. Preliminary DS61143F
PIC32MX3XX/4XX Family
Data Sheet
64/100-Pin General Purpose and USB
32-Bit Flash Microcontrollers
DS61143F-page ii Preliminary © 2009 Microchip Technology Inc.
Information contained in this publication regarding device
applications and the like is provided only for your convenience
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.
MICROCHIP MAKES NO REPRESENTATIONS OR
WARRANTIES OF ANY KIND WHETHER EXPRESS OR
IMPLIED, WRITTEN OR ORAL, STATUTORY OR
OTHERWISE, RELATED TO THE INFORMATION,
INCLUDING BUT NOT LIMITED TO ITS CONDITION,
QUALITY, PERFORMANCE, MERCHANTABILITY OR
FITNESS FOR PURPOSE. Microchip disclaims all liability
arising from this information and its use. Use of Microchip
devices in life support and/or safety applications is entirely at
the buyer’s risk, and the buyer agrees to defend, indemnify and
hold harmless Microchip from any and all damages, claims,
suits, or expenses resulting from such use. No licenses are
conveyed, implicitly or otherwise, under any Microchip
intellectual property rights.
Trademarks
The Microchip name and logo, the Microchip logo, dsPIC,
KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART,
rfPIC and UNI/O are registered trademarks of Microchip
Technology Incorporated in the U.S.A. and other countries.
FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor,
MXDEV, MXLAB, SEEVAL and The Embedded Control
Solutions Company are registered trademarks of Microchip
Technology Incorporated in the U.S.A.
Analog-for-the-Digital Age, Application Maestro, CodeGuard,
dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN,
ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial
Programming, ICSP, ICEPIC, Mindi, MiWi, MPASM, MPLAB
Certified logo, MPLIB, MPLINK, mTouch, nanoWatt XLP,
Omniscient Code Generation, PICC, PICC-18, PICkit,
PICDEM, PICDEM.net, PICtail, PIC32 logo, REAL ICE, rfLAB,
Select Mode, Total Endurance, TSHARC, WiperLock and
ZENA are trademarks of Microchip Technology Incorporated
in the U.S.A. and other countries.
SQTP is a service mark of Microchip Technology Incorporated
in the U.S.A.
All other trademarks mentioned herein are property of their
respective companies.
© 2009, Microchip Technology Incorporated, Printed in the
U.S.A., All Rights Reserved.
Printed on recycled paper.
Note the following details of the code protection feature on Microchip devices:
Microchip products meet the specification contained in their particular Microchip Data Sheet.
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the
intended manner and under normal conditions.
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
Microchip is willing to work with the customer who is concerned about the integrity of their code.
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not
mean that we are guaranteeing the product as “unbreakable.”
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.
Microchip received ISO/TS-16949:2002 certification for its worldwide
headquarters, design and wafer fabrication facilities in Chandler and
Tempe, Arizona; Gresham, Oregon and design centers in California
and India. The Company’s quality system processes and procedures
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping
devices, Serial EEPROMs, microperipherals, nonvolatile memory and
analog products. In addition, Microchip’s quality system for the design
and manufacture of development systems is ISO 9001:2000 certified.
© 2009 Microchip Technology Inc. Preliminary DS61143F-page 1
PIC32MX3XX/4XX
High-Performance 32-bit RISC CPU:
•MIPS32
® M4K™ 32-bit Core with 5-Stage Pipeline
80 MHz Maximum Frequency
1.56 DMIPS/MHz (Dhrystone 2.1) Performance
at 0 Wait State Flash Access
Single-Cycle Multiply and High-Performance
Divide Unit
MIPS16e™ Mode for Up to 40% Smaller Code
Size
Two Sets of 32 Core Register Files (32-bit) to
Reduce Interrupt Latency
Prefetch Cache Module to Speed Execution from
Flash
Microcontroller Features:
Operating Voltage Range of 2.3V to 3.6V
32K to 512K Flash Memory (plus an additional
12KB of Boot Flash)
8K to 32K SRAM Memory
Pin-Compatible with Most PIC24/dsPIC® Devices
Multiple Power Management Modes
Multiple Interrupt Vectors with Individually
Programmable Priority
Fail-Safe Clock Monitor Mode
Configurable Watchdog Timer with On-Chip
Low-Power RC Oscillator for Reliable Operation
Peripheral Features:
Atomic SET, CLEAR and INVERT Operation on
Select Peripheral Registers
Up to 4-Channel Hardware DMA with Automatic
Data Size Detection
USB 2.0 Compliant Full Speed Device and
On-The-Go (OTG) Controller
USB has a Dedicated DMA Channel
10 MHz to 40 MHz Crystal Oscillator
Internal 8 MHz and 32 kHz Oscillators
Separate PLLs for CPU and USB Clocks
•Two I
2C™ Modules
Two UART Modules with:
- RS-232, RS-485 and LIN 1.2 support
-IrDA
® with On-Chip Hardware Encoder and
Decoder
Parallel Master and Slave Port (PMP/PSP) with
8-bit and 16-bit Data and Up to 16 Address Lines
Hardware Real-Time Clock/Calendar (RTCC)
Five 16-bit Timers/Counters (two 16-bit pairs com-
bine to create two 32-bit timers)
Five Capture Inputs
Five Compare/PWM Outputs
Five External Interrupt Pins
High-Speed I/O Pins Capable of Toggling at Up to
80 MHz
High-Current Sink/Source (18 mA/18 mA) on
All I/O Pins
Configurable Open-Drain Output on Digital I/O
Pins
Debug Features:
Two Programming and Debugging Interfaces:
- 2-Wire Interface with Unintrusive Access and
Real-time Data Exchange with Application
- 4-wire MIPS® Standard Enhanced JTAG
interface
Unintrusive Hardware-Based Instruction Trace
IEEE Std 1149.2 Compatible (JTAG) Boundary
Scan
Analog Features:
Up to 16-Channel 10-bit Analog-to-Digital
Converter:
- 1000 ksps Conversion Rate
- Conversion Available During Sleep, Idle
Two Analog Comparators
5V Tolerant Input Pins (digital pins only)
High-Performance 80 MHz MIPS-Based 32-bit Flash Microcontroller
64/100-Pin General Purpose and USB
PIC32MX3XX/4XX
DS61143F-page 2 Preliminary © 2009 Microchip Technology Inc.
TABLE 1: PIC32MX GENERAL PURPOSE – FEATURES
TABLE 2: PIC32MX USB – FEATURES
GENERAL PURPOSE
Device
Pins
MHz
Program Memory (KB)
Data Memory (KB)
Timers/Capture/Compare
Programmable DMA
Channels
VREG
Trace
EUART/SPI/I2C™
10-bit A/D (ch)
Comparators
PMP/PSP
JTAG
Packages(2)
PIC32MX320F032H 64 40 32 + 12(1) 8 5/5/5 0 Yes No 2/2/2 16 2 Yes Yes PT, MR
PIC32MX320F064H 64 80 64 + 12(1) 16 5/5/5 0 Yes No 2/2/2 16 2 Yes Yes PT, MR
PIC32MX320F128H 64 80 128 + 12(1) 16 5/5/5 0 Yes No 2/2/2 16 2 Yes Yes PT, MR
PIC32MX340F128H 64 80 128 + 12(1) 32 5/5/5 4 Yes No 2/2/2 16 2 Yes Yes PT, MR
PIC32MX340F256H 64 80 256 + 12(1) 32 5/5/5 4 Yes No 2/2/2 16 2 Yes Yes PT, MR
PIC32MX340F512H 64 80 512 + 12(1) 32 5/5/5 4 Yes No 2/2/2 16 2 Yes Yes PT, MR
PIC32MX320F128L 100 80 128 + 12(1) 16 5/5/5 0 Yes No 2/2/2 16 2 Yes Yes PT
PIC32MX340F128L 100 80 128 + 12(1) 32 5/5/5 4 Yes No 2/2/2 16 2 Yes Yes PT
PIC32MX360F256L 100 80 256 + 12(1) 32 5/5/5 4 Yes Yes 2/2/2 16 2 Yes Yes PT
PIC32MX360F512L 100 80 512 + 12(1) 32 5/5/5 4 Yes Yes 2/2/2 16 2 Yes Yes PT
Legend: PT = TQFP MR = QFN
Note 1: This device features 12 KB Boot Flash memory.
2: See Legend for an explanation of the acronyms. See Section 29.0 “Packaging Information” for details.
USB
Device
Pins
MHz
Program Memory (KB)
Data Memory (KB)
Timers/Capture/Compare
Programmable DMA
Channels
Dedicated USB DMA
Channels
VREG
Trace
EUART/SPI/I2C™
10-bit A/D (ch)
Comparators
PMP/PSP
JTAG
Packages(2)
PIC32MX420F032H 64 80 32 + 12(1) 8 5/5/5 0 2 Yes No 2/1/2 16 2 Yes Yes PT, MR
PIC32MX440F128H 64 80 128 + 12(1) 32 5/5/5 4 2 Yes No 2/1/2 16 2 Yes Yes PT, MR
PIC32MX440F256H 64 80 256 + 12(1) 32 5/5/5 4 2 Yes No 2/1/2 16 2 Yes Yes PT, MR
PIC32MX440F512H 64 80 512 + 12(1) 32 5/5/5 4 2 Yes No 2/1/2 16 2 Yes Yes PT, MR
PIC32MX440F128L 100 80 128 + 12(1) 32 5/5/5 4 2 Yes No 2/2/2 16 2 Yes Yes PT
PIC32MX460F256L 100 80 256 + 12(1) 32 5/5/5 4 2 Yes Yes 2/2/2 16 2 Yes Yes PT
PIC32MX460F512L 100 80 512 + 12(1) 32 5/5/5 4 2 Yes Yes 2/2/2 16 2 Yes Yes PT
Legend: PT = TQFP MR = QFN
Note 1: This device features 12 KB Boot Flash memory.
2: See Legend for an explanation of the acronyms. See Section 29.0 “Packaging Information” for details.
© 2009 Microchip Technology Inc. Preliminary DS61143F-page 3
PIC32MX3XX/4XX
PIN DIAGRAM: 64-PIN QFN – GENERAL PURPOSE
64-Pin QFN (General Purpose)
64 63 62 61 60 59 58 57 56 55
22 23 24 25 26 27 28 29 30 31
3
40
39
38
37
36
35
34
33
4
5
7
8
9
10
11
1
2
42
41
6
32
43
54
14
15
16
12
13
17 18 19 20 21
45
44
47
46
48
53 52 51 50 49
PIC32MX3XXH
= Pins are up to 5V tolerant
Note: The metal plane at the bottom of the device is not connected to any pins and is recommended to be connected to
VSS externally.
CN15/RD6
PMRD/CN14/RD5
PMWR/OC5/IC5/CN13/RD4
OC4/RD3
OC3/RD2
OC2/RD1
PMD4/RE4
PMD3/RE3
PMD2/RE2
PMD1/RE1
RF0
VCAP/VDDCORE
PMD0/RE0
RF1
CN16/RD7
ENVREG
PMD5/RE5
PMD6/RE6
PMD7/RE7
PMA5/SCK2/CN8/RG6
VDD
C1IN+/AN5/CN7/RB5
C1IN-/AN4/CN6/RB4
C2IN+/AN3/CN5/RB3
C2IN-/AN2/SS1/CN4/RB2
PMA4/SDI2/CN9/RG7
PMA3/SDO2/CN10/RG8
PGEC1/AN1/VREF-/CVREF-/CN3/RB1
PGED1/PMA6/AN0/VREF+/CVREF+/CN2/RB0
PMA2/SS2/CN11/RG9
MCLR
VSS
SOSCI/CN1/RC13
OC1/RD0
IC3/PMCS2/PMA15/INT3/RD10
IC2/U1CTS/INT2/RD9
IC1/RTCC/INT1/RD8
IC4/PMCS1/PMA14/INT4/RD11
OSC2/CLKO/RC15
OSC1/CLKI/RC12
VDD
SCL1/RG2
U1RTS/BCLK1/SCK1/INT0/RF6
U1RX/SDI1/RF2
U1TX/SDO1/RF3
SDA1/RG3
SOSCO/T1CK/CN0/RC14
Vss
AVDD
U2CTS/C1OUT/AN8/RB8
PMA7/C2OUT/AN9/RB9
TMS/CVREFOUT/PMA13/AN10/RB10
TDO/PMA12/AN11/RB11
VDD
PGEC2/AN6/OCFA/RB6
PGED2/AN7/RB7
PMA8/U2TX/SCL2/CN18/RF5
PMA9/U2RX/SDA2/CN17/RF4
TCK/PMA11/AN12/RB12
TDI/PMA10/AN13/RB13
PMALH/PMA1/U2RTS/BCLK2/AN14/RB14
PMALL/PMA0/AN15/OCFB/CN12/RB15
VSS
AVSS
PIC32MX3XX/4XX
DS61143F-page 4 Preliminary © 2009 Microchip Technology Inc.
PIN DIAGRAM: 64-PIN TQFP – GENERAL PURPOSE
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
48
47
22
44
24
25
26
27
28
29
30
31
32
PIC32MX3XXH
1
46
45
23
43
42
41
40
39
CN15/RD6
PMRD/CN14/RD5
PMWR/OC5/IC5/CN13/RD4
OC4/RD3
OC3/RD2
OC2/RD1
PMD4/RE4
PMD3/RE3
PMD2/RE2
PMD1/RE1
RF0
VCAP/VDDCORE
SOSCI/CN1/RC13
OC1/RD0
IC3/PMCS2/PMA15/INT3/RD10
IC2/U1CTS/INT2/RD9
IC1/RTCC/INT1/RD8
IC4/PMCS1/PMA14/INT4/RD11
OSC2/CLKO/RC15
OSC1/CLKI/RC12
VDD
SCL1/RG2
U1RTS/BCLK1/SCK1/INT0/RF6
U1RX/SDI1/RF2
U1TX/SDO1/RF3
SDA1/RG3
SOSCO/T1CK/CN0/RC14
AVDD
U2CTS/C1OUT/AN8/RB8
PMA7/C2OUT/AN9/RB9
TMS/CVREFOUT/PMA13/AN10/RB10
TDO/PMA12/AN11/RB11
VDD
PGEC2/AN6/OCFA/RB6
PGED2/AN7/RB7
PMA8/U2TX/SCL2/CN18/RF5
PMA9/U2RX/SDA2/CN17/RF4
PMD5/RE5
PMD6/RE6
PMD7/RE7
PMA5/SCK2/CN8/RG6
VDD
C1IN+/AN5/CN7/RB5
C1IN-/AN4/CN6/RB4
C2IN+/AN3/CN5/RB3
C2IN-/AN2/SS1/CN4/RB2
PMA4/SDI2/CN9/RG7
PMA3/SDO2/CN10/RG8
PGEC1/AN1/VREF-/CVREF-/CN3/RB1
PGED1/PMA6/AN0/VREF+/CVREF+/CN2/RB0
PMA2/SS2/CN11/RG9
MCLR
TCK/PMA11/AN12/RB12
TDI/PMA10/AN13/RB13
PMALH/PMA1/U2RTS/BCLK2/AN14/RB14
PMALL/PMA0/AN15/OCFB/CN12/RB15
PMD0/RE0
RF1
CN16/RD7
VSS
VSS
Vss
ENVREG
63
62
61
59
60
58
57
56
54
55
53
52
51
49
50
38
37
34
36
35
33
17
19
20
21
18
AVSS
64
64-Pin TQFP (General Purpose) = Pins are up to 5V tolerant
© 2009 Microchip Technology Inc. Preliminary DS61143F-page 5
PIC32MX3XX/4XX
PIN DIAGRAM: 100-PIN TQFP – GENERAL PURPOSE
92
94
93
91
90
89
88
87
86
85
84
83
82
81
80
79
78
20
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
65
64
63
62
61
60
59
56
45
44
43
42
41
40
39
28
29
30
31
32
33
34
35
36
37
38
17
18
19
21
22
95
1
76
77
72
71
70
69
68
67
66
75
74
73
58
57
24
23
25
96
98
97
99
27
46
47
48
49
55
54
53
52
51
100
PMRD/CN14/RD5
PMWR/OC5/CN13/RD4
PMD13/CN19/RD13
PMD12/IC5/RD12
OC4/RD3
OC3/RD2
OC2/RD1
TRD3/RA7
TRCLK/RA6
PMD2/RE2
TRD0/RG13
TRD1/RG12
TRD2/RG14
PMD1/RE1
PMD0/RE0
PMD8/RG0
PMD4/RE4
PMD3/RE3
PMD11/RF0
SOSCI/CN1/RC13
OC1/RD0
IC3/PMCS2/PMA15/RD10
IC2/RD9
IC1/RTCC/RD8
IC4/PMCS1/PMA14/RD11
INT4/RA15
INT3/RA14
OSC2/CLKO/RC15
OSC1/CLKI/RC12
VDD
SCL1/RG2
SCK1/INT0/RF6
SDI1/RF7
SDO1/RF8
SDA1/RG3
U1RX/RF2
U1TX/RF3
VSS
SOSCO/T1CK/CN0/RC14
PMA6/VREF+/CVREF+/RA10
PMA7/VREF-/CVREF-/RA9
AVDD
AVSS
C1OUT/AN8/RB8
C2OUT/AN9/RB9
CVREFOUT/PMA13/AN10/RB10
PMA12/AN11/RB11
VDD
U2CTS/RF12
U2RTS/BCLK2/RF13
CN20/U1CTS/RD14
U1RTS/BCLK1/CN21/RD15
VDD
VSS
PGEC2/AN6/OCFA/RB6
PGED2/AN7/RB7
PMA8/U2TX/CN18/RF5
PMA9/U2RX/CN17/RF4
PMD5/RE5
PMD6/RE6
PMD7/RE7
T2CK/RC1
T3CK/RC2
T4CK/RC3
T5CK/RC4
PMA5/SCK2/CN8/RG6
VDD
TMS/RA0
INT1/RE8
INT2/RE9
C1IN+/AN5/CN7/RB5
C1IN-/AN4/CN6/RB4
C2IN+/AN3/CN5/RB3
C2IN-/AN2/SS1/CN4/RB2
PMA4/SDI2/CN9/RG7
PMA3/SDO2/CN10/RG8
PGEC1/AN1/CN3/RB1
PGED1/AN0/CN2/RB0
VDD
RG15
PMA2/SS2/CN11/RG9
MCLR
PMA11/AN12/RB12
PMA10/AN13/RB13
PMALH/PMA1/AN14/RB14
PMALL/PMA0/AN15/OCFB/CN12/RB15
PMD9/RG1
PMD10/RF1
ENVREG
PMD14/CN15/RD6
TDO/RA5
SDA2/RA3
SCL2/RA2
VSS
VSS
VSS
VCAP/VDDCORE
TDI/RA4
TCK/RA1
100-Pin TQFP (General Purpose)
50
26
PMD15/CN16/RD7
PIC32MX3XXL
= Pins are up to 5V tolerant
PIC32MX3XX/4XX
DS61143F-page 6 Preliminary © 2009 Microchip Technology Inc.
PIN DIAGRAM: 64-PIN QFN – USB
64-Pin QFN (USB) = Pins are up to 5V tolerant
Note: The metal plane at the bottom of the device is not connected to any pins and is recommended to be connected to
VSS externally.
PIC32MX4XXH
PMD5/RE5
PMD6/RE6
PMD7/RE7
PMA5/SCK2/CN8/RG6
V
DD
VBUSON/C1IN+/AN5/CN7/RB5
C1IN-/AN4/CN6/RB4
C2IN+/AN3/CN5/RB3
C2IN-/AN2/CN4/RB2
PMA4/SDI2/CN9/RG7
PMA3/SDO2/CN10/RG8
PGEC1/AN1/V
REF
-/CV
REF
-/CN3/RB1
PGED1/EMUD1/PMA6/AN0/V
REF
+/CV
REF
+/CN2/RB0
PMA2/SS2/CN11/RG9
MCLR
V
SS
64 63 62 61 60 59 58 57 56 55
22 23 24 25 26 27 28 29 30 31
3
40
39
38
37
36
35
34
33
4
5
7
8
9
10
11
1
2
42
41
6
32
43
54
14
15
16
12
13
17 18 19 20 21
45
44
47
46
48
53 52 51 50 49
AV
DD
U2CTS/C1OUT/AN8/RB8
PMA7/C2OUT/AN9/RB9
TMS/CV
REFOUT
/PMA13/AN10/RB10
TDO/PMA12/AN11/RB11
V
DD
PGEC2/AN6/OCFA/RB6
PGED2/AN7/RB7
PMA8/U2TX/SCL2/CN18/RF5
PMA9/U2RX/SDA2/CN17/RF4
TCK/PMA11/AN12/RB12
TDI/PMA10/AN13/RB13
PMALH/PMA1/U2RTS/BCLK2/AN14/RB14
PMALL/PMA0/AN15/OCFB/CN12/RB15
V
SS
AV
SS
CN15/RD6
PMRD/CN14/RD5
PMWR/OC5/IC5/CN13/RD4
OC4/U1TX/RD3
OC3/U1RX/RD2
OC2/U1RTS/BCLK1/RD1
PMD4/RE4
PMD3/RE3
PMD2/RE2
PMD1/RE1
RF0
V
CAP
/V
DDCORE
PMD0/RE0
RF1
CN16/RD7
ENVREG
SOSCI/CN1/RC13
OC1/INT0/RD0
IC3/PMCS2/PMA15/INT3/SCL1/RD10
IC2/U1CTS//INT2/SDA1/RD9
IC1/RTCC/INT1/RD8
IC4/PMCS1/PMA14/INT4/RD11
OSC2/CLKO/RC15
OSC1/CLKI/RC12
V
DD
D+/RG2
VUSB
VBUS
USBID/RF3
D-/RG3
SOSCO/T1CK/CN0/RC14
Vss
© 2009 Microchip Technology Inc. Preliminary DS61143F-page 7
PIC32MX3XX/4XX
PIN DIAGRAM: 64-PIN TQFP – USB
64-Pin TQFP (USB)
CN15/RD6
PMRD/CN14/RD5
PMWR/OC5/IC5/CN13/RD4
OC4/U1TX/RD3
OC3/U1RX/RD2
OC2/U1RTS/BCLK1/RD1
PMD4/RE4
PMD3/RE3
PMD2/RE2
PMD1/RE1
RF0
VCAP/VDDCORE
SOSCI/CN1/RC13
OC1/INT0/RD0
IC3/PMCS2/PMA15/INT3/SCL1/RD10
IC2/U1CTS//INT2/SDA1/RD9
IC1/RTCC/INT1/RD8
IC4/PMCS1/PMA14/INT4/RD11
OSC2/CLKO/RC15
OSC1/CLKI/RC12
V
DD
D+/RG2
VUSB
VBUS
USBID/RF3
D-/RG3
SOSCO/T1CK/CN0/RC14
AVDD
U2CTS/C1OUT/AN8/RB8
PMA7/C2OUT/AN9/RB9
TMS/CVREFOUT/PMA13/AN10/RB10
TDO/PMA12/AN11/RB11
VDD
PGEC2/AN6/OCFA/RB6
PGED2/AN7/RB7
PMA8/U2TX/SCL2/CN18/RF5
PMA9/U2RX/SDA2/CN17/RF4
PMD5/RE5
PMD6/RE6
PMD7/RE7
PMA5/SCK2/CN8/RG6
V
DD
VBUSON/C1IN+/AN5/CN7/RB5
C1IN-/AN4/CN6/RB4
C2IN+/AN3/CN5/RB3
C2IN-/AN2/CN4/RB2
PMA4/SDI2/CN9/RG7
PMA3/SDO2/CN10/RG8
PGEC1/AN1/V
REF
-/CV
REF
-/CN3/RB1
PGED1/EMUD1/PMA6/AN0/V
REF
+/CV
REF
+/CN2/RB0
PMA2/SS2/CN11/RG9
MCLR
TCK/PMA11/AN12/RB12
TDI/PMA10/AN13/RB13
PMALH/PMA1/U2RTS/BCLK2/AN14/RB14
PMALL/PMA0/AN15/OCFB/CN12/RB15
PMD0/RE0
RF1
CN16/RD7
V
SS
VSS
Vss
ENVREG
AVSS
= Pins are up to 5V tolerant
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
48
47
22
44
24
25
26
27
28
29
30
31
32
PIC32MX4XXH
1
46
45
23
43
42
41
40
39
63
62
61
59
60
58
57
56
54
55
53
52
51
49
50
38
37
34
36
35
33
17
19
20
21
18
64
PIC32MX3XX/4XX
DS61143F-page 8 Preliminary © 2009 Microchip Technology Inc.
PIN DIAGRAM: 100-PIN TQFP – USB
PMRD/CN14/RD5
PMWR/OC5/CN13/RD4
PMD13/CN19/RD13
PMD12/IC5/RD12
OC4/RD3
OC3/RD2
OC2/RD1
TRD3/RA7
TRCLK/RA6
PMD2/RE2
TRD0/RG13
TRD1/RG12
TRD2/RG14
PMD1/RE1
PMD0/RE0
PMD8/RG0
PMD4/RE4
PMD3/RE3
PMD11/RF0
SOSCI/CN1/RC13
SDO1/OC1/INT0/RD0
IC3/SCK1/PMCS2/PMA15/RD10
IC2/SS1/RD9
IC1/RTCC/RD8
IC4/PMCS1/PMA14/RD11
SDA1/INT4/RA15
SCL1/INT3/RA14
OSC2/CLKO/RC15
OSC1/CLKI/RC12
VDD
D+/RG2
VUSB
VBUS
U1TX/RF8
D-/RG3
U1RX/RF2
USBID/RF3
VSS
SOSCO/T1CK/CN0/RC14
PMA6/VREF+/CVREF+/RA10
PMA7/VREF-/CVREF-/RA9
AVDD
AVSS
C1OUT/AN8/RB8
C2OUT/AN9/RB9
CVREFOUT/PMA13/AN10/RB10
PMA12/AN11/RB11
VDD
U2CTS/RF12
U2RTS/BCLK2/RF13
CN20/U1CTS/RD14
U1RTS/BCLK1/CN21/RD15
VDD
VSS
PGEC2/AN6/OCFA/RB6
PGED2/AN7/RB7
PMA8/U2TX/CN18/RF5
PMA9/U2RX/CN17/RF4
PMD5/RE5
PMD6/RE6
PMD7/RE7
T2CK/RC1
T3CK/RC2
T4CK/RC3
SDI1/T5CK/RC4
PMA5/SCK2/CN8/RG6
VDD
TMS/RA0
INT1/RE8
INT2/RE9
VBUSON/C1IN+/AN5/CN7/RB5
C1IN-/AN4/CN6/RB4
C2IN+/AN3/CN5/RB3
C2IN-/AN2/CN4/RB2
PMA4/SDI2/CN9/RG7
PMA3/SDO2/CN10/RG8
PGEC1/AN1/CN3/RB1
PGED1/AN0/CN2/RB0
VDD
RG15
PMA2/SS2/CN11/RG9
MCLR
PMA11/AN12/RB12
PMA10/AN13/RB13
PMALH/PMA1/AN14/RB14
PMALL/PMA0/AN15/OCFB/CN12/RB15
PMD9/RG1
PMD10/RF1
ENVREG
PMD14/CN15/RD6
TDO/RA5
SDA2/RA3
SCL2/RA2
VSS
VSS
VSS
VCAP/VDDCORE
TDI/RA4
TCK/RA1
100-Pin TQFP (USB)
PMD15/CN16/RD7
= Pins are up to 5V tolerant
20
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
65
64
63
62
61
60
59
56
45
44
43
42
41
40
39
28
29
30
31
32
33
34
35
36
37
38
17
18
19
21
22
1
72
71
70
69
68
67
66
75
74
73
58
57
24
23
25
27
46
47
48
49
55
54
53
52
51
50
26
PIC32MX4XXL
92
94
93
91
90
89
88
87
86
85
84
83
82
81
80
79
78
95
76
77
96
98
97
99
100
© 2009 Microchip Technology Inc. Preliminary DS61143F-page 9
PIC32MX3XX/4XX
Table of Contents
High-Performance 80 MHz MIPS-Based 32-bit Flash Microcontroller 64/100-Pin General Purpose and USB ..................................... 1
1.0 Device Overview ........................................................................................................................................................................ 11
2.0 Guidelines for Getting Started with 32-bit Microcontrollers ........................................................................................................ 15
3.0 PIC32MX MCU........................................................................................................................................................................... 19
4.0 Memory Organization ................................................................................................................................................................. 25
5.0 Flash Program Memory.............................................................................................................................................................. 55
6.0 Resets ........................................................................................................................................................................................ 57
7.0 Interrupt Controller ..................................................................................................................................................................... 59
8.0 Oscillator Configuration .............................................................................................................................................................. 63
9.0 Prefetch Cache........................................................................................................................................................................... 65
10.0 Direct Memory Access (DMA) Controller ................................................................................................................................... 67
11.0 USB On-The-Go (OTG).............................................................................................................................................................. 69
12.0 I/O Ports ..................................................................................................................................................................................... 71
13.0 Timer1 ........................................................................................................................................................................................ 73
14.0 Timers 2, 3, 4, 5 ......................................................................................................................................................................... 75
15.0 Input Capture.............................................................................................................................................................................. 77
16.0 Output Compare......................................................................................................................................................................... 79
17.0 Serial Peripheral Interface (SPI)................................................................................................................................................. 81
18.0 Inter-Integrated Circuit (I2C™) ................................................................................................................................................... 83
19.0 Universal Asynchronous Receiver Transmitter (UART) ............................................................................................................. 85
20.0 Parallel Master Port (PMP)......................................................................................................................................................... 89
21.0 Real-Time Clock and Calendar (RTCC)..................................................................................................................................... 91
22.0 10-bit Analog-to-Digital Converter (ADC) ................................................................................................................................... 93
23.0 Comparator ................................................................................................................................................................................ 95
24.0 Comparator Voltage Reference (CVref) ..................................................................................................................................... 97
25.0 Power-Saving Features.............................................................................................................................................................. 99
26.0 Special Features ...................................................................................................................................................................... 101
27.0 Instruction Set .......................................................................................................................................................................... 113
28.0 Development Support............................................................................................................................................................... 121
28.0 Electrical Characteristics .......................................................................................................................................................... 119
29.0 Packaging Information.............................................................................................................................................................. 157
INDEX ................................................................................................................................................................................................ 167
Worldwide Sales and Service ............................................................................................................................................................ 170
PIC32MX3XX/4XX
DS61143F-page 10 Preliminary © 2009 Microchip Technology Inc.
TO OUR VALUED CUSTOMERS
It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip
products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and
enhanced as new volumes and updates are introduced.
If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via
E-mail at docerrors@microchip.com or fax the Reader Response Form in the back of this data sheet to (480) 792-4150. We
welcome your feedback.
Most Current Data Sheet
To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:
http://www.microchip.com
You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page.
The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).
Errata
An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current
devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision
of silicon and revision of document to which it applies.
To determine if an errata sheet exists for a particular device, please check with one of the following:
Microchip’s Worldwide Web site; http://www.microchip.com
Your local Microchip sales office (see last page)
When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are
using.
Customer Notification System
Register on our web site at www.microchip.com to receive the most current information on all of our products.
© 2009 Microchip Technology Inc. Preliminary DS61143F-page 11
PIC32MX3XX/4XX
1.0 DEVICE OVERVIEW This document contains device-specific information for
the PIC32MX3XX/4XX devices.
Figure 1-1 shows a general block diagram of the core
and peripheral modules in the PIC32MX3XX/4XX fam-
ilies of devices.
Table 1-1 lists the functions of the various pins shown
in the pinout diagrams.
FIGURE 1-1: BLOCK DIAGRAM(1,2)
Note: This data sheet summarizes the features of
the PIC32MX3XX/4XX family of devices. It
is not intended to be a comprehensive
reference source. To complement the
information in this data sheet, refer to the
appropriate section of the “PIC32MX
Family Reference Manual”, which is
available from the Microchip web site
(www.microchip.com/PIC32)
Note 1: Some features are not available on all device variants.
2: BOR functionality is provided when the on-board voltage regulator is enabled.
UART 1,2
Comparators
PORTA
PORTD
PORTE
PORTF
PORTG
PORTB
CN1-22
JTAG
Priority
DMAC ICD
MIPS 32® M4K® CPU Core
IS DS
EJTAG INT
Bus Matrix
Prefetch
Data RAM
Peripheral Bridge
128
128-bit wide
Flash
32
32 32
32 32
Peripheral Bus Clocked by PBCLK
Program Flash
Memory
Controller
32
32
Module
32 32
Interrupt
Controller
BSCAN
PORTC
PMP
I2C 1,2
SPI 1,2
IC 1-5
PWM
OC 1-5
OSC1/CLKI
OSC2/CLKO
VDD,
Timing
Generation
VSS
MCLR
Power-up
Timer
Oscillator
Start-up Timer
Power-on
Reset
Watchdog
Timer
Brown-out
Reset
Precision
Reference
Band Gap
FRC/LPRC
Oscillators
Regulator
Voltage
VDDCORE/VCAP
ENVREG
OSC/SOSC
Oscillators
PLL
DIVIDERS
SYSCLK
PBCLK
Peripheral Bus Clocked by SYSCLK
USB
PLL-USB
USBCLK
32
RTCC
10-bit ADC
Timer1-5
32
PIC32MX3XX/4XX
DS61143F-page 12 Preliminary © 2009 Microchip Technology Inc.
TABLE 1-1: PINOUT I/O DESCRIPTIONS
Pin Name Pin
Type
Buffer
Type Description
AN0-AN15 I Analog Analog input channels.
CLKI
CLKO
I
O
ST/CMOS
External clock source input. Always associated with OSC1 pin function.
Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator
mode. Optionally functions as CLKO in RC and EC modes. Always associated
with OSC2 pin function.
OSC1
OSC2
I
I/O
ST/CMOS
Oscillator crystal input. ST buffer when configured in RC mode;
CMOS otherwise.
Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator
mode. Optionally functions as CLKO in RC and EC modes.
SOSCI
SOSCO
I
O
ST/CMOS
32.768 kHz low-power oscillator crystal input; CMOS otherwise.
32.768 kHz low-power oscillator crystal output.
CN0-CN21 I ST Change notification inputs.
Can be software programmed for internal weak pull-ups on all inputs.
IC1-IC5 I ST Capture inputs 1-5.
OCFA
OC1-OC5
OCFB
I
O
I
ST
ST
Compare Fault A input.
Compare outputs 1 through 5.
Output Compare Fault B Input.
INT0
INT1
INT2
INT3
INT4
I
I
I
I
I
ST
ST
ST
ST
ST
External interrupt 0.
External interrupt 1.
External interrupt 2.
External interrupt 3.
External interrupt 4.
RA0-RA15 I/O ST PORTA is a bidirectional I/O port.
RB0-RB15 I/O ST PORTB is a bidirectional I/O port.
RC0-RC15 I/O ST PORTC is a bidirectional I/O port.
RD0-RD15 I/O ST PORTD is a bidirectional I/O port.
RE0-RE15 I/O ST PORTE is a bidirectional I/O port.
RF0-RF15 I/O ST PORTF is a bidirectional I/O port.
RG0, RG1,
RG4-RG15
I/O ST PORTG is a bidirectional I/O port.
RG2, RG3 I ST PORTG input pins.
T1CK
T2CK
T3CK
T4CK
T5CK
I
I
I
I
I
ST
ST
ST
ST
ST
Timer1 external clock input.
Timer2 external clock input.
Timer3 external clock input.
Timer4 external clock input.
Timer5 external clock input.
U1CTS
U1RTS
U1RX
U1TX
I
O
I
O
ST
ST
UART1 clear to send.
UART1 ready to send.
UART1 receive.
UART1 transmit.
U2CTS
U2RTS
U2RX
U2TX
I
O
I
O
ST
ST
UART2 clear to send.
UART2 ready to send.
UART2 receive.
UART2 transmit.
Legend: CMOS = CMOS compatible input or output Analog = Analog input P = Power
ST = Schmitt Trigger input with CMOS levels O = Output I = Input
TTL = TTL input buffer
© 2009 Microchip Technology Inc. Preliminary DS61143F-page 13
PIC32MX3XX/4XX
SCK1
SDI1
SDO1
SS1
I/O
I
O
I/O
ST
ST
ST
Synchronous serial clock input/output for SPI1.
SPI1 data in.
SPI1 data out.
SPI1 slave synchronization or frame pulse I/O.
SCK2
SDI2
SDO2
SS2
I/O
I
O
I/O
ST
ST
ST
Synchronous serial clock input/output for SPI2.
SPI2 data in.
SPI2 data out.
SPI2 slave synchronization or frame pulse I/O.
SCL1
SDA1
I/O
I/O
ST
ST
Synchronous serial clock input/output for I2C1.
Synchronous serial data input/output for I2C1.
TMS
TCK
TDI
TDO
I
I
I
O
ST
ST
ST
JTAG Test mode select pin.
JTAG test clock input pin.
JTAG test data input pin.
JTAG test data output pin.
RTCC O Real-Time Clock Alarm Output.
CVREF
CVREF+
CVREFOUT
I
I
O
ANA
ANA
ANA
Comparator Voltage Reference (low).
Comparator Voltage Reference (high).
Comparator Voltage Reference Output.
C1IN-
C1IN+
C1OUT
I
I
O
ANA
ANA
Comparator 1 Negative Input.
Comparator 1 Positive Input.
Comparator 1 Output.
C2IN-
C2IN+
C2OUT
I
I
O
ANA
ANA
Comparator 2 Negative Input.
Comparator 2 Positive Input.
Comparator 2 Output.
PMA0
PMA1
PMA2-PMPA15
PMENB
PMCS1
PMCS2
PMD0-PMD15
PMRD
PMWR
PMALL
PMALH
PMRD/PMWR
I/O
I/O
O
O
O
O
I/O
O
O
O
O
O
TTL/ST
TTL/ST
TTL/ST
Parallel Master Port Address Bit 0 Input (Buffered Slave modes) and Output
(Master modes).
Parallel Master Port Address Bit 1 Input (Buffered Slave modes) and Output
(Master modes).
Parallel Master Port Address (Demultiplexed Master Modes).
Parallel Master Port Enable Strobe (Master mode 1).
Parallel Master Port Chip Select 1 Strobe.
Parallel Master Port Chip Select 2 Strobe.
Parallel Master Port Data (Demultiplexed Master mode) or Address/Data
(Multiplexed Master modes).
Parallel Master Port Read Strobe.
Parallel Master Port Write Strobe.
Parallel Master Port Address Latch Enable low-byte (Multiplexed Master
modes).
Parallel Master Port Address Latch Enable high-byte (Multiplexed Master
modes).
Parallel Master Port Read/Write Strobe (Master mode 1).
PMALL
PMALH
PMRD/PMWR
O
O
O
Parallel Master Port Address Latch Enable low-byte (Multiplexed Master
modes).
Parallel Master Port Address Latch Enable high-byte (Multiplexed Master
modes).
Parallel Master Port Read/Write Strobe (Master mode 1).
TABLE 1-1: PINOUT I/O DESCRIPTIONS (CONTINUED)
Pin Name Pin
Type
Buffer
Type Description
Legend: CMOS = CMOS compatible input or output Analog = Analog input P = Power
ST = Schmitt Trigger input with CMOS levels O = Output I = Input
TTL = TTL input buffer
PIC32MX3XX/4XX
DS61143F-page 14 Preliminary © 2009 Microchip Technology Inc.
VBUS
VUSB
VBUSON
D+
D–
USBID
I
P
O
I/O
I/O
I
ANA
ANA
ANA
ST
USB Bus Power Monitor.
USB Internal Transceiver Supply.
USB Host and OTG Bus Power Control Output.
USB D+.
USB D–.
USB OTG ID Detect.
ENVREG I ST Enable for On-Chip Voltage Regulator.
TRCLK
TRD0-TRD3
O
O
Trace Clock.
Trace Data Bits 0-3
PGED1
PGEC1
PGED2
PGEC2
I/O
I
I/O
I
ST
ST
ST
ST
Data I/O pin for programming/debugging communication channel 1.
Clock input pin for programming/debugging communication channel 1.
Data I/O pin for programming/debugging communication channel 2.
Clock input pin for programming/debugging communication channel 2.
MCLR I/P ST Master Clear (Reset) input. This pin is an active-low Reset to the device.
AVdd P P Positive supply for analog modules. This pin must be connected at all times.
AVss P P Ground reference for analog modules.
Vdd P Positive supply for peripheral logic and I/O pins.
Vcap/Vddcore P CPU logic filter capacitor connection.
Vss P Ground reference for logic and I/O pins.
VREF+ I Analog Analog voltage reference (high) input.
VREF- I Analog Analog voltage reference (low) input.
TABLE 1-1: PINOUT I/O DESCRIPTIONS (CONTINUED)
Pin Name Pin
Type
Buffer
Type Description
Legend: CMOS = CMOS compatible input or output Analog = Analog input P = Power
ST = Schmitt Trigger input with CMOS levels O = Output I = Input
TTL = TTL input buffer
© 2009 Microchip Technology Inc. Preliminary DS61143F-page 15
PIC32MX3XX/4XX
2.0 GUIDELINES FOR GETTING
STARTED WITH 32-BIT
MICROCONTROLLERS
2.1 Basic Connection Requirements
Getting started with the PIC32MX3XX/4XX family of
32-bit Microcontrollers (MCU) requires attention to a
minimal set of device pin connections before
proceeding with development. The following is a list of
pin names, which must always be connected:
All VDD and VSS pins
(see Section 2.2)
All AVDD and AVSS pins (regardless if ADC module
is not used)
(see Section 2.2)
•V
CAP/VDDCORE
(see Section 2.3)
•MCLR
pin
(see Section 2.4)
PGECx/PGEDx pins used for In-Circuit Serial
Programming™ (ICSP™) and debugging purposes
(see Section 2.5)
OSC1 and OSC2 pins when external oscillator
source is used
(see Section 2.8)
Additionally, the following pins may be required:
•V
REF+/VREF- pins used when external voltage
reference for ADC module is implemented
2.2 Decoupling Capacitors
The use of decoupling capacitors on every pair of
power supply pins, such as VDD, VSS, AVDD, and
AVSS is required. See Figure 2-1.
Consider the following criteria when using decoupling
capacitors:
Value and type of capacitor: Recommendation
of 0.1 µF (100 nF), 10-20V. This capacitor should
be a low-ESR and have resonance frequency in
the range of 20 MHz and higher. It is
recommended that ceramic capacitors be used.
Placement on the printed circuit board: The
decoupling capacitors should be placed as close
to the pins as possible. It is recommended to
place the capacitors on the same side of the
board as the device. If space is constricted, the
capacitor can be placed on another layer on the
PCB using a via; however, ensure that the trace
length from the pin to the capacitor is within one-
quarter inch (6 mm) in length.
Handling high frequency noise: If the board is
experiencing high frequency noise, upward of
tens of MHz, add a second ceramic-type capacitor
in parallel to the above described decoupling
capacitor. The value of the second capacitor can
be in the range of 0.01 µF to 0.001 µF. Place this
second capacitor next to the primary decoupling
capacitor. In high-speed circuit designs, consider
implementing a decade pair of capacitances as
close to the power and ground pins as possible.
For example, 0.1 µF in parallel with 0.001 µF.
Maximizing performance: On the board layout
from the power supply circuit, run the power and
return traces to the decoupling capacitors first,
and then to the device pins. This ensures that the
decoupling capacitors are first in the power chain.
Equally important is to keep the trace length
between the capacitor and the power pins to a
minimum thereby reducing PCB track inductance.
Note: This data sheet summarizes the features of
the PIC32MX3XX/4XX family of devices. It
is not intended to be a comprehensive
reference source. Refer to the “PIC32MX
Family Reference Manual” for a detailed
description of the PIC32MX MCU.
The manual is available from the Microchip
web site (www.Microchip.com/PIC32).
Note: The AVDD and AVSS pins must be
connected independent of ADC use and
ADC voltage reference source.
PIC32MX3XX/4XX
DS61143F-page 16 Preliminary © 2009 Microchip Technology Inc.
FIGURE 2-1: RECOMMENDED
MINIMUM CONNECTION
2.2.1 BULK CAPACITORS
The use of a bulk capacitor is recommended to improve
power supply stability. Typical values range from 4.7 µF
to 47 µF. This capacitor should be located as close to
the device as possible.
2.3 Capacitor on Internal Voltage
Regulator (VCAP/VDDCORE)
2.3.1 INTERNAL REGULATOR MODE
A low-ESR (< 5 Ohms) capacitor is required on the
VCAP/VDDCORE pin, which is used to stabilize the
internal voltage regulator output. The VCAP/VDDCORE
pin must not be connected to VDD, and must have a
10 µF capacitor, with at least a 6V rating, connected to
ground. The type can be ceramic or tantalum. Refer to
Section 28.0 "Electrical Characteristics" for
additional information. This mode is enabled by
connecting the ENVREG pin to VDD.
2.3.2 EXTERNAL REGULATOR MODE
In this mode the core voltage is supplied externally
through the VDDCORE pin. A low-ESR capacitor of
10 µF is recommended on the VDDCORE pin. This mode
is enabled by grounding the ENVREG pin.
The placement of this capacitor should be close to the
VCAP/VDDCORE. It is recommended that the trace
length not exceed one-quarter inch (6 mm). Refer to
Section 26.3 "On-Chip Voltage Regulator" for
details.
2.4 Master Clear (MCLR) Pin
The MCLR pin provides for two specific device
functions:
Device Reset
Device Programming and Debugging
Pulling The MCLR pin low generates a device reset.
Figure 2-2 shows a typical MCLR circuit. During
device programming and debugging, the resistance
and capacitance that can be added to the pin must
be considered. Device programmers and debuggers
drive the MCLR pin. Consequently, specific voltage
levels (VIH and VIL) and fast signal transitions must
not be adversely affected. Therefore, specific values
of R and C will need to be adjusted based on the
application and PCB requirements.
For example, as shown in Figure 2-2, it is
recommended that the capacitor C, be isolated from
the MCLR pin during programming and debugging
operations.
Place the components shown in Figure 2-2 within
one-quarter inch (6 mm) from the MCLR pin.
FIGURE 2-2: EXAMPLE OF MCLR PIN
CONNECTIONS
PIC32MX
VDD
VSS
VDD
VSS
VSS
VDD
AVDD
AVSS
VDD
VSS
C
R
VDD
MCLR
0.1 µF
Ceramic
VCAP/VDDCORE
10 Ω
R1
CBP
0.1 µF
Ceramic
CBP
0.1 µF
Ceramic
CBP
0.1 µF
Ceramic
CBP
0.1 µF
Ceramic
CBP
Note 1: R 10 kΩ is recommended. A suggested
starting value is 10 kΩ. Ensure that the MCLR
pin VIH and VIL specifications are met.
2: R1 470Ω will limit any current flowing into
MCLR from the external capacitor C, in the
event of MCLR pin breakdown, due to
Electrostatic Discharge (ESD) or Electrical
Overstress (EOS). Ensure that the MCLR pin
VIH and VIL specifications are met.
3: The capacitor can be sized to prevent uninten-
tional resets from brief glitches or to extend the
device reset period during POR.
C
R1
R
VDD
MCLR
PIC32MX
JP
© 2009 Microchip Technology Inc. Preliminary DS61143F-page 17
PIC32MX3XX/4XX
2.5 ICSP Pins
The PGECx and PGEDx pins are used for In-Circuit
Serial Programming™ (ICSP™) and debugging pur-
poses. It is recommended to keep the trace length
between the ICSP connector and the ICSP pins on the
device as short as possible. If the ICSP connector is
expected to experience an ESD event, a series resistor
is recommended, with the value in the range of a few
tens of Ohms, not to exceed 100 Ohms.
Pull-up resistors, series diodes, and capacitors on the
PGECx and PGEDx pins are not recommended as they
will interfere with the programmer/debugger communi-
cations to the device. If such discrete components are
an application requirement, they should be removed
from the circuit during programming and debugging.
Alternately, refer to the AC/DC characteristics and tim-
ing requirements information in the respective device
Flash programming specification for information on
capacitive loading limits and pin input voltage high (VIH)
and input low (VIL) requirements.
Ensure that the “Communication Channel Select” (i.e.,
PGECx/PGEDx pins) programmed into the device
matches the physical connections for the ICSP to
MPLAB® ICD 2, MPLAB® ICD 3, or MPLAB® REAL
ICE™.
For more information on ICD 2, ICD 3, and REAL ICE
connection requirements, refer to the following
documents that are available on the Microchip website.
“MPLAB® ICD 2 In-Circuit Debugger User's
Guide” DS51331
“Using MPLAB® ICD 2” (poster) DS51265
“MPLAB® ICD 2 Design Advisory” DS51566
“Using MPLAB® ICD 3” (poster) DS51765
“MPLAB® ICD 3 Design Advisory” DS51764
“MPLAB® REAL ICE™ In-Circuit Debugger
User's Guide” DS51616
“Using MPLAB® REAL ICE™” (poster) DS51749
2.6 JTAG
The TMS, TDO, TDI, and TCK pins are used for testing
and debugging according to the Joint Test Action
Group (JTAG) standard. It is recommended to keep the
trace length between the JTAG connector and the
JTAG pins on the device as short as possible. If the
JTAG connector is expected to experience an ESD
event, a series resistor is recommended, with the value
in the range of a few tens of Ohms, not to exceed 100
Ohms.
Pull-up resistors, series diodes, and capacitors on the
TMS, TDO, TDI, and TCK pins are not recommended
as they will interfere with the programmer/debugger
communications to the device. If such discrete compo-
nents are an application requirement, they should be
removed from the circuit during programming and
debugging. Alternately, refer to the AC/DC characteris-
tics and timing requirements information in the respec-
tive device Flash programming specification for
information on capacitive loading limits and pin input
voltage high (VIH) and input low (VIL) requirements.
2.7 Trace
The trace pins can be connected to a hardware-trace-
enabled programmer to provide a compress real time
instruction trace. When used for trace the TRD3,
TRD2, TRD1, TRD0, and TRCLK pins should be dedi-
cated for this use. The trace hardware requires a 22
Ohm series resistor between the trace pins and the
trace connector.
2.8 External Oscillator Pins
Many MCUs have options for at least two oscillators: a
high-frequency primary oscillator and a low-frequency
secondary oscillator (refer to Section 8.0 "Oscillator
Configuration" for details).
The oscillator circuit should be placed on the same
side of the board as the device. Also, place the
oscillator circuit close to the respective oscillator pins,
not exceeding one-half inch (12 mm) distance
between them. The load capacitors should be placed
next to the oscillator itself, on the same side of the
board. Use a grounded copper pour around the
oscillator circuit to isolate them from surrounding
circuits. The grounded copper pour should be routed
directly to the MCU ground. Do not run any signal
traces or power traces inside the ground pour. Also, if
using a two-sided board, avoid any traces on the
other side of the board where the crystal is placed. A
suggested layout is shown in Figure 2-3.
FIGURE 2-3: SUGGESTED PLACEMENT
OF THE OSCILLATOR
CIRCUIT
Main Oscillator
Guard Ring
Guard Trace
Secondary
Oscillator
PIC32MX3XX/4XX
DS61143F-page 18 Preliminary © 2009 Microchip Technology Inc.
2.9 Configuration of Analog and
Digital Pins During ICSP
Operations
If MPLAB ICD 2, ICD 3, or REAL ICE is selected as a
debugger, it automatically initializes all of the A/D input
pins (ANx) as “digital” pins by setting all bits in the
ADPCFG register.
The bits in this register that correspond to the A/D pins
that are initialized by MPLAB ICD 2, ICD 3, or REAL
ICE, must not be cleared by the user application
firmware; otherwise, communication errors will result
between the debugger and the device.
If your application needs to use certain A/D pins as
analog input pins during the debug session, the user
application must clear the corresponding bits in the
ADPCFG register during initialization of the ADC
module.
When MPLAB ICD 2, ICD 3, or REAL ICE is used as a
programmer, the user application firmware must
correctly configure the ADPCFG register. Automatic
initialization of this register is only done during
debugger operation. Failure to correctly configure the
register(s) will result in all A/D pins being recognized as
analog input pins, resulting in the port value being read
as a logic '0', which may affect user application
functionality.
2.10 Unused I/Os
Unused I/O pins should not be allowed to float as
inputs. They can be configured as outputs and driven
to a logic-low state.
Alternately, inputs can be reserved by connecting the
pin to VSS through a 1k to 10k resistor and configuring
the pin as an input.
© 2009 Microchip Technology Inc. Preliminary DS61143F-page 19
PIC32MX3XX/4XX
3.0 PIC32MX MCU
The MCU module is the heart of the PIC32MX3XX/4XX
Family processor. The MCU fetches instructions,
decodes each instruction, fetches source operands,
executes each instruction, and writes the results of
instruction execution to the proper destinations.
3.1 Features
5-stage pipeline
32-bit Address and Data Paths
MIPS32 Enhanced Architecture (Release 2)
- Multiply-Accumulate and Multiply-Subtract
Instructions
- Targeted Multiply Instruction
- Zero/One Detect Instructions
-WAIT Instruction
- Conditional Move Instructions (MOVN, MOVZ)
- Vectored interrupts
- Programmable exception vector base
- Atomic interrupt enable/disable
- GPR shadow registers to minimize latency
for interrupt handlers
- Bit field manipulation instructions
MIPS16e™ Code Compression
- 16-bit encoding of 32-bit instructions to
improve code density
- Special PC-relative instructions for efficient
loading of addresses and constants
- SAVE & RESTORE macro instructions for
setting up and tearing down stack frames
within subroutines
- Improved support for handling 8 and 16-bit
data types
Simple Fixed Mapping Translation (FMT)
mechanism
Simple Dual Bus Interface
- Independent 32-bit address and data busses
- Transactions can be aborted to improve
interrupt latency
Autonomous Multiply/Divide Unit
- Maximum issue rate of one 32x16 multiply
per clock
- Maximum issue rate of one 32x32 multiply
every other clock
- Early-in iterative divide. Minimum 11 and
maximum 34 clock latency (dividend (rs) sign
extension-dependent)
Power Control
- Minimum frequency: 0 MHz
- Low-Power mode (triggered by WAIT
instruction)
- Extensive use of local gated clocks
EJTAG Debug and Instruction Trace
- Support for single stepping
- Virtual instruction and data address/value
- breakpoints
- PC tracing with trace compression
FIGURE 3-1: MCU BLOCK DIAGRAM
Note: This data sheet summarizes the features of
the PIC32MX3XX/4XX Family of devices. It
is not intended to be a comprehensive
reference source. Refer to the “PIC32MX
Family Reference Manual” Section 2.
“MCU” (DS61113) for a detailed description
of the PIC32MX MCU. The manual is
available from the Microchip web site
(www.Microchip.com/PIC32). Resources for
the MIPS32® M4K® Processor Core are
available at www.mips.com/prod-
ucts/cores/32-bit-cores/ mips32-m4k/#.
Dual Bus I/F
System
Coprocessor
MDU
FMT
TAP
EJTAG
Power
Mgmt
Off-Chip
Debug I/F
Execution
Core
(RF/ALU/Shift)
Bus Matrix
Trace
Trace I/F
Bus Interface
PIC32MX3XX/4XX
DS61143F-page 20 Preliminary © 2009 Microchip Technology Inc.
3.2 Architecture Overview
The PIC32MX3XX/4XX Family core contains several
logic blocks working together in parallel, providing an
efficient high performance computing engine. The fol-
lowing blocks are included with the core:
Execution Unit
Multiply/Divide Unit (MDU)
System Control Coprocessor (CP0)
Fixed Mapping Translation (FMT)
Dual Internal Bus interfaces
Power Management
MIPS16e Support
Enhanced JTAG (EJTAG) Controller
3.2.1 EXECUTION UNIT
The PIC32MX3XX/4XX Family core execution unit
implements a load/store architecture with single-cycle
ALU operations (logical, shift, add, subtract) and an
autonomous multiply/divide unit. The core contains
thirty-two 32-bit general purpose registers used for
integer operations and address calculation. One addi-
tional register file shadow set (containing thirty-two reg-
isters) is added to minimize context switching overhead
during interrupt/exception processing. The register file
consists of two read ports and one write port and is fully
bypassed to minimize operation latency in the pipeline.
The execution unit includes:
32-bit adder used for calculating the data address
Address unit for calculating the next instruction
address
Logic for branch determination and branch target
address calculation
Load aligner
Bypass multiplexers used to avoid stalls when
executing instructions streams where data
producing instructions are followed closely by
consumers of their results
Leading Zero/One detect unit for implementing the
CLZ and CLO instructions
Arithmetic Logic Unit (ALU) for performing bitwise
logical operations
Shifter and Store Aligner
3.2.2 MULTIPLY/DIVIDE UNIT (MDU)
The PIC32MX3XX/4XX Family core includes a multi-
ply/divide unit (MDU) that contains a separate pipeline
for multiply and divide operations. This pipeline oper-
ates in parallel with the integer unit (IU) pipeline and
does not stall when the IU pipeline stalls. This allows
MDU operations to be partially masked by system stalls
and/or other integer unit instructions.
The high-performance MDU consists of a 32x16 booth
recoded multiplier, result/accumulation registers (HI
and LO), a divide state machine, and the necessary
multiplexers and control logic. The first number shown
(‘32’ of 32x16) represents the rs operand. The second
number (‘16’ of 32x16) represents the rt operand. The
PIC32MX core only checks the value of the latter (rt)
operand to determine how many times the operation
must pass through the multiplier. The 16x16 and 32x16
operations pass through the multiplier once. A 32x32
operation passes through the multiplier twice.
The MDU supports execution of one 16x16 or 32x16
multiply operation every clock cycle; 32x32 multiply
operations can be issued every other clock cycle.
Appropriate interlocks are implemented to stall the
issuance of back-to-back 32x32 multiply operations.
The multiply operand size is automatically determined
by logic built into the MDU.
Divide operations are implemented with a simple 1 bit
per clock iterative algorithm. An early-in detection
checks the sign extension of the dividend (rs) operand.
If rs is 8 bits wide, 23 iterations are skipped. For a 16-
bit-wide rs, 15 iterations are skipped, and for a 24-bit-
wide rs, 7 iterations are skipped. Any attempt to issue
a subsequent MDU instruction while a divide is still
active causes an IU pipeline stall until the divide oper-
ation is completed.
Table 3-1 lists the repeat rate (peak issue rate of cycles
until the operation can be reissued) and latency (num-
ber of cycles until a result is available) for the PIC32MX
core multiply and divide instructions. The approximate
latency and repeat rates are listed in terms of pipeline
clocks.
© 2009 Microchip Technology Inc. Preliminary DS61143F-page 21
PIC32MX3XX/4XX
The MIPS architecture defines that the result of a mul-
tiply or divide operation be placed in the HI and LO reg-
isters. Using the Move-From-HI (MFHI) and Move-
From-LO (MFLO) instructions, these values can be
transferred to the general purpose register file.
In addition to the HI/LO targeted operations, the
MIPS32 architecture also defines a multiply instruction,
MUL, which places the least significant results in the
primary register file instead of the HI/LO register pair.
By avoiding the explicit MFLO instruction, required
when using the LO register, and by supporting multiple
destination registers, the throughput of multiply-inten-
sive operations is increased.
Two other instructions, multiply-add (MADD) and multi-
ply-subtract (MSUB), are used to perform the multiply-
accumulate and multiply-subtract operations. The
MADD instruction multiplies two numbers and then adds
the product to the current contents of the HI and LO
registers. Similarly, the MSUB instruction multiplies two
operands and then subtracts the product from the HI
and LO registers. The MADD and MSUB operations
are commonly used in DSP algorithms.
3.2.3 SYSTEM CONTROL
COPROCESSOR (CP0)
In the MIPS architecture, CP0 is responsible for the vir-
tual-to-physical address translation, the exception con-
trol system, the processor’s diagnostics capability, the
operating modes (kernel, user, and debug), and
whether interrupts are enabled or disabled. Configura-
tion information, such as presence of options like
MIPS16e, is also available by accessing the CP0 reg-
isters, listed in Table 3-2.
TABLE 3-1: PIC32MX3XX/4XX FAMILY CORE HIGH-PERFORMANCE INTEGER
MULTIPLY/DIVIDE UNIT LATENCIES AND REPEAT RATES
Opcode Operand Size (mul rt) (div rs) Latency Repeat Rate
MULT/MULTU, MADD/MADDU,
MSUB/MSUBU
16 bits 1 1
32 bits 2 2
MUL 16 bits 2 1
32 bits 3 2
DIV/DIVU 8 bits 12 11
16 bits 19 18
24 bits 26 25
32 bits 33 32
TABLE 3-2: COPROCESSOR 0 REGISTERS
Register
Number
Register
Name Function
0-6 Reserved Reserved in the PIC32MX3XX/4XX Family core
7 HWREna Enables access via the RDHWR instruction to selected hardware registers
8 BadVAddr(1) Reports the address for the most recent address-related exception
9 Count(1) Processor cycle count
10 Reserved Reserved in the PIC32MX3XX/4XX Family core
11 Compare(1) Timer interrupt control
12 Status(1) Processor status and control
12 IntCtl(1) Interrupt system status and control
12 SRSCtl(1) Shadow register set status and control
12 SRSMap(1) Provides mapping from vectored interrupt to a shadow set
13 Cause(1) Cause of last general exception
14 EPC(1) Program counter at last exception
15 PRId Processor identification and revision
15 EBASE Exception vector base register
16 Config Configuration register
16 Config1 Configuration register 1
16 Config2 Configuration register 2
16 Config3 Configuration register 3
PIC32MX3XX/4XX
DS61143F-page 22 Preliminary © 2009 Microchip Technology Inc.
Coprocessor 0 also contains the logic for identifying
and managing exceptions. Exceptions can be caused
by a variety of sources, including alignment errors in
data, external events, or program errors. Table 3-3
shows the exception types in order of priority.
17-22 Reserved Reserved in the PIC32MX3XX/4XX Family core
23 Debug(2) Debug control and exception status
24 DEPC(2) Program counter at last debug exception
25-29 Reserved Reserved in the PIC32MX3XX/4XX Family core
30 ErrorEPC(1) Program counter at last error
31 DESAVE(2) Debug handler scratchpad register
Note 1: Registers used in exception processing.
2: Registers used during debug.
TABLE 3-2: COPROCESSOR 0 REGISTERS (CONTINUED)
Register
Number
Register
Name Function
TABLE 3-3: PIC32MX3XX/4XX FAMILY CORE EXCEPTION TYPES
Exception Description
Reset Assertion MCLR or a Power-On Reset (POR)
DSS EJTAG Debug Single Step
DINT EJTAG Debug Interrupt. Caused by the assertion of the external EJ_DINT input, or by setting the
EjtagBrk bit in the ECR register
NMI Assertion of NMI signal
Interrupt Assertion of unmasked hardware or software interrupt signal
DIB EJTAG debug hardware instruction break matched
AdEL Fetch address alignment error
Fetch reference to protected address
IBE Instruction fetch bus error
DBp EJTAG Breakpoint (execution of SDBBP instruction)
Sys Execution of SYSCALL instruction
Bp Execution of BREAK instruction
RI Execution of a Reserved Instruction
CpU Execution of a coprocessor instruction for a coprocessor that is not enabled
CEU Execution of a CorExtend instruction when CorExtend is not enabled
Ov Execution of an arithmetic instruction that overflowed
Tr Execution of a trap (when trap condition is true)
DDBL / DDBS EJTAG Data Address Break (address only) or EJTAG Data Value Break on Store (address + value)
AdEL Load address alignment error
Load reference to protected address
AdES Store address alignment error
Store to protected address
DBE Load or store bus error
DDBL EJTAG data hardware breakpoint matched in load data compare
© 2009 Microchip Technology Inc. Preliminary DS61143F-page 23
PIC32MX3XX/4XX
3.3 Power Management
The PIC32MX3XX/4XX Family core offers a number of
power management features, including low-power
design, active power management, and power-down
modes of operation. The core is a static design that
supports slowing or halting the clocks, which reduces
system power consumption during idle periods.
3.3.1 INSTRUCTION-CONTROLLED
POWER MANAGEMENT
The mechanism for invoking power-down mode is
through execution of the WAIT instruction. For more
information on power management, see Section 25.0
“Power-Saving Features”.
3.3.2 LOCAL CLOCK GATING
The majority of the power consumed by the
PIC32MX3XX/4XX Family core is in the clock tree and
clocking registers. The PIC32MX family uses extensive
use of local gated-clocks to reduce this dynamic power
consumption.
3.4 EJTAG Debug Support
The PIC32MX3XX/4XX Family core provides for an
Enhanced JTAG (EJTAG) interface for use in the
software debug of application and kernel code. In
addition to standard user mode and kernel modes of
operation, the PIC32MX3XX/4XX Family core provides
a Debug mode that is entered after a debug exception
(derived from a hardware breakpoint, single-step
exception, etc.) is taken and continues until a debug
exception return (DERET) instruction is executed.
During this time, the processor executes the debug
exception handler routine.
The EJTAG interface operates through the Test Access
Port (TAP), a serial communication port used for
transferring test data in and out of the
PIC32MX3XX/4XX Family core. In addition to the
standard JTAG instructions, special instructions
defined in the EJTAG specification define what
registers are selected and how they are used.
PIC32MX3XX/4XX
DS61143F-page 24 Preliminary © 2009 Microchip Technology Inc.
NOTES:
© 2009 Microchip Technology Inc. Preliminary DS61143F-page 25
PIC32MX3XX/4XX
4.0 MEMORY ORGANIZATION
PIC32MX3XX/4XX microcontrollers provide 4 GB of
unified virtual memory address space. All memory
regions including program, data memory, SFRs, and
Configuration registers reside in this address space at
their respective unique addresses. The program and
data memories can be optionally partitioned into user
and kernel memories. In addition, the data memory can
be made executable, allowing PIC32MX3XX/4XX to
execute from data memory.
Key Features:
32-bit native data width
Separate User and Kernel mode address space
Flexible program Flash memory partitioning
Flexible data RAM partitioning for data and
program space
Separate boot Flash memory for protected code
Robust bus exception handling to intercept
runaway code.
Simple memory mapping with Fixed Mapping
Translation (FMT) unit
Cacheable and non-cacheable address regions
4.1 PIC32MX3XX/4XX Memory Layout
PIC32MX3XX/4XX microcontrollers implement two
address spaces: Virtual and Physical. All hardware
resources such as program memory, data memory, and
peripherals are located at their respective physical
addresses. Virtual addresses are exclusively used by
the CPU to fetch and execute instructions as well as
access peripherals. Physical addresses are used by
peripherals such as DMA and Flash controller that
access memory independently of CPU.
Note: This data sheet summarizes the features of
the PIC32MX3XX/4XX family of devices. It
is not intended to be a comprehensive
reference source. Refer to the “PIC32MX
Family Reference Manual” Section 3.
“Memory Organization” (DS61115) for a
detailed description of this peripheral.
The manual is available from the Microchip
web site (www.Microchip.com/PIC32).
PIC32MX3XX/4XX
DS61143F-page 26 Preliminary © 2009 Microchip Technology Inc.
FIGURE 4-1: MEMORY MAP ON RESET FOR PIC32MX320F032H, PIC32MX420F032H
DEVICES(1)
Virtual
Memory Map
Physical
Memory Map
0xFFFFFFFF Reserved
Reserved
0xFFFFFFFF
0xBFC03000
0xBFC02FFF Device
Configuration
Registers
0xBFC02FF0
0xBFC02FEF
Boot Flash
0xBFC00000
Reserved
0xBF900000
0xBF8FFFFF
SFRs
0xBF800000
Reserved
0xBD008000
0xBD007FFF
Program Flash(2)
0xBD000000
Reserved
0xA0002000
0xA0001FFF
RAM(2)
0xA0000000 0x1FC03000
Reserved Device
Configuration
Registers
0x1FC02FFF
0x9FC02FF0
0x9FC02FFF Device
Configuration
Registers
0x1FC02FF0
Boot Flash
0x1FC02FEF
0x9FC02FEF
0x9FC02FEF
Boot Flash
0x1FC00000
Reserved
0x9FC00000 0x1F900000
Reserved SFRs
0x1F8FFFFF
0x9D008000 0x1F800000
0x9D007FFF
Program Flash(2) Reserved
0x9D000000 0x1D008000
Reserved Program Flash(2)
0x1D007FFF
0x80002000
0x80001FFF
RAM(2)
0x1D000000
Reserved
0x80000000 0x00002000
Reserved RAM(2) 0x00001FFF
0x00000000 0x00000000
Note 1: Memory areas are not shown to scale.
2: The size of this memory region is programmable (see Section 3. “Memory Organization”
(DS61115)) and can be changed by initialization code provided by end-user development
tools (refer to the specific development tool documentation for information).
KSEG1KSEG0
© 2009 Microchip Technology Inc. Preliminary DS61143F-page 27
PIC32MX3XX/4XX
FIGURE 4-2: MEMORY MAP ON RESET FOR PIC32MX320F064H DEVICES(1)
Virtual
Memory Map
Physical
Memory Map
0xFFFFFFFF Reserved
Reserved
0xFFFFFFFF
0xBFC03000
0xBFC02FFF Device
Configuration
Registers
0xBFC02FF0
0xBFC02FEF
Boot Flash
0xBFC00000
Reserved
0xBF900000
0xBF8FFFFF
SFRs
0xBF800000
Reserved
0xBD010000
0xBD00FFFF
Program Flash(2)
0xBD000000
Reserved
0xA0004000
0xA0003FFF
RAM(2)
0xA0000000 0x1FC03000
Reserved Device
Configuration
Registers
0x1FC02FFF
0x9FC02FF0
0x9FC02FFF Device
Configuration
Registers
0x1FC02FF0
Boot Flash
0x1FC02FEF
0x9FC02FEF
0x9FC02FEF
Boot Flash
0x1FC00000
Reserved
0x9FC00000 0x1F900000
Reserved SFRs
0x1F8FFFFF
0x9D010000 0x1F800000
0x9D00FFFF
Program Flash(2) Reserved
0x9D000000 0x1D010000
Reserved Program Flash(2)
0x1D00FFFF
0x80004000
0x80003FFF
RAM(2)
0x1D000000
Reserved
0x80000000 0x00004000
Reserved RAM(2) 0x00003FFF
0x00000000 0x00000000
Note 1: Memory areas are not shown to scale.
2: The size of this memory region is programmable (see Section 3. “Memory Organization”
(DS61115)) and can be changed by initialization code provided by end-user development
tools (refer to the specific development tool documentation for information).
KSEG1KSEG0
PIC32MX3XX/4XX
DS61143F-page 28 Preliminary © 2009 Microchip Technology Inc.
FIGURE 4-3: MEMORY MAP ON RESET FOR PIC32MX320F128H, PIC32MX320F128L
DEVICES(1)
Virtual
Memory Map
Physical
Memory Map
0xFFFFFFFF Reserved
Reserved
0xFFFFFFFF
0xBFC03000
0xBFC02FFF Device
Configuration
Registers
0xBFC02FF0
0xBFC02FEF
Boot Flash
0xBFC00000
Reserved
0xBF900000
0xBF8FFFFF
SFRs
0xBF800000
Reserved
0xBD020000
0xBD01FFFF
Program Flash(2)
0xBD000000
Reserved
0xA0004000
0xA0003FFF
RAM(2)
0xA0000000 0x1FC03000
Reserved Device
Configuration
Registers
0x1FC02FFF
0x9FC02FF0
0x9FC02FFF Device
Configuration
Registers
0x1FC02FF0
Boot Flash
0x1FC02FEF
0x9FC02FEF
0x9FC02FEF
Boot Flash
0x1FC00000
Reserved
0x9FC00000 0x1F900000
Reserved SFRs
0x1F8FFFFF
0x9D020000 0x1F800000
0x9D01FFFF
Program Flash(2) Reserved
0x9D000000 0x1D020000
Reserved Program Flash(2)
0x1D01FFFF
0x80004000
0x80003FFF
RAM(2)
0x1D000000
Reserved
0x80000000 0x00004000
Reserved RAM(2) 0x00003FFF
0x00000000 0x00000000
Note 1: Memory areas are not shown to scale.
2: The size of this memory region is programmable (see Section 3. “Memory Organization”
(DS61115)) and can be changed by initialization code provided by end-user development
tools (refer to the specific development tool documentation for information).
KSEG1KSEG0
© 2009 Microchip Technology Inc. Preliminary DS61143F-page 29
PIC32MX3XX/4XX
FIGURE 4-4: MEMORY MAP ON RESET FOR PIC32MX340F128H, PIC32MX340F128L,
PIC32MX440F128H, PIC32MX440F128L DEVICES(1)
Virtual
Memory Map
Physical
Memory Map
0xFFFFFFFF Reserved
Reserved
0xFFFFFFFF
0xBFC03000
0xBFC02FFF Device
Configuration
Registers
0xBFC02FF0
0xBFC02FEF
Boot Flash
0xBFC00000
Reserved
0xBF900000
0xBF8FFFFF
SFRs
0xBF800000
Reserved
0xBD020000
0xBD01FFFF
Program Flash(2)
0xBD000000
Reserved
0xA0008000
0xA0007FFF
RAM(2)
0xA0000000 0x1FC03000
Reserved Device
Configuration
Registers
0x1FC02FFF
0x9FC02FF0
0x9FC02FFF Device
Configuration
Registers
0x1FC02FF0
Boot Flash
0x1FC02FEF
0x9FC02FEF
0x9FC02FEF
Boot Flash
0x1FC00000
Reserved
0x9FC00000 0x1F900000
Reserved SFRs
0x1F8FFFFF
0x9D020000 0x1F800000
0x9D01FFFF
Program Flash(2) Reserved
0x9D000000 0x1D020000
Reserved Program Flash(2)
0x1D01FFFF
0x80008000
0x80007FFF
RAM(2)
0x1D000000
Reserved
0x80000000 0x00008000
Reserved RAM(2) 0x00007FFF
0x00000000 0x00000000
Note 1: Memory areas are not shown to scale.
2: The size of this memory region is programmable (see Section 3. “Memory Organization”
(DS61115)) and can be changed by initialization code provided by end-user development
tools (refer to the specific development tool documentation for information).
KSEG1KSEG0
PIC32MX3XX/4XX
DS61143F-page 30 Preliminary © 2009 Microchip Technology Inc.
FIGURE 4-5: MEMORY MAP ON RESET FOR PIC32MX340F256H, PIC32MX360F256L,
PIC32MX440F256H, PIC32MX460F256L DEVICES(1)
Virtual
Memory Map
Physical
Memory Map
0xFFFFFFFF Reserved
Reserved
0xFFFFFFFF
0xBFC03000
0xBFC02FFF Device
Configuration
Registers
0xBFC02FF0
0xBFC02FEF
Boot Flash
0xBFC00000
Reserved
0xBF900000
0xBF8FFFFF
SFRs
0xBF800000
Reserved
0xBD040000
0xBD03FFFF
Program Flash(2)
0xBD000000
Reserved
0xA0008000
0xA0007FFF
RAM(2)
0xA0000000 0x1FC03000
Reserved Device
Configuration
Registers
0x1FC02FFF
0x9FC02FF0
0x9FC02FFF Device
Configuration
Registers
0x1FC02FF0
Boot Flash
0x1FC02FEF
0x9FC02FEF
0x9FC02FEF
Boot Flash
0x1FC00000
Reserved
0x9FC00000 0x1F900000
Reserved SFRs
0x1F8FFFFF
0x9D040000 0x1F800000
0x9D03FFFF
Program Flash(2) Reserved
0x9D000000 0x1D040000
Reserved Program Flash(2)
0x1D03FFFF
0x80008000
0x80007FFF
RAM(2)
0x1D000000
Reserved
0x80000000 0x00008000
Reserved RAM(2) 0x00007FFF
0x00000000 0x00000000
Note 1: Memory areas are not shown to scale.
2: The size of this memory region is programmable (see Section 3. “Memory Organization”
(DS61115)) and can be changed by initialization code provided by end-user development
tools (refer to the specific development tool documentation for information).
KSEG1KSEG0
© 2009 Microchip Technology Inc. Preliminary DS61143F-page 31
PIC32MX3XX/4XX
FIGURE 4-6: MEMORY MAP ON RESET FOR PIC32MX340F512H, PIC32MX360F512L,
PIC32MX440F512H, PIC32MX460F512L DEVICES(1)
Virtual
Memory Map
Physical
Memory Map
0xFFFFFFFF Reserved
Reserved
0xFFFFFFFF
0xBFC03000
0xBFC02FFF Device
Configuration
Registers
0xBFC02FF0
0xBFC02FEF
Boot Flash
0xBFC00000
Reserved
0xBF900000
0xBF8FFFFF
SFRs
0xBF800000
Reserved
0xBD080000
0xBD07FFFF
Program Flash(2)
0xBD000000
Reserved
0xA0008000
0xA0007FFF
RAM(2)
0xA0000000 0x1FC03000
Reserved Device
Configuration
Registers
0x1FC02FFF
0x9FC02FF0
0x9FC02FFF Device
Configuration
Registers
0x1FC02FF0
Boot Flash
0x1FC02FEF
0x9FC02FEF
0x9FC02FEF
Boot Flash
0x1FC00000
Reserved
0x9FC00000 0x1F900000
Reserved SFRs
0x1F8FFFFF
0x9D080000 0x1F800000
0x9D07FFFF
Program Flash(2) Reserved
0x9D000000 0x1D080000
Reserved Program Flash(2)
0x1D07FFFF
0x80008000
0x80007FFF
RAM(2)
0x1D000000
Reserved
0x80000000 0x00008000
Reserved RAM(2) 0x00007FFF
0x00000000 0x00000000
Note 1: Memory areas are not shown to scale.
2: The size of this memory region is programmable (see Section 3. “Memory Organization”
(DS61115)) and can be changed by initialization code provided by end-user development
tools (refer to the specific development tool documentation for information).
KSEG1KSEG0
PIC32MX3XX/4XX
DS61143F-page 32 Preliminary © 2009 Microchip Technology Inc.
4.1.1 PERIPHERAL REGISTERS
LOCATIONS
Table 4-1 through Table 4-25 contain the peripheral
address maps for the PIC32MX3XX/4XX device. Pe-
ripherals located on the PB Bus are mapped to 512
byte boundaries. Peripherals on the FPB Bus are
mapped to 4 Kbyte boundaries.
© 2009 Microchip Technology Inc. Preliminary DS61143F-page 33
PIC32MX3XX/4XX
TABLE 4-1: BUS MATRIX REGISTERS MAP
SFR
Virtual
Addr
SFR
Name
Bits
31/15
Bits
30/14
Bits
29/13
Bits
28/12
Bits
27/11
Bits
26/10
Bits
25/9
Bits
24/8
Bits
23/7
Bits
22/6
Bits
21/5
Bits
20/4
Bits
19/3
Bits
18/2
Bits
17/1
Bits
16/0
BF88_2000 BMXCON(1)
31:16 —————BMX
CHEDMA BMX
ERRIXI
BMX
ERRICD
BMX
ERRDMA
BMX
ERRDS
BMX
ERRIS
15:0 —————————BMX
WSDRM BMXARB<2:0>
BF88_2010 BMX
DKPBA(1)
31:16
15:0 BMXDKPBA<15:0>
BF88_2020 BMX
DUDBA(1) 31:16
15:0
BMXDUDBA<15:0>
BF88_2030 BMX
DUPBA(1)
31:16
15:0 BMXDUPBA<15:0>
BF88_2040 BMXDRMSZ 31:16 BMXDRMSZ<31:0>
15:0
BF88_2050 BMX
PUPBA(1)
31:16 ——————————— BMXPUPBA<19:16>
15:0 BMXPUPBA<15:0>
BF88_2060 BMXPFMSZ 31:16 BMXPFMSZ<31:0>
15:0
BF88_2070 BMX
BOOTSZ
31:16 BMXBOOTSZ<31:0>
15:0
Legend: x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.
Note 1: This register has corresponding CLR, SET, and INV Registers at its virtual address, plus an offset of 0x4, 0x8, and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more information.
TABLE 4-2: INTERRUPT REGISTERS MAP(1)
SFR
Virtual
Addr
SFR
Name
Bits
31/15
Bits
30/14
Bits
29/13
Bits
28/12
Bits
27/11
Bits
26/10
Bits
25/9
Bits
24/8
Bits
23/7
Bits
22/6
Bits
21/5
Bits
20/4
Bits
19/3
Bits
18/2
Bits
17/1
Bits
16/0
BF88_1000 INTCON 31:16 ————————————— SS0
15:0 —FRZ MVEC TRC<2:0> INT4EP INT3EP INT2EP INT1EP INT0EP
BF88_1010 INTSTAT 31:16 ————————————————
15:0 ———— RIPL<2:0> VEC<5:0>
BF88_1020 IPTMR 31:16 IPTMR<31:0>
15:0
BF88_1030 IFS0 31:16 I2C1MIF I2C1SIF I2C1BIF U1TXIF U1RXIF U1EIF SPI1RXIF SPI1TXIF SPI1EIF OC5IF IC5IF T5IF INT4IF OC4IF IC4IF T4IF
15:0 INT3IF OC3IF IC3IF T3IF INT2IF OC2IF IC2IF T2IF INT1IF OC1IF IC1IF T1IF INT0IF CS1IF CS0IF CTIF
BF88_1040 IFS1 31:16 ——————USBIF
(4) FCEIF —DMA3IF
(2) DMA2IF(2) DMA1IF(2) DMA0IF(2)
15:0 RTCCIF FSCMIF I2C2MIF I2C2SIF I2C2BIF U2TXIF U2RXIF U2EIF
SPI2RXIF
(3)
SPI2TXIF
(3) SPI2EIF(3) CMP2IF CMP1IF PMPIF AD1IF CNIF
Legend: x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.
Note 1: All registers in this table have corresponding CLR, SET, and INV Registers at their virtual addresses, plus offsets of 0x4, 0x8, and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more
information.
2: These bits are not present on PIC32MX320FXXXX/420FXXXX devices.
3: These bits are not present on PIC32MX420FXXXX/440FXXXX devices.
4: These bits are not present on PIC32MX320FXXXX/340FXXXX/360FXXXX devices.
PIC32MX3XX/4XX
DS61143F-page 34 Preliminary © 2009 Microchip Technology Inc.
BF88_1060 IEC0 31:16 I2C1MIE I2C1SIE I2C1BIE U1TXIE U1RXIE U1EIE SPI1RXIE SPI1TXIE SPI1EIE OC5IE IC5IE T5IE INT4IE OC4IE IC4IE T4IE
15:0 INT3IE OC3IE IC3IE T3IE INT2IE OC2IE IC2IE T2IE INT1IE OC1IE IC1IE T1IE INT0IE CS1IE CS0IE CTIE
BF88_1070 IEC1 31:16 ————— USBIE FCEIE ————DMA3IE
(2) DMA2IE(2) DMA1IE(2) DMA0IE(2)
15:0 RTCCIE FSCMIE I2C2MIE I2C2SIE I2C2BIE U2TXIE U2RXIE U2EIE
SPI2RXIE
(3)
SPI2TXIE
(3) SPI2EIE(3) CMP2IE CMP1IE PMPIE AD1IE CNIE
BF88_1090 IPC0 31:16 —— INT0IP<2:0> INT0IS<1:0> CS1IP<2:0> CS1IS<1:0>
15:0 —— CS0IP<2:0> CS0IS<1:0> CTIP<2:0> CTIS<1:0>
BF88_10A0 IPC1 31:16 —— INT1IP<2:0> INT1IS<1:0> OC1IP<2:0> OC1IS<1:0>
15:0 —— IC1IP<2:0> IC1IS<1:0> T1IP<2:0> T1IS<1:0>
BF88_10B0 IPC2 31:16 —— INT2IP<2:0> INT2IS<1:0> OC2IP<2:0> OC2IS<1:0>
15:0 —— IC2IP<2:0> IC2IS<1:0> T2IP<2:0> T2IS<1:0>
BF88_10C0 IPC3 31:16 —— INT3IP<2:0> INT3IS<1:0> OC3IP<2:0> OC3IS<1:0>
15:0 —— IC3IP<2:0> IC3IS<1:0> T3IP<2:0> T3IS<1:0>
BF88_10D0 IPC4 31:16 —— INT4IP<2:0> INT4IS<1:0> OC4IP<2:0> OC4IS<1:0>
15:0 —— IC4IP<2:0> IC4IS<1:0> T4IP<2:0> T4IS<1:0>
BF88_10E0 IPC5 31:16 —— SPI1IP<2:0> SPI1IS<1:0> OC5IP<2:0> OC5IS<1:0>
15:0 —— IC5IP<2:0> IC5IS<1:0> T5IP<2:0> T5IS<1:0>
BF88_10F0 IPC6 31:16 —— AD1IP<2:0> AD1IS<1:0> CNIP<2:0> CNIS<1:0>
15:0 —— I2C1IP<2:0> I2C1IS<1:0> U1IP<2:0> U1IS<1:0>
BF88_1100 IPC7 31:16 —— SPI2IP<2:0>(3) SPI2IS<1:0>(3) CMP2IP<2:0> CMP2IS<1:0>
15:0 —— CMP1IP<2:0> CMP1IS<1:0> PMPIP<2:0> PMPIS<1:0>
BF88_1110 IPC8 31:16 —— RTCCIP<2:0> RTCCIS<1:0> FSCMIP<2:0> FSCMIS<1:0>
15:0 —— I2C2IP<2:0> I2C2IS<1:0> U2IP<2:0> U2IS<1:0>
BF88_1120 IPC9 31:16 —— DMA3IP<2:0>(2) DMA3IS<1:0>(2) DMA2IP<2:0>(2) DMA2IS<1:0>(2)
15:0 —— DMA1IP<2:0>(2) DMA1IS<1:0>(2) DMA0IP<2:0>(2) DMA0IS<1:0>(2)
BF88_1140 IPC11 31:16 ————————————————
15:0 —— USBIP<2:0>(4) USBIS<1:0>(4) FCEIP<2:0> FCEIS<1:0>
TABLE 4-2: INTERRUPT REGISTERS MAP(1) (CONTINUED)
SFR
Virtual
Addr
SFR
Name
Bits
31/15
Bits
30/14
Bits
29/13
Bits
28/12
Bits
27/11
Bits
26/10
Bits
25/9
Bits
24/8
Bits
23/7
Bits
22/6
Bits
21/5
Bits
20/4
Bits
19/3
Bits
18/2
Bits
17/1
Bits
16/0
Legend: x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.
Note 1: All registers in this table have corresponding CLR, SET, and INV Registers at their virtual addresses, plus offsets of 0x4, 0x8, and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more
information.
2: These bits are not present on PIC32MX320FXXXX/420FXXXX devices.
3: These bits are not present on PIC32MX420FXXXX/440FXXXX devices.
4: These bits are not present on PIC32MX320FXXXX/340FXXXX/360FXXXX devices.
© 2009 Microchip Technology Inc. Preliminary DS61143F-page 35
PIC32MX3XX/4XX
TABLE 4-3: TIMER1-5 REGISTERS MAP(1)
SFR
Virtual
Addr
SFR
Name
Bits
31/15
Bits
30/14
Bits
29/13
Bits
28/12
Bits
27/11
Bits
26/10
Bits
25/9
Bits
24/8
Bits
23/7
Bits
22/6
Bits
21/5
Bits
20/4
Bits
19/3
Bits
18/2
Bits
17/1
Bits
16/0
BF80_0600 T1CON 31:16 ————————————————
15:0 ON FRZ SIDL TWDIS TWIP —TGATE TCKPS<1:0> TSYNC TCS
BF80_0610 TMR1 31:16 ————————————————
15:0 TMR1<15:0>
BF80_0620 PR1 31:16 ————————————————
15:0 PR1<15:0>
BF80_0800 T2CON 31:16 ————————————————
15:0 ON FRZ SIDL ———— TGATE TCKPS<2:0> T32 —TCS
BF80_0810 TMR2 31:16 ————————————————
15:0 TMR2<15:0>
BF80_0820 PR2 31:16 ————————————————
15:0 PR2<15:0>
BF80_0A00 T3CON 31:16 ————————————————
15:0 ON FRZ SIDL ———— TGATE TCKPS<2:0> —TCS
BF80_0A10 TMR3 31:16 ————————————————
15:0 TMR3<15:0>
BF80_0A20 PR3 31:16 ————————————————
15:0 PR3<15:0>
BF80_0C00 T4CON 31:16 ————————————————
15:0 ON FRZ SIDL ———— TGATE TCKPS<2:0> T32 —TCS
BF80_0C10 TMR4 31:16 ————————————————
15:0 TMR4<15:0>
BF80_0C20 PR4 31:16 ————————————————
15:0 PR4<15:0>
BF80_0E00 T5CON 31:16 ————————————————
15:0 ON FRZ SIDL ———— TGATE TCKPS<2:0> —TCS
BF80_0E10 TMR5 31:16 ————————————————
15:0 TMR5<15:0>
BF80_0E20 PR5 31:16 ————————————————
15:0 PR5<15:0>
Legend: x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.
Note 1: All registers in this table have corresponding CLR, SET, and INV Registers at their virtual addresses, plus offsets of 0x4, 0x8, and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more infor-
mation.
PIC32MX3XX/4XX
DS61143F-page 36 Preliminary © 2009 Microchip Technology Inc.
TABLE 4-4: INPUT CAPTURE1-5 REGISTERS MAP
SFR
Virtual
Addr
SFR
Name
Bits
31/15
Bits
30/14
Bits
29/13
Bits
28/12
Bits
27/11
Bits
26/10
Bits
25/9
Bits
24/8
Bits
23/7
Bits
22/6
Bits
21/5
Bits
20/4
Bits
19/3
Bits
18/2
Bits
17/1
Bits
16/0
BF80_2000 IC1CON(1) 31:16 ————————————————
15:0 ON FRZ SIDL —— ICFEDGE ICC32 ICTMR ICI<1:0> ICOV ICBNE ICM<2:0>
BF80_2010 IC1BUF 31:16 IC1BUF<31:0>
15:0
BF80_2200 IC2CON(1) 31:16 ————————————————
15:0 ON FRZ SIDL —— ICFEDGE ICC32 ICTMR ICI<1:0> ICOV ICBNE ICM<2:0>
BF80_2210 IC2BUF 31:16 IC2BUF<31:0>
15:0
BF80_2400 IC3CON(1) 31:16 ————————————————
15:0 ON FRZ SIDL —— ICFEDGE ICC32 ICTMR ICI<1:0> ICOV ICBNE ICM<2:0>
BF80_2410 IC3BUF 31:16 IC3BUF<31:0>
15:0
BF80_2600 IC4CON(1) 31:16 ————————————————
15:0 ON FRZ SIDL —— ICFEDGE ICC32 ICTMR ICI<1:0> ICOV ICBNE ICM<2:0>
BF80_2610 IC4BUF 31:16 IC4BUF<31:0>
15:0
BF80_2800 IC5CON(1) 31:16 ————————————————
15:0 ON FRZ SIDL —— ICFEDGE ICC32 ICTMR ICI<1:0> ICOV ICBNE ICM<2:0>
BF80_2810 IC5BUF 31:16 IC5BUF<31:0>
15:0
Legend: x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.
Note 1: This register has corresponding CLR, SET, and INV Registers at its virtual address, plus an offset of 0x4, 0x8, and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more information.
TABLE 4-5: OUTPUT COMPARE 1-5 REGISTERS MAP(1)
SFR
Virtual
Addr
SFR
Name
Bits
31/15
Bits
30/14
Bits
29/13
Bits
28/12
Bits
27/11
Bits
26/10
Bits
25/9
Bits
24/8
Bits
23/7
Bits
22/6
Bits
21/5
Bits
20/4
Bits
19/3
Bits
18/2
Bits
17/1
Bits
16/0
BF80_3000 OC1CON 31:16 ————————————————
15:0 ON FRZ SIDL —————— OC32 OCFLT OCTSEL OCM<2:0>
BF80_3010 OC1R 31:16 OC1R<31:0>
15:0
BF80_3020 OC1RS 31:16
15:0 OC1RS<31:0>
BF80_3200 OC2CON 31:16 ————————————————
15:0 ON FRZ SIDL —————— OC32 OCFLT OCTSEL OCM<2:0>
BF80_3210 OC2R 31:16 OC2R<31:0>
15:0
Legend: x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.
Note 1: All registers in this table have corresponding CLR, SET, and INV Registers at their virtual addresses, plus offsets of 0x4, 0x8, and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more infor-
mation.
© 2009 Microchip Technology Inc. Preliminary DS61143F-page 37
PIC32MX3XX/4XX
BF80_3220 OC2RS 31:16
15:0 OC2RS<31:0>
BF80_3400 OC3CON 31:16 ————————————————
15:0 ON FRZ SIDL —————— OC32 OCFLT OCTSEL OCM<2:0>
BF80_3410 OC3R 31:16 OC3R<31:0>
15:0
BF80_3420 OC3RS 31:16
15:0 OC3RS<31:0>
BF80_3600 OC4CON 31:16 ————————————————
15:0 ON FRZ SIDL —————— OC32 OCFLT OCTSEL OCM<2:0>
BF80_3610 OC4R 31:16 OC4R<31:0>
15:0
BF80_3620 OC4RS 31:16
15:0 OC4RS<31:0>
BF80_3800 OC5CON 31:16 ————————————————
15:0 ON FRZ SIDL —————— OC32 OCFLT OCTSEL OCM<2:0>
BF80_3810 OC5R 31:16 OC5R<31:0>
15:0
BF80_3820 OC5RS 31:16 OC5RS<31:0>
15:0
TABLE 4-5: OUTPUT COMPARE 1-5 REGISTERS MAP(1) (CONTINUED)
SFR
Virtual
Addr
SFR
Name
Bits
31/15
Bits
30/14
Bits
29/13
Bits
28/12
Bits
27/11
Bits
26/10
Bits
25/9
Bits
24/8
Bits
23/7
Bits
22/6
Bits
21/5
Bits
20/4
Bits
19/3
Bits
18/2
Bits
17/1
Bits
16/0
Legend: x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.
Note 1: All registers in this table have corresponding CLR, SET, and INV Registers at their virtual addresses, plus offsets of 0x4, 0x8, and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more infor-
mation.
TABLE 4-6: I2C1-2 REGISTERS MAP(1)
SFR
Virtual
Addr
SFR
Name
Bits
31/15
Bits
30/14
Bits
29/13
Bits
28/12
Bits
27/11
Bits
26/10
Bits
25/9
Bits
24/8
Bits
23/7
Bits
22/6
Bits
21/5
Bits
20/4
Bits
19/3
Bits
18/2
Bits
17/1
Bits
16/0
BF80_5000 I2C1CON 31:16
15:0 ON FRZ SIDL SCLREL STRICT A10M DISSLW SMEN GCEN STREN ACKDT ACKEN RCEN PEN RSEN SEN
BF80_5010 I2C1STAT 31:16
15:0 ACKSTAT TRSTAT BCL GCSTAT ADD10 IWCOL I2COV D/A P S R/W RBF TBF
BF80_5020 I2C1ADD 31:16
15:0
————— ADD<9:0>
BF80_5030 I2C1MSK 31:16
15:0 ————— MSK<9:0>
BF80_5040 I2C1BRG 31:16
15:0 ——— I2C1BRG<11:0>
Legend: x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.
Note 1: All registers in this table except I2CxRCV have corresponding CLR, SET, and INV Registers at their virtual addresses, plus offsets of 0x4, 0x8, and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Regis-
ters” for more information.
PIC32MX3XX/4XX
DS61143F-page 38 Preliminary © 2009 Microchip Technology Inc.
BF80_5050 I2C1TRN 31:16
15:0 ——————— I2CT1DATA<7:0>
BF80_5260 I2C1RCV 31:16
15:0 ——————— I2CR1DATA<7:0>
BF80_5200 I2C2CON 31:16
15:0 ON FRZ SIDL SCLREL STRICT A10M DISSLW SMEN GCEN STREN ACKDT ACKEN RCEN PEN RSEN SEN
BF80_5210 I2C2STAT 31:16
15:0 ACKSTAT TRSTAT BCL GCSTAT ADD10 IWCOL I2COV D/A P S R/W RBF TBF
BF80_5220 I2C2ADD 31:16
15:0 ————— ADD<9:0>
BF80_5230 I2C2MSK 31:16
15:0 ————— MSK<9:0>
BF80_5240 I2C2BRG 31:16
15:0 ——— I2C2BRG<11:0>
BF80_5250 I2C2TRN 31:16
15:0 ——————— I2CT1DATA<7:0>
BF80_5260 I2C2RCV 31:16
15:0 ——————— I2CR1DATA<7:0>
TABLE 4-6: I2C1-2 REGISTERS MAP(1) (CONTINUED)
SFR
Virtual
Addr
SFR
Name
Bits
31/15
Bits
30/14
Bits
29/13
Bits
28/12
Bits
27/11
Bits
26/10
Bits
25/9
Bits
24/8
Bits
23/7
Bits
22/6
Bits
21/5
Bits
20/4
Bits
19/3
Bits
18/2
Bits
17/1
Bits
16/0
Legend: x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.
Note 1: All registers in this table except I2CxRCV have corresponding CLR, SET, and INV Registers at their virtual addresses, plus offsets of 0x4, 0x8, and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Regis-
ters” for more information.
TABLE 4-7: UART1-2 REGISTERS MAP
SFR
Virtual
Addr
SFR
Name
Bits
31/15
Bits
30/14
Bits
29/13
Bits
28/12
Bits
27/11
Bits
26/10
Bits
25/9
Bits
24/8
Bits
23/7
Bits
22/6
Bits
21/5
Bits
20/4
Bits
19/3
Bits
18/2
Bits
17/1
Bits
16/0
BF80_6000 U1MODE(1) 31:16 ————————————————
15:0 ON FRZ SIDL IREN RTSMD UEN<1:0> WAKE LPBACK ABAUD RXINV BRGH PDSEL<1:0> STSEL
BF80_6010 U1STA(1) 31:16 —————— ADM_EN ADDR<7:0>
15:0 UTXISEL<1:0> UTXINV URXEN UTXBRK UTXEN UTXBF TRMT URXISEL<1:0> ADDEN RIDLE PERR FERR OERR URXDA
BF80_6020 U1TXREG 31:16 ————————————————
15:0 —————— TX8 Transmit Register
BF80_6030 U1RXREG 31:16 ————————————————
15:0 —————— RX8 Receive Register
BF80_6040 U1BRG(1) 31:16 ————————————————
15:0 BRG<15:0>
BF80_6200 U2MODE(1) 31:16 ————————————————
15:0 ON FRZ SIDL IREN RTSMD UEN<1:0> WAKE LPBACK ABAUD RXINV BRGH PDSEL<1:0> STSEL
Legend: x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.
Note 1: This register has corresponding CLR, SET, and INV Registers at its virtual address, plus an offset of 0x4, 0x8, and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more information.
© 2009 Microchip Technology Inc. Preliminary DS61143F-page 39
PIC32MX3XX/4XX
BF80_6210 U2STA(1) 31:16 —————— ADM_EN ADDR<7:0>
15:0 UTXISEL<1:0> UTXINV URXEN UTXBRK UTXEN UTXBF TRMT URXISEL<1:0> ADDEN RIDLE PERR FERR OERR URXDA
BF80_6220 U2TXREG 31:16 ————————————————
15:0 —————— TX8 Transmit Register
BF80_6230 U2RXREG 31:16 ————————————————
15:0 —————— RX8 Receive Register
BF80_6240 U2BRG(1) 31:16 ————————————————
15:0 BRG<15:0>
TABLE 4-7: UART1-2 REGISTERS MAP (CONTINUED)
SFR
Virtual
Addr
SFR
Name
Bits
31/15
Bits
30/14
Bits
29/13
Bits
28/12
Bits
27/11
Bits
26/10
Bits
25/9
Bits
24/8
Bits
23/7
Bits
22/6
Bits
21/5
Bits
20/4
Bits
19/3
Bits
18/2
Bits
17/1
Bits
16/0
Legend: x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.
Note 1: This register has corresponding CLR, SET, and INV Registers at its virtual address, plus an offset of 0x4, 0x8, and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more information.
TABLE 4-8: SPI1-2 REGISTERS MAP(1,2)
SFR
Virtual
Addr
SFR
Name
Bits
31/15
Bits
30/14
Bits
29/13
Bits
28/12
Bits
27/11
Bits
26/10
Bits
25/9
Bits
24/8
Bits
23/7
Bits
22/6
Bits
21/5
Bits
20/4
Bits
19/3
Bits
18/2
Bits
17/1
Bits
16/0
BF80_5800 SPI1CON 31:16 FRMEN FRMSYNC FRMPOL SPIFE
15:0 ON FRZ SIDL DISSDO MODE32 MODE16 SMP CKE SSEN CKP MSTEN
BF80_5810 SPI1STAT 31:16 ————————————————
15:0 ——— SPIBUSY ——— SPIROV —SPITBE SPIRBF
BF80_5820 SPI1BUF 31:16 DATA<31:0>
15:0
BF80_5830 SPI1BRG 31:16 ————————————————
15:0 ———————BRG<8:0>
BF80_5A00 SPI2CON 31:16 FRMEN FRMSYNC FRMPOL SPIFE
15:0 ON FRZ SIDL DISSDO MODE32 MODE16 SMP CKE SSEN CKP MSTEN
BF80_5A10 SPI2STAT 31:16 ————————————————
15:0 ——— SPIBUSY ——— SPIROV —SPITBE SPIRBF
BF80_5A20 SPI2BUF 31:16 DATA<31:0>
15:0
BF80_5A30 SPI2BRG 31:16 ————————————————
15:0 ———————BRG<8:0>
Legend: x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.
Note 1: All registers in this table except SPIxBUF have corresponding CLR, SET, and INV Registers at their virtual addresses, plus offsets of 0x4, 0x8, and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Regis-
ters” for more information.
2: SPI2 Module is not present on PIC32MX420FXXXX/440FXXXX devices.
PIC32MX3XX/4XX
DS61143F-page 40 Preliminary © 2009 Microchip Technology Inc.
TABLE 4-9: ADC REGISTERS MAP
SFR
Virtual
Addr
SFR
Name
Bits
31/15
Bits
30/14
Bits
29/13
Bits
28/12
Bits
27/11
Bits
26/10
Bits
25/9
Bits
24/8
Bits
23/7
Bits
22/6
Bits
21/5
Bits
20/4
Bits
19/3
Bits
18/2
Bits
17/1
Bits
16/0
BF80_9000 AD1CON1(1) 31:16 ————————————————
15:0 ON FRZ SIDL FORM<2:0> SSRC<2:0> CLRASAM ASAM SAMP DONE
BF80_9010 AD1CON2(1) 31:16 ————————————————
15:0 VCFG2 VCFG1 VCFG0 OFFCAL —CSCNA—BUFS SMPI<3:0> BUFM ALTS
BF80_9020 AD1CON3(1) 31:16 ————————————————
15:0 ADRC SAMC<4:0> ADCS<7:0>
BF80_9040 AD1CHS(1) 31:16 CH0NB CH0SB<3:0> CH0NA —— CH0SA<3:0>
15:0 ————————————————
BF80_9060 AD1PCFG(1) 31:16 ————————————————
15:0 PCFG15 PCFG14 PCFG13 PCFG12 PCFG11 PCFG10 PCFG9 PCFG8 PCFG7 PCFG6 PCFG5 PCFG4 PCFG3 PCFG2 PCFG1 PCFG0
BF80_9050 AD1CSSL(1) 31:16 ————————————————
15:0 CSSL15 CSSL14 CSSL13 CSSL12 CSSL11 CSSL10 CSSL9 CSSL8 CSSL7 CSSL6 CSSL5 CSSL4 CSSL3 CSSL2 CSSL1 CSSL0
BF80_9070 ADC1BUF0 31:16 ADC Result Word 0 (ADC1BUF0<31:0>)
15:0
BF80_9080 ADC1BUF1 31:16 ADC Result Word 1 (ADC1BUF1<31:0>)
15:0
BF80_9090 ADC1BUF2 31:16 ADC Result Word 2 (ADC1BUF2<31:0>)
15:0
BF80_90A0 ADC1BUF3 31:16 ADC Result Word 3 (ADC1BUF3<31:0>)
15:0
BF80_90B0 ADC1BUF4 31:16 ADC Result Word 4 (ADC1BUF4<31:0>)
15:0
BF80_90C0 ADC1BUF5 31:16 ADC Result Word 5 (ADC1BUF5<31:0>)
15:0
BF80_90D0 ADC1BUF6 31:16 ADC Result Word 6 (ADC1BUF6<31:0>)
15:0
BF80_90E0 ADC1BUF7 31:16 ADC Result Word 7 (ADC1BUF7<31:0>)
15:0
BF80_90F0 ADC1BUF8 31:16 ADC Result Word 8 (ADC1BUF8<31:0>)
15:0
BF80_9100 ADC1BUF9 31:16 ADC Result Word 9 (ADC1BUF9<31:0>)
15:0
BF80_9110 ADC1BUFA 31:16 ADC Result Word A (ADC1BUFA<31:0>)
15:0
BF80_9120 ADC1BUFB 31:16 ADC Result Word B (ADC1BUFB<31:0>)
15:0
Legend: x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.
Note 1: This register has corresponding CLR, SET, and INV Registers at its virtual address, plus an offset of 0x4, 0x8, and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more information.
© 2009 Microchip Technology Inc. Preliminary DS61143F-page 41
PIC32MX3XX/4XX
BF80_9130 ADC1BUFC 31:16 ADC Result Word C (ADC1BUFC<31:0>)
15:0
BF80_9140 ADC1BUFD 31:16 ADC Result Word D (ADC1BUFD<31:0>)
15:0
BF80_9150 ADC1BUFE 31:16 ADC Result Word E (ADC1BUFE<31:0>)
15:0
BF80_9160 ADC1BUFF 31:16 ADC Result Word F (ADC1BUFF<31:0>)
15:0
TABLE 4-9: ADC REGISTERS MAP (CONTINUED)
SFR
Virtual
Addr
SFR
Name
Bits
31/15
Bits
30/14
Bits
29/13
Bits
28/12
Bits
27/11
Bits
26/10
Bits
25/9
Bits
24/8
Bits
23/7
Bits
22/6
Bits
21/5
Bits
20/4
Bits
19/3
Bits
18/2
Bits
17/1
Bits
16/0
Legend: x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.
Note 1: This register has corresponding CLR, SET, and INV Registers at its virtual address, plus an offset of 0x4, 0x8, and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more information.
TABLE 4-10: DMA GLOBAL REGISTERS MAP FOR PIC32MX340FXXXX/360FXXXX/440FXXXX/460XXXX DEVICES ONLY
SFR
Virtual
Addr
SFR
Name
Bits
31/15
Bits
30/14
Bits
29/13
Bits
28/12
Bits
27/11
Bits
26/10
Bits
25/9
Bits
24/8
Bits
23/7
Bits
22/6
Bits
21/5
Bits
20/4
Bits
19/3
Bits
18/2
Bits
17/1
Bits
16/0
BF88_3000 DMACON(1) 31:16 ————————————————
15:0 ON FRZ SIDL SUSPEND
BF88_3010 DMASTAT 31:16 ————————————————
15:0 ——————————— RDWR DMACH<1:0>
BF88_3020 DMAADDR 31:16 DMAADDR<31:0>
15:0
Legend: x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.
Note 1: This register has corresponding CLR, SET, and INV Registers at its virtual address, plus an offset of 0x4, 0x8, and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more information.
TABLE 4-11: DMA CRC REGISTERS MAP FOR PIC32MX340FXXXX/360FXXXX/440FXXXX/460XXXX DEVICES ONLY(1)
SFR
Virtual
Addr
SFR
Name
Bits
31/15
Bits
30/14
Bits
29/13
Bits
28/12
Bits
27/11
Bits
26/10
Bits
25/9
Bits
24/8
Bits
23/7
Bits
22/6
Bits
21/5
Bits
20/4
Bits
19/3
Bits
18/2
Bits
17/1
Bits
16/0
BF88_3030 DCRCCON 31:16 ————————————————
15:0 ——— PLEN<3:0> CRCEN CRCAPP CRCCH<1:0>
BF88_3040 DCRCDATA 31:16 ————————————————
15:0 DCRCDATA<15:0>
BF88_3050 DCRCXOR 31:16 ————————————————
15:0 DCRCXOR<15:0>
Legend: x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.
Note 1: All registers in this table have corresponding CLR, SET, and INV Registers at their virtual addresses, plus offsets of 0x4, 0x8, and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more infor-
mation.
PIC32MX3XX/4XX
DS61143F-page 42 Preliminary © 2009 Microchip Technology Inc.
TABLE 4-12: DMA CHANNELS 0-3 REGISTERS MAP FOR PIC32MX340FXXXX/360FXXXX/440FXXXX/460XXXX DEVICES ONLY(1)
SFR
Virtual
Addr
SFR
Name
Bits
31/15
Bits
30/14
Bits
29/13
Bits
28/12
Bits
27/11
Bits
26/10
Bits
25/9
Bits
24/8
Bits
23/7
Bits
22/6
Bits
21/5
Bits
20/4
Bits
19/3
Bits
18/2
Bits
17/1
Bits
16/0
BF88_3060 DCH0CON 31:16 ————————————————
15:0 ———————CHCHNS CHEN CHAED CHCHN CHAEN CHEDET CHPRI<1:0>
BF88_3070 DCH0ECON 31:16 ———————— CHAIRQ<7:0>
15:0 CHSIRQ<7:0> CFORCE CABORT PATEN SIRQEN AIRQEN
BF88_3080 DCH0INT 31:16 CHSDIE CHSHIE CHDDIE CHDHIE CHBCIE CHCCIE CHTAIE CHERIE
15:0 CHSDIF CHSHIF CHDDIF CHDHIF CHBCIF CHCCIF CHTAIF CHERIF
BF88_3090 DCH0SSA 31:16 CHSSA<31:0>
15:0
BF88_30A0 DCH0DSA 31:16 CHDSA<31:0>
15:0
BF88_30B0 DCH0SSIZ 31:16 ————————————————
15:0 ———————— CHSSIZ<7:0>
BF88_30C0 DCH0DSIZ 31:16 ————————————————
15:0 ———————— CHDSIZ<7:0>
BF88_30D0 DCH0SPTR 31:16 ————————————————
15:0 ———————— CHSTR<7:0>
BF88_30E0 DCH0DPTR 31:16 ————————————————
15:0 ———————— CHDPTR<7:0>
BF88_30F0 DCH0CSIZ 31:16 ————————————————
15:0 ———————— CHCSIZ<7:0>
BF88_3100 DCH0CPTR 31:16 ————————————————
15:0 ———————— CHCPTR<7:0>
BF88_3110 DCH0DAT 31:16 ————————————————
15:0 ———————— CHPDAT<7:0>
BF88_3120 DCH1CON 31:16 ————————————————
15:0 ———————CHCHNS CHEN CHAED CHCHN CHAEN CHEDET CHPRI<1:0>
BF88_3130 DCH1ECON 31:16 ———————— CHAIRQ<7:0>
15:0 CHSIRQ<7:0> CFORCE CABORT PATEN SIRQEN AIRQEN
BF88_3140 DCH1INT 31:16 CHSDIE CHSHIE CHDDIE CHDHIE CHBCIE CHCCIE CHTAIE CHERIE
15:0 CHSDIF CHSHIF CHDDIF CHDHIF CHBCIF CHCCIF CHTAIF CHERIF
BF88_3150 DCH1SSA 31:16 CHSSA<31:0>
15:0
BF88_3160 DCH1DSA 31:16 CHDSA<31:0>
15:0
Legend: x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.
Note 1: All registers except DCHxSPTR, DCHxDPTR, and DCHxCPTR have corresponding CLR, SET, and INV Registers at their virtual addresses, plus offsets of 0x4, 0x8, and 0xC, respectively. See Section 12.1.1 “CLR,
SET and INV Registers” for more information.
© 2009 Microchip Technology Inc. Preliminary DS61143F-page 43
PIC32MX3XX/4XX
BF88_3170 DCH1SSIZ 31:16 ————————————————
15:0 ———————— CHSSIZ<7:0>
BF88_3180 DCH1DSIZ 31:16 ————————————————
15:0 ———————— CHDSIZ<7:0>
BF88_3190 DCH1SPTR 31:16 ————————————————
15:0 ———————— CHSPTR<7:0>
BF88_31A0 DCH1DPTR 31:16 ————————————————
15:0 ———————— CHDPTR<7:0>
BF88_31B0 DCH1CSIZ 31:16 ————————————————
15:0 ———————— CHCSIZ<7:0>
BF88_31C0 DCH1CPTR 31:16 ————————————————
15:0 ———————— CHCPTR<7:0>
BF88_31D0 DCH1DAT 31:16 ————————————————
15:0 ———————— CHPDAT<7:0>
BF88_31E0 DCH2CON 31:16 ————————————————
15:0 ———————CHCHNS CHEN CHAED CHCHN CHAEN CHEDET CHPRI<1:0>
BF88_31F0 DCH2ECON 31:16 ———————— CHAIRQ<7:0>
15:0 CHSIRQ<7:0> CFORCE CABORT PATEN SIRQEN AIRQEN
BF88_3200 DCH2INT 31:16 CHSDIE CHSHIE CHDDIE CHDHIE CHBCIE CHCCIE CHTAIE CHERIE
15:0 CHSDIF CHSHIF CHDDIF CHDHIF CHBCIF CHCCIF CHTAIF CHERIF
BF88_3210 DCH2SSA 31:16 CHSSA<31:0>
15:0
BF88_3220 DCH2DSA 31:16 CHDSA<31:0>
15:0
BF88_3230 DCH2SSIZ 31:16 ————————————————
15:0 ———————— CHSSIZ<7:0>
BF88_3240 DCH2DSIZ 31:16 ————————————————
15:0 ———————— CHDSIZ<7:0>
BF88_3250 DCH2SPTR 31:16 ————————————————
15:0 ———————— CHSPTR<7:0>
BF88_3260 DCH2DPTR 31:16 ————————————————
15:0 ———————— CHDPTR<7:0>
BF88_3270 DCH2CSIZ 31:16 ————————————————
15:0 ———————— CHCSIZ<7:0>
TABLE 4-12: DMA CHANNELS 0-3 REGISTERS MAP (CONTINUED)FOR PIC32MX340FXXXX/360FXXXX/440FXXXX/460XXXX DEVICES
ONLY(1) (CONTINUED)
SFR
Virtual
Addr
SFR
Name
Bits
31/15
Bits
30/14
Bits
29/13
Bits
28/12
Bits
27/11
Bits
26/10
Bits
25/9
Bits
24/8
Bits
23/7
Bits
22/6
Bits
21/5
Bits
20/4
Bits
19/3
Bits
18/2
Bits
17/1
Bits
16/0
Legend: x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.
Note 1: All registers except DCHxSPTR, DCHxDPTR, and DCHxCPTR have corresponding CLR, SET, and INV Registers at their virtual addresses, plus offsets of 0x4, 0x8, and 0xC, respectively. See Section 12.1.1 “CLR,
SET and INV Registers” for more information.
PIC32MX3XX/4XX
DS61143F-page 44 Preliminary © 2009 Microchip Technology Inc.
BF88_3280 DCH2CPTR 31:16 ————————————————
15:0 ———————— CHCPTR<7:0>
BF88_3290 DCH2DAT 31:16 ————————————————
15:0 ———————— CHPDAT<7:0>
BF88_32A0 DCH3CON 31:16 ————————————————
15:0 ———————CHCHNS CHEN CHAED CHCHN CHAEN CHEDET CHPRI<1:0>
BF88_32B0 DCH3ECON 31:16 ———————— CHAIRQ<7:0>
15:0 CHSIRQ<7:0> CFORCE CABORT PATEN SIRQEN AIRQEN
BF88_32C0 DCH3INT 31:16 CHSDIE CHSHIE CHDDIE CHDHIE CHBCIE CHCCIE CHTAIE CHERIE
15:0 CHSDIF CHSHIF CHDDIF CHDHIF CHBCIF CHCCIF CHTAIF CHERIF
BF88_32D0 DCH3SSA 31:16 CHSSA<31:0>
15:0
BF88_32E0 DCH3DSA 31:16 CHDSA<31:0>
15:0
BF88_32F0 DCH3SSIZ 31:16 ————————————————
15:0 ———————— CHSSIZ<7:0>
BF88_3300 DCH3DSIZ 31:16 ————————————————
15:0 ———————— CHDSIZ<7:0>
BF88_3310 DCH3SPTR 31:16 ————————————————
15:0 ———————— CHSTR<7:0>
BF88_3320 DCH3DPTR 31:16 ————————————————
15:0 ———————— CHDPTR<7:0>
BF88_3330 DCH3CSIZ 31:16 ————————————————
15:0 ———————— CHCSIZ<7:0>
BF88_3340 DCH3CPTR 31:16 ————————————————
15:0 ———————— CHCPTR<7:0>
BF88_3350 DCH3DAT 31:16 ————————————————
15:0 ———————— CHPDAT<7:0>
TABLE 4-12: DMA CHANNELS 0-3 REGISTERS MAP (CONTINUED)FOR PIC32MX340FXXXX/360FXXXX/440FXXXX/460XXXX DEVICES
ONLY(1) (CONTINUED)
SFR
Virtual
Addr
SFR
Name
Bits
31/15
Bits
30/14
Bits
29/13
Bits
28/12
Bits
27/11
Bits
26/10
Bits
25/9
Bits
24/8
Bits
23/7
Bits
22/6
Bits
21/5
Bits
20/4
Bits
19/3
Bits
18/2
Bits
17/1
Bits
16/0
Legend: x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.
Note 1: All registers except DCHxSPTR, DCHxDPTR, and DCHxCPTR have corresponding CLR, SET, and INV Registers at their virtual addresses, plus offsets of 0x4, 0x8, and 0xC, respectively. See Section 12.1.1 “CLR,
SET and INV Registers” for more information.
© 2009 Microchip Technology Inc. Preliminary DS61143F-page 45
PIC32MX3XX/4XX
TABLE 4-13: COMPARATOR REGISTERS MAP(1)
SFR
Virtual
Addr
SFR
Name
Bits
31/15
Bits
30/14
Bits
29/13
Bits
28/12
Bits
27/11
Bits
26/10
Bits
25/9
Bits
24/8
Bits
23/7
Bits
22/6
Bits
21/5
Bits
20/4
Bits
19/3
Bits
18/2
Bits
17/1
Bits
16/0
BF80_A000 CM1CON 31:16 ————————————————
15:0 ON COE CPOL ——— COUT EVPOL<1:0> CREF CCH<1:0>
BF80_A010 CM2CON 31:16 ————————————————
15:0 ON COE CPOL ——— COUT EVPOL<1:0> CREF CCH<1:0>
BF80_A060 CMSTAT 31:16 ————————————————
15:0 —FRZSIDL—————————— C2OUT C1OUT
Legend: x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.
Note 1: All registers in this table have corresponding CLR, SET, and INV Registers at their virtual addresses, plus offsets of 0x4, 0x8, and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more infor-
mation.
TABLE 4-14: COMPARATOR VOLTAGE REFERENCE REGISTERS MAP(1)
SFR
Virtual
Addr
SFR
Name
Bits
31/15
Bits
30/14
Bits
29/13
Bits
28/12
Bits
27/11
Bits
26/10
Bits
25/9
Bits
24/8
Bits
23/7
Bits
22/6
Bits
21/5
Bits
20/4
Bits
19/3
Bits
18/2
Bits
17/1
Bits
16/0
BF80_9800 CVRCON 31:16 ————————————————
15:0 ON ——————— CVROE CVRR CVRSS CVR<3:0>
Legend: x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.
Note 1: All registers in this table have corresponding CLR, SET, and INV Registers at their virtual addresses, plus offsets of 0x4, 0x8, and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more infor-
mation.
TABLE 4-15: FLASH CONTROLLER REGISTERS MAP
SFR
Virtual
Addr
SFR
Name
Bits
31/15
Bits
30/14
Bits
29/13
Bits
28/12
Bits
27/11
Bits
26/10
Bits
25/9
Bits
24/8
Bits
23/7
Bits
22/6
Bits
21/5
Bits
20/4
Bits
19/3
Bits
18/2
Bits
17/1
Bits
16/0
BF80_F400 NVMCON(1)
31:16 ————————————————
15:0 NVMWR NVM
WREN NVMERR LVDERR LVDSTAT —————— NVMOP<3:0>
BF80_F410 NVMKEY 31:16 NVMKEY<31:0>
15:0
BF80_F420
NVMADDR
(1) 31:16 NVMADDR<31:0>
15:0
BF80_F430 NVMDATA 31:16 NVMDATA<31:0>
15:0
BF80_F440 NVMSRC
ADDR
31:16 NVMSRCADDR<31:0>
15:0
Legend: x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.
Note 1: This register has corresponding CLR, SET, and INV Registers at its virtual address, plus an offset of 0x4, 0x8, and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more information.
PIC32MX3XX/4XX
DS61143F-page 46 Preliminary © 2009 Microchip Technology Inc.
TABLE 4-16: SYSTEM CONTROL REGISTERS MAP(1)
SFR
Virtual
Addr
SFR
Name
Bits
31/15
Bits
30/14
Bits
29/13
Bits
28/12
Bits
27/11
Bits
26/10
Bits
25/9
Bits
24/8
Bits
23/7
Bits
22/6
Bits
21/5
Bits
20/4
Bits
19/3
Bits
18/2
Bits
17/1
Bits
16/0
BF80_F000 OSCCON 31:16 PLLODIV<2:0> RCDIV<2:0> SOSCRDY PBDIV<1:0> PLLMULT<2:0>
15:0 COSC<2:0> NOSC<2:0> CLKLOCK ULOCK LOCK SLPEN CF UFRCEN SOSCEN OSWEN
BF80_F010 OSCTUN 31:16
15:0 ————————— TUN<5:0>
BF80_0000 WDTCON 31:16
15:0 ON ——————— SWDTPS<4:0> WDTCLR
BF80_F600 RCON 31:16
15:0 CM VREGS EXTR SWR WDTO SLEEP IDLE BOR POR
BF80_F610 RSWRST 31:16
15:0 ———————————————SWRST
Legend: x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.
Note 1: All registers in this table have corresponding CLR, SET, and INV Registers at their virtual addresses, plus offsets of 0x4, 0x8, and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more infor-
mation.
TABLE 4-17: PORT A-G REGISTERS MAP(11)
SFR
Virtual
Addr
SFR
Name
Bits
31/15
Bits
30/14
Bits
29/13
Bits
28/12
Bits
27/11
Bits
26/10
Bits
25/9
Bits
24/8
Bits
23/7
Bits
22/6
Bits
21/5
Bits
20/4
Bits
19/3
Bits
18/2
Bits
17/1
Bits
16/0
BF88_6000 TRISA(1,2,3) 31:16 ————————————————
15:0 TRISA15 TRISA14 TRISA10 TRISA9 TRISA<7:0>
BF88_6010 PORTA(1,2,3) 31:16 ————————————————
15:0 RA15 RA14 RA10 RA9 RA<7:0>
BF88_6020 LATA(1,2,3) 31:16 ————————————————
15:0 LATA15 LATA14 LATA10 LATA9 LATA<7:0>
BF88_6030 ODCA(1,2,3) 31:16 ————————————————
15:0 ODCA15 ODCA14 ODCA10 ODCA9 ODCA<7:0>
BF88_6040 TRISB(4,5) 31:16 ————————————————
15:0 TRISB<15:0>
BF88_6050 PORTB(4,5) 31:16 ————————————————
15:0 RB<15:0>
Legend: x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.
Note 1: TRISA, PORTA, LATA and ODCA registers are not implemented on 64-pin devices, and read as ‘0’.
2: JTAG program/debug port is multiplexed with port pins RA0, RA1, RA4 and RA5 on 100-pin devices. At power-on-reset, these pins are controlled by the JTAG port. To use these pins for general purpose I/O, the
user’s application code must clear JTAGEN (DDPCON<3>) bit = 0. To use these pins for JTAG program/debug, the user’s application code must maintain JTAGEN bit = 1.
3: On specific 100-pin devices, the instruction TRACE port is multiplexed with PORTA pins RA6, RA7; PORTG pins RG12, RG13 and RG14. At Power-on Reset, these pins are general purpose I/O pins. To maintain
these pins as general purpose I/O pins, the user’s application code must maintain TROEN (DDPCON<2>) bit = 0. To use these pins as instruction TRACE pins, TROEN must be set = 1.
4: JTAG program/debug port is multiplexed with port pins RB10, RB11, RB12 and RB13 on 64-pin devices. At power-on-reset, these pins are controlled by the JTAG port. To use these pins for general purpose I/O, the
user’s application code must clear JTAGEN (DDPCON<3>) bit = 0. To use these pins for JTAG program/debug, the user’s application code must maintain JTAGEN bit = 1.
5: Port Pin RB3 is not available as a general purpose I/O pin when the USB module is enabled.
6: Not implemented on 64-pin devices. Read as ‘0’.
7: Not implemented on 64-pin USB devices. Read as ‘0’.
8: Not implemented on 100-pin USB devices. Read as ‘0’.
9: Not available as a general purpose I/O pin when USB module is enabled.
10: Not available as a general purpose I/O pin when USB module is enabled. Input only when the USB module is disabled.
11: All registers in this table have corresponding CLR, SET, and INV Registers at their virtual addresses, plus offsets of 0x4, 0x8, and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more infor-
mation.
© 2009 Microchip Technology Inc. Preliminary DS61143F-page 47
PIC32MX3XX/4XX
BF88_6060 LATB(4,5) 31:16 ————————————————
15:0 LATB<15:0>
BF88_6070 ODCB(4,5) 31:16 ————————————————
15:0 ODCB<15:0>
BF88_6080 TRISC 31:16 ————————————————
15:0 TRISC15 TRISC14 TRISC13 TRISC12 TRISC4(6) TRISC3(6) TRISC2(6) TRISC1(6)
BF88_6090 PORTC 31:16 ————————————————
15:0 RC15 RC14 RC13 RC12 —————— RC4(6) RC3(6) RC2(6) RC1(6)
BF88_60A0 LATC 31:16 ————————————————
15:0 LATC15 LATC14 LATC13 LATC12 ———————LATC4
(6) LATC3(6) LATC2(6) LATC1(6)
BF88_60B0 ODCC 31:16 ————————————————
15:0 ODCC15 ODCC14 ODCC13 ODCC12 —————— ODCC4(6) ODCC3(6) ODCC2(6) ODCC1(6)
BF88_60C0 TRISD 31:16 ————————————————
15:0 TRISD15(6) TRISD14(6) TRISD13(6) TRISD12(6) TRISD<11:8> TRISD<7:0>
BF88_60D0 PORTD 31:16 ————————————————
15:0 RD15(6) RD14(6) RD13(6) RD12(6) RD<11:8> RD<7:0>
BF88_60E0 LATD 31:16 ————————————————
15:0 LAT15(6) LAT14(6) LAT13(6) LAT12(6) LATD<11:8> LATD<7:0>
BF88_60F0 ODCD 31:16 ————————————————
15:0 ODCD15(6) ODCD14(6) ODCD13(6) ODCD12(6) ODCD<11:8> ODCD<7:0>
BF88_6100 TRISE 31:16 ————————————————
15:0 ————— TRISE9(6) TRISE8(6) TRISE<7:0>
BF88_6110 PORTE 31:16 ————————————————
15:0 ——————RE9
(6) RE8(6) RE<7:0>
BF88_6120 LATE 31:16 ————————————————
15:0 ——————LATE9
(6) LATE8(6) LATE<7:0>
TABLE 4-17: PORT A-G REGISTERS MAP(11) (CONTINUED)
SFR
Virtual
Addr
SFR
Name
Bits
31/15
Bits
30/14
Bits
29/13
Bits
28/12
Bits
27/11
Bits
26/10
Bits
25/9
Bits
24/8
Bits
23/7
Bits
22/6
Bits
21/5
Bits
20/4
Bits
19/3
Bits
18/2
Bits
17/1
Bits
16/0
Legend: x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.
Note 1: TRISA, PORTA, LATA and ODCA registers are not implemented on 64-pin devices, and read as ‘0’.
2: JTAG program/debug port is multiplexed with port pins RA0, RA1, RA4 and RA5 on 100-pin devices. At power-on-reset, these pins are controlled by the JTAG port. To use these pins for general purpose I/O, the
user’s application code must clear JTAGEN (DDPCON<3>) bit = 0. To use these pins for JTAG program/debug, the user’s application code must maintain JTAGEN bit = 1.
3: On specific 100-pin devices, the instruction TRACE port is multiplexed with PORTA pins RA6, RA7; PORTG pins RG12, RG13 and RG14. At Power-on Reset, these pins are general purpose I/O pins. To maintain
these pins as general purpose I/O pins, the user’s application code must maintain TROEN (DDPCON<2>) bit = 0. To use these pins as instruction TRACE pins, TROEN must be set = 1.
4: JTAG program/debug port is multiplexed with port pins RB10, RB11, RB12 and RB13 on 64-pin devices. At power-on-reset, these pins are controlled by the JTAG port. To use these pins for general purpose I/O, the
user’s application code must clear JTAGEN (DDPCON<3>) bit = 0. To use these pins for JTAG program/debug, the user’s application code must maintain JTAGEN bit = 1.
5: Port Pin RB3 is not available as a general purpose I/O pin when the USB module is enabled.
6: Not implemented on 64-pin devices. Read as ‘0’.
7: Not implemented on 64-pin USB devices. Read as ‘0’.
8: Not implemented on 100-pin USB devices. Read as ‘0’.
9: Not available as a general purpose I/O pin when USB module is enabled.
10: Not available as a general purpose I/O pin when USB module is enabled. Input only when the USB module is disabled.
11: All registers in this table have corresponding CLR, SET, and INV Registers at their virtual addresses, plus offsets of 0x4, 0x8, and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more infor-
mation.
PIC32MX3XX/4XX
DS61143F-page 48 Preliminary © 2009 Microchip Technology Inc.
BF88_6130 ODCE 31:16 ————————————————
15:0 ——————ODCE9
(6) ODCE8(6) ODCE<7:0>
BF88_6140 TRISF 31:16 ————————————————
15:0 —TRISF13
(6) TRISF12(6) TRISF8(6) TRISF7(6,8) TRISF6(7,8) TRISF5 TRISF4 TRISF3 TRISF2(7) TRISF1 TRISF0
BF88_6150 PORTF 31:16 ————————————————
15:0 —RF13
(6) RF12(6) —RF8
(6) RF7(6,8) RF6(7,8) RF5 RF4 RF3(9) RF2(7) RF1 RF0
BF88_6160 LATF 31:16 ————————————————
15:0 LATF13(6) LATF12(6) LATF8(6) LATF7(6,8) LATF6(7,8) LATF5 LATF4 LATF3 LATF2(7) LATF1 LATF0
BF88_6170 ODCF 31:16 ————————————————
15:0 ODCF13(6) ODCF12(6) ODCF8(6) ODCF7(6,8) ODCF6(7,8) ODCF5 ODCF4 ODCF3 ODCF2(7) ODCF1 ODCF0
BF88_6180 TRISG 31:16 ————————————————
15:0 TRISG15(6) TRISG14(6) TRISG13(6) TRISG12(6) TRISG9 TRISG8 TRISG7 TRISG6 TRISG3 TRISG2 TRISG1(6) TRISG0(6)
BF88_6190 PORTG 31:16 ————————————————
15:0 RG15(6) RG14(6) RG13(6) RG12(6) RG9 RG8 RG7 RG6 RG3(10) RG2(10) RG1(6) RG0(6)
BF88_61A0 LATG 31:16 ————————————————
15:0 LATG15(6) LATG14(6) LATG13(6) LATG12(6) LATG9 LATG8 LATG7 LATG6 LATG3 LATG2 LATG1(6) LATG0(6)
BF88_61B0 ODCG 31:16 ————————————————
15:0 ODCG15(6) ODCG14(6) ODCG13(6) ODCG12(6) ODCG9 ODCG8 ODCG7 ODCG6 ODCG3 ODCG2 ODCG1(6) ODCG0(6)
TABLE 4-18: CHANGE NOTICE AND PULL-UP REGISTERS MAP(2)
SFR
Virtual
Addr
SFR
Name
Bits
31/15
Bits
30/14
Bits
29/13
Bits
28/12
Bits
27/11
Bits
26/10
Bits
25/9
Bits
24/8
Bits
23/7
Bits
22/6
Bits
21/5
Bits
20/4
Bits
19/3
Bits
18/2
Bits
17/1
Bits
16/0
BF88_61C0 CNCON 31:16 ————————————————
15:0 ON FRZ SIDL —————————————
Legend: x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.
Note 1: CNEN and CNPUE bit(s) are not implemented on 64-pin devices, and read as ‘0’.
2: All registers in this table have corresponding CLR, SET, and INV Registers at their virtual addresses, plus offsets of 0x4, 0x8, and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more infor-
mation.
TABLE 4-17: PORT A-G REGISTERS MAP(11) (CONTINUED)
SFR
Virtual
Addr
SFR
Name
Bits
31/15
Bits
30/14
Bits
29/13
Bits
28/12
Bits
27/11
Bits
26/10
Bits
25/9
Bits
24/8
Bits
23/7
Bits
22/6
Bits
21/5
Bits
20/4
Bits
19/3
Bits
18/2
Bits
17/1
Bits
16/0
Legend: x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.
Note 1: TRISA, PORTA, LATA and ODCA registers are not implemented on 64-pin devices, and read as ‘0’.
2: JTAG program/debug port is multiplexed with port pins RA0, RA1, RA4 and RA5 on 100-pin devices. At power-on-reset, these pins are controlled by the JTAG port. To use these pins for general purpose I/O, the
user’s application code must clear JTAGEN (DDPCON<3>) bit = 0. To use these pins for JTAG program/debug, the user’s application code must maintain JTAGEN bit = 1.
3: On specific 100-pin devices, the instruction TRACE port is multiplexed with PORTA pins RA6, RA7; PORTG pins RG12, RG13 and RG14. At Power-on Reset, these pins are general purpose I/O pins. To maintain
these pins as general purpose I/O pins, the user’s application code must maintain TROEN (DDPCON<2>) bit = 0. To use these pins as instruction TRACE pins, TROEN must be set = 1.
4: JTAG program/debug port is multiplexed with port pins RB10, RB11, RB12 and RB13 on 64-pin devices. At power-on-reset, these pins are controlled by the JTAG port. To use these pins for general purpose I/O, the
user’s application code must clear JTAGEN (DDPCON<3>) bit = 0. To use these pins for JTAG program/debug, the user’s application code must maintain JTAGEN bit = 1.
5: Port Pin RB3 is not available as a general purpose I/O pin when the USB module is enabled.
6: Not implemented on 64-pin devices. Read as ‘0’.
7: Not implemented on 64-pin USB devices. Read as ‘0’.
8: Not implemented on 100-pin USB devices. Read as ‘0’.
9: Not available as a general purpose I/O pin when USB module is enabled.
10: Not available as a general purpose I/O pin when USB module is enabled. Input only when the USB module is disabled.
11: All registers in this table have corresponding CLR, SET, and INV Registers at their virtual addresses, plus offsets of 0x4, 0x8, and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more infor-
mation.
© 2009 Microchip Technology Inc. Preliminary DS61143F-page 49
PIC32MX3XX/4XX
BF88_61D0 CNEN 31:16 ————————— CNEN21(1) CNEN20(1) CNEN19(1) CNEN18 CNEN17 CNEN16
15:0 CNEN<15:0>
BF88_61E0 CNPUE 31:16 ——————————CNPUE21
(1) CNPUE20(1) CNPUE19(1) CNPUE18 CNPUE17 CNPUE16
15:0 CNPUE<15:0>
TABLE 4-19: PARALLEL MASTER PORT REGISTERS MAP(1)
SFR
Virtual
Addr
SFR
Name
Bits
31/15
Bits
30/14
Bits
29/13
Bits
28/12
Bits
27/11
Bits
26/10
Bits
25/9
Bits
24/8
Bits
23/7
Bits
22/6
Bits
21/5
Bits
20/4
Bits
19/3
Bits
18/2
Bits
17/1
Bits
16/0
BF80_7000 PMCON 31:16 ————————————————
15:0 ON FRZ SIDL ADRMUX<1:0> PMPTTL PTWREN PTRDEN CSF<1:0> ALP CS2P CS1P WRSP RDSP
BF80_7010 PMMODE 31:16 ————————————————
15:0 BUSY IRQM<1:0> INCM<1:0> MODE16 MODE<1:0> WAITB<1:0> WAITM<3:0> WAITE<1:0>
BF80_7020 PMADDR 31:16 ————————————————
15:0
CS2EN/A15 CS1EN/A14
ADDR<13:0>
BF80_7030 PMDOUT 31:16 DATAOUT<31:0>
15:0
BF80_7040 PMDIN 31:16 DATAIN<31:0>
15:0
BF80_7050 PMAEN 31:16 ————————————————
15:0 PTEN<15:0>
BF80_7060 PMSTAT 31:16 ————————————————
15:0 IBF IBOV IB3F IB2F IB1F IB0F OBE OBUF OB3E OB2E OB1E OB0E
Legend: x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.
Note 1: All registers in this table have corresponding CLR, SET, and INV Registers at their virtual addresses, plus offsets of 0x4, 0x8, and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more infor-
mation.
TABLE 4-20: PROGRAMMING AND DIAGNOSTICS REGISTERS MAP
SFR
Virtual
Addr
SFR
Name
Bits
31/15
Bits
30/14
Bits
29/13
Bits
28/12
Bits
27/11
Bits
26/10
Bits
25/9
Bits
24/8
Bits
23/7
Bits
22/6
Bits
21/5
Bits
20/4
Bits
19/3
Bits
18/2
Bits
17/1
Bits
16/0
BF80_F200 DDPCON 31:16 ————————————————
15:0 DDPUSB DDPU1 DDPU2 DDPSPI1 JTAGEN TROEN
Legend: x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.
TABLE 4-18: CHANGE NOTICE AND PULL-UP REGISTERS MAP(2) (CONTINUED)
SFR
Virtual
Addr
SFR
Name
Bits
31/15
Bits
30/14
Bits
29/13
Bits
28/12
Bits
27/11
Bits
26/10
Bits
25/9
Bits
24/8
Bits
23/7
Bits
22/6
Bits
21/5
Bits
20/4
Bits
19/3
Bits
18/2
Bits
17/1
Bits
16/0
Legend: x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.
Note 1: CNEN and CNPUE bit(s) are not implemented on 64-pin devices, and read as ‘0’.
2: All registers in this table have corresponding CLR, SET, and INV Registers at their virtual addresses, plus offsets of 0x4, 0x8, and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more infor-
mation.
PIC32MX3XX/4XX
DS61143F-page 50 Preliminary © 2009 Microchip Technology Inc.
TABLE 4-21: PREFETCH REGISTERS MAP
SFR
Virtual
Addr
SFR
Name
Bits
31/15
Bits
30/14
Bits
29/13
Bits
28/12
Bits
27/11
Bits
26/10
Bits
25/9
Bits
24/8
Bits
23/7
Bits
22/6
Bits
21/5
Bits
20/4
Bits
19/3
Bits
18/2
Bits
17/1
Bits
16/0
BF88_4000 CHECON(1) 31:16 ———————————————CHECOH
15:0 ————— DCSZ<1:0> PREFEN<1:0> PFMWS<2:0>
BF88_4010 CHEACC(1) 31:16 CHEWEN ———————————————
15:0 ——————————— CHEIDX<3:0>
BF88_4020 CHETAG(1) 31:16 LTAG
BOOT
—————— LTAG<23:16>
15:0 LTAG<15:4> LVALID LLOCK LTYPE
BF88_4030 CHEMSK(1) 31:16 ————————————————
15:0 LMASK<15:5> ———
BF88_4040 CHEW0 31:16 CHEW0<31:0>
15:0
BF88_4050 CHEW1 31:16 CHEW1<31:0>
15:0
BF88_4060 CHEW2 31:16 CHEW2<31:0>
15:0
BF88_4070 CHEW3 31:16 CHEW3<31:0>
15:0
BF88_4080 CHELRU 31:16 —————— CHELRU<24:16>
15:0 CHELRU<15:0>
BF88_4090 CHEHIT 31:16 CHEHIT<31:0>
15:0
BF88_40A0 CHEMIS 31:16 CHEMIS<31:0>
15:0
BF88_40C0 CHEPFABT 31:16
15:0 CHEPFABT<31:0>
Legend: x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.
Note 1: This register has corresponding CLR, SET, and INV Registers at its virtual address, plus an offset of 0x4, 0x8, and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more information.
TABLE 4-22: RTCC REGISTERS MAP(1)
SFR
Virtual
Addr
SFR
Name
Bits
31/15
Bits
30/14
Bits
29/13
Bits
28/12
Bits
27/11
Bits
26/10
Bits
25/9
Bits
24/8
Bits
23/7
Bits
22/6
Bits
21/5
Bits
20/4
Bits
19/3
Bits
18/2
Bits
17/1
Bits
16/0
BF80_0200 RTCCON
31:16 —————— CAL<11:0>
15:0 ON FRZ SIDL —————RTSEC
SEL
RTC
CLKON RTCWREN RTCSYNC HALFSEC RTCOE
BF80_0210 RTCALRM
31:16 ————————————————
15:0 ALRMEN CHIME PIV ALRM
SYNC AMASK<3:0> ARPT<7:0>
Legend: x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.
Note 1: All registers in this table have corresponding CLR, SET, and INV Registers at their virtual addresses, plus offsets of 0x4, 0x8, and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more
information.
© 2009 Microchip Technology Inc. Preliminary DS61143F-page 51
PIC32MX3XX/4XX
BF80_0220 RTCTIME 31:16 HR10<3:0> HR01<3:0> MIN10<3:0> MIN01<3:0>
15:0 SEC10<3:0> SEC01<3:0> ————————
BF80_0230 RTCDATE 31:16 YEAR10<3:0> YEAR01<3:0> MONTH10<3:0> MONTH01<3:0>
15:0 DAY10<3:0> DAY01<3:0> WDAY01<3:0>
BF80_0240 ALRMTIME 31:16 MIN10<3:0> MIN01<3:0> MIN10<3:0> MIN01<3:0>
15:0 SEC10<3:0> SEC01<3:0> ————————
BF80_0250 ALRMDATE 31:16 ——————— MONTH10<3:0> MONTH01<3:0>
15:0 DAY10<3:0> DAY01<3:0> WDAY01<3:0>
TABLE 4-23: DEVCFG: DEVICE CONFIGURATION WORD SUMMARY
SFR
Virtual
Addr
SFR
Name
Bits
31/15
Bits
30/14
Bits
29/13
Bits
28/12
Bits
27/11
Bits
26/10
Bits
25/9
Bits
24/8
Bits
23/7
Bits
22/6
Bits
21/5
Bits
20/4
Bits
19/3
Bits
18/2
Bits
17/1
Bits
16/0
BFC0_2FF0 DEVCFG3 31:16 ————————————————
15:0 USERID15 USERID14 USERID13 USERID12 USERID11 USERID10 USERID9 USERID8 USERID7 USERID6 USERID5 USERID4 USERID3 USERID2 USERID1 USERID0
BFC0_2FF4 DEVCFG2 31:16 ———————————— FPLLODIV<2:0>
15:0
FUPLLEN
(1)
——— FUPLLIDIV<2:0>(1) FPLLMULT<2:0> FPLLIDIV<2:0>
BFC0_2FF8 DEVCFG1
31:16 ————————FWDTEN WDTPS<4:0>
15:0 FCKSM<1:0> FPBDIV<1:0> OSC
IOFNC POSCMD<1:0> IESO FSOSCEN FNOSC<2:0>
BFC0_2FFC DEVCFG0 31:16 —CP———BWP——— PWP19 PWP18 PWP17 PWP16
15:0 PWP15 PWP14 PWP13 PWP12 ——————— ICESEL DEBUG<1:0>
Legend: x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.
Note 1: These bits are only available on PIC32MX4XX devices.
TABLE 4-22: RTCC REGISTERS MAP(1) (CONTINUED)
SFR
Virtual
Addr
SFR
Name
Bits
31/15
Bits
30/14
Bits
29/13
Bits
28/12
Bits
27/11
Bits
26/10
Bits
25/9
Bits
24/8
Bits
23/7
Bits
22/6
Bits
21/5
Bits
20/4
Bits
19/3
Bits
18/2
Bits
17/1
Bits
16/0
Legend: x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.
Note 1: All registers in this table have corresponding CLR, SET, and INV Registers at their virtual addresses, plus offsets of 0x4, 0x8, and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more
information.
TABLE 4-24: DEVICE AND REVISION ID SUMMARY
SFR
Virtual
Addr
SFR
Name
Bits
31/15
Bits
30/14
Bits
29/13
Bits
28/12
Bits
27/11
Bits
26/10
Bits
25/9
Bits
24/8
Bits
23/7
Bits
22/6
Bits
21/5
Bits
20/4
Bits
19/3
Bits
18/2
Bits
17/1
Bits
16/0
BF80_F220 DEVID 31:16 VER<3:0> DEVID<27:16>
15:0 DEVID<15:0>
Legend: x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.
PIC32MX3XX/4XX
DS61143F-page 52 Preliminary © 2009 Microchip Technology Inc.
TABLE 4-25: USB REGISTERS MAP
SFR
Virtual
Addr
SFR
Name
Bits
31/15
Bits
30/14
Bits
29/13
Bits
28/12
Bits
27/11
Bits
26/10
Bits
25/9
Bits
24/8
Bits
23/7
Bits
22/6
Bits
21/5
Bits
20/4
Bits
19/3
Bits
18/2
Bits
17/1
Bits
16/0
BF88_5040 U1OTGIR 31:16 ————————————————
15:0 ——————— IDIF T1MSECIF LSTATEIF ACTVIF SESVDIF SESENDIF VBUSVDIF
BF88_5050 U1OTGIE 31:16 ————————————————
15:0 ——————— IDIE T1MSECIE LSTATEIE ACTVIE SESVDIE SESENDIE VBUSVDIE
BF88_5060 U1OTG
STAT
31:16 ————————————————
15:0 ————————ID—LSTATE SESVD SESEND VBUSVD
BF88_5070 U1OTGCON
31:16 ————————————————
15:0 ——————— DPPULUP DMPULUP DPPUL
DWN
DMPUL
DWN VBUSON OTGEN VBUSCHG VBUSDIS
BF88_5080 U1PWRC
31:16 ————————————————
15:0 ————————UACTPND USLPGRD USUS
PEND USBPWR
BF88_5200 U1IR
31:16 ————————————————
15:0 ——————— STALLIF ATTACHIF RESUME
IF IDLEIF TRNIF SOFIF UERRIF URSTIF
DETACHIF
BF88_5210 U1IE
31:16 ————————————————
15:0 ——————— STALLIE ATTACHIE RESUME
IE IDLEIE TRNIE SOFIE UERRIE URSTIE
DETACHIE
BF88_5220 U1EIR
31:16 ————————————————
15:0 ——————— BTSEF BMXEF DMAEF BTOEF DFN8EF CRC16EF CRC5EF PIDEF
EOFEF
BF88_5230 U1EIE
31:16 ————————————————
15:0 ——————— BTSEE BMXEE DMAEE BTOEE DFN8EE CRC16EE CRC5EE PIDEE
EOFEE
BF88_5240 U1STAT 31:16 ————————————————
15:0 ——————— ENDPT<3:0> DIR PPBI
BF88_5250 U1CON
31:16 ————————————————
15:0 ————————JSTATESE0
PKTDIS USBRST HOSTEN RESUME PPBRST USBEN
TOKBUSY SOFEN
BF80_5260 U1ADDR 31:16 ————————————————
15:0 ——————— LSPDEN DEVADDR<6:0>
BF88_5270 U1BDTP1 31:16 ————————————————
15:0 ——————— BDTPTRL<7:1>
BF88_5280 U1FRML 31:16 ————————————————
15:0 ——————— FRML<7:0>
BF88_5290 U1FRMH 31:16 ————————————————
15:0 ———————————— FRMH<10:8>
Legend: x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.
© 2009 Microchip Technology Inc. Preliminary DS61143F-page 53
PIC32MX3XX/4XX
BF88_52A0 U1TOK 31:16 ————————————————
15:0 ——————— PID<3:0> EP<3:0>
BF88_52B0 U1SOF 31:16 ————————————————
15:0 ——————— CNT<7:0>
BF88_52C0 U1BDTP2 31:16 ————————————————
15:0 ——————— BDTPTRH<7:0>
BF88_52D0 U1BDTP3 31:16 ————————————————
15:0 ——————— BDTPTRU<7:0>
BF88_52E0 U1CNFG1 31:16 ————————————————
15:0 ——————— UTEYE UOEMON USBFRZ USBSIDL
BF88_5300 U1EP0
31:16 ————————————————
15:0 ——————— LSPD RETRYDIS EPCON
DIS EPRXEN EPTXEN EPSTALL EPHSHK
BF88_5310 U1EP1
31:16 ————————————————
15:0 ———————————EPCON
DIS EPRXEN EPTXEN EPSTALL EPHSHK
BF88_5320 U1EP2
31:16 ————————————————
15:0 ———————————EPCON
DIS EPRXEN EPTXEN EPSTALL EPHSHK
BF88_5330 U1EP3
31:16 ————————————————
15:0 ———————————EPCON
DIS EPRXEN EPTXEN EPSTALL EPHSHK
BF88_5340 U1EP4
31:16 ————————————————
15:0 ———————————EPCON
DIS EPRXEN EPTXEN EPSTALL EPHSHK
BF88_5350 U1EP5
31:16 ————————————————
15:0 ———————————EPCON
DIS EPRXEN EPTXEN EPSTALL EPHSHK
BF88_5360 U1EP6
31:16 ————————————————
15:0 ———————————EPCON
DIS EPRXEN EPTXEN EPSTALL EPHSHK
BF88_5370 U1EP7
31:16 ————————————————
15:0 ———————————EPCON
DIS EPRXEN EPTXEN EPSTALL EPHSHK
BF88_5380 U1EP8
31:16 ————————————————
15:0 ———————————EPCON
DIS EPRXEN EPTXEN EPSTALL EPHSHK
BF88_5390 U1EP9
31:16 ————————————————
15:0 ———————————EPCON
DIS EPRXEN EPTXEN EPSTALL EPHSHK
TABLE 4-25: USB REGISTERS MAP (CONTINUED)
SFR
Virtual
Addr
SFR
Name
Bits
31/15
Bits
30/14
Bits
29/13
Bits
28/12
Bits
27/11
Bits
26/10
Bits
25/9
Bits
24/8
Bits
23/7
Bits
22/6
Bits
21/5
Bits
20/4
Bits
19/3
Bits
18/2
Bits
17/1
Bits
16/0
Legend: x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.
PIC32MX3XX/4XX
DS61143F-page 54 Preliminary © 2009 Microchip Technology Inc.
BF88_53A0 U1EP10
31:16 ————————————————
15:0 ———————————EPCON
DIS EPRXEN EPTXEN EPSTALL EPHSHK
BF88_53B0 U1EP11
31:16 ————————————————
15:0 ———————————EPCON
DIS EPRXEN EPTXEN EPSTALL EPHSHK
BF88_53C0 U1EP12
31:16 ————————————————
15:0 ———————————EPCON
DIS EPRXEN EPTXEN EPSTALL EPHSHK
BF88_53D0 U1EP13
31:16 ————————————————
15:0 ———————————EPCON
DIS EPRXEN EPTXEN EPSTALL EPHSHK
BF88_53E0 U1EP14
31:16 ————————————————
15:0 ———————————EPCON
DIS EPRXEN EPTXEN EPSTALL EPHSHK
BF88_53F0 U1EP15
31:16 ————————————————
15:0 ———————————EPCON
DIS EPRXEN EPTXEN EPSTALL EPHSHK
TABLE 4-25: USB REGISTERS MAP (CONTINUED)
SFR
Virtual
Addr
SFR
Name
Bits
31/15
Bits
30/14
Bits
29/13
Bits
28/12
Bits
27/11
Bits
26/10
Bits
25/9
Bits
24/8
Bits
23/7
Bits
22/6
Bits
21/5
Bits
20/4
Bits
19/3
Bits
18/2
Bits
17/1
Bits
16/0
Legend: x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.
© 2009 Microchip Technology Inc. Preliminary DS61143F-page 55
PIC32MX3XX/4XX
5.0 FLASH PROGRAM MEMORY
PIC32MX3XX/4XX devices contain an internal
program Flash memory for executing user code. There
are three methods by which the user can program this
memory:
1. Run-Time Self Programming (RTSP)
2. In-Circuit Serial Programming™ (ICSP™)
3. EJTAG Programming
RTSP is performed by software executing from either
Flash or RAM memory. EJTAG is performed using the
EJTAG port of the device and a EJTAG capable pro-
grammer. ICSP is performed using a serial data con-
nection to the device and allows much faster
programming times than RTSP. RTSP techniques are
described in this chapter. The ICSP and EJTAG meth-
ods are described in the “PIC32MX3XX/4XX Program-
ming Specification” (DS61145) document, which may
be downloaded from the Microchip web site.
Note: This data sheet summarizes the features of
the PIC32MX3XX/4XX family of devices. It
is not intended to be a comprehensive
reference source. Refer to the “PIC32MX
Family Reference Manual” Section 5.
“Flash Program Memory” (DS61121) for
a detailed description of this peripheral.
The manual is available from the Microchip
web site (www.Microchip.com/PIC32).
PIC32MX3XX/4XX
DS61143F-page 56 Preliminary © 2009 Microchip Technology Inc.
NOTES:
© 2009 Microchip Technology Inc. Preliminary DS61143F-page 57
PIC32MX3XX/4XX
6.0 RESETS
The Reset module combines all Reset sources and
controls the device Master Reset signal, SYSRST. The
following is a list of device Reset sources:
POR: Power-on Reset
•MCLR
: Master Clear Reset Pin
SWR: Software Reset
WDTR: Watchdog Timer Reset
BOR: Brown-out Reset
CMR: Configuration Mismatch Reset
A simplified block diagram of the Reset module is
shown in Figure 6-1.
FIGURE 6-1: SYSTEM RESET BLOCK DIAGRAM
Note: This data sheet summarizes the features of
the PIC32MX3XX/4XX family of devices. It
is not intended to be a comprehensive
reference source. Refer to the “PIC32MX
Family Reference Manual” Section 7.
“Resets” (DS61118) for a detailed
description of this peripheral.
The manual is available from the Microchip
web site (www.Microchip.com/PIC32).
MCLR
VDD
VDD Rise
Detect
POR
Sleep or Idle
Brown-out
Reset
WDT
Time-out
Glitch Filter
BOR
Configuration
SYSRST
Software Reset
Power-up
Timer
Voltage
Enabled
Reset
WDTR
SWR
CMR
MCLR
Mismatch
Regulator
PIC32MX3XX/4XX
DS61143F-page 58 Preliminary © 2009 Microchip Technology Inc.
NOTES:
© 2009 Microchip Technology Inc. Preliminary DS61143F-page 59
PIC32MX3XX/4XX
7.0 INTERRUPT CONTROLLER
PIC32MX3XX/4XX devices generate interrupt requests
in response to interrupt events from peripheral mod-
ules. The Interrupt Control module exists externally to
the CPU logic and prioritizes the interrupt events before
presenting them to the CPU.
The PIC32MX3XX/4XX interrupts module includes the
following features:
Up to 96 interrupt sources
Up to 64 interrupt vectors
Single and Multi-Vector mode operations
5 external interrupts with edge polarity control
Interrupt proximity timer
Module Freeze in Debug mode
7 user-selectable priority levels for each vector
4 user-selectable subpriority levels within each
priority
Dedicated shadow set for highest priority level
Software can generate any interrupt
User-configurable interrupt vector table location
User-configurable interrupt vector spacing
FIGURE 7-1: INTERRUPT CONTROLLER MODULE
Note: This data sheet summarizes the features of
the PIC32MX3XX/4XX family of devices. It
is not intended to be a comprehensive
reference source. Refer to the “PIC32MX
Family Reference Manual” Section 8.
“Interrupt Controller” (DS61108) for a
detailed description of this peripheral.
The manual is available from the Microchip
web site (www.Microchip.com/PIC32).
Note: Several of the registers cited in this section are not in the interrupt controller module. These registers (and
bits) are associated with the CPU. Details about them are available in Section 3.0 "PIC32MX MCU".
To avoid confusion, a typographic distinction is made for registers in the CPU. The register names in this
section, and all other sections of this manual, are signified by uppercase letters only.CPU register names
are signified by upper and lowercase letters. For example, INTSTAT is an Interrupts register; whereas,
IntCtl is a CPU register.
PIC32MX3XX/4XX
DS61143F-page 60 Preliminary © 2009 Microchip Technology Inc.
TABLE 7-1: INTERRUPT IRQ AND VECTOR LOCATION
Interrupt Source(1) IRQ Vector
Number Interrupt Bit Location
Highest Natural Order Priority Flag Enable Priority Subpriority
CT – Core Timer Interrupt 0 0 IFS0<0> IEC0<0> IPC0<4:2> IPC0<1:0>
CS0 – Core Software Interrupt 0 1 1 IFS0<1> IEC0<1> IPC0<12:10> IPC0<9:8>
CS1 – Core Software Interrupt 1 2 2 IFS0<2> IEC0<2> IPC0<20:18> IPC0<17:16>
INT0 – External Interrupt 0 3 3 IFS0<3> IEC0<3> IPC0<28:26> IPC0<25:24>
T1 – Timer1 4 4 IFS0<4> IEC0<4> IPC1<4:2> IPC1<1:0>
IC1 – Input Capture 1 5 5 IFS0<5> IEC0<5> IPC1<12:10> IPC1<9:8>
OC1 – Output Compare 1 6 6 IFS0<6> IEC0<6> IPC1<20:18> IPC1<17:16>
INT1 – External Interrupt 1 7 7 IFS0<7> IEC0<7> IPC1<28:26> IPC1<25:24>
T2 – Timer2 8 8 IFS0<8> IEC0<8> IPC2<4:2> IPC2<1:0>
IC2 – Input Capture 2 9 9 IFS0<9> IEC0<9> IPC2<12:10> IPC2<9:8>
OC2 – Output Compare 2 10 10 IFS0<10> IEC0<10> IPC2<20:18> IPC2<17:16>
INT2 – External Interrupt 2 11 11 IFS0<11> IEC0<11> IPC2<28:26> IPC2<25:24>
T3 – Timer3 12 12 IFS0<12> IEC0<12> IPC3<4:2> IPC3<1:0>
IC3 – Input Capture 3 13 13 IFS0<13> IEC0<13> IPC3<12:10> IPC3<9:8>
OC3 – Output Compare 3 14 14 IFS0<14> IEC0<14> IPC3<20:18> IPC3<17:16>
INT3 – External Interrupt 3 15 15 IFS0<15> IEC0<15> IPC3<28:26> IPC3<25:24>
T4 – Timer4 16 16 IFS0<16> IEC0<16> IPC4<4:2> IPC4<1:0>
IC4 – Input Capture 4 17 17 IFS0<17> IEC0<17> IPC4<12:10> IPC4<9:8>
OC4 – Output Compare 4 18 18 IFS0<18> IEC0<18> IPC4<20:18> IPC4<17:16>
INT4 – External Interrupt 4 19 19 IFS0<19> IEC0<19> IPC4<28:26> IPC4<25:24>
T5 – Timer5 20 20 IFS0<20> IEC0<20> IPC5<4:2> IPC5<1:0>
IC5 – Input Capture 5 21 21 IFS0<21> IEC0<21> IPC5<12:10> IPC5<9:8>
OC5 – Output Compare 5 22 22 IFS0<22> IEC0<22> IPC5<20:18> IPC5<17:16>
SPI1E – SPI1 Fault 23 23 IFS0<23> IEC0<23> IPC5<28:26> IPC5<25:24>
SPI1TX – SPI1 Transfer Done 24 23 IFS0<24> IEC0<24> IPC5<28:26> IPC5<25:24>
SPI1RX – SPI1 Receive Done 25 23 IFS0<25> IEC0<25> IPC5<28:26> IPC5<25:24>
U1E – UART1 Error 26 24 IFS0<26> IEC0<26> IPC6<4:2> IPC6<1:0>
U1RX – UART1 Receiver 27 24 IFS0<27> IEC0<27> IPC6<4:2> IPC6<1:0>
U1TX – UART1 Transmitter 28 24 IFS0<28> IEC0<28> IPC6<4:2> IPC6<1:0>
I2C1B – I2C1 Bus Collision Event 29 25 IFS0<29> IEC0<29> IPC6<12:10> IPC6<9:8>
I2C1S – I2C1 Slave Event 30 25 IFS0<30> IEC0<30> IPC6<12:10> IPC6<9:8>
I2C1M – I2C1 Master Event 31 25 IFS0<31> IEC0<31> IPC6<12:10> IPC6<9:8>
CN – Input Change Interrupt 32 26 IFS1<0> IEC1<0> IPC6<20:18> IPC6<17:16>
AD1 – ADC1 Convert Done 33 27 IFS1<1> IEC1<1> IPC6<28:26> IPC6<25:24>
PMP – Parallel Master Port 34 28 IFS1<2> IEC1<2> IPC7<4:2> IPC7<1:0>
CMP1 – Comparator Interrupt 35 29 IFS1<3> IEC1<3> IPC7<12:10> IPC7<9:8>
CMP2 – Comparator Interrupt 36 30 IFS1<4> IEC1<4> IPC7<20:18> IPC7<17:16>
Note 1: Not all interrupt sources are available on all devices.
See Table 1: “PIC32MX General Purpose – Features” and Table 2: “PIC32MX USB – Features” for
available peripherals.
© 2009 Microchip Technology Inc. Preliminary DS61143F-page 61
PIC32MX3XX/4XX
SPI2E – SPI2 Fault 37 31 IFS1<5> IEC1<5> IPC7<28:26> IPC7<25:24>
SPI2TX – SPI2 Transfer Done 38 31 IFS1<6> IEC1<6> IPC7<28:26> IPC7<25:24>
SPI2RX – SPI2 Receive Done 39 31 IFS1<7> IEC1<7> IPC7<28:26> IPC7<25:24>
U2E – UART2 Error 40 32 IFS1<8> IEC1<8> IPC8<4:2> IPC8<1:0>
U2RX – UART2 Receiver 41 32 IFS1<9> IEC1<9> IPC8<4:2> IPC8<1:0>
U2TX – UART2 Transmitter 42 32 IFS1<10> IEC1<10> IPC8<4:2> IPC8<1:0>
I2C2B – I2C2 Bus Collision Event 43 33 IFS1<11> IEC1<11> IPC8<12:10> IPC8<9:8>
I2C2S – I2C2 Slave Event 44 33 IFS1<12> IEC1<12> IPC8<12:10> IPC8<9:8>
I2C2M – I2C2 Master Event 45 33 IFS1<13> IEC1<13> IPC8<12:10> IPC8<9:8>
FSCM – Fail-Safe Clock Monitor 46 34 IFS1<14> IEC1<14> IPC8<20:18> IPC8<17:16>
RTCC – Real-Time Clock 47 35 IFS1<15> IEC1<15> IPC8<28:26> IPC8<25:24>
DMA0 – DMA Channel 0 48 36 IFS1<16> IEC1<16> IPC9<4:2> IPC9<1:0>
DMA1 – DMA Channel 1 49 37 IFS1<17> IEC1<17> IPC9<12:10> IPC9<9:8>
DMA2 – DMA Channel 2 50 38 IFS1<18> IEC1<18> IPC9<20:18> IPC9<17:16>
DMA3 – DMA Channel 3 51 39 IFS1<19> IEC1<19> IPC9<28:26> IPC9<25:24>
FCE – Flash Control Event 56 44 IFS1<24> IEC1<24> IPC11<4:2> IPC11<1:0>
USB 57 45 IFS1<25> IEC1<25> IPC11<12:10> IPC11<9:8>
(Reserved)
Lowest Natural Order Priority
TABLE 7-1: INTERRUPT IRQ AND VECTOR LOCATION (CONTINUED)
Interrupt Source(1) IRQ Vector
Number Interrupt Bit Location
Highest Natural Order Priority Flag Enable Priority Subpriority
Note 1: Not all interrupt sources are available on all devices.
See Table 1: “PIC32MX General Purpose – Features” and Table 2: “PIC32MX USB – Features” for
available peripherals.
PIC32MX3XX/4XX
DS61143F-page 62 Preliminary © 2009 Microchip Technology Inc.
NOTES:
© 2009 Microchip Technology Inc. Preliminary DS61143F-page 63
PIC32MX3XX/4XX
8.0 OSCILLATOR
CONFIGURATION
The PIC32MX oscillator system has the following
modules and features:
A total of four external and internal oscillator
options as clock sources
On-chip PLL (phase-locked loop) with user-
selectable input divider, multiplier, and output
divider to boost operating frequency on select
internal and external oscillator sources
On-chip user-selectable divisor postscaler on
select oscillator sources
Software-controllable switching between various
clock sources
A Fail-Safe Clock Monitor (FSCM) that detects
clock failure and permits safe application recovery
or shutdown
Dedicated on-chip PLL for USB peripheral
Note: This data sheet summarizes the features of
the PIC32MX3XX/4XX family of devices. It
is not intended to be a comprehensive
reference source. Refer to the “PIC32MX
Family Reference Manual” Section 6.
“Oscillator Configuration” (DS61112) for
a detailed description of this peripheral.
The manual is available from the Microchip
web site (www.Microchip.com/PIC32).
PIC32MX3XX/4XX
DS61143F-page 64 Preliminary © 2009 Microchip Technology Inc.
FIGURE 8-1: PIC32MX3XX/4XX FAMILY CLOCK DIAGRAM
Timer1, RTCC
Clock Control Logic
Fail-Safe
Clock
Monitor
FSCM INT
FSCM Event
COSC<2:0>
NOSC<2:0>
OSWEN
FSCMEN<1:0>
PLL
Secondary Oscillator (SOSC)
SOSCEN and FSOSCEN
SOSCO
SOSCI
Primary Oscillator
XTPLL, HSPLL,
XT, HS, EC
CPU and Select Peripherals
Peripherals
FRCDIV<2:0>
WDT, PWRT
8 MHz typical
FRC
31.25 kHz typical
FRC
Oscillator
LPRC
Oscillator
SOSC
LPRC
FRCDIV
ECPLL, FRCPLL
TUN<5:0> div 16
Postscaler
FPLLIDIV<2:0>
PBDIV<2:0>
FRC /16
Postscaler
PLL Multiplier
COSC<2:0>
FIN
div x div y
PLL Output Divider
PLLODIV<2:0>
PLL Input Divider
div x
32.768 kHz
PLLMULT<2:0>
PBCLK
UFIN = 4 MHz
PLL x24
USB Clock (48 MHz)
div 2
FUPLLEN
UFRCEN
div x
FUPLLDIV<2:0>
UFIN
4 MHz FIN 5 MHz
C1
(3)
C2
(3)
XTAL
R
S
(1)
Enable
Notes: 1. A series resistor, RS, may be required for AT strip cut crystals.
2. The internal feedback resistor, RF, is typically in the range of 2 to 10 MΩ.
3. Refer to the “PIC32MX Family Reference ManualSection 6. “Oscillator Configuration” (DS61112) for help
determining the best oscillator components.
4. PBCLK out is available on the OSC2 pin in certain clock modes.
OSC2(4)
OSC1
R
F
(2)
To Internal
Logic
USB PLL
POSC
© 2009 Microchip Technology Inc. Preliminary DS61143F-page 65
PIC32MX3XX/4XX
9.0 PREFETCH CACHE
Prefetch cache increases performance for applications
executing out of the cacheable program flash memory
regions by implementing instruction caching, constant
data caching, and instruction prefetching.
9.1 Features
16 Fully Associative Lockable Cache Lines
16-byte Cache Lines
Up to 4 Cache Lines Allocated to Data
2 Cache Lines with Address Mask to hold
repeated instructions
Pseudo LRU replacement policy
All Cache Lines are software writable
16-byte parallel memory fetch
Predictive Instruction Prefetch
FIGURE 9-1: PREFETCH MODULE BLOCK DIAGRAM
Note: This data sheet summarizes the features of
the PIC32MX3XX/4XX family of devices. It
is not intended to be a comprehensive
reference source. Refer to the “PIC32MX
Family Reference Manual” Section 4.
“Prefetch Cache” (DS61119) for a detailed
description of this peripheral.
The manual is available from the Microchip
web site (www.Microchip.com/PIC32).
Hit Logic
Tag Logic Cache Line
Cache
Line
Address
Encode
FSM
Bus Ctrl
Cache Ctrl
Prefetch Ctrl
Hit LRU
Miss LRU
RDATA
RDATA
CTRL
CTRL
CTRL
PFM
BMX/CPU
BMX/CPU
PreFetchPreFetch
Tag Pre-FetchPre-Fetch
PIC32MX3XX/4XX
DS61143F-page 66 Preliminary © 2009 Microchip Technology Inc.
NOTES:
© 2009 Microchip Technology Inc. Preliminary DS61143F-page 67
PIC32MX3XX/4XX
10.0 DIRECT MEMORY ACCESS
(DMA) CONTROLLER
The PIC32MX Direct Memory Access (DMA) controller
is a bus master module useful for data transfers
between different devices without CPU intervention.
The source and destination of a DMA transfer can be
any of the memory mapped modules existent in the
PIC32MX (such as Peripheral Bus (PBUS) devices:
SPI, UART, I2C™, etc.) or memory itself.
Following are some of the key features of the DMA
controller module:
Four Identical Channels, each featuring:
- Auto-Increment Source and Destination
Address Registers
- Source and Destination Pointers
- Memory to Memory and Memory to
Peripheral Transfers
Automatic Word-Size Detection:
- Transfer Granularity, down to byte level
- Bytes need not be word-aligned at source
and destination
Fixed Priority Channel Arbitration
Flexible DMA Channel Operating Modes:
- Manual (software) or automatic (interrupt)
DMA requests
- One-Shot or Auto-Repeat Block Transfer
modes
- Channel-to-channel chaining
Flexible DMA Requests:
- A DMA request can be selected from any of
the peripheral interrupt sources
- Each channel can select any (appropriate)
observable interrupt as its DMA request
source
- A DMA transfer abort can be selected from
any of the peripheral interrupt sources
- Pattern (data) match transfer termination
Multiple DMA Channel Status Interrupts:
- DMA channel block transfer complete
- Source empty or half empty
- Destination full or half-full
- DMA transfer aborted due to an external
event
- Invalid DMA address generated
DMA Debug Support Features:
- Most recent address accessed by a DMA
channel
- Most recent DMA channel to transfer data
CRC Generation Module:
- CRC module can be assigned to any of the
available channels
- CRC module is highly configurable
FIGURE 10-1: DMA BLOCK DIAGRAM
Note: This data sheet summarizes the features of
the PIC32MX3XX/4XX family of devices. It
is not intended to be a comprehensive
reference source. Refer to the “PIC32MX
Family Reference Manual” Section 31.
“Direct Memory Access (DMA) Control-
ler” (DS61117) for a detailed description of
this peripheral.
The manual is available from the Microchip
web site (www.Microchip.com/PIC32).
Peripheral Bus Address Decoder Channel 0 Control
Channel 1 Control
Channel n Control
Global Control
(DMACON)
Bus Interface
Channel Priority
Arbitration
SEL
SEL
Y
I0
I1
I2
In
System IRQINT Controller
Device Bus + Bus Arbitration
PIC32MX3XX/4XX
DS61143F-page 68 Preliminary © 2009 Microchip Technology Inc.
NOTES:
© 2009 Microchip Technology Inc. Preliminary DS61143F-page 69
PIC32MX3XX/4XX
11.0 USB ON-THE-GO (OTG)
The Universal Serial Bus (USB) module contains ana-
log and digital components to provide a USB 2.0 full-
speed and low-speed embedded host, full-speed
device, or OTG implementation with a minimum of
external components. This module in Host mode is
intended for use as an embedded host and therefore
does not implement a UHCI or OHCI controller.
The USB module consists of the clock generator, the
USB voltage comparators, the transceiver, the Serial
Interface Engine (SIE), a dedicated USB DMA control-
ler, pull-up and pull-down resistors, and the register
interface. A block diagram of the PIC32MX USB OTG
module is presented in Figure 11-1.
The clock generator provides the 48 MHz clock
required for USB full-speed and low-speed communi-
cation. The voltage comparators monitor the voltage on
the VBUS pin to determine the state of the bus. The
transceiver provides the analog translation between
the USB bus and the digital logic. The SIE is a state
machine that transfers data to and from the endpoint
buffers, and generates the hardware protocol for data
transfers. The USB DMA controller transfers data
between the data buffers in RAM and the SIE. The inte-
grated pull-up and pull-down resistors eliminate the
need for external signaling components. The register
interface allows the CPU to configure and
communicate with the module.
The PIC32MX USB module includes the following
features:
USB Full-Speed Support for Host and Device
Low-Speed Host Support
USB OTG Support
Integrated Signaling Resistors
Integrated Analog Comparators for VBUS
Monitoring
Integrated USB Transceiver
Transaction Handshaking Performed by
Hardware
Endpoint Buffering Anywhere in System RAM
Integrated DMA to Access System RAM and
Flash
Note: This data sheet summarizes the features of
the PIC32MX3XX/4XX family of devices. It
is not intended to be a comprehensive
reference source. Refer to the “PIC32MX
Family Reference Manual” Section 27.
“USB On-The-Go (OTG)” (DS61126) for a
detailed description of this peripheral.
The manual is available from the Microchip
web site (www.Microchip.com/PIC32).
Note: IMPORTANT: The implementation and
use of the USB specifications, as well as
other third-party specifications or technol-
ogies, may require licensing; including,
but not limited to, USB Implementers
Forum, Inc. (also referred to as USB-IF).
The user is fully responsible for investigat-
ing and satisfying any applicable licensing
obligations.
PIC32MX3XX/4XX
DS61143F-page 70 Preliminary © 2009 Microchip Technology Inc.
FIGURE 11-1: PIC32MX3XX/4XX FAMILY USB INTERFACE DIAGRAM
OSC1
OSC2
Primary Oscillator
8MHzTypical
FRC
Oscillator
TUN<5:0>(4)
PLL
48 MHz USB Clock(7)
Div x
FUPLLEN(6)
(PB out)(1)
UFRCEN(3)
(POSC)
FUPLLIDIV(6)
UFIN(5)
Div 2
VUSB
D+(2)
D-(2)
ID(8)
VBUS
Transceiver
SIE
VBUSON(8)
Comparators
USB
SRP Charge
SRP Discharge
Registers
and
Control
Interface
Transceiver Power 3.3V
To Clock Generator for Core and Peripherals
Sleep or Idle
Sleep
USBEN
USB Suspend
CPU Clock Not POSC
USB Module
Voltage
System
RAM
USB Suspend
Full Speed Pull-up
Host Pull-down
Low Speed Pull-up
Host Pull-down
ID Pull-up
DMA
Note 1: PB clock is only available on this pin for select EC modes.
2: Pins can be used as digital inputs when USB is not enabled.
3: This bit field is contained in the OSCCON register.
4: This bit field is contained in the OSCTRM register.
5: USB PLL UFIN requirements: 4 MHz.
6: This bit field is contained in the DEVCFG2 register.
7: A 48 MHz clock is required for proper USB operation.
8: Pins can be used as GPIO when the USB module is disabled.
© 2009 Microchip Technology Inc. Preliminary DS61143F - page 71
PIC32MX3XX/4XX
12.0 I/O PORTS
General purpose I/O pins are the simplest of peripher-
als. They allow the PIC® MCU to monitor and control
other devices. To add flexibility and functionality, some
pins are multiplexed with alternate function(s).
These functions depend on which peripheral features
are on the device. In general, when a peripheral is func-
tioning, that pin may not be used as a general purpose
I/O pin.
Following are some of the key features of this module:
Individual output pin open-drain enable/disable
Individual input pin weak pull-up enable/disable
Monitor selective inputs and generate interrupt
when change in pin state is detected
Operation during CPU Sleep and Idle modes
Fast bit manipulation using CLR, SET and INV
registers
Figure 12-1 shows a block diagram of a typical
multiplexed I/O port.
FIGURE 12-1: BLOCK DIAGRAM OF A TYPICAL MULTIPLEXED PORT STRUCTURE
Note: This data sheet summarizes the features of
the PIC32MX3XX/4XX family of devices. It
is not intended to be a comprehensive
reference source. Refer to the “PIC32MX
Family Reference Manual” Section 12. “I/O
Ports” (DS61120) for a detailed description
of this peripheral.
The manual is available from the Microchip
web site (www.Microchip.com/PIC32).
Peripheral Output Data
Peripheral Module
Peripheral Output Enable
PIO Module
Peripheral Module Enable
WR LAT
IO Pin
WR PORT
Data Bus
RD LAT
RD PORT
RD TRIS
WR TRIS
0
1
RD ODC
SYSCLK
QD
CK
EN Q
QD
CK
EN Q
QD
CK
EN Q
QD
CK
Q
QD
CK
Q
0
1
SYSCLK
WR ODC
ODC
TRIS
LAT
Sleep
1
0
1
0
Output Multiplexers
IO Cell
Synchronization
R
Peripheral Input
Legend: R = Peripheral input buffer types may vary. Refer to Table 1-1 for more information.
Note: This block diagram is a general representation of a shared port/peripheral structure for illustration purposes only. The
actual structure for any specific port/peripheral combination may be different than it is shown here.
Peripheral Input Buffer
PIC32MX3XX/4XX
DS61143F - page 72 Preliminary © 2009 Microchip Technology Inc.
12.1 Parallel I/O (PIO) Ports
All port pins have three registers (TRIS, LAT, and
PORT) that are directly associated with their operation.
TRIS is a data direction or tri-state control register that
determines whether a digital pin is an input or an out-
put. Setting a TRISx register bit = 1 configures the cor-
responding I/O pin as an input; setting a TRISx register
bit = 0 configures the corresponding I/O pin as an out-
put. All port I/O pins are defined as inputs after a device
Reset. Certain I/O pins are shared with analog
peripherals and default to analog inputs after a device
Reset.
PORT is a register used to read the current state of the
signal applied to the port I/O pins. Writing to a PORTx
register performs a write to the port’s latch, LATx regis-
ter, latching the data to the port’s I/O pins.
LAT is a register used to write data to the port I/O pins.
The LATx latch register holds the data written to either
the LATx or PORTx registers. Reading the LATx latch
register reads the last value written to the
corresponding port or latch register.
Not all port I/O pins are implemented on some devices,
therefore, the corresponding PORTx, LATx and TRISx
register bits will read as zeros.
12.1.1 CLR, SET AND INV REGISTERS
Every I/O module register has a corresponding CLR
(clear), SET (set) and INV (invert) register designed to
provide fast atomic bit manipulations. As the name of
the register implies, a value written to a SET, CLR or
INV register effectively performs the implied operation,
but only on the corresponding base register and only
bits specified as ‘1’ are modified. Bits specified as ‘0
are not modified.
Reading SET, CLR and INV registers returns undefined
values. To see the affects of a write operation to a SET,
CLR or INV register, the base register must be read.
To set PORTC bit 0, write to the LATSET register:
LATCSET = 0x0001;
To clear PORTC bit 0, write to the LATCLR register:
LATCCLR = 0x0001;
To toggle PORTC bit 0, write to the LATINV register:
LATCINV = 0x0001;
12.1.2 DIGITAL INPUTS
Pins are configured as digital inputs by setting the cor-
responding TRIS register bits = 1. When configured as
inputs, they are either TTL buffers or Schmitt Triggers.
Several digital pins share functionality with analog
inputs and default to the analog inputs at POR. Setting
the corresponding bit in the AD1PCFG register = 1
enables the pin as a digital pin.
Digital only pins are capable of input voltages up to
5.5V. Any pin that shares digital and analog
functionality is limited to voltages up to VDD + 0.3V.
.
12.1.3 ANALOG INPUTS
Certain pins can be configured as analog inputs used
by the ADC and Comparator modules. Setting the cor-
responding bits in the AD1PCFG register = 0 enables
the pin as an analog input pin and must have the corre-
sponding TRIS bit set = 1 (input). If the TRIS bit is
cleared = 0 (output), the digital output level (VOH or
VOL) will be converted. Any time a port I/O pin is config-
ured as analog, its digital input is disabled and the cor-
responding PORTx register bit will read ‘0’. The
AD1PCFG Register has a default value of 0x0000;
therefore, all pins that share ANx functions are analog
(not digital) by default.
12.1.4 DIGITAL OUTPUTS
Pins are configured as digital outputs by setting the cor-
responding TRIS register bits = 0. When configured as
digital outputs, these pins are CMOS drivers or can be
configured as open drain outputs by setting the corre-
sponding bits in the ODCx Open-Drain Configuration
register.
Digital output pin voltage is limited to VDD.
12.1.5 ANALOG OUTPUTS
Certain pins can be configured as analog outputs, such
as the CVREF output voltage used by the comparator
module. Configuring the Comparator Reference mod-
ule to provide this output will present the analog output
voltage on the pin, independent of the TRIS register
setting for the corresponding pin.
Note: Using a PORTxINV register to toggle a bit
is recommended because the operation is
performed in hardware atomically, using
fewer instructions as compared to the tra-
ditional read-modify-write method shown
below:
PORTC ^= 0x0001;
TABLE 12-1: MAXIMUM INPUT PIN
VOLTAGES
Input Pin Mode(s) VIH (max)
Digital Only VIH = 5.5v
Digital + Analog VIH = VDD + 0.03v
Analog VIH = VDD + 0.03v
Note: Refer to Section 28.0 “Electrical Characteris-
tics” regarding the VIH specification.
Note: Analog levels on any pin that is defined as
a digital input (including the ANx pins) may
cause the input buffer to consume current
that exceeds the device specifications.
© 2009 Microchip Technology Inc. Preliminary DS61143F-page 73
PIC32MX3XX/4XX
13.0 TIMER1
This family of PIC32MX devices features one
synchronous/asynchronous 16-bit timer that can oper-
ate as a free-running interval timer for various timing
applications and counting external events. This timer
can also be used with the Low-Power Secondary
Oscillator (SOSC) for real-time clock applications. The
following modes are supported:
Synchronous Internal Timer
Synchronous Internal Gated Timer
Synchronous External Timer
Asynchronous External Timer
13.1 Additional Supported Features
Selectable clock prescaler
Timer operation during CPU Idle and Sleep mode
Fast bit manipulation using CLR, SET and INV
registers
Asynchronous mode can be used with the SOSC
to function as a Real-Time Clock (RTC).
FIGURE 13-1: TIMER1 BLOCK DIAGRAM(1)
Note: This data sheet summarizes the features of
the PIC32MX3XX/4XX family of devices. It
is not intended to be a comprehensive
reference source. Refer to the “PIC32MX
Family Reference Manual” Section 14.
“Timers” (DS61105) for a detailed
description of this peripheral.
The manual is available from the Microchip
web site (www.Microchip.com/PIC32).
ON (T1CON<15>)
Sync
SOSCI
SOSCO/T1CK
PR1
T1IF
Equal 16-bit Comparator
TMR1
Reset
SOSCEN
Event Flag
1
0
TSYNC (T1CON<2>)
TGATE (T1CON<7>)
TGATE (T1CON<7>)
PBCLK
1
0
TCS (T1CON<1>)
Gate
Sync
TCKPS<1:0>
Prescaler
2
1, 8, 64, 256
x 1
1 0
0 0
Q
QD
(T1CON<5:4>)
Note 1: The default state of the SOSCEN (OSCCON<1>) during a device Reset is controlled by the FSOSCEN bit in
Configuration Word DEVCFG1.
PIC32MX3XX/4XX
DS61143F-page 74 Preliminary © 2009 Microchip Technology Inc.
NOTES:
© 2009 Microchip Technology Inc. Preliminary DS61143F-page 75
PIC32MX3XX/4XX
14.0 TIMERS 2, 3, 4, 5
This family of PIC32MX devices features four
synchronous 16-bit timers (default) that can operate as
a free-running interval timer for various timing applica-
tions and counting external events. The following
modes are supported:
Synchronous Internal 16-bit Timer
Synchronous Internal 16-bit Gated Timer
Synchronous External 16-bit Timer
Two 32-bit synchronous timers are available by
combining Timer2 with Timer3 and Timer4 with Timer5.
The 32-bit timers can operate in three modes:
Synchronous Internal 32-bit Timer
Synchronous Internal 32-bit Gated Timer
Synchronous External 32-bit Timer
14.1 Additional Supported Features
Selectable clock prescaler
Timers operational during CPU Idle
Time base for input capture and output compare
modules (Timer2 and Timer3 only)
ADC event trigger (Timer3 only)
Fast bit manipulation using CLR, SET and INV
registers
FIGURE 14-1: TIMER2, 3, 4, 5 BLOCK DIAGRAM (16-BIT)
Note: This data sheet summarizes the features of
the PIC32MX3XX/4XX family of devices. It
is not intended to be a comprehensive
reference source. Refer to the “PIC32MX
Family Reference Manual” Section 14.
“Timers” (DS61105) for a detailed
description of this peripheral.
The manual is available from the Microchip
web site (www.Microchip.com/PIC32).
Note: Throughout this chapter, references to
registers TxCON, TMRx, and PRx use ‘x’
to represent Timer2 through 5 in 16-bit
modes. In 32-bit modes, ‘x’ represents
Timer2 or 4; ‘y’ represents Timer3 or 5.
Sync
PRx
TxIF
Equal Comparator x 16
TMRx
Reset
Event Flag
Q
QD
TGATE (TxCON<7>)
1
0
Gate
TxCK(2)
Sync
ON (TxCON<15>)
TGATE (TxCON<7>)
TCS (TxCON<1>)
TCKPS (TxCON<6:4>)
Prescaler
3
1, 2, 4, 8, 16,
32, 64, 256
x 1
1 0
0 0
PBCLK
Trigger(1)
ADC Event
Note 1: ADC event trigger is available on Timer3 only.
2: TxCK pins not available on 64-pin devices.
PIC32MX3XX/4XX
DS61143F-page 76 Preliminary © 2009 Microchip Technology Inc.
FIGURE 14-2: TIMER2/3, 4/5 BLOCK DIAGRAM (32-BIT)
TMRy TMRx
TyIF Event
Equal 32-bit Comparator
PRy PRx
Reset
LSHalfWord
MSHalfWord
Flag
Note 1: In this diagram, the use of “x’ in registers TxCON, TMRx, PRx, TxCK refers to either
Timer2 or Timer4; the use of ‘y’ in registers TyCON, TMRy, PRy, TyIF refers to either Timer3 or Timer5.
2: TxCK pins not available on 64-pin devices.
3: ADC event trigger is available only on Timer2/3 pair.
TGATE (TxCON<7>)
0
1
PBCLK
Gate
TxCK(2)
Sync
Sync
ADC Event
Trigger(3)
ON (TxCON<15>)
TGATE (TxCON<7>)
TCS (TxCON<1>)
TCKPS (TxCON<6:4>)
Prescaler
3
1, 2, 4, 8, 16,
32, 64, 256
1 0
0 0
Q
QD
x 1
© 2009 Microchip Technology Inc. Preliminary DS61143F-page 77
PIC32MX3XX/4XX
15.0 INPUT CAPTURE
The Input Capture module is useful in applications
requiring frequency (period) and pulse measurement.
The PIC32MX3XX/4XX devices support up to five input
capture channels.
The input capture module captures the 16-bit or 32-bit
value of the selected Time Base registers when an
event occurs at the ICx pin. The events that cause a
capture event are listed below in three categories:
1. Simple Capture Event modes
- Capture timer value on every falling edge of
input at ICx pin
- Capture timer value on every rising edge of
input at ICx pin
2. Capture timer value on every edge (rising and
falling)
3. Capture timer value on every edge (rising and
falling), specified edge first.
4. Prescaler Capture Event modes
- Capture timer value on every 4th rising edge
of input at ICx pin
- Capture timer value on every 16th rising
edge of input at ICx pin
Each input capture channel can select between one of
two 16-bit timers (Timer2 or Timer3) for the time base,
or two 16-bit timers (Timer2 and Timer3) together to
form a 32-bit timer. The selected timer can use either
an internal or external clock.
Other operational features include:
Device wake-up from capture pin during CPU
Sleep and Idle modes
Interrupt on input capture event
4-word FIFO buffer for capture values
- Interrupt optionally generated after 1, 2, 3 or
4 buffer locations are filled
Input capture can also be used to provide
additional sources of external interrupts
FIGURE 15-1: INPUT CAPTURE BLOCK DIAGRAM
Note: This data sheet summarizes the features of
the PIC32MX3XX/4XX family of devices. It
is not intended to be a comprehensive
reference source. Refer to the “PIC32MX
Family Reference Manual” Section 15.
“Input Capture” (DS61122) for a detailed
description of this peripheral.
The manual is available from the Microchip
web site (www.Microchip.com/PIC32).
Prescaler
1, 4, 16 Edge Detect
FIFO Control
Interrupt
Event
Generation
ICxBUF<31:16>
Interrupt
Timer 3 Timer 2
ICxCON
ICM<2:0>
ICM<2:0>
ICFEDGE
ICI<1:0>
ICBNE
ICOV
ICx Input
0 1
ICxBUF<15:0>
Data Space Interface
Peripheral Data Bus
ICC32
ICTMR
PIC32MX3XX/4XX
DS61143F-page 78 Preliminary © 2009 Microchip Technology Inc.
NOTES:
© 2009 Microchip Technology Inc. Preliminary DS61143F-page 79
PIC32MX3XX/4XX
16.0 OUTPUT COMPARE
The Output Compare module (OCMP) is used to gen-
erate a single pulse or a train of pulses in response to
selected time base events. For all modes of operation,
the OCMP module compares the values stored in the
OCxR and/or the OCxRS registers to the value in the
selected timer. When a match occurs, the OCMP mod-
ule generates an event based on the selected mode of
operation.
The following are some of the key features:
Multiple output compare modules in a device
Programmable interrupt generation on compare
event
Single and Dual Compare modes
Single and continuous output pulse generation
Pulse-Width Modulation (PWM) mode
Hardware-based PWM Fault detection and auto-
matic output disable
Programmable selection of 16-bit or 32-bit time
bases.
Can operate from either of two available 16-bit
time bases or a single 32-bit time base.
FIGURE 16-1: OUTPUT COMPARE MODULE BLOCK DIAGRAM
Note: This data sheet summarizes the features of
the PIC32MX3XX/4XX family of devices. It
is not intended to be a comprehensive
reference source. Refer to the “PIC32MX
Family Reference Manual” Section 16.
“Output Capture” (DS61111) for a
detailed description of this peripheral.
The manual is available from the Microchip
web site (www.Microchip.com/PIC32).
OCxR(1)
Comparator
Output
Logic
QS
R
OCM<2:0>
Output Enable
OCx(1)
Set Flag bit
OCxIF(1)
OCxRS(1)
Mode Select
3
Note 1: Where ‘x’ is shown, reference is made to the registers associated with the respective output compare
channels 1 through 5.
2: The OCFA pin controls the OC1-OC4 channels. The OCFB pin controls the OC5 channel.
3: Each output compare channel can use one of two selectable 16-bit time bases or a single 32-bit timer base.
01
OCTSEL 01
16
16
OCFA or OCFB
(see Note 2)
TMR register inputs
from time bases
(see Note 3).
Period match signals
from time bases
(see Note 3).
PIC32MX3XX/4XX
DS61143F-page 80 Preliminary © 2009 Microchip Technology Inc.
NOTES:
© 2009 Microchip Technology Inc. Preliminary DS61143F-page 81
PIC32MX3XX/4XX
17.0 SERIAL PERIPHERAL
INTERFACE (SPI)
The SPI module is a synchronous serial interface use-
ful for communicating with external peripherals and
other microcontroller devices. These peripheral
devices may be Serial EEPROMs, shift registers, dis-
play drivers, A/D converters, etc. The PIC32MX SPI
module is compatible with Motorola® SPI and SIOP
interfaces.
Following are some of the key features of this module:
Master and Slave Modes Support
Four Different Clock Formats
Framed SPI Protocol Support
User Configurable 8-bit, 16-bit and 32-bit Data
Width
Separate SPI Data Registers for Receive and
Transmit
Programmable Interrupt Event on every 8-bit,
16-bit and 32-bit Data Transfer
Operation during CPU Sleep and Idle Mode
Fast Bit Manipulation using CLR, SET and INV
Registers
FIGURE 17-1: SPI MODULE BLOCK DIAGRAM
Note: This data sheet summarizes the features of
the PIC32MX3XX/4XX family of devices. It
is not intended to be a comprehensive
reference source. Refer to the “PIC32MX
Family Reference Manual” Section 23.
“Serial Peripheral Interface (SPI)”
(DS61106) for a detailed description of this
peripheral.
The manual is available from the Microchip
web site (www.Microchip.com/PIC32).
Internal
Data Bus
SDIx
SDOx
SSx/FSYNC
SCKx
SPIxSR
bit 0
Shift
Control
Edge
Select
Enable Master Clock
Baud Rate
Slave Select
Sync Control
Clock
Control
Transmit
SPIxRXB
Receive
and Frame
Note: Access SPIxTXB and SPIxRXB registers via SPIxBUF register.
Registers share address SPIxBUF
SPIxTXB
SPIxBUF
Generator PBCLK
WriteRead
PIC32MX3XX/4XX
DS61143F-page 82 Preliminary © 2009 Microchip Technology Inc.
NOTES:
© 2009 Microchip Technology Inc. Preliminary DS61143F-page 83
PIC32MX3XX/4XX
18.0 INTER-INTEGRATED CIRCUIT
(I2C™)
The I2C module provides complete hardware support
for both Slave and Multi-Master modes of the I2C serial
communication standard. Figure 18-1 shows the I2C
module block diagram.
The PIC32MX3XX/4XX devices have up to two I2C
interface modules, denoted as I2C1 and I2C2. Each
I2C module has a 2-pin interface: the SCLx pin is clock
and the SDAx pin is data.
Each I2C module ‘I2Cx’ (x = 1 or 2) offers the following
key features:
•I
2C Interface Supporting both Master and Slave
Operation.
•I
2C Slave Mode Supports 7 and 10-bit Address.
•I
2C Master Mode Supports 7 and 10-bit Address.
•I
2C Port allows Bidirectional Transfers between
Master and Slaves.
Serial Clock Synchronization for I2C Port can be
used as a Handshake Mechanism to Suspend
and Resume Serial Transfer (SCLREL control).
•I
2C Supports Multi-master Operation; Detects Bus
Collision and Arbitrates Accordingly.
Provides Support for Address Bit Masking.
Note: This data sheet summarizes the features of
the PIC32MX3XX/4XX family of devices. It
is not intended to be a comprehensive
reference source. Refer to the “PIC32MX
Family Reference Manual” Section 24.
Inter-Integrated Circuit (I2C) (DS61116)
for a detailed description of this peripheral.
The manual is available from the Microchip
web site (www.Microchip.com/PIC32).
PIC32MX3XX/4XX
DS61143F-page 84 Preliminary © 2009 Microchip Technology Inc.
FIGURE 18-1: I2C™ BLOCK DIAGRAM (X = 1 OR 2)
Internal
Data Bus
SCLx
SDAx
Shift
Match Detect
I2CxADD
Start and Stop
Bit Detect
Clock
Address Match
Clock
Stretching
I2CxTRN
LSB
Shift Clock
BRG Down Counter
Reload
Control
PBCLK
Start and Stop
Bit Generation
Acknowledge
Generation
Collision
Detect
I2CxCON
I2CxSTAT
Control Logic
Read
LSB
Write
Read
I2CxBRG
I2CxRSR
Write
Read
Write
Read
Write
Read
Write
Read
Write
Read
I2CxMSK
I2CxRCV
© 2009 Microchip Technology Inc. Preliminary DS61143F-page 85
PIC32MX3XX/4XX
19.0 UNIVERSAL ASYNCHRONOUS
RECEIVER TRANSMITTER
(UART)
The UART module is one of the serial I/O modules
available in PIC32MX3XX/4XX family devices. The
UART is a full-duplex, asynchronous communication
channel that communicates with peripheral devices
and personal computers through protocols such as RS-
232, RS-485, LIN 1.2 and IrDA®. The module also sup-
ports the hardware flow control option, with UxCTS and
UxRTS pins, and also includes an IrDA encoder and
decoder.
The primary features of the UART module are:
Full-duplex, 8-bit or 9-bit data transmission
Even, odd or no parity options (for 8-bit data)
One or two Stop bits
Hardware auto-baud feature
Hardware flow control option
Fully integrated Baud Rate Generator (BRG) with
16-bit prescaler
Baud rates ranging from 76 bps to 20 Mbps at 80
MHz
4-level-deep First-In-First-Out (FIFO) Transmit
Data Buffer
4-level-deep FIFO Receive Data Buffer
Parity, framing and buffer overrun error detection
Support for interrupt only on address detect (9th
bit = 1)
Separate transmit and receive interrupts
Loopback mode for diagnostic support
LIN 1.2 protocol support
IrDA encoder and decoder with 16x baud clock
output for external IrDA encoder/decoder support
Figure 19-1 shows a simplified block diagram of the
UART.
FIGURE 19-1: UART SIMPLIFIED BLOCK DIAGRAM
Note: This data sheet summarizes the features of
the PIC32MX3XX/4XX family of devices. It
is not intended to be a comprehensive
reference source. Refer to the “PIC32MX
Family Reference Manual” Section 21.
Universal Asynchronous Receiver Trans-
mitter (UART) (DS61107) for a detailed
description of this peripheral.
The manual is available from the Microchip
web site (www.Microchip.com/PIC32).
Baud Rate Generator
UxRX
Hardware Flow Control
UARTx Receiver
UARTx Transmitter UxTX
UxCTS
UxRTS
BCLKx
IrDA®
PIC32MX3XX/4XX
DS61143F-page 86 Preliminary © 2009 Microchip Technology Inc.
FIGURE 19-2: TRANSMISSION (8-BIT OR 9-BIT DATA)
FIGURE 19-3: TWO CONSECUTIVE TRANSMISSIONS
Character 1
Stop bit
Character 1 to
Transmit Shift Register
Start bit bit 0 bit 1 bit 7/8
Write to UxTXREG
Character 1
BCLK/16
(Shift Clock)
UxTX
UxTXIF
TRMT bit
UxTXIF Cleared by User
Transmit Shift Register
Write to UxTXREG
BCLK/16
(Shift Clock)
UxTX
UxTXIF
TRMT bit
Character 1 Character 2
Character 1 to Character 2 to
Start bit Stop bit Start bit
Transmit Shift Register
Character 1 Character 2
bit 0 bit 1 bit 7/8 bit 0
(UTXISEL0 = 0)
UxTXIF
(UTXISEL0 = 1)
UxTXIF Cleared by User in Software
© 2009 Microchip Technology Inc. Preliminary DS61143F-page 87
PIC32MX3XX/4XX
FIGURE 19-4: UART RECEPTION
FIGURE 19-5: UART RECEPTION WITH RECEIVE OVERRUN
Start
bit bit1bit 0 bit 7 bit 0Stop
bit
Start
bit bit 7 Stop
bit
UxRX
RIDLE bit
Character 1
to UxRXREG Character 2
to UxRXREG
UxRXIF
(RXISEL = 0x)
Note: This timing diagram shows 2 characters received on the UxRX input.
Start
bit bit 7/8
bit 1bit 0 bit 7/8 bit 0Stop
bit
Start
bit
Start
bit
bit 7/8 Stop
bit
UxRX
OERR bit
RIDLE bit
Character 1, 2, 3, 4
Stored in Receive
Character 5
Held in UxRSR
Stop
bit
Character 1 Characters 2, 3, 4, 5 Character 6
FIFO
OERR Cleared by User
Note: This diagram shows 6 characters received without the user reading the input buffer. The 5th character
received is held in the Receive Shift register. An overrun error occurs at the start of the 6th character.
PIC32MX3XX/4XX
DS61143F-page 88 Preliminary © 2009 Microchip Technology Inc.
NOTES:
© 2009 Microchip Technology Inc. Preliminary DS61143F-page 89
PIC32MX3XX/4XX
20.0 PARALLEL MASTER PORT
(PMP)
The PMP is a parallel 8-bit/16-bit input/output module
specifically designed to communicate with a wide
variety of parallel devices, such as communications
peripherals, LCDs, external memory devices, and
microcontrollers. Because the interface to parallel
peripherals varies significantly, the PMP module is
highly configurable.
Key features of the PMP module include:
8-bit,16-bit interface
Up to 16 programmable address lines
Up to two Chip Select lines
Programmable strobe options
- Individual read and write strobes, or
- Read/write strobe with enable strobe
Address auto-increment/auto-decrement
Programmable address/data multiplexing
Programmable polarity on control signals
Parallel Slave Port support
- Legacy addressable
- Address support
- 4-byte deep auto-incrementing buffer
Programmable Wait states
Operate during CPU Sleep and Idle modes
Fast bit manipulation using CLR, SET and INV
registers
Freeze option for in-circuit debugging
FIGURE 20-1: PMP MODULE PINOUT AND CONNECTIONS TO EXTERNAL DEVICES
Note: This data sheet summarizes the features of
the PIC32MX3XX/4XX family of devices. It
is not intended to be a comprehensive
reference source. Refer to the “PIC32MX
Family Reference Manual” Section 13.
“Parallel Master Port (PMP)” (DS61128)
for a detailed description of this peripheral.
The manual is available from the Microchip
web site (www.Microchip.com/PIC32).
Note: On 64-pin devices, data pins PMD<15:8>
are not available.
PMA<0>
PMA<14>
PMA<15>
PMRD
PMWR
PMENB
PMRD/PMWR
PMCS1
PMA<1>
PMA<13:2>
PMALL
PMALH
PMCS2
FLASH
Address Bus
Data Bus
Control Lines
PIC32MX3XX/4XX
LCD FIFO
Microcontroller
16/8-bit Data (with or without multiplexed addressing)
Up to 16-bit Address
Parallel
buffer
PMD<15:8>(1)
PMD<7:0>
Master Port
Note 1: On 64-pin devices, data pins PMD<15:8> are not available in 16-bit Master modes
EEPROM
SRAM
PIC32MX3XX/4XX
DS61143F-page 90 Preliminary © 2009 Microchip Technology Inc.
NOTES:
© 2009 Microchip Technology Inc. Preliminary DS61143F-page 91
PIC32MX3XX/4XX
21.0 REAL-TIME CLOCK AND
CALENDAR (RTCC)
The PIC32MX RTCC module is intended for applica-
tions in which accurate time must be maintained for
extended periods of time with minimal or no CPU inter-
vention. Low-power optimization provides extended
battery lifetime while keeping track of time.
Following are some of the key features of this module:
Time: Hours, Minutes and Seconds
24-Hour Format (Military Time)
Visibility of One-Half-Second Period
Provides Calendar: Weekday, Date, Month and
Yea r
Alarm Intervals are configurable for Half of a
Second, One Second, 10 Seconds, One Minute,
10 Minutes, One Hour, One Day, One Week, One
Month and One Year
Alarm Repeat with Decrementing Counter
Alarm with Indefinite Repeat: Chime
Year Range: 2000 to 2099
Leap Year Correction
BCD Format for Smaller Firmware Overhead
Optimized for Long-Term Battery Operation
Fractional Second Synchronization
User Calibration of the Clock Crystal Frequency
with Auto-Adjust
Calibration Range: ±0.66 Seconds Error per
Month
Calibrates up to 260 ppm of Crystal Error
Requirements: External 32.768 kHz Clock Crystal
Alarm Pulse or Seconds Clock Output on RTCC
pin
FIGURE 21-1: RTCC BLOCK DIAGRAM
Note: This data sheet summarizes the features of
the PIC32MX3XX/4XX family of devices. It
is not intended to be a comprehensive
reference source. Refer to the “PIC32MX
Family Reference Manual” Section 29.
“Real-Time Clock and Calendar (RTCC)”
(DS61125) for a detailed description of this
peripheral.
The manual is available from the Microchip
web site (www.Microchip.com/PIC32).
Seconds Pulse
RTCC Prescalers
RTCC Timer
Comparator
Compare Registers
Repeat Counter
YEAR, MTH, DAY
WKDAY
HR, MIN, SEC
MTH, DAY
WKDAY
HR, MIN, SEC
with Masks
RTCC Interrupt Logic
Alarm
Event
32.768 kHz Input
from Secondary
0.5s
Alarm Pulse
RTCC Interrupt
RTCVAL
ALRMVAL
RTCC Pin
RTCOE
Oscillator (SOSC)
PIC32MX3XX/4XX
DS61143F-page 92 Preliminary © 2009 Microchip Technology Inc.
NOTES:
© 2009 Microchip Technology Inc. Preliminary DS61143F-page 93
PIC32MX3XX/4XX
22.0 10-BIT ANALOG-TO-DIGITAL
CONVERTER (ADC)
The PIC32MX3XX/4XX 10-bit Analog-to-Digital (A/D)
converter (or ADC) includes the following features:
Successive Approximation Register (SAR)
conversion
Up to 1000 kilo samples per second (ksps)
conversion speed
Up to 16 analog input pins
External voltage reference input pins
One unipolar, differential Sample-and-Hold
Amplifier (SHA)
Automatic Channel Scan mode
Selectable conversion trigger source
16-word conversion result buffer
Selectable Buffer Fill modes
Eight conversion result format options
Operation during CPU Sleep and Idle modes
A block diagram of the 10-bit ADC is shown in
Figure 22-1. The 10-bit ADC has 16 analog input pins,
designated AN0-AN15. In addition, there are two ana-
log input pins for external voltage reference connec-
tions. These voltage reference inputs may be shared
with other analog input pins and may be common to
other analog module references.
The analog inputs are connected through two multi-
plexers (MUXs) to one SHA. The analog input MUXs
can be switched between two sets of analog inputs
between conversions. Unipolar differential conversions
are possible on all channels, other than the pin used as
the reference, using a reference input pin (see
Figure 22-1).
The Analog Input Scan mode sequentially converts
user-specified channels. A control register specifies
which analog input channels will be included in the
scanning sequence.
The 10-bit ADC is connected to a 16-word result buffer.
Each 10-bit result is converted to one of eight, 32-bit
output formats when it is read from the result buffer.
FIGURE 22-1: ADC1 MODULE BLOCK DIAGRAM
Note: This data sheet summarizes the features of
the PIC32MX3XX/4XX family of devices. It
is not intended to be a comprehensive
reference source. Refer to the “PIC32MX
Family Reference Manual” Section 17.
“10-bit Analog-to-Digital Converter
(ADC)” (DS61104) for a detailed
description of this peripheral.
The manual is available from the Microchip
web site (www.Microchip.com/PIC32).
SAR ADC
S/H
ADC1BUF0
ADC1BUF1
ADC1BUF2
ADC1BUFF
ADC1BUFE
AN0
AN15
AN1
VREFL
CH0SB<4:0>
CH0NA CH0NB
+
-
CH0SA<4:0>
CSCNA
Alternate
VREF+(1) AVDD AVSS
VREF-(1)
Note 1: VREF+, VREF- inputs can be multiplexed with other analog inputs.
Input Selection
VREFH VREFL
CHANNEL
SCAN
VCFG<2:0>
PIC32MX3XX/4XX
DS61143F-page 94 Preliminary © 2009 Microchip Technology Inc.
FIGURE 22-2: ADC CONVERSION CLOCK PERIOD BLOCK DIAGRAM
0
1
ADC Internal
RC Clock(1)
TPB X2
ADC Conversion
Clock Multiplier
1, 2, 3, 4, 5,..., 512
ADRC
TAD
8
ADCS<7:0>
Note 1: See the ADC electrical characteristics for the exact RC clock value.
© 2009 Microchip Technology Inc. Preliminary DS61143F-page 95
PIC32MX3XX/4XX
23.0 COMPARATOR
The PIC32MX3XX/4XX Analog Comparator module
contains one or more comparator(s) that can be config-
ured in a variety of ways.
Following are some of the key features of this module:
Selectable inputs available include:
- Analog inputs multiplexed with I/O pins
- On-chip internal absolute voltage reference
(IVREF)
- Comparator voltage reference (CVREF)
Outputs can be inverted
Selectable interrupt generation
A block diagram of the comparator module is shown in
Figure 23-1.
FIGURE 23-1: COMPARATOR BLOCK DIAGRAM
Note: This data sheet summarizes the features of
the PIC32MX3XX/4XX family of devices. It
is not intended to be a comprehensive
reference source. Refer to the “PIC32MX
Family Reference Manual” Section 19.
“Comparator” (DS61110) for a detailed
description of this peripheral.
The manual is available from the Microchip
web site (www.Microchip.com/PIC32).
C1
CVREF(3)
C1IN+(2)
C1IN+
C1IN-
C1OUT
COUT (CM1CON)
CREF
CCH<1:0>
CPOL
COE
ON
C2IN+
IVREF(3)
C1OUT (CMSTAT)
C2
CVREF(3)
C2IN+
C2IN+
C2IN-
C2OUT
COUT (CM2CON)
CREF
CPOL
COE
ON
C1IN+
IVREF(3)
C2OUT (CMSTAT)
Comparator 2
Comparator 1
CCH<1:0>
Note 1: IVref is the internal 1.2V reference.
2: On USB variants, when USB is enabled, this pin is controlled by the USB module and therefore is not
available as a comparator input.
3: Internally connected.
PIC32MX3XX/4XX
DS61143F-page 96 Preliminary © 2009 Microchip Technology Inc.
NOTES:
© 2009 Microchip Technology Inc. Preliminary DS61143F-page 97
PIC32MX3XX/4XX
24.0 COMPARATOR VOLTAGE
REFERENCE (CVREF)
The CVREF is a 16-tap, resistor ladder network that pro-
vides a selectable reference voltage. Although its pri-
mary purpose is to provide a reference for the analog
comparators, it also may be used independently of
them.
A block diagram of the module is shown in Figure 24-1.
The resistor ladder is segmented to provide two ranges
of voltage reference values and has a power-down func-
tion to conserve power when the reference is not being
used. The module’s supply reference can be provided
from either device VDD/VSS or an external voltage refer-
ence. The CVREF output is available for the comparators
and typically available for pin output.
The comparator voltage reference has the following
features:
High and low range selection
Sixteen output levels available for each range
Internally connected to comparators to conserve
device pins
Output can be connected to a pin
FIGURE 24-1: COMPARATOR VOLTAGE REFERENCE BLOCK DIAGRAM
Note: This data sheet summarizes the features of
the PIC32MX3XX/4XX family of devices. It
is not intended to be a comprehensive
reference source. Refer to the “PIC32MX
Family Reference Manual” Section 20.
“Comparator Voltage Reference
(CVREF)” (DS61109) for a detailed
description of this peripheral.
The manual is available from the Microchip
web site (www.Microchip.com/PIC32).
16-to-1 MUX
CVR3:CVR0
8R
R
CVREN
CVRSS = 0
AVDD
VREF+CVRSS = 1
8R
CVRSS = 0
VREF-CVRSS = 1
R
R
R
R
R
R
16 Steps
CVRR
CVREFOUT
AVSS
CVRCON<CVROE-
CVREF
PIC32MX3XX/4XX
DS61143F-page 98 Preliminary © 2009 Microchip Technology Inc.
NOTES:
© 2009 Microchip Technology Inc. Preliminary DS61143F-page 99
PIC32MX3XX/4XX
25.0 POWER-SAVING FEATURES
This section describes power saving for the
PIC32MX3XX/4XX. The PIC32MX devices offer a total
of nine methods and modes that are organized into two
categories that allow the user to balance power con-
sumption with device performance. In all of the meth-
ods and modes described in this section, power saving
is controlled by software.
25.1 Power Saving with CPU Running
When the CPU is running, power consumption can be
controlled by reducing the CPU clock frequency, lower-
ing the PBCLK, and by individually disabling modules.
These methods are grouped into the following modes:
FRC Run mode: the CPU is clocked from the FRC
clock source with or without postscalers.
LPRC Run mode: the CPU is clocked from the
LPRC clock source.
SOSC Run mode: the CPU is clocked from the
SOSC clock source.
Peripheral Bus Scaling mode: peripherals are
clocked at programmable fraction of the CPU
clock (SYSCLK).
25.2 CPU Halted Methods
The device supports two power-saving modes, Sleep
and Idle, both of which halt the clock to the CPU. These
modes operate with all clock sources, as listed below:
POSC Idle Mode: the system clock is derived
from the POSC. The system clock source
continues to operate.
Peripherals continue to operate, but can
optionally be individually disabled.
FRC Idle Mode: the system clock is derived from
the FRC with or without postscalers. Peripherals
continue to operate, but can optionally be
individually disabled.
SOSC Idle Mode: the system clock is derived
from the SOSC. Peripherals continue to operate,
but can optionally be individually disabled.
LPRC Idle Mode: the system clock is derived from
the LPRC.
Peripherals continue to operate, but can option-
ally be individually disabled. This is the lowest
power mode for the device with a clock running.
Sleep Mode: the CPU, the system clock source,
and any peripherals that operate from the system
clock source, are halted.
Some peripherals can operate in Sleep using spe-
cific clock sources. This is the lowest power mode
for the device.
25.3 Power-Saving Operation
The purpose of all power saving is to reduce power
consumption by reducing the device clock frequency.
To achieve this, low-frequency clock sources can be
selected. In addition, the peripherals and CPU can be
halted or disabled to further reduce power consump-
tion.
25.3.1 SLEEP MODE
Sleep mode has the lowest power consumption of the
device Power-Saving operating modes. The CPU and
most peripherals are halted. Select peripherals can
continue to operate in Sleep mode and can be used to
wake the device from Sleep. See individual peripheral
module sections for descriptions of behavior in Sleep.
Sleep mode includes the following characteristics:
The CPU is halted.
The system clock source is typically shut down.
See Section 25.4 “Peripheral Bus Scaling
Method” for specific information.
There can be a wake-up delay based on the
oscillator selection.
The Fail-Safe Clock Monitor (FSCM) does not
operate during Sleep mode.
The BOR circuit, if enabled, remains operative
during Sleep mode.
The WDT, if enabled, is not automatically cleared
prior to entering Sleep mode.
Some peripherals can continue to operate in
Sleep mode. These peripherals include I/O pins
that detect a change in the input signal, WDT,
ADC, UART, and peripherals that use an external
clock input or the internal LPRC oscillator, e.g.,
RTCC and Timer 1.
I/O pins continue to sink or source current in the
same manner as they do when the device is not in
Sleep.
The USB module can override the disabling of the
POSC or FRC. Refer to the USB section for spe-
cific details.
Some modules can be individually disabled by
software prior to entering Sleep in order to further
reduce consumption.
Note: This data sheet summarizes the features of
the PIC32MX3XX/4XX family of devices. It
is not intended to be a comprehensive
reference source. Refer to the “PIC32MX
Family Reference Manual” Section 10.
“Power-Saving Features” (DS61130)
for a detailed description of this peripheral.
The manual is available from the Microchip
web site (www.Microchip.com/PIC32).
PIC32MX3XX/4XX
DS61143F-page 100 Preliminary © 2009 Microchip Technology Inc.
The processor will exit, or ‘wake-up’, from Sleep on one
of the following events:
On any interrupt from an enabled source that is
operating in Sleep. The interrupt priority must be
greater than the current CPU priority.
On any form of device Reset.
On a WDT time-out. See Section 26.2 “Watch-
dog Timer (WDT)”.
If the interrupt priority is lower than or equal to current
priority, the CPU will remain halted, but the PBCLK will
start running and the device will enter into Idle mode.
25.4 Peripheral Bus Scaling Method
Most of the peripherals on the device are clocked using
the PBCLK. The peripheral bus can be scaled relative
to the SYSCLK to minimize the dynamic power con-
sumed by the peripherals. The PBCLK divisor is con-
trolled by PBDIV<1:0> (OSCCON<20:19>), allowing
SYSCLK-to-PBCLK ratios of 1:1, 1:2, 1:4, and 1:8. All
peripherals using PBCLK are affected when the divisor
is changed. Peripherals such as the Interrupt Control-
ler, DMA, Bus Matrix, and Prefetch Cache are clocked
directly from SYSCLK, as a result, they are not affected
by PBCLK divisor changes.
Most of the peripherals on the device are clocked using
the PBCLK. The peripheral bus can be scaled relative
to the SYSCLK to minimize the dynamic power con-
sumed by the peripherals. The PBCLK divisor is con-
trolled by PBDIV<1:0> (OSCCON<20:19>), allowing
SYSCLK-to-PBCLK ratios of 1:1, 1:2, 1:4, and 1:8. All
peripherals using PBCLK are affected when the divisor
is changed. Peripherals such as USB, Interrupt Con-
troller, DMA, Bus Matrix, and Prefetch Cache are
clocked directly from SYSCLK, as a result, they are not
affected by PBCLK divisor changes
Changing the PBCLK divisor affects:
The CPU to peripheral access latency. The CPU
has to wait for next PBCLK edge for a read to
complete. In 1:8 mode this results in a latency of
one to seven SYSCLKs.
The power consumption of the peripherals. Power
consumption is directly proportional to the fre-
quency at which the peripherals are clocked. The
greater the divisor, the lower the power consumed
by the peripherals.
To minimize dynamic power the PB divisor should be
chosen to run the peripherals at the lowest frequency
that provides acceptable system performance. When
selecting a PBCLK divider, peripheral clock require-
ments such as baud rate accuracy should be taken into
account. For example, the UART peripheral may not be
able to achieve all baud rate values at some PBCLK
divider depending on the SYSCLK value.
25.5 Idle Mode
In the Idle mode, the CPU is halted but the System
clock (SYSCLK) source is still enabled. This allows
peripherals to continue operation when the CPU is
halted. Peripherals can be individually configured to
halt when entering Idle by setting their respective SIDL
bit. Latency when exiting Idle mode is very low due to
the CPU oscillator source remaining active.
The device enters Idle mode when the SLPEN
(OSCCON<4>) bit is clear and a WAIT instruction is
executed.
The processor will wake or exit from Idle mode on the
following events:
On any interrupt event for which the interrupt
source is enabled. The priority of the interrupt
event must be greater than the current priority of
CPU. If the priority of the interrupt event is lower
than or equal to current priority of CPU, the CPU
will remain halted and the device will remain in
Idle mode.
On any source of device Reset.
On a WDT time-out interrupt. See Section 26.2
“Watchdog Timer (WDT)”.
Note: There is no FRZ mode for this module.
Notes: Changing the PBCLK divider ratio
requires recalculation of peripheral timing.
For example, assume the UART is config-
ured for 9600 baud with a PB clock ratio of
1:1 and a POSC of 8 MHz. When the PB
clock divisor of 1:2 is used, the input fre-
quency to the baud clock is cut in half;
therefore, the baud rate is reduced to 1/2
its former value. Due to numeric truncation
in calculations (such as the baud rate divi-
sor), the actual baud rate may be a tiny
percentage different than expected. For
this reason, any timing calculation
required for a peripheral should be per-
formed with the new PB clock frequency
instead of scaling the previous value
based on a change in PB divisor ratio.
Oscillator start-up and PLL lock delays
are applied when switching to a clock
source that was disabled and that uses a
crystal and/or the PLL. For example,
assume the clock source is switched from
POSC to LPRC just prior to entering
Sleep in order to save power. No oscilla-
tor start-up delay would be applied when
exiting Idle. However, when switching
back to POSC, the appropriate PLL and
or oscillator startup/lock delays would be
applied.
© 2009 Microchip Technology Inc. Preliminary DS61143F-page 101
PIC32MX3XX/4XX
26.0 SPECIAL FEATURES
PIC32MX3XX/4XX devices include several features
intended to maximize application flexibility and reliabil-
ity, and minimize cost through elimination of external
components. These are:
Flexible Device Configuration
Watchdog Timer
JTAG Interface
In-Circuit Serial Programming (ICSP)
26.1 Configuration Bits
The Configuration bits can be programmed to select
various device configurations.
Note: This data sheet summarizes the features of
the PIC32MX3XX/4XX family of devices. It
is not intended to be a comprehensive
reference source. Refer to the “PIC32MX
Family Reference Manual” (DS61132) for
detailed descriptions of these features.
The manual is available from the Microchip
web site (www.Microchip.com/PIC32).
REGISTER 26-1: DEVCFG0: DEVICE CONFIGURATION WORD 0
r-0 r-1 r-1 R/P-1 r-1 r-1 r-1 R/P-1
—CP —BWP
bit 31 bit 24
r-1 r-1 r-1 r-1 R/P-1 R/P-1 R/P-1 R/P-1
—PWP<7:4>
bit 23 bit 16
R/P-1 R/P-1 R/P-1 R/P-1 r-1 r-1 r-1 r-1
PWP<3:0>
bit 15 bit 8
r-1 r-1 r-1 r-1 R/P-1 r-1 R/P-1 R/P-1
ICESEL DEBUG<1:0>
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit P = Programmable bit r = Reserved bit
U = Unimplemented bit -n = Bit Value at POR: (‘0’, ‘1’, x = Unknown)
bit 31 Reserved: Write 0
bit 30-29 Reserved: Write ‘1
bit 28 CP: Code-Protect bit
Prevents boot and program Flash memory from being read or modified by an external
programming device.
1 = Protection disabled
0 = Protection enabled
bit 27-25 Reserved: Write ‘1
PIC32MX3XX/4XX
DS61143F-page 102 Preliminary © 2009 Microchip Technology Inc.
bit 24 BWP: Boot Flash Write-Protect bit
Prevents boot Flash memory from being modified during code execution.
1 = Boot Flash is writable
0 = Boot Flash is not writable
bit 23-20 Reserved: Write ‘1
bit 19-12 PWP<7:0>: Program Flash Write-Protect bits
Prevents selected program Flash memory pages from being modified during code execution.
The PWP bits represent the one’s compliment of the number of write protected program Flash memory
pages.
11111111 = Disabled
11111110 = 0xBD00_0FFF
11111101 = 0xBD00_1FFF
11111100 = 0xBD00_2FFF
11111011 = 0xBD00_3FFF
11111010 = 0xBD00_4FFF
11111001 = 0xBD00_5FFF
11111000 = 0xBD00_6FFF
11110111 = 0xBD00_7FFF
11110110 = 0xBD00_8FFF
11110101 = 0xBD00_9FFF
11110100 = 0xBD00_AFFF
11110011 = 0xBD00_BFFF
11110010 = 0xBD00_CFFF
11110001 = 0xBD00_DFFF
11110000 = 0xBD00_EFFF
11101111 = 0xBD00_FFFF
...
01111111 = 0xBD07_FFFF
bit 11-4 Reserved: Write1
bit 3 ICESEL: In-Circuit Emulator/Debugger Communication Channel Select bit
1 = PGEC2/PGED2 pair is used
0 = PGEC1/PGED1 pair is used
bit 2 Reserved: Write ‘1
bit 1-0 DEBUG<1:0>: Background Debugger Enable bits (forced to ‘11’ if code-protect is enabled)
11 = Debugger disabled
10 = Debugger enabled
01 = Reserved (same as ‘11’ setting)
00 = Reserved (same as ‘11’ setting)
REGISTER 26-1: DEVCFG0: DEVICE CONFIGURATION WORD 0 (CONTINUED)
© 2009 Microchip Technology Inc. Preliminary DS61143F-page 103
PIC32MX3XX/4XX
REGISTER 26-2: DEVCFG1: DEVICE CONFIGURATION WORD 1
r-1 r-1 r-1 r-1 r-1 r-1 r-1 r-1
bit 31 bit 24
R/P-1 r-1 r-1 R/P-1 R/P-1 R/P-1 R/P-1 R/P-1
FWDTEN WDTPS<4:0>
bit 23 bit 16
R/P-1 R/P-1 R/P-1 R/P-1 r-1 R/P-1 R/P-1 R/P-1
FCKSM<1:0> FPBDIV<1:0> OSCIOFNC POSCMD<1:0>
bit 15 bit 8
R/P-1 r-1 R/P-1 r-1 r-1 R/P-1 R/P-1 R/P-1
IESO FSOSCEN —FNOSC<2:0>
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit P = Programmable bit r = Reserved bit
U = Unimplemented bit -n = Bit Value at POR: (‘0’, ‘1’, x = Unknown)
bit 31-24 Reserved: Write ‘1
bit 23 FWDTEN: Watchdog Timer Enable bit
1 = The WDT is enabled and cannot be disabled by software
0 = The WDT is not enabled; it can be enabled in software
bit 22-21 Reserved: Write ‘1
bit 20-16 WDTPS<4:0>: Watchdog Timer Postscale Select bits
10100 = 1:1048576
10011 = 1:524288
10010 = 1:262144
10001 = 1:131072
10000 = 1:65536
01111 = 1:32768
01110 = 1:16384
01101 = 1:8192
01100 = 1:4096
01011 = 1:2048
01010 = 1:1024
01001 = 1:512
01000 = 1:256
00111 = 1:128
00110 = 1:64
00101 = 1:32
00100 = 1:16
00011 = 1:8
00010 = 1:4
00001 = 1:2
00000 = 1:1
All other combinations not shown result in operation = ‘10100
PIC32MX3XX/4XX
DS61143F-page 104 Preliminary © 2009 Microchip Technology Inc.
bit 15-14 FCKSM<1:0>: Clock Switching and Monitor Selection Configuration bits
1x = Clock switching is disabled, Fail-Safe Clock Monitor is disabled
01 = Clock switching is enabled, Fail-Safe Clock Monitor is disabled
00 = Clock switching is enabled, Fail-Safe Clock Monitor is enabled
bit 13-12 FPBDIV<1:0>: Peripheral Bus Clock Divisor Default Value bits
11 = PBCLK is SYSCLK divided by 8
10 = PBCLK is SYSCLK divided by 4
01 = PBCLK is SYSCLK divided by 2
00 = PBCLK is SYSCLK divided by 1
bit 11 Reserved: Write 1
bit 10 OSCIOFNC: CLKO Enable Configuration bit
1 = CLKO output signal active on the OSCO pin; primary oscillator must be disabled or configured for
the External Clock mode (EC) for the CLKO to be active (POSCMD<1:0> = 11 OR 00)
0 = CLKO output disabled
bit 9-8 POSCMD<1:0>: Primary Oscillator Configuration bits
11 = Primary oscillator disabled
10 = HS oscillator mode selected
01 = XT oscillator mode selected
00 = External clock mode selected
bit 7 IESO: Internal External Switchover bit
1 = Internal External Switchover mode enabled (Two-Speed Start-up enabled)
0 = Internal External Switchover mode disabled (Two-Speed Start-up disabled)
bit 6 Reserved: Write ‘1
bit 5 FSOSCEN: Secondary Oscillator Enable bit
1 = Enable Secondary Oscillator
0 = Disable Secondary Oscillator
bit 4-3 Reserved: Write ‘1
bit 2-0 FNOSC<2:0>: Oscillator Selection bits
000 = Fast RC Oscillator (FRC)
001 = Fast RC Oscillator with divide-by-N with PLL module (FRCDIV+PLL)
010 = Primary Oscillator (XT, HS, EC)(1)
011 = Primary Oscillator with PLL module (XT+PLL, HS+PLL, EC+PLL)
100 = Secondary Oscillator (SOSC)
101 = Low-Power RC Oscillator (LPRC)
110 = FRCDIV16 Fast RC Oscillator with fixed divide-by-16 postscaler
111 = Fast RC Oscillator with divide-by-N (FRCDIV)
Note 1: Do not disable POSC (POSCMD = 00) when using this oscillator source.
REGISTER 26-2: DEVCFG1: DEVICE CONFIGURATION WORD 1 (CONTINUED)
© 2009 Microchip Technology Inc. Preliminary DS61143F-page 105
PIC32MX3XX/4XX
REGISTER 26-3: DEVCFG2: DEVICE CONFIGURATION WORD 2
r-1 r-1 r-1 r-1 r-1 r-1 r-1 r-1
bit 31 bit 24
r-1 r-1 r-1 r-1 r-1 R/P-1 R/P-1 R/P-1
FPLLODIV<2:0>
bit 23 bit 16
R/P-1 r-1 r-1 r-1 r-1 R/P-1 R/P-1 R/P-1
FUPLLEN FUPLLIDIV<2:0>
bit 15 bit 8
r-1 R/P-1 R/P-1 R/P-1 r-1 R/P-1 R/P-1 R/P-1
FPLLMULT<2:0> FPLLIDIV<2:0>
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit P = Programmable bit r = Reserved bit
U = Unimplemented bit -n = Bit Value at POR: (‘0’, ‘1’, x = Unknown)
bit 31-19 Reserved: Write ‘1
bit 18-16 FPLLODIV[2:0]: Default Postscaler for PLL bits
111 = PLL output divided by 256
110 = PLL output divided by 64
101 = PLL output divided by 32
100 = PLL output divided by 16
011 = PLL output divided by 8
010 = PLL output divided by 4
001 = PLL output divided by 2
000 = PLL output divided by 1
bit 15 FUPLLEN: USB PLL Enable bit
1 = Enable USB PLL
0 = Disable and bypass USB PLL
bit 14-11 Reserved: Write1
bit 10-8 FUPLLIDIV[2:0]: PLL Input Divider bits
111 = 12x divider
110 = 10x divider
101 = 6x divider
100 = 5x divider
011 = 4x divider
010 = 3x divider
010 = 3x divider
001 = 2x divider
000 = 1x divider
bit 7 Reserved: Write ‘1
PIC32MX3XX/4XX
DS61143F-page 106 Preliminary © 2009 Microchip Technology Inc.
bit 6-4 FPLLMULT[2:0]: PLL Multiplier bits
111 = 24x multiplier
110 = 21x multiplier
101 = 20x multiplier
100 = 19x multiplier
011 = 18x multiplier
010 = 17x multiplier
001 = 16x multiplier
000 = 15x multiplier
bit 3 Reserved: Write ‘1
bit 2-0 FPLLIDIV[2:0]: PLL Input Divider bits
111 = 12x divider
110 = 10x divider
101 = 6x divider
100 = 5x divider
011 = 4x divider
010 = 3x divider
001 = 2x divider
000 = 1x divider
REGISTER 26-4: DEVCFG3: DEVICE CONFIGURATION WORD 3
r-1 r-1 r-1 r-1 r-1 r-1 r-1 r-1
bit 31 bit 24
r-1 r-1 r-1 r-1 r-1 r-1 r-1 r-1
bit 23 bit 16
R/P-x R/P-x R/P-x R/P-x R/P-x R/P-x R/P-x R/P-x
USERID<15:8>
bit 15 bit 8
R/P-x R/P-x R/P-x R/P-x R/P-x R/P-x R/P-x R/P-x
USERID<7:0>
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit P = Programmable bit r = Reserved bit
U = Unimplemented bit -n = Bit Value at POR: (‘0’, ‘1’, x = Unknown)
bit 31-16 Reserved: Write ‘1
bit 15-0 USERID<15:0>: This is a 16-bit value that is user defined and is readable via ICSP™ and JTAG
REGISTER 26-3: DEVCFG2: DEVICE CONFIGURATION WORD 2 (CONTINUED)
© 2009 Microchip Technology Inc. Preliminary DS61143F-page 107
PIC32MX3XX/4XX
REGISTER 26-5: DEVID: DEVICE AND REVISION ID REGISTER
RRRRRRRR
VER<3:0> DEVID<27:24>
bit 31 bit 24
RRRRRRRR
DEVID<23:16>
bit 23 bit 16
RRRRRRRR
DEVID<15:8>
bit 15 bit 8
RRRRRRRR
DEVID<7:0>
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit P = Programmable bit r = Reserved bit
U = Unimplemented bit -n = Bit Value at POR: (‘0’, ‘1’, x = Unknown)
bit 31-28 VER<3:0>: Revision Identifier bits(1)
bit 27-0 DEVID<27:0>: Device ID(1)
Note: See the PIC32MX Programming Specification for a list of Revision and Device ID values.
PIC32MX3XX/4XX
DS61143F-page 108 Preliminary © 2009 Microchip Technology Inc.
26.2 Watchdog Timer (WDT)
This section describes the operation of the WDT and
Power-Up Timer of the PIC32MX3XX/4XX.
The WDT, when enabled, operates from the internal
Low-Power Oscillator (LPRC) clock source and can be
used to detect system software malfunctions by reset-
ting the device if the WDT is not cleared periodically in
software. Various WDT time-out periods can be
selected using the WDT postscaler. The WDT can also
be used to wake the device from Sleep or Idle mode.
The following are some of the key features of the WDT
module:
Configuration or software controlled
User-configurable time-out period
Can wake the device from Sleep or Idle
FIGURE 26-1: WATCHDOG AND POWER-UP TIMER BLOCK DIAGRAM
26.3 On-Chip Voltage Regulator
All PIC32MX3XX/4XX device’s core and digital logic
are designed to operate at a nominal 1.8V. To simplify
system designs, most devices in the
PIC32MX3XX/4XX incorporate an on-chip regulator
providing the required core logic voltage from VDD.
The internal 1.8V regulator is controlled by the
ENVREG pin. Tying this pin to VDD enables the regu-
lator, which in turn provides power to the core. A low
ESR capacitor (such as tantalum) must be connected
to the VDDCORE/VCAP pin (Figure 26-2). This helps to
maintain the stability of the regulator. The recom-
mended value for the filer capacitor is provided in
Section 28.1 “DC Characteristics”.
Tying the ENVREG pin to VSS disables the regulator. In
this case, separate power for the core logic at a nomi-
nal 1.8V must be supplied to the device on the
VDDCORE/VCAP pin.
Alternately, the VDDCORE/VCAP and VDD pins can be
tied together to operate at a lower nominal voltage.
Refer to Figure 26-2 for possible configurations.
26.3.1 ON-CHIP REGULATOR AND POR
When the voltage regulator is enabled, it takes fixed
delay for it to generate output. During this time, desig-
nated as TPU, code execution is disabled. TPU is applied
every time the device resumes operation after any
power-down, including Sleep mode.
If the regulator is disabled, a separate Power-Up Timer
(PWRT) is automatically enabled. The PWRT adds a
fixed delay of TPWRT at device start-up. See
Section 28.0 “Electrical Characteristics” for more
information on TPU AND TPWRT.
Wake
WDTCLR = 1
WDT Enable
LPRC
Power Save
25-bit Counter
PWRT Enable
WDT Enable
LPRC
WDT Counter Reset
Control
Oscillator
25
Device Reset
NMI (Wake-up)
PWRT
PWRT Enable
FWDTPS<4:0>(DEVCFG1<20:16>)
Clock
Decoder
1
1:64 Output
0
1
Note: It is important that the low ESR capacitor
is placed as close as possible to the
VDDCORE/VCAP pin.
© 2009 Microchip Technology Inc. Preliminary DS61143F-page 109
PIC32MX3XX/4XX
26.3.2 ON-CHIP REGULATOR AND BOR
When the on-chip regulator is enabled,
PIC32MX3XX/4XX devices also have a simple brown-
out capability. If the voltage supplied to the regulator is
inadequate to maintain a regulated level, the regulator
Reset circuitry will generate a Brown-out Reset. This
event is captured by the BOR flag bit (RCON<1>). The
brown-out voltage levels are specific in Section 28.1
“DC Characteristics”.
26.3.3 POWER-UP REQUIREMENTS
The on-chip regulator is designed to meet the power-up
requirements for the device. If the application does not
use the regulator, then strict power-up conditions must
be adhered to. While powering up, VDDCORE must
never exceed VDD by 0.3 volts.
FIGURE 26-2: CONNECTIONS FOR THE ON-CHIP REGULATOR
VDD
ENVREG
VDDCORE/VCAP
VSS
PIC32MX
3.3V(1)
1.8V(1)
VDD
ENVREG
VDDCORE/VCAP
VSS
PIC32MX
CEFC
3.3V
Regulator Enabled (ENVREG tied to VDD): Regulator Disabled (ENVREG tied to ground):
Note 1: These are typical operating voltages. Refer to
Section 28.1 “DC Characteristics”
for the full operating ranges of VDD
and VDDCORE.
(10 μF typ)
PIC32MX3XX/4XX
DS61143F-page 110 Preliminary © 2009 Microchip Technology Inc.
26.4 Programming and Diagnostics
PIC32MX3XX/4XX devices provide a complete range
of programming and diagnostic features that can
increase the flexibility of any application using them.
These features allow system designers to include:
Simplified field programmability using two-wire In-
Circuit Serial Programming™ (ICSP™) interfaces
Debugging using ICSP
Programming and debugging capabilities using
the EJTAG extension of JTAG
JTAG boundary scan testing for device and board
diagnostics
PIC32MX devices incorporate two programming and
diagnostic modules, and a trace controller, that provide
a range of functions to the application developer.
FIGURE 26-3: BLOCK DIAGRAM OF PROGRAMMING, DEBUGGING, AND TRACE PORTS
TDI
TDO
TCK
TMS
JTAG
Controller
ICSP™
Controller
Core
JTAGEN DEBUG<1:0>
Instruction Trace
Controller
DEBUG<1:0>
ICESEL
PGEC1
PGED1
PGEC2
PGED2
TRCLK
TRD0
TRD1
TRD2
TRD3
© 2009 Microchip Technology Inc. Preliminary DS61143F-page 111
PIC32MX3XX/4XX
REGISTER 26-6: DDPCON: DEBUG DATA PORT CONTROL REGISTER
r-x r-x r-x r-x r-x r-x r-x r-x
bit 31 bit 24
r-x r-x r-x r-x r-x r-x r-x r-x
bit 23 bit 16
r-x r-x r-x r-x r-x r-x r-x r-x
bit 15 bit 8
R/W-0 R/W-0 R/W-0 R/W-0 R/W-1 R/W-0 r-x r-x
DDPUSB DDPU1 DDPU2 DDPSPI1 JTAGEN TROEN
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit P = Programmable bit r = Reserved bit
U = Unimplemented bit -n = Bit Value at POR: (‘0’, ‘1’, x = Unknown)
bit 31-8 Reserved: Write ‘0’; ignore read
bit 7 DDPUSB: Debug Data Port Enable for USB bit
1 = USB peripheral ignores USBFRZ (U1CNFG1<5>) setting
0 = USB peripheral follows USBFRZ setting.
bit 6 DDPU1: Debug Data Port Enable for UART1 bit
1 = UART1 peripheral ignores FRZ (U1MODE<14>) setting
0 = UART1 peripheral follows FRZ setting
bit 5 DDPU2: Debug Data Port Enable for UART2 bit
1 = UART2 peripheral ignores FRZ (U2MODE<14) setting
0 = UART2 peripheral follows FRZ setting
bit 4 DDPSPI1: Debug Data Port Enable for SPI1 bit
1 = SPI1 peripheral ignores FRZ (SPI1CON<14>) setting
0 = SPI1 peripheral follows FRZ setting
bit 3 JTAGEN: JTAG Port Enable bit
1 = Enable JTAG Port
0 = Disable JTAG Port
bit 2 TROEN: Trace Output Enable bit
1 = Enable Trace Port
0 = Disable Trace Port
bit 1-0 Reserved: Write ‘1’; ignore read
PIC32MX3XX/4XX
DS61143F-page 112 Preliminary © 2009 Microchip Technology Inc.
NOTES:
© 2009 Microchip Technology Inc. Preliminary DS61143F-page 113
PIC32MX3XX/4XX
27.0 INSTRUCTION SET
The PIC32MX3XX/4XX family instruction set complies
with the MIPS32 Release 2 instruction set architecture.
PIC32MX does not support the following features:
CoreExtend instructions
Coprocessor 1 instructions
Coprocessor 2 instructions
Table 27-1 provides a summary of the instructions that
are implemented by the PIC32MX3XX/4XX family
core.
Note: Refer to “MIPS32® Architecture for Pro-
grammers Volume II: The MIPS32®
Instruction Set” at www.mips.com for more
information.
TABLE 27-1: MIPS32® INSTRUCTION SET
Instruction Description Function
ADD Integer Add Rd = Rs + Rt
ADDI Integer Add Immediate Rt = Rs + Immed
ADDIU Unsigned Integer Add Immediate Rt = Rs +U Immed
ADDU Unsigned Integer Add Rd = Rs +U Rt
AND Logical AND Rd = Rs & Rt
ANDI Logical AND Immediate Rt = Rs & (016 || Immed)
BUnconditional Branch
(Assembler idiom for: BEQ r0, r0, offset)
PC += (int)offset
BAL Branch and Link
(Assembler idiom for: BGEZAL r0, offset)
GPR[31] = PC + 8
PC += (int)offset
BEQ Branch On Equal if Rs == Rt
PC += (int)offset
BEQL Branch On Equal Likely(1) if Rs == Rt
PC += (int)offset
else
Ignore Next Instruction
BGEZ Branch on Greater Than or Equal To Zero if !Rs[31]
PC += (int)offset
BGEZAL Branch on Greater Than or Equal To Zero And Link GPR[31] = PC + 8
if !Rs[31]
PC += (int)offset
BGEZALL Branch on Greater Than or Equal To Zero And Link
Likely(1)
GPR[31] = PC + 8
if !Rs[31]
PC += (int)offset
else
Ignore Next Instruction
BGEZL Branch on Greater Than or Equal To Zero Likely(1) if !Rs[31]
PC += (int)offset
else
Ignore Next Instruction
BGTZ Branch on Greater Than Zero if !Rs[31] && Rs != 0
PC += (int)offset
BGTZL Branch on Greater Than Zero Likely(1) if !Rs[31] && Rs != 0
PC += (int)offset
else
Ignore Next Instruction
BLEZ Branch on Less Than or Equal to Zero if Rs[31] || Rs == 0
PC += (int)offset
Note 1: This instruction is deprecated and should not be used.
PIC32MX3XX/4XX
DS61143F-page 114 Preliminary © 2009 Microchip Technology Inc.
BLEZL Branch on Less Than or Equal to Zero Likely(1) if Rs[31] || Rs == 0
PC += (int)offset
else
Ignore Next Instruction
BLTZ Branch on Less Than Zero if Rs[31]
PC += (int)offset
BLTZAL Branch on Less Than Zero And Link GPR[31] = PC + 8
if Rs[31]
PC += (int)offset
BLTZALL Branch on Less Than Zero And Link Likely(1) GPR[31] = PC + 8
if Rs[31]
PC += (int)offset
else
Ignore Next Instruction
BLTZL Branch on Less Than Zero Likely(1) if Rs[31]
PC += (int)offset
else
Ignore Next Instruction
BNE Branch on Not Equal if Rs != Rt
PC += (int)offset
BNEL Branch on Not Equal Likely(1) if Rs != Rt
PC += (int)offset
else
Ignore Next Instruction
BREAK Breakpoint Break Exception
CLO Count Leading Ones Rd = NumLeadingOnes(Rs)
CLZ Count Leading Zeroes Rd = NumLeadingZeroes(Rs)
DERET Return from Debug Exception PC = DEPC
Exit Debug Mode
DI Atomically Disable Interrupts Rt = Status; StatusIE = 0
DIV Divide LO = (int)Rs / (int)Rt
HI = (int)Rs % (int)Rt
DIVU Unsigned Divide LO = (uns)Rs / (uns)Rt
HI = (uns)Rs % (uns)Rt
EHB Execution Hazard Barrier Stop instruction execution
until execution hazards are
cleared
EI Atomically Enable Interrupts Rt = Status; StatusIE = 1
ERET Return from Exception if StatusERL
PC = ErrorEPC
else
PC = EPC
StatusEXL = 0
StatusERL = 0
LL = 0
EXT Extract Bit Field Rt = ExtractField(Rs, pos,
size)
INS Insert Bit Field Rt = InsertField(Rs, Rt, pos,
size)
JUnconditional Jump PC = PC[31:28] || offset<<2
TABLE 27-1: MIPS32® INSTRUCTION SET (CONTINUED)
Instruction Description Function
Note 1: This instruction is deprecated and should not be used.
© 2009 Microchip Technology Inc. Preliminary DS61143F-page 115
PIC32MX3XX/4XX
JAL Jump and Link GPR[31] = PC + 8
PC = PC[31:28] || offset<<2
JALR Jump and Link Register Rd = PC + 8
PC = Rs
JALR.HB Jump and Link Register with Hazard Barrier Like JALR, but also clears execution and
instruction hazards
JR Jump Register PC = Rs
JR.HB Jump Register with Hazard Barrier Like JR, but also clears execution and
instruction hazards
LB Load Byte Rt = (byte)Mem[Rs+offset]
LBU Unsigned Load Byte Rt = (ubyte))Mem[Rs+offset]
LH Load Halfword Rt = (half)Mem[Rs+offset]
LHU Unsigned Load Halfword Rt = (uhalf)Mem[Rs+offset]
LL Load Linked Word Rt = Mem[Rs+offset>
LLbit = 1
LLAdr = Rs + offset
LUI Load Upper Immediate Rt = immediate << 16
LW Load Word Rt = Mem[Rs+offset]
LWPC Load Word, PC relative Rt = Mem[PC+offset]
LWL Load Word Left Re = Re MERGE Mem[Rs+offset]
LWR Load Word Right Re = Re MERGE Mem[Rs+offset]
MADD Multiply-Add HI | LO += (int)Rs * (int)Rt
MADDU Multiply-Add Unsigned HI | LO += (uns)Rs * (uns)Rt
MFC0 Move From Coprocessor 0 Rt = CPR[0, Rd, sel]
MFHI Move From HI Rd = HI
MFLO Move From LO Rd = LO
MOVN Move Conditional on Not Zero if Rt ¼ 0 then
Rd = Rs
MOVZ Move Conditional on Zero if Rt = 0 then
Rd = Rs
MSUB Multiply-Subtract HI | LO -= (int)Rs * (int)Rt
MSUBU Multiply-Subtract Unsigned HI | LO -= (uns)Rs * (uns)Rt
MTC0 Move To Coprocessor 0 CPR[0, n, Sel] = Rt
MTHI Move To HI HI = Rs
MTLO Move To LO LO = Rs
MUL Multiply with register write HI | LO =Unpredictable
Rd = ((int)Rs * (int)Rt)31..0
MULT Integer Multiply HI | LO = (int)Rs * (int)Rd
MULTU Unsigned Multiply HI | LO = (uns)Rs * (uns)Rd
NOP No Operation
(Assembler idiom for: SLL r0, r0, r0)
NOR Logical NOR Rd = ~(Rs | Rt)
OR Logical OR Rd = Rs | Rt
ORI Logical OR Immediate Rt = Rs | Immed
RDHWR Read Hardware Register (if enabled by HWREna
Register)
Re = HWR[Rd]
TABLE 27-1: MIPS32® INSTRUCTION SET (CONTINUED)
Instruction Description Function
Note 1: This instruction is deprecated and should not be used.
PIC32MX3XX/4XX
DS61143F-page 116 Preliminary © 2009 Microchip Technology Inc.
RDPGPR Read GPR from Previous Shadow Set Rt = SGPR[SRSCtlPSS, Rd]
ROTR Rotate Word Right Rd = Rtsa-1..0 || Rt31..sa
ROTRV Rotate Word Right Variable Rd = RtRs-1..0 || Rt31..Rs
SB Store Byte (byte)Mem[Rs+offset] = Rt
SC Store Conditional Word if LLbit = 1
mem[Rs+offset> = Rt
Rt = LLbit
SDBBP Software Debug Break Point Trap to SW Debug Handler
SEB Sign-Extend Byte Rd = SignExtend (Rs-7...0)
SEH Sign-Extend Half Rd = SignExtend (Rs-15...0)
SH Store Half (half)Mem[Rs+offset> = Rt
SLL Shift Left Logical Rd = Rt << sa
SLLV Shift Left Logical Variable Rd = Rt << Rs[4:0]
SLT Set on Less Than if (int)Rs < (int)Rt
Rd = 1
else
Rd = 0
SLTI Set on Less Than Immediate if (int)Rs < (int)Immed
Rt = 1
else
Rt = 0
SLTIU Set on Less Than Immediate Unsigned if (uns)Rs < (uns)Immed
Rt = 1
else
Rt = 0
SLTU Set on Less Than Unsigned if (uns)Rs < (uns)Immed
Rd = 1
else
Rd = 0
SRA Shift Right Arithmetic Rd = (int)Rt >> sa
SRAV Shift Right Arithmetic Variable Rd = (int)Rt >> Rs[4:0]
SRL Shift Right Logical Rd = (uns)Rt >> sa
SRLV Shift Right Logical Variable Rd = (uns)Rt >> Rs[4:0]
SSNOP Superscalar Inhibit No Operation NOP
SUB Integer Subtract Rt = (int)Rs - (int)Rd
SUBU Unsigned Subtract Rt = (uns)Rs - (uns)Rd
SW Store Word Mem[Rs+offset] = Rt
SWL Store Word Left Mem[Rs+offset] = Rt
SWR Store Word Right Mem[Rs+offset] = Rt
SYNC Synchronize Orders the cached coherent and
uncached loads and stores for access to
the shared memory
SYSCALL System Call SystemCallException
TEQ Trap if Equal if Rs == Rt
TrapException
TEQI Trap if Equal Immediate if Rs == (int)Immed
TrapException
TABLE 27-1: MIPS32® INSTRUCTION SET (CONTINUED)
Instruction Description Function
Note 1: This instruction is deprecated and should not be used.
© 2009 Microchip Technology Inc. Preliminary DS61143F-page 117
PIC32MX3XX/4XX
TGE Trap if Greater Than or Equal if (int)Rs >= (int)Rt
TrapException
TGEI Trap if Greater Than or Equal Immediate if (int)Rs >= (int)Immed
TrapException
TGEIU Trap if Greater Than or Equal Immediate Unsigned if (uns)Rs >= (uns)Immed
TrapException
TGEU Trap if Greater Than or Equal Unsigned if (uns)Rs >= (uns)Rt
TrapException
TLT Trap if Less Than if (int)Rs < (int)Rt
TrapException
TLTI Trap if Less Than Immediate if (int)Rs < (int)Immed
TrapException
TLTIU Trap if Less Than Immediate Unsigned if (uns)Rs < (uns)Immed
TrapException
TLTU Trap if Less Than Unsigned if (uns)Rs < (uns)Rt
TrapException
TNE Trap if Not Equal if Rs != Rt
TrapException
TNEI Trap if Not Equal Immediate if Rs != (int)Immed
TrapException
WAIT Wait for Interrupt Go to a low power mode and stall until
interrupt occurs
WRPGPR Write to GPR in Previous Shadow Set SGPR[SRSCtlPSS, Rd> = Rt
WSBH Word Swap Bytes Within Halfwords Rd = Rt23..16 || Rt31..24 || Rt7..0
|| Rt15..8
XOR Exclusive OR Rd = Rs ^ Rt
XORI Exclusive OR Immediate Rt = Rs ^ (uns)Immed
TABLE 27-1: MIPS32® INSTRUCTION SET (CONTINUED)
Instruction Description Function
Note 1: This instruction is deprecated and should not be used.
PIC32MX3XX/4XX
DS61143F-page 118 Preliminary © 2009 Microchip Technology Inc.
NOTES:
© 2009 Microchip Technology Inc. Preliminary DS61143F-page 119
PIC32MX3XX/4XX
28.0 ELECTRICAL CHARACTERISTICS
This section provides an overview of PIC32MX3XX/4XX electrical characteristics. Additional information will be provided
in future revisions of this document as it becomes available.
Absolute maximum ratings for the PIC32MX3XX/4XX are listed below. Exposure to these maximum rating conditions
for extended periods may affect device reliability. Functional operation of the device at these or any other conditions
above the parameters indicated in the operation listings of this specification is not implied.
Absolute Maximum Ratings (Note 1)
Ambient temperature under bias...............................................................................................................-40°C to +85°C
Storage temperature .............................................................................................................................. -65°C to +150°C
Voltage on VDD with respect to VSS ......................................................................................................... -0.3V to +4.0V
Voltage on any combined analog and digital pin and MCLR, with respect to VSS ......................... -0.3V to (VDD + 0.3V)
Voltage on any digital only pin with respect to VSS .................................................................................. -0.3V to +5.5V
Voltage on VDDCORE with respect to VSS ................................................................................................... -0.3V to 2.0V
Maximum current out of VSS pin(s) .......................................................................................................................300 mA
Maximum current into VDD pin(s) (Note 2)............................................................................................................300 mA
Maximum output current sunk by any I/O pin..........................................................................................................25 mA
Maximum output current sourced by any I/O pin ....................................................................................................25 mA
Maximum current sunk by all ports .......................................................................................................................200 mA
Maximum current sourced by all ports (Note 2)....................................................................................................200 mA
Note 1: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the
device. This is a stress rating only and functional operation of the device at those or any other conditions
above those indicated in the operation listings of this specification is not implied. Exposure to maximum
rating conditions for extended periods may affect device reliability.
2: Maximum allowable current is a function of device maximum power dissipation (see Table 28-2).
PIC32MX3XX/4XX
DS61143F-page 120 Preliminary © 2009 Microchip Technology Inc.
28.1 DC Characteristics
TABLE 28-1: OPERATING MIPS VS. VOLTAGE
Characteristic VDD Range
(in Volts)
Temp. Range
(in °C)
Max. Frequency
PIC32MX3XX/4XX
DC5 2.3-3.6V -40°C to +85°C 80 MHz (Note 1)
Note 1: 40 MHz maximum for PIC32MX 40MHz family variants.
TABLE 28-2: THERMAL OPERATING CONDITIONS
Rating Symbol Min. Typical Max. Unit
PIC32MX3XX/4XX
Operating Junction Temperature Range TJ-40 +125 °C
Operating Ambient Temperature Range TA-40 +85 °C
Power Dissipation:
Internal Chip Power Dissipation:
PINT = VDD x (IDD – S IOH) PDPINT + PI/OW
I/O Pin Power Dissipation:
I/O = S ({VDD – VOH} x IOH) + S (VOL x IOL))
Maximum Allowed Power Dissipation PDMAX (TJ – TA)/θJA W
TABLE 28-3: THERMAL PACKAGING CHARACTERISTICS
Characteristics Symbol Typical Max. Unit Notes
Package Thermal Resistance, 100-Pin TQFP (12x12x1 mm) θJA 43 °C/W 1
Package Thermal Resistance, 64-Pin TQFP (10x10x1 mm) θJA 47 °C/W 1
Package Thermal Resistance, 64-Pin QFN (9x9x0,9 mm) θJA 28 °C/W 1
Note 1: Junction to ambient thermal resistance, Theta-JA (θJA) numbers are achieved by package simulations.
TABLE 28-4: DC TEMPERATURE AND VOLTAGE SPECIFICATIONS
DC CHARACTERISTICS
Standard Operating Conditions: 2.3V to 3.6V
(unless otherwise stated)
Operating temperature -40°C TA +85°C for Industrial
Param.
No. Symbol Characteristics Min. Typical Max. Units Conditions
Operating Voltage
DC10 Supply Voltage
VDD 2.3 3.6 V
DC12 VDR RAM Data Retention Voltage
(Note 1)
1.75 V
DC16 VPOR VDD Start Voltage
to Ensure Internal
Power-on Reset Signal
1.75 1.95 V
DC17 SVDD VDD Rise Rate
to Ensure Internal
Power-on Reset Signal
0.05 — V/ms
Note 1: This is the limit to which VDD can be lowered without losing RAM data.
© 2009 Microchip Technology Inc. Preliminary DS61143F-page 121
PIC32MX3XX/4XX
TABLE 28-5: DC CHARACTERISTICS: OPERATING CURRENT (IDD)
DC CHARACTERISTICS
Standard Operating Conditions: 2.3V to 3.6V
(unless otherwise stated)
Operating temperature -40°C TA +85°C for Industrial
Parameter
No. Typical(3) Max. Units Conditions
Operating Current (IDD)
DC20 8.5 13 mA 4 MHz
DC20c 4.0 mA Code executing from SRAM
DC21 23.5 32 mA 20 MHz
(Note 4)
DC21c 16.4 mA Code executing from SRAM
DC22 48 61 mA 60 MHz
(Note 4)
DC22c 45 mA Code executing from SRAM
DC23 55 75 mA 2.3V 80 MHz
DC23c 55 mA Code executing from SRAM
DC24 100 µA -40°C
2.3V
LPRC (31 kHz)
(Note 4)
DC24a 130 µA +25°C
DC24b 670 µA +85°C
DC25 94 µA -40°C
3.3V
DC25a 125 µA +25°C
DC25b 302 µA +85°C
DC25c 71 µA Code executing from SRAM
DC26 110 µA -40°C
3.6VDC26a 180 µA +25°C
DC26b 700 µA +85°C
Note 1: A device’s IDD supply current is mainly a function of the operating voltage and frequency. Other factors,
such as PBCLK (Peripheral Bus Clock) frequency, number of peripheral modules enabled, internal code
execution pattern, execution from Program Flash memory vs. SRAM, I/O pin loading and switching rate,
oscillator type as well as temperature can have an impact on the current consumption.
2: The test conditions for IDD measurements are as follows: Oscillator mode = EC+PLL with OSC1 driven by
external square wave from rail to rail and PBCLK divisor = 1:8. CPU, Program Flash and SRAM data
memory are operational, Program Flash memory Wait states = 7, program cache and prefetch are dis-
abled and SRAM data memory Wait states = 1. All peripheral modules are disabled (ON bit = 0). WDT and
FSCM are disabled. All I/O pins are configured as inputs and pulled to VSS. MCLR = VDD.
3: Data in “Typical” column is at 3.3V, 25°C at specified operating frequency unless otherwise stated.
Parameters are for design guidance only and are not tested.
4: This parameter is characterized, but not tested in manufacturing.
PIC32MX3XX/4XX
DS61143F-page 122 Preliminary © 2009 Microchip Technology Inc.
TABLE 28-6: DC CHARACTERISTICS: IDLE CURRENT (IIDLE)
DC CHARACTERISTICS
Standard Operating Conditions: 2.3V to 3.6V
(unless otherwise stated)
Operating temperature -40°C TA +85°C for Industrial
Parameter
No. Typical(2) Max. Units Conditions
Idle Current (IIDLE): Core OFF, Clock ON Base Current (Note 1)
DC30 5 mA 2.3V
4 MHzDC30a 1.4 mA
DC30b 5 mA 3.6V
DC31 15 mA 2.3V
20 MHz,
(Note 3)
DC31a 13 mA
DC31b 17 mA 3.6V
DC32 22 mA 2.3V
60 MHz
(Note 3)
DC32a 20 mA
DC32b 25 mA 3.6V
DC33 29 mA 2.3V
80 MHzDC33a 24 mA
DC33b 32 mA 3.6V
DC34 36 µA -40°C
2.3V
LPRC (31 kHz)
(Note 3)
DC34a 62 µA +25°C
DC34b 392 µA +85°C
DC35 35 µA -40°C
3.3VDC35a 65 µA +25°C
DC35b 242 µA +85°C
DC36 43 µA -40°C
3.6VDC36a 106 µA +25°C
DC36b 414 µA +85°C
Note 1: The test conditions for base IDLE current measurements are as follows: System clock is enabled and
PBCLK divisor = 1:8. CPU in Idle mode (CPU core halted). Only digital peripheral modules are enabled
(ON bit = 1) and being clocked. WDT and FSCM are disabled. All I/O pins are configured as inputs and
pulled to VSS. MCLR = VDD.
2: Data in “Typical” column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance
only and are not tested.
3: This parameter is characterized, but not tested in manufacturing.
© 2009 Microchip Technology Inc. Preliminary DS61143F-page 123
PIC32MX3XX/4XX
TABLE 28-7: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD)
DC CHARACTERISTICS Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated)
Operating temperature -40°C TA +85°C for Industrial
Parameter
No. Typical(2) Max. Units Conditions
Power-Down Current (IPD) (Note 1)
DC40 7 30 μA-40°C
2.3V Base Power-Down Current (Note 6)DC40a 24 30 μA+25°C
DC40b 205 300 μA+85°C
DC40c 25 μA +25°C 3.3V Base Power-Down Current
DC40d 9 70 μA-40°C
3.6V Base Power-Down Current
DC40e 25 70 μA+25°C
DC40g 115 200
(Note 5)
μA+70°C
DC40f 200 400 μA+85°C
Module Differential Current
DC41 10 μA-40°C
2.3V Watchdog Timer Current: ΔIWDT (Notes 3, 6)DC41a 10 μA+25°C
DC41b 10 μA+85°C
DC41c 5 μA +25°C 3.3V Watchdog Timer Current: ΔIWDT (Note 3)
DC41d 10 μA-40°C
3.6V Watchdog Timer Current: ΔIWDT (Note 3)DC41e 10 μA+25°C
DC41f 12 μA+85°C
DC42 10 μA-40°C
2.3V RTCC + Timer1 w/32kHz Crystal: ΔIRTCC
(Notes 3, 6)
DC42a 17 μA+25°C
DC42b 37 μA+85°C
DC42c 23 μA +25°C 3.3V RTCC + Timer1 w/32kHz Crystal: ΔIRTCC
(Note 3)
DC42e 10 μA-40°C
3.6V RTCC + Timer1 w/32kHz Crystal: ΔIRTCC
(Note 3)
DC42f 30 μA+25°C
DC42g 44 μA+85°C
DC42 1100 μA-40°C
2.5V ADC: ΔIADC (Notes 3, 4, 6)DC42a 1100 μA+25°C
DC42b 1000 μA+85°C
DC42c 880 μA ADC: ΔIADC (Notes 3, 4)
DC42e 1100 μA-40°C
3.6V ADC: ΔIADC (Notes 3, 4)DC42f 1100 μA+25°C
DC42g 1000 μA+85°C
Note 1: Base IPD is measured with all digital peripheral modules enabled (ON bit = 1) and being clocked, CPU clock
is disabled. All I/Os are configured as outputs and pulled low. WDT and FSCM are disabled.
2: Data in the “Typical” column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance
only and are not tested.
3: The Δ current is the additional current consumed when the module is enabled. This current should be
added to the base IPD current.
4: Test conditions for ADC module differential current are as follows: Internal ADC RC oscillator enabled.
5: Data is characterized at +70°C and not tested. Parameter is for design guidance only.
6: This parameter is characterized, but not tested in manufacturing.
PIC32MX3XX/4XX
DS61143F-page 124 Preliminary © 2009 Microchip Technology Inc.
TABLE 28-8: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS
DC CHARACTERISTICS
Standard Operating Conditions: 2.3V to 3.6V (unless otherwise
stated)
Operating temperature -40°C TA +85°C for Industrial
Param.
No. Symbol Characteristics Min. Typical(1) Max. Units Conditions
VIL Input Low Voltage
DI10 I/O pins:
with TTL Buffer VSS —0.15VDD V(Note 4)
with Schmitt Trigger Buffer VSS —0.2VDD V(Note 4)
DI15 MCLR VSS —0.2VDD V(Note 4)
DI16 OSC1 (XT mode) VSS —0.2VDD V(Note 4)
DI17 OSC1 (HS mode) VSS —0.2VDD V(Note 4)
DI18 SDAx, SCLx VSS —0.3VDD V SMBus disabled
(Note 4)
DI19 SDAx, SCLx VSS 0.8 V SMBus enabled
(Note 4)
VIH Input High Voltage
DI20 I/O pins:
with Analog Functions 0.8 VDD —VDD V(Note 4)
Digital Only 0.8 VDD —V
(Note 4)
with TTL Buffer 0.25VDD + 0.8V—5.5V
(Note 4)
with Schmitt Trigger Buffer 0.8 VDD —5.5V
(Note 4)
DI25 MCLR 0.8 VDD —VDD V(Note 4)
DI26 OSC1 (XT mode) 0.7 VDD —VDD V(Note 4)
DI27 OSC1 (HS mode) 0.7 VDD —VDD V(Note 4)
DI28 SDAx, SCLx 0.7 VDD 5.5 V SMBus disabled
(Note 4)
DI29 SDAx, SCLx 2.1 5.5 V SMBus enabled,
2.3V VPIN 5.5
(Note 4)
DI30 ICNPU CNxx Pull up Current 50 250 400 μAVDD = 3.3V, VPIN = VSS
IIL Input Leakage Current
(Note 3)
DI50 I/O Ports +1μAVSS VPIN VDD,
Pin at high-impedance
DI51 Analog Input Pins +1μAVSS VPIN VDD,
Pin at high-impedance
DI55 MCLR ——+1μAVSS VPIN VDD
DI56 OSC1 +1μAVSS VPIN VDD,
XT and HS modes
Note 1: Data in “Typical” column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance
only and are not tested.
2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified
levels represent normal operating conditions. Higher leakage current may be measured at different input
voltages.
3: Negative current is defined as current sourced by the pin.
4: This parameter is characterized, but not tested in manufacturing.
© 2009 Microchip Technology Inc. Preliminary DS61143F-page 125
PIC32MX3XX/4XX
TABLE 28-9: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS
DC CHARACTERISTICS
Standard Operating Conditions: 2.3V to 3.6V (unless otherwise
stated)
Operating temperature -40°C TA +85°C for Industrial
Param.
No. Symbol Characteristics Min. Typical Max. Units Conditions
VOL Output Low Voltage
DO10 I/O Ports 0.4 V IOL = 7 mA, VDD = 3.6V
——0.4VI
OL = 6 mA, VDD = 2.3V
DO16 OSC2/CLKO 0.4 V IOL = 3.5 mA, VDD = 3.6V
——0.4VI
OL = 2.5 mA, VDD = 2.3V
VOH Output High Voltage
DO20 I/O Ports 2.4 V IOH = -12 mA, VDD = 3.6V
1.4 V IOH = -12 mA, VDD = 2.3V
DO26 OSC2/CLKO 2.4 V IOH = -12 mA, VDD = 3.6V
1.4 V IOH = -12 mA, VDD = 2.3V
TABLE 28-10: DC CHARACTERISTICS: PROGRAM MEMORY(3)
DC CHARACTERISTICS
Standard Operating Conditions: 2.3V to 3.6V
(unless otherwise stated)
Operating temperature -40°C TA +85°C for Industrial
Programming temperature 0°C TA +70°C (25°C recommended)
Param.
No. Symbol Characteristics Min. Typical(1) Max. Units Conditions
Program Flash Memory
D130 EPCell Endurance 1000 E/W -40°C to +85°C
D131 VPR VDD for Read VMIN —3.6VVMIN = Minimum operating
voltage
D132 VPEW VDD for Erase or Write 3.0 3.6 V 0°C to +40°C
D134 TRETD Characteristic Retention 20 Year Provided no other specifications
are violated
D135 IDDP Supply Current during
Programming
10 mA 0°C to +40°C
TWW Word Write Cycle Time 20 40 μs 0°C to +40°C
D136 TRW Row Write Cycle Time
(Note 2)
(128 words per row)
3 4.5 ms 0°C to +40°C
D137 TPE Page Erase Cycle Time 20 ms 0°C to +40°C
TCE Chip Erase Cycle Time 80 ms 0°C to +40°C
Note 1: Data in “Typical” column is at 3.3V, 25°C unless otherwise stated.
2: The minimum SYSCLK for row programming is 4 MHz. Care should be taken to minimize bus activities
during row programming, such as suspending any memory-to-memory DMA operations. If heavy bus
loads are expected, selecting Bus Matrix Arbitration mode 2 (rotating priority) may be necessary. The
default Arbitration mode is mode 1 (CPU has lowest priority).
3: Refer to PIC32MX Flash Programming Specification (DS61145) for operating conditions during
programming and erase cycles.
PIC32MX3XX/4XX
DS61143F-page 126 Preliminary © 2009 Microchip Technology Inc.
TABLE 28-11: PROGRAM FLASH MEMORY WAIT STATE CHARACTERISTICS
DC CHARACTERISTICS
Standard Operating Conditions: 2.3V to 3.6V
(unless otherwise stated)
Operating temperature -40°C TA +85°C for Industrial
Required Flash wait states SYSCLK Units Comments
0 Wait State 0 to 30 MHz
1 Wait State 31 to 60
2 Wait States 61 to 80
Note 1: 40 MHz maximum for PIC32MX 40MHz family variants.
TABLE 28-12: COMPARATOR SPECIFICATIONS
DC CHARACTERISTICS
Standard Operating Conditions: 2.3V to 3.6V
(unless otherwise stated)
Operating temperature-40°C
TA
+85°C for Industrial
Param.
No. Symbol Characteristics Min. Typical Max. Units Comments
D300 VIOFF Input Offset Voltage —±7.5±25mV AV
DD = VDD,
AVSS = VSS
D301 VICM Input Common Mode Voltage 0 VDD VAVDD = VDD,
AVSS = VSS
(Note 2)
D302 CMRR Common Mode Rejection Ratio 55 dB Max VICM = (VDD - 1)V
(Note 2)
D303 TRESP Response Time 150 400 nsec AVDD = VDD,
AVSS = VSS
(Notes 1, 2)
D304 ON2OV Comparator Enabled to Output
Valid
——10μs Comparator module is
configured before setting
the comparator ON bit.
(Note 2)
Note 1: Response time measured with one comparator input at (VDD 1.5)/2, while the other input transitions
from VSS to VDD.
2: These parameters are characterized but not tested.
TABLE 28-13: VOLTAGE REFERENCE SPECIFICATIONS
DC CHARACTERISTICS
Standard Operating Conditions: 2.3V to 3.6V
(unless otherwise stated)
Operating temperature-40°C
TA
+85°C for Industrial
Param.
No. Symbol Characteristics Min. Typical Max. Units Comments
D310 VRES Resolution VDD/24 VDD/32 LSb
D311 VRAA Absolute Accuracy 1/2 LSb
D312 TSET Settling Time(1) — — 10 μs
Note 1: Settling time measured while CVRR = 1 and CVR3:CVR0 transitions from ‘0000’ to1111’. This
parameter is characterized, but not tested in manufacturing.
© 2009 Microchip Technology Inc. Preliminary DS61143F-page 127
PIC32MX3XX/4XX
TABLE 28-14: INTERNAL VOLTAGE REGULATOR SPECIFICATIONS
DC CHARACTERISTICS
Standard Operating Conditions: 2.3V to 3.6V
(unless otherwise stated)
Operating temperature-40°C
TA
+85°C for Industrial
Param.
No. Symbol Characteristics Min. Typical Max. Units Comments
D320 VDDCORE Regulator Output Voltage 1.62 1.80 1.98 V
D321 CEFC External Filter Capacitor Value 4.7 10 μF Capacitor must be low series
resistance (< 3 ohms)
D322 TPWRT 64 ms ENVREG = 0
PIC32MX3XX/4XX
DS61143F-page 128 Preliminary © 2009 Microchip Technology Inc.
28.2 AC Characteristics and Timing
Parameters
The information contained in this section defines
PIC32MX3XX/4XX AC characteristics and timing
parameters.
FIGURE 28-1: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS
FIGURE 28-2: EXTERNAL CLOCK TIMING
TABLE 28-15: AC CHARACTERISTICS
AC CHARACTERISTICS
Standard Operating Conditions: 2.3V to 3.6V
(unless otherwise stated)
Operating temperature -40°C TA +85°C for Industrial
Operating voltage VDD range.
VDD/2
CL
RL
Pin
Pin
VSS
VSS
CL
RL=464Ω
CL= 50 pF for all pins
50 pF for OSC2 pin (EC mode)
Load Condition 1 – for all pins except OSC2 Load Condition 2 – for OSC2
TABLE 28-16: CAPACITIVE LOADING REQUIREMENTS ON OUTPUT PINS
AC CHARACTERISTICS
Standard Operating Conditions: 2.3V to 3.6V
(unless otherwise stated)
Operating temperature -40°C TA +85°C for Industrial
Param.
No. Symbol Characteristics Min. Typical(1) Max. Units Conditions
DO56 CIO All I/O pins and OSC2 50 pF EC mode
DO58 CBSCLx, SDAx 400 pF In I2C™ mode
Note 1: Data in “Typical” column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only
and are not tested.
OSC1
OS20 OS30
OS30
OS31
OS31
© 2009 Microchip Technology Inc. Preliminary DS61143F-page 129
PIC32MX3XX/4XX
TABLE 28-17: EXTERNAL CLOCK TIMING REQUIREMENTS
AC CHARACTERISTICS
Standard Operating Conditions: 2.3V to 3.6V
(unless otherwise stated)
Operating temperature -40°C TA +85°C for Industrial
Param.
No. Symbol Characteristics Min. Typical(1) Max. Units Conditions
OS10 FOSC External CLKI Frequency
(External clocks allowed only
in EC and ECPLL modes)
DC
4
50 (Note 3)
50 (Note 5)
MHz
MHz
EC (Note 5)
ECPLL (Note 4)
OS11 Oscillator Crystal Frequency 3 10 MHz XT (Note 5)
OS12 4 10 MHz XTPLL
(Notes 4, 5)
OS13 10 25 MHz HS (Note 5)
OS14 10 25 MHz HSPLL
(Notes 4, 5)
OS15 32 32.768 100 kHz SOSC (Note 5)
OS20 TOSC TOSC = 1/FOSC = TCY (Note 2) See parameter
OS10 for FOSC
value
OS30 TOSL,
TOSH
External Clock In (OSC1)
High or Low Time
0.45 x TOSC ——nsecEC (Note 5)
OS31 TOSR,
TOSF
External Clock In (OSC1)
Rise or Fall Time
0.05 x TOSC nsec EC (Note 5)
OS40 TOST Oscillator Start-up Timer Period
(Only applies to HS, HSPLL,
XT, XTPLL and SOSC Clock
Oscillator modes)
1024 TOSC (Note 5)
OS41 TFSCM Primary Clock Fail Safe
Time-out Period
—2ms(Note 5)
OS42 GMExternal Oscillator
Transconductance
—12—mA/VVDD = 3.3V
TA = +25°C
(Note 5)
Note 1: Data in “Typical” column is at 3.3V, 25°C unless otherwise stated. Parameters are characterized but are
not tested.
2: Instruction cycle period (TCY) equals the input oscillator time base period. All specified values are based on
characterization data for that particular oscillator type under standard operating conditions with the device
executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or
higher than expected current consumption. All devices are tested to operate at “min.” values with an exter-
nal clock applied to the OSC1/CLKI pin.
3: 40 MHz maximum for PIC32MX 40 MHz family variants.
4: PLL input requirements: 4 MHZ FPLLIN 5 MHZ (use PLL prescaler to reduce FOSC). This parameter is
characterized, but tested at 10 MHz only at manufacturing.
5: This parameter is characterized, but not tested in manufacturing.
PIC32MX3XX/4XX
DS61143F-page 130 Preliminary © 2009 Microchip Technology Inc.
TABLE 28-18: PLL CLOCK TIMING SPECIFICATIONS (VDD = 2.3V TO 3.6V)
AC CHARACTERISTICS
Standard Operating Conditions: 2.3V to 3.6V
(unless otherwise stated)
Operating temperature -40°C TA +85°C for Industrial
Param.
No. Symbol Characteristics(1) Min. Typical(2) Max. Units Conditions
OS50 FPLLI PLL Voltage Controlled
Oscillator (VCO) Input
Frequency Range
4 5 MHz ECPLL, HSPLL, XTPLL,
FRCPLL modes
OS51 FSYS On-Chip VCO System
Frequency
60 120 MHz
OS52 TLOCK PLL Start-up Time (Lock Time) 2 ms
OS53 DCLK CLKO Stability
(Period Jitter or Cumulative)
-0.25 +0.25 % Measured over 100 ms
period
Note 1: These parameters are characterized, but not tested in manufacturing.
2: Data in “Typical” column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance
only and are not tested.
TABLE 28-19: INTERNAL FRC ACCURACY
AC CHARACTERISTICS
Standard Operating Conditions: 2.3V to 3.6V
(unless otherwise stated)
Operating temperature -40°C TA +85°C for industrial
Param.
No. Characteristics Min. Typical Max. Units Conditions
Internal FRC Accuracy @ 8.00 MHz (Note 1)
F20 FRC -2 +2 %
Note 1: Frequency calibrated at 25°C and 3.3V. TUN bits can be used to compensate for temperature drift.
TABLE 28-20: INTERNAL RC ACCURACY
AC CHARACTERISTICS
Standard Operating Conditions: 2.3V to 3.6V
(unless otherwise stated)
Operating temperature -40°C TA +85°C for Industrial
Param.
No. Characteristics Min. Typical Max. Units Conditions
LPRC @ 31.25 kHz (Note 1)
F21 -15 +15 %
Note 1: Change of LPRC frequency as VDD changes.
© 2009 Microchip Technology Inc. Preliminary DS61143F-page 131
PIC32MX3XX/4XX
FIGURE 28-3: I/O TIMING CHARACTERISTICS
Note: Refer to Figure 28-1 for load conditions.
I/O Pin
(Input)
I/O Pin
(Output)
DI35
DI40
DO31
DO32
TABLE 28-21: I/O TIMING REQUIREMENTS
AC CHARACTERISTICS
Standard Operating Conditions: 2.3V to 3.6V
(unless otherwise stated)
Operating temperature -40°C TA +85°C for Industrial
Param.
No. Symbol Characteristics(2) Min. Typical(1) Max. Units Conditions
DO31 TIOR Port Output Rise Time 5 10 nsec
DO32 TIOF Port Output Fall Time 5 10 nsec
DI35 TINP INTx Pin High or Low Time 10 nsec
DI40 TRBP CNx High or Low Time (input) 2 TSYSCLK
Note 1: Data in “Typical” column is at 3.3V, 25°C unless otherwise stated.
2: This parameter is characterized, but not tested in manufacturing.
PIC32MX3XX/4XX
DS61143F-page 132 Preliminary © 2009 Microchip Technology Inc.
FIGURE 28-4: POWER-ON RESET TIMING CHARACTERISTICS
VDD
VPOR
Note 1: The Power-up period will be extended if the Power-up sequence completes before the device
exits from BOR (VDD < VDDMIN).
2: Includes interval voltage regulator stabilization delay.
3: Power-Up Timer (PWRT); only active when the internal voltage regulator is disabled
SY00
Power Up Sequence
(Note 2)
VDD
VPOR VDDCORE
External VDDCORE Provided
Internal Voltage Regulator Enabled
(TPU)
SY10
SY01
Power Up Sequence
(Note 3)
CPU starts fetching code
CPU starts fetching code
(TPWRT)
Clock Sources = (HS, HSPLL, XT, XTPLL and SOSC)
VDD
VPOR
SY00
Power Up Sequence
(Note 2)
Internal Voltage Regulator Enabled
(TPU)
(T
SYSDLY)
CPU starts fetching code
(Note 1)
(Note 1)
(Note 1)
Clock Sources = (FRC, FRCDIV, FRCDIV16, FRCPLL, EC, ECPLL and LPRC)
Clock Sources = (FRC, FRCDIV, FRCDIV16, FRCPLL, EC, ECPLL and LPRC)
(TOST)
SY02
(TSYSDLY)
SY02
(T
SYSDLY)
SY02
© 2009 Microchip Technology Inc. Preliminary DS61143F-page 133
PIC32MX3XX/4XX
FIGURE 28-5: EXTERNAL RESET TIMING CHARACTERISTICS
TABLE 28-22: RESETS TIMING
MCLR
(SY20)
Reset Sequence
(SY10)
CPU starts fetching code
BOR
(SY30)
TOST
TMCLR
TBOR
Reset Sequence
CPU starts fetching code
Clock Sources = (FRC, FRCDIV, FRCDIV16, FRCPLL, EC, ECPLL and LPRC)
Clock Sources = (HS, HSPLL, XT, XTPLL and SOSC) (TSYSDLY)
SY02
(T
SYSDLY)
SY02
AC CHARACTERISTICS
Standard Operating Conditions: 2.3V to 3.6V
(unless otherwise stated)
Operating temperature -40°C TA +85°C for Industrial
Param.
No. Symbol Characteristics(1) Min. Typical(2) Max. Units Conditions
SY00 TPU Power-up Period
Internal Voltage Regulator Enabled
—400600
μs -40°C to +85°C
SY01 TPWRT Power-up Period
External VDDCORE Applied
(Power-Up-Timer Active)
48 64 80 ms -40°C to +85°C
SY02 TSYSDLY System Delay Period:
Time required to reload Device
Configuration Fuses plus SYSCLK
delay before first instruction is
fetched.
1 μs
+
8 SYSCLK
cycles
——
-40°C to +85°C
SY20 TMCLR MCLR Pulse Width (low) 2μs -40°C to +85°C
SY30 TBOR BOR Pulse Width (low) —1
μs -40°C to +85°C
Note 1: These parameters are characterized, but not tested in manufacturing.
2: Data in “Typ” column is at 3.3V, 25°C unless otherwise stated. Characterized by design but not tested.
PIC32MX3XX/4XX
DS61143F-page 134 Preliminary © 2009 Microchip Technology Inc.
FIGURE 28-6: TIMER1, 2, 3, 4, 5 EXTERNAL CLOCK TIMING CHARACTERISTICS
Note: Refer to Figure 28-1 for load conditions.
Tx11
Tx15
Tx10
Tx20
TMRx
OS60
TxCK
TABLE 28-23: TIMER1 EXTERNAL CLOCK TIMING REQUIREMENTS(1)
AC CHARACTERISTICS
Standard Operating Conditions: 2.3V to 3.6V
(unless otherwise stated)
Operating temperature -40°C TA +85°C for Industrial
Param.
No. Symbol Characteristics(2) Min. Typical Max. Units Conditions
TA10 TTXHTxCK
High Time
Synchronous,
with prescaler
[(12.5nsec or 1TPB) / N]
+ 25nsec
nsec Must also meet
parameter TA15.
Asynchronous,
with prescaler
10 nsec
TA11 TTXLTxCK
Low Time
Synchronous,
with prescaler
[(12.5nsec or 1TPB) / N]
+ 25nsec
nsec Must also meet
parameter TA15.
Asynchronous,
with prescaler
10 nsec
TA15 TTXPTxCK
Input Period
Synchronous,
with prescaler
[(25nsec or 2TPB) / N]
+ 50nsec
nsec
Asynchronous,
with prescaler
20 nsec N = prescale
value
(1, 8, 64, 256)
OS60 FT1 SOSC1/T1CK Oscillator
Input Frequency Range
(oscillator enabled by set-
ting TCS bit (T1CON<1>))
32 100 kHz
TA20 TCKEXT-
MRL
Delay from External TxCK
Clock Edge to Timer Incre-
ment
—1TPB
Note 1: Timer1 is a Type A.
2: This parameter is characterized, but not tested in manufacturing.
© 2009 Microchip Technology Inc. Preliminary DS61143F-page 135
PIC32MX3XX/4XX
FIGURE 28-7: INPUT CAPTURE (CAPx) TIMING CHARACTERISTICS
TABLE 28-24: TIMER2, 3, 4, 5 EXTERNAL CLOCK TIMING REQUIREMENTS
AC CHARACTERISTICS
Standard Operating Conditions: 2.3V to 3.6V
(unless otherwise stated)
Operating temperature -40°C TA +85°C for Industrial
Param.
No. Symbol Characteristics(1) Min. Max. Units Conditions
TB10 TTXHTxCK
High Time
Synchronous,
with prescaler
[(12.5nsec or 1TPB) / N]
+ 25nsec
nsec Must also meet
parameter
TB15.
N = prescale
value
(1, 2, 4, 8, 16,
32, 64, 256)
TB11 TTXLTxCK
Low Time
Synchronous,
with prescaler
[(12.5nsec or 1TPB) / N]
+ 25nsec
nsec Must also meet
parameter
TB15.
TB15 TTXPTxCK
Input Period
Synchronous,
with prescaler
[(25nsec or 2TPB) / N]
+ 50nsec
—nsec
TB20 TCKEXT-
MRL
Delay from External TxCK
Clock Edge to Timer Incre-
ment
—1TPB
Note 1: These parameters are characterized, but not tested in manufacturing.
TABLE 28-25: INPUT CAPTURE MODULE TIMING REQUIREMENTS
AC CHARACTERISTICS
Standard Operating Conditions: 2.3V to 3.6V
(unless otherwise stated)
Operating temperature -40°C TA +85°C for Industrial
Param.
No. Symbol Characteristics(1) Min. Max. Units Conditions
IC10 TCCL ICx Input Low Time [(12.5nsec or 1TPB) / N]
+ 25nsec
nsec Must also
meet
parameter
IC15.
N = prescale
value (1, 4, 16)
IC11 TCCH ICx Input High Time [(12.5nsec or 1TPB) / N]
+ 25nsec
—nsec
Must also
meet
parameter
IC15.
IC15 TCCP ICx Input Period [(25nsec or 2TPB) / N]
+ 50nsec
—nsec
Note 1: These parameters are characterized, but not tested in manufacturing.
ICx
IC10 IC11
IC15
Note: Refer to Figure 28-1 for load conditions.
PIC32MX3XX/4XX
DS61143F-page 136 Preliminary © 2009 Microchip Technology Inc.
FIGURE 28-8: OUTPUT COMPARE MODULE (OCx) TIMING CHARACTERISTICS
TABLE 28-26: OUTPUT COMPARE MODULE TIMING REQUIREMENTS
FIGURE 28-9: OC/PWM MODULE TIMING CHARACTERISTICS
OCx
OC11 OC10
(Output Compare
Note: Refer to Figure 28-1 for load conditions.
or PWM Mode)
AC CHARACTERISTICS
Standard Operating Conditions: 2.3V to 3.6V
(unless otherwise stated)
Operating temperature -40°C TA +85°C for Industrial
Param.
No. Symbol Characteristics(1) Min. Typical(2) Max. Units Conditions
OC10 TCCF OCx Output Fall Time nsec See parameter DO32.
OC11 TCCR OCx Output Rise Time nsec See parameter DO31.
Note 1: These parameters are characterized, but not tested in manufacturing.
2: Data in “Typical” column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only
and are not tested.
OCFA/OCFB
OCx
OC20
OC15
Note: Refer to Figure 28-1 for load conditions.
TABLE 28-27: SIMPLE OC/PWM MODE TIMING REQUIREMENTS
AC CHARACTERISTICS
Standard Operating Conditions: 2.3V to 3.6V
(unless otherwise stated)
Operating temperature -40°C TA +85°C for Industrial
Param
No. Symbol Characteristics(1) Min Typical(2) Max Units Conditions
OC15 TFD Fault Input to PWM I/O Change 25 nsec
OC20 TFLT Fault Input Pulse Width 50 nsec
Note 1: These parameters are characterized, but not tested in manufacturing.
2: Data in “Typical” column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only
and are not tested.
© 2009 Microchip Technology Inc. Preliminary DS61143F-page 137
PIC32MX3XX/4XX
FIGURE 28-10: SPIx MODULE MASTER MODE (CKE = 0) TIMING CHARACTERISTICS
TABLE 28-28: SPIx MASTER MODE (CKE = 0) TIMING REQUIREMENTS
AC CHARACTERISTICS
Standard Operating Conditions: 2.3V to 3.6V
(unless otherwise stated)
Operating temperature -40°C TA +85°C for Industrial
Param.
No. Symbol Characteristics(1) Min. Typical(2) Max. Units Conditions
SP10 TSCLSCKx Output Low Time
(Note 3)
TSCK/2 nsec
SP11 TSCH SCKx Output High Time
(Note 3)
TSCK/2 ——nsec
SP20 TSCF SCKx Output Fall Time
(Note 4)
——nsec
See parameter DO32.
SP21 TSCR SCKx Output Rise Time
(Note 4)
——
nsec See parameter DO31.
SP30 TDOF SDOx Data Output Fall Time
(Note 4)
——
nsec See parameter DO32.
SP31 TDOR SDOx Data Output Rise Time
(Note 4)
——
nsec See parameter DO31.
SP35 TSCH2DOV,
TSCL2DOV
SDOx Data Output Valid after
SCKx Edge
——
15 nsec
SP40 TDIV2SCH,
TDIV2SCL
Setup Time of SDIx Data Input
to SCKx Edge
10 ——nsec
SP41 TSCH2DIL,
TSCL2DIL
Hold Time of SDIx Data Input
to SCKx Edge
10 ——nsec
Note 1: These parameters are characterized, but not tested in manufacturing.
2: Data in “Typical” column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance
only and are not tested.
3: The minimum clock period for SCKx is 40 nsec. Therefore, the clock generated in Master mode must not
violate this specification.
4: Assumes 50 pF load on all SPIx pins.
SCKx
(CKP = 0)
SCKx
(CKP = 1)
SDOx
SDIx
SP11 SP10
SP40 SP41
SP21
SP20
SP35
SP20
SP21
MSb LSb
Bit 14 - - - - - -1
MSb In LSb In
Bit 14 - - - -1
SP30
SP31
Note: Refer to Figure 28-1 for load conditions.
PIC32MX3XX/4XX
DS61143F-page 138 Preliminary © 2009 Microchip Technology Inc.
FIGURE 28-11: SPIx MODULE MASTER MODE (CKE = 1) TIMING CHARACTERISTICS
TABLE 28-29: SPIx MODULE MASTER MODE (CKE = 1) TIMING REQUIREMENTS
AC CHARACTERISTICS
Standard Operating Conditions: 2.3V to 3.6V
(unless otherwise stated)
Operating temperature -40°C TA +85°Cfor Industrial
Param.
No. Symbol Characteristics(1) Min. Typical(2) Max. Units Conditions
SP10 TSCLSCKx Output Low Time
(Note 3)
TSCK/2 nsec
SP11 TSCH SCKx Output High Time
(Note 3)
TSCK/2 nsec
SP20 TSCF SCKx Output Fall Time
(Note 4)
——nsec
See parameter DO32.
SP21 TSCR SCKx Output Rise Time
(Note 4)
——
nsec See parameter DO31.
SP30 TDOF SDOx Data Output Fall Time
(Note 4)
——
nsec See parameter DO32.
SP31 TDOR SDOx Data Output Rise Time
(Note 4)
——
nsec See parameter DO31.
SP35 TSCH2DOV,
TSCL2DOV
SDOx Data Output Valid after
SCKx Edge
——
15 nsec
SP36 TDOV2SC,
TDOV2SCL
SDOx Data Output Setup to
First SCKx Edge
15 nsec
SP40 TDIV2SCH,
TDIV2SCL
Setup Time of SDIx Data Input
to SCKx Edge
10 nsec
Note 1: These parameters are characterized, but not tested in manufacturing.
2: Data in “Typical” column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only
and are not tested.
3: The minimum clock period for SCKx is 40 nsec. Therefore, the clock generated in Master mode must not
violate this specification.
4: Assumes 50 pF load on all SPIx pins.
SCKX
(CKP = 0)
SCKX
(CKP = 1)
SDOX
SDIX
SP36
SP30,SP31
SP35
MSb
MSb In
Bit 14 - - - - - -1
LSb In
Bit 14 - - - -1
LSb
Note: Refer to Figure 28-1 for load conditions.
SP11 SP10 SP20
SP21
SP21
SP20
SP40 SP41
© 2009 Microchip Technology Inc. Preliminary DS61143F-page 139
PIC32MX3XX/4XX
FIGURE 28-12: SPIx MODULE SLAVE MODE (CKE = 0) TIMING CHARACTERISTICS
SP41 TSCH2DIL,
TSCL2DIL
Hold Time of SDIx Data Input
to SCKx Edge
10 nsec
TABLE 28-29: SPIx MODULE MASTER MODE (CKE = 1) TIMING REQUIREMENTS (CONTINUED)
AC CHARACTERISTICS
Standard Operating Conditions: 2.3V to 3.6V
(unless otherwise stated)
Operating temperature -40°C TA +85°Cfor Industrial
Param.
No. Symbol Characteristics(1) Min. Typical(2) Max. Units Conditions
Note 1: These parameters are characterized, but not tested in manufacturing.
2: Data in “Typical” column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only
and are not tested.
3: The minimum clock period for SCKx is 40 nsec. Therefore, the clock generated in Master mode must not
violate this specification.
4: Assumes 50 pF load on all SPIx pins.
SSX
SCKX
(CKP = 0)
SCKX
(CKP = 1)
SDOX
SP50
SP40 SP41
SP30,SP31 SP51
SP35
MSb LSb
Bit 14 - - - - - -1
MSb In Bit 14 - - - -1 LSb In
SP52
SP73
SP72
SP72
SP73
SP71 SP70
Note: Refer to Figure 28-1 for load conditions.
SDIX
PIC32MX3XX/4XX
DS61143F-page 140 Preliminary © 2009 Microchip Technology Inc.
TABLE 28-30: SPIx MODULE SLAVE MODE (CKE = 0) TIMING REQUIREMENTS
AC CHARACTERISTICS
Standard Operating Conditions: 2.3V to 3.6V
(unless otherwise stated)
Operating temperature -40°C TA +85°C for Industrial
Param.
No. Symbol Characteristics(1) Min. Typical(2) Max. Units Conditions
SP70 TSCL SCKx Input Low Time
(Note 3)
TSCK/2 nsec
SP71 TSCH SCKx Input High Time
(Note 3)
TSCK/2 nsec
SP72 TSCF SCKx Input Fall Time 5 10 nsec
SP73 TSCR SCKx Input Rise Time 510
nsec
SP30 TDOF SDOx Data Output Fall Time
(Note 4)
nsec See parameter DO32.
SP31 TDOR SDOx Data Output Rise Time
(Note 4)
——nsec
See parameter DO31.
SP35 TSCH2DOV,
TSCL2DOV
SDOx Data Output Valid after
SCKx Edge
——
15 nsec
SP40 TDIV2SCH,
TDIV2SCL
Setup Time of SDIx Data Input
to SCKx Edge
10 nsec
SP41 TSCH2DIL,
TSCL2DIL
Hold Time of SDIx Data Input
to SCKx Edge
10 nsec
SP50 TSSL2SCH,
TSSL2SCL
SSx to SCKx or SCKx Input 60 nsec
SP51 TSSH2DOZ SSx to SDOx Output
High-Impedance
(Note 3)
5 25 nsec
SP52 TSCH2SSH
TSCL2SSH
SSx after SCKx Edge TSCK + 20 nsec
Note 1: These parameters are characterized, but not tested in manufacturing.
2: Data in “Typical” column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only
and are not tested.
3: The minimum clock period for SCKx is 40 nsec.
4: Assumes 50 pF load on all SPIx pins.
© 2009 Microchip Technology Inc. Preliminary DS61143F-page 141
PIC32MX3XX/4XX
FIGURE 28-13: SPIx MODULE SLAVE MODE (CKE = 1) TIMING CHARACTERISTICS
SSx
SCKx
(CKP = 0)
SCKx
(CKP = 1)
SDOx
SDI
SP50
SP60
SDIx
SP30,SP31
MSb Bit 14 - - - - - -1 LSb
SP51
MSb In Bit 14 - - - -1 LSb In
SP35
SP52
SP52
SP73
SP72
SP72
SP73
SP71 SP70
SP40 SP41
Note: Refer to Figure 28-1 for load conditions.
TABLE 28-31: SPIx MODULE SLAVE MODE (CKE = 1) TIMING REQUIREMENTS
AC CHARACTERISTICS
Standard Operating Conditions: 2.3V to 3.6V
(unless otherwise stated)
Operating temperature -40°C TA +85°C for Industrial
Param.
No. Symbol Characteristics(1) Min. Typical(2) Max. Units Conditions
SP70 TSCL SCKx Input Low Time
(Note 3)
TSCK/2 ——nsec
SP71 TSCH SCKx Input High Time
(Note 3)
TSCK/2 nsec
SP72 TSCF SCKx Input Fall Time 5 10 nsec
SP73 TSCR SCKx Input Rise Time 510
nsec
SP30 TDOF SDOx Data Output Fall Time
(Note 4)
——nsec
See parameter
DO32.
SP31 TDOR SDOx Data Output Rise Time
(Note 4)
——nsec
See parameter
DO31.
SP35 TSCH2DOV,
TSCL2DOV
SDOx Data Output Valid after
SCKx Edge
——
15 nsec
SP40 TDIV2SCH,
TDIV2SCL
Setup Time of SDIx Data Input
to SCKx Edge
10 ——nsec
SP41 TSCH2DIL,
TSCL2DIL
Hold Time of SDIx Data Input
to SCKx Edge
10 ——nsec
Note 1: These parameters are characterized, but not tested in manufacturing.
2: Data in “Typical” column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance
only and are not tested.
3: The minimum clock period for SCKx is 40 nsec.
4: Assumes 50 pF load on all SPIx pins.
PIC32MX3XX/4XX
DS61143F-page 142 Preliminary © 2009 Microchip Technology Inc.
FIGURE 28-14: I2Cx BUS START/STOP BITS TIMING CHARACTERISTICS (MASTER MODE)
FIGURE 28-15: I2Cx BUS DATA TIMING CHARACTERISTICS (MASTER MODE)
SP50 TSSL2SCH,
TSSL2SCL
SSx to SCKx or SCKx
Input
60 nsec
SP51 TSSH2DOZ SSx to SDOX Output
High-Impedance
(Note 4)
5 25 nsec
SP52 TSCH2SSH
TSCL2SSH
SSx after SCKx Edge TSCK + 20 nsec
SP60 TSSL2DOV SDOx Data Output Valid after
SSx Edge
——
25 nsec
TABLE 28-31: SPIx MODULE SLAVE MODE (CKE = 1) TIMING REQUIREMENTS (CONTINUED)
AC CHARACTERISTICS
Standard Operating Conditions: 2.3V to 3.6V
(unless otherwise stated)
Operating temperature -40°C TA +85°C for Industrial
Param.
No. Symbol Characteristics(1) Min. Typical(2) Max. Units Conditions
Note 1: These parameters are characterized, but not tested in manufacturing.
2: Data in “Typical” column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance
only and are not tested.
3: The minimum clock period for SCKx is 40 nsec.
4: Assumes 50 pF load on all SPIx pins.
IM31 IM34
SCLx
SDAx
Start
Condition
Stop
Condition
IM30 IM33
Note: Refer to Figure 28-1 for load conditions.
IM11 IM10 IM33
IM11
IM10
IM20
IM26 IM25
IM40 IM40 IM45
IM21
SCLx
SDAx
In
SDAx
Out
Note: Refer to Figure 28-1 for load conditions.
© 2009 Microchip Technology Inc. Preliminary DS61143F-page 143
PIC32MX3XX/4XX
TABLE 28-32: I2Cx BUS DATA TIMING REQUIREMENTS (MASTER MODE)
AC CHARACTERISTICS
Standard Operating Conditions: 2.3V to 3.6V
(unless otherwise stated)
Operating temperature -40°C TA +85°C for Industrial
Param.
No. Symbol Characteristics Min.(1) Max. Units Conditions
IM10 TLO:SCL Clock Low Time 100 kHz mode TPB * (BRG + 2) μs—
400 kHz mode TPB * (BRG + 2) μs—
1 MHz mode
(Note 2)
TPB * (BRG + 2) μs—
IM11 THI:SCL Clock High Time 100 kHz mode TPB * (BRG + 2) μs—
400 kHz mode TPB * (BRG + 2) μs—
1 MHz mode
(Note 2)
TPB * (BRG + 2) μs—
IM20 TF:SCL SDAx and SCLx
Fall Time
100 kHz mode 300 nsec CB is specified to be
from 10 to 400 pF.
400 kHz mode 20 + 0.1 CB300 nsec
1 MHz mode
(Note 2)
100 nsec
IM21 TR:SCL SDAx and SCLx
Rise Time
100 kHz mode 1000 nsec CB is specified to be
from 10 to 400 pF.
400 kHz mode 20 + 0.1 CB300 nsec
1 MHz mode
(Note 2)
300 nsec
IM25 TSU:DAT Data Input
Setup Time
100 kHz mode 250 nsec
400 kHz mode 100 nsec
1 MHz mode
(Note 2)
100 nsec
IM26 THD:DAT Data Input
Hold Time
100 kHz mode 0 μs—
400 kHz mode 0 0.9 μs
1 MHz mode
(Note 2)
0 0.3 μs
IM30 TSU:STA Start Condition
Setup Time
100 kHz mode TPB * (BRG + 2) μs Only relevant for
Repeated Start
condition.
400 kHz mode TPB * (BRG + 2) μs
1 MHz mode
(Note 2)
TPB * (BRG + 2) μs
IM31 THD:STA Start Condition
Hold Time
100 kHz mode TPB * (BRG + 2) μs After this period, the
first clock pulse is
generated.
400 kHz mode TPB * (BRG + 2) μs
1 MHz mode
(Note 2)
TPB * (BRG + 2) μs
IM33 TSU:STO Stop Condition
Setup Time
100 kHz mode TPB * (BRG + 2) μs—
400 kHz mode TPB * (BRG + 2) μs
1 MHz mode
(Note 2)
TPB * (BRG + 2) μs
IM34 THD:STO Stop Condition 100 kHz mode TPB * (BRG + 2) —nsec
Hold Time 400 kHz mode TPB * (BRG + 2) —nsec
1 MHz mode
(Note 2)
TPB * (BRG + 2) —nsec
Note 1: BRG is the value of the I2C™ Baud Rate Generator.
2: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).
PIC32MX3XX/4XX
DS61143F-page 144 Preliminary © 2009 Microchip Technology Inc.
FIGURE 28-16: I2Cx BUS START/STOP BITS TIMING CHARACTERISTICS (SLAVE MODE)
FIGURE 28-17: I2Cx BUS DATA TIMING CHARACTERISTICS (SLAVE MODE)
IM40 TAA:SCL Output Valid
From Clock
100 kHz mode 3500 nsec
400 kHz mode 1000 nsec
1 MHz mode
(Note 2)
350 nsec
IM45 TBF:SDA Bus Free Time 100 kHz mode 4.7 μs The amount of time the
bus must be free
before a new
transmission can start.
400 kHz mode 1.3 μs
1 MHz mode
(Note 2)
0.5 μs
IM50 CBBus Capacitive Loading 400 pF
TABLE 28-32: I2Cx BUS DATA TIMING REQUIREMENTS (MASTER MODE) (CONTINUED)
AC CHARACTERISTICS
Standard Operating Conditions: 2.3V to 3.6V
(unless otherwise stated)
Operating temperature -40°C TA +85°C for Industrial
Param.
No. Symbol Characteristics Min.(1) Max. Units Conditions
Note 1: BRG is the value of the I2C™ Baud Rate Generator.
2: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).
IS31 IS34
SCLx
SDAx
Start
Condition
Stop
Condition
IS30 IS33
Note: Refer to Figure 28-1 for load conditions.
IS30 IS31 IS33
IS11
IS10
IS20
IS26 IS25
IS40 IS40 IS45
IS21
SCLx
SDAx
In
SDAx
Out
Note: Refer to Figure 28-1 for load conditions.
© 2009 Microchip Technology Inc. Preliminary DS61143F-page 145
PIC32MX3XX/4XX
TABLE 28-33: I2Cx BUS DATA TIMING REQUIREMENTS (SLAVE MODE)
AC CHARACTERISTICS
Standard Operating Conditions: 2.3V to 3.6V
(unless otherwise stated)
Operating temperature -40°C TA +85°C for Industrial
Param.
No. Symbol Characteristics Min. Max. Units Conditions
IS10 TLO:SCL Clock Low Time 100 kHz mode 4.7 μs PBCLK must operate at a
minimum of 800 KHz.
400 kHz mode 1.3 μs PBCLK must operate at a
minimum of 3.2 MHz.
1 MHz mode
(Note 1)
0.5 μs
IS11 THI:SCL Clock High Time 100 kHz mode 4.0 μs PBCLK must operate at a
minimum of 800 KHz.
400 kHz mode 0.6 μs PBCLK must operate at a
minimum of 3.2 MHz.
1 MHz mode
(Note 1)
0.5 μs
IS20 TF:SCL SDAx and SCLx
Fall Time
100 kHz mode 300 nsec CB is specified to be from
10 to 400 pF.
400 kHz mode 20 + 0.1 CB300 nsec
1 MHz mode
(Note 1)
100 nsec
IS21 TR:SCL SDAx and SCLx
Rise Time
100 kHz mode 1000 nsec CB is specified to be from
10 to 400 pF.
400 kHz mode 20 + 0.1 CB300 nsec
1 MHz mode
(Note 1)
300 nsec
IS25 T
SU:DAT Data Input
Setup Time
100 kHz mode 250 nsec
400 kHz mode 100 nsec
1 MHz mode
(Note 1)
100 nsec
IS26 THD:DAT Data Input
Hold Time
100 kHz mode 0 nsec
400 kHz mode 0 0.9 μs
1 MHz mode
(Note 1)
00.3μs
IS30 T
SU:STA Start Condition
Setup Time
100 kHz mode 4700 μs Only relevant for Repeated
Start condition.
400 kHz mode 600 μs
1 MHz mode
(Note 1)
250 μs
IS31 THD:STA Start Condition
Hold Time
100 kHz mode 4000 μs After this period, the first
clock pulse is generated.
400 kHz mode 600 μs
1 MHz mode
(Note 1)
250 μs
IS33 T
SU:STO Stop Condition
Setup Time
100 kHz mode 4000 μs
400 kHz mode 600 μs
1 MHz mode
(Note 1)
600 μs
Note 1: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).
PIC32MX3XX/4XX
DS61143F-page 146 Preliminary © 2009 Microchip Technology Inc.
IS34 THD:STO Stop Condition
Hold Time
100 kHz mode 4000 nsec
400 kHz mode 600 nsec
1 MHz mode
(Note 1)
250 nsec
IS40 T
AA:SCL Output Valid From
Clock
100 kHz mode 0 3500 nsec
400 kHz mode 0 1000 nsec
1 MHz mode
(Note 1)
0 350 nsec
IS45 TBF:SDA Bus Free Time 100 kHz mode 4.7 μs The amount of time the bus
must be free before a new
transmission can start.
400 kHz mode 1.3 μs
1 MHz mode
(Note 1)
0.5 μs
IS50 CBBus Capacitive Loading 400 pF
TABLE 28-34: ADC MODULE SPECIFICATIONS
AC CHARACTERISTICS
Standard Operating Conditions: 2.5V to 3.6V
(unless otherwise stated)
Operating temperature -40°C TA +85°C for Industrial
Param.
No. Symbol Characteristics Min. Typical Max. Units Conditions
Device Supply
AD01 AVDD Module VDD Supply Greater of
VDD – 0.3
or 2.5
Lesser of
VDD + 0.3
or 3.6
V
AD02 AVSS Module VSS Supply VSS —VSS + 0.3 V
Reference Inputs
AD05 VREFH Reference Voltage High AVSS + 2.0 AVDD V(Note 1)
AD05a 2.5 3.6 V VREFH = AVDD (Note 3)
AD06 VREFL Reference Voltage Low AVSS —VREFH
2.0
V(Note 1)
AD07 VREF Absolute Reference
Voltage
(VREFH – VREFL)
2.0 AVDD V(Note 3)
AD08 IREF Current Drain 250
400
3
μA
μA
ADC operating
ADC off
Analog Input
AD12 VINH-VINL Full-Scale Input Span VREFL —VREFH V
VINL Absolute VINL Input
Voltage
AVSS – 0.3 AVDD/2 V
Note 1: These parameters are not characterized or tested in manufacturing.
2: With no missing codes.
3: These parameters are characterized, but not tested in manufacturing.
TABLE 28-33: I2Cx BUS DATA TIMING REQUIREMENTS (SLAVE MODE) (CONTINUED)
AC CHARACTERISTICS
Standard Operating Conditions: 2.3V to 3.6V
(unless otherwise stated)
Operating temperature -40°C TA +85°C for Industrial
Param.
No. Symbol Characteristics Min. Max. Units Conditions
Note 1: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).
© 2009 Microchip Technology Inc. Preliminary DS61143F-page 147
PIC32MX3XX/4XX
VIN Absolute Input Voltage AVSS – 0.3 AVDD +
0.3
V
Leakage Current +/- 0.001 +/-0.610 μAVINL = AVSS = VREFL = 0V,
AVDD = VREFH = 3.3V
Source Impedance = 10KΩ
AD17 RIN Recommended
Impedance of Analog
Voltage Source
——5KΩ(Note 1)
ADC Accuracy – Measurements with External VREF+/VREF-
AD20c Nr Resolution 10 data bits bits
AD21c INL Integral Nonlinearity <+/-1 LSb VINL = AVSS = VREFL = 0V,
AVDD = VREFH = 3.3V
AD22c DNL Differential Nonlinearity <+/-1 LSb VINL = AVSS = VREFL = 0V,
AVDD = VREFH = 3.3V
(Note 2)
AD23c GERR Gain Error <+/-1 LSb VINL = AVSS = VREFL = 0V,
AVDD = VREFH = 3.3V
AD24n EOFF Offset Error <+/-1 LSb VINL = AVSS = 0V,
AVDD = 3.3V
AD25c Monotonicity Guaranteed
ADC Accuracy – Measurements with Internal VREF+/VREF-
AD20d Nr Resolution 10 data bits bits (Note 3)
AD21d INL Integral Nonlinearity <+/-1 LSb VINL = AVSS = 0V,
AVDD = 2.5V to 3.6V
(Note 3)
AD22d DNL Differential Nonlinearity <+/-1 LSb VINL = AVSS = 0V,
AVDD = 2.5V to 3.6V
(Notes 2, 3)
AD23d GERR Gain Error <+/-4 LSb VINL = AVSS = 0V,
AVDD = 2.5V to 3.6V
(Note 3)
AD24d EOFF Offset Error <+/-2 LSb VINL = AVSS = 0V,
AVDD = 2.5V to 3.6V
(Note 3)
AD25d Monotonicity Guaranteed
TABLE 28-34: ADC MODULE SPECIFICATIONS (CONTINUED)
AC CHARACTERISTICS
Standard Operating Conditions: 2.5V to 3.6V
(unless otherwise stated)
Operating temperature -40°C TA +85°C for Industrial
Param.
No. Symbol Characteristics Min. Typical Max. Units Conditions
Note 1: These parameters are not characterized or tested in manufacturing.
2: With no missing codes.
3: These parameters are characterized, but not tested in manufacturing.
PIC32MX3XX/4XX
DS61143F-page 148 Preliminary © 2009 Microchip Technology Inc.
TABLE 28-35: 10-BIT CONVERSION RATE PARAMETERS
PIC32MX 10-bit A/D Converter Conversion Rates (Note 2)
ADC Speed TAD
Minimum
Sampling
Time Min RS Max VDD Temperature ADC Channels Configuration
1 MIPS to 400
ksps
(Note 1)
65 ns 132 ns 500Ω3.0V to
3.6V
-40°C to
+85°C
Up to 400 ksps 200 ns 200 ns 5.0 kΩ2.5V to
3.6V
-40°C to
+85°C
Up to 300 ksps 200 ns 200 ns 5.0 kΩ2.5V to
3.6V
-40°C to
+85°C
Note 1: External VREF- and VREF+ pins must be used for correct operation.
2: These parameters are characterized, but not tested in manufacturing.
V
REF
-V
REF
+
ADC
AN
x
SHA
CH
X
V
REF
-V
REF
+
ADC
AN
x
SHA
CH
X
AN
x or V
REF
-
or
AV
SS
or
AV
DD
V
REF
-V
REF
+
ADC
ANx
SHA
CH
X
ANx or V
REF
-
or
AV
SS
or
AV
DD
© 2009 Microchip Technology Inc. Preliminary DS61143F-page 149
PIC32MX3XX/4XX
TABLE 28-36: A/D CONVERSION TIMING REQUIREMENTS
AC CHARACTERISTICS
Standard Operating Conditions: 2.5V to 3.6V
(unless otherwise stated)
Operating temperature -40°C TA +85°C for Industrial
Param.
No. Symbol Characteristics Min. Typical(1) Max. Units Conditions
Clock Parameters
AD50 TAD A/D Clock Period (Note 2) 65 nsec See Table 28-35.
AD51 TRC A/D Internal RC Oscillator Period 250 nsec (Note 3)
Conversion Rate
AD55 TCONV Conversion Time 12 TAD ——
AD56 FCNV Throughput Rate
(Sampling Speed)
1000 KSPS AVDD = 3.0V to 3.6V
400 KSPS AVDD = 2.5V to 3.6V
AD57 TSAMP Sample Time 1 31 TAD TSAMP must be 132
nsec.
Timing Parameters
AD60 TPCS Conversion Start from Sample
Trigger(3)
1.0 TAD Auto-Convert Trigger
(SSRC<2:0> = 111)
not selected.
AD61 TPSS Sample Start from Setting
Sample (SAMP) bit
0.5 TAD 1.5 TAD ——
AD62 TCSS Conversion Completion to
Sample Start (ASAM = 1)
(Note 3)
0.5 TAD ——
AD63 TDPU Time to Stabilize Analog Stage
from A/D OFF to A/D ON
(Note 3)
—— 2μs—
Note 1: These parameters are characterized, but not tested in manufacturing.
2: Because the sample caps will eventually lose charge, clock rates below 10 kHz can affect linearity
performance, especially at elevated temperatures.
3: Characterized by design but not tested.
PIC32MX3XX/4XX
DS61143F-page 150 Preliminary © 2009 Microchip Technology Inc.
FIGURE 28-18: A/D CONVERSION (10-BIT MODE) TIMING CHARACTERISTICS
(CHPS<1:0> = 01, SIMSAM = 0, ASAM = 0, SSRC<2:0> = 000)
AD55
TSAMP
Clear SAMPSet SAMP
AD61
ADCLK
Instruction
SAMP
ch0_dischrg
ch1_samp
AD60
CONV
ADxIF
Buffer(0)
Buffer(1)
1 2 3 4 5 6 8 5 6 7
1– Software sets ADxCON. SAMP to start sampling.
2– Sampling starts after discharge period. TSAMP is described in the “PIC32MX Family Reference Manual” (DS61132).
3– Software clears ADxCON. SAMP to start conversion.
4– Sampling ends, conversion sequence starts.
5– Convert bit 9.
8– One TAD for end of conversion.
AD50
ch0_samp
ch1_dischrg
eoc
7
AD55
8
6– Convert bit 8.
7– Convert bit 0.
Execution
© 2009 Microchip Technology Inc. Preliminary DS61143F-page 151
PIC32MX3XX/4XX
FIGURE 28-19: A/D CONVERSION (10-BIT MODE) TIMING CHARACTERISTICS (CHPS<1:0> = 01,
SIMSAM = 0, ASAM = 1, SSRC<2:0> = 111, SAMC<4:0> = 00001
AD55
TSAMP
Set ADON
ADCLK
Instruction
SAMP
ch0_dischrg
ch1_samp
CONV
ADxIF
Buffer(0)
Buffer(1)
1 2 3 4 5 6 4 5 6 8
1– Software sets ADxCON. ADON to start AD operation.
2– Sampling starts after discharge period.
3– Convert bit 9.
4– Convert bit 8.
5– Convert bit 0.
AD50
ch0_samp
ch1_dischrg
eoc
7 3
AD55
6– One TAD for end of conversion.
7– Begin conversion of next channel.
8– Sample for time specified by SAMC<4:0>.
TSAMP
TCONV
3 4
Execution
TSAMP is described in the “PIC32MX
Family Reference Manual” (DS61132).
PIC32MX3XX/4XX
DS61143F-page 152 Preliminary © 2009 Microchip Technology Inc.
FIGURE 28-20: PARALLEL SLAVE PORT TIMING
CS
RD
WR
PMD<7:0>
PS1
PS2
PS3
PS4
PS5
PS6
PS7
TABLE 28-37: PARALLEL SLAVE PORT REQUIREMENTS
AC CHARACTERISTICS
Standard Operating Conditions: 2.3V to 3.6V
(unless otherwise stated)
Operating temperature -40°C TA +85°C for Industrial
Param.
No. Symbol Characteristics(1) Min. Typical Max. Units Conditions
PS1 TdtV2wrH Data In Valid before WR or CS Inactive
(setup time)
20 nsec
PS2 TwrH2dtI WR or CS Inactive to Data–
In Invalid (hold time)
20 nsec
PS3 TrdL2dtV RD and CS Active to Data–
Out Valid
60 nsec
PS4 TrdH2dtI RD Active or CS Inactive to Data
Out Invalid
0 10 nsec
PS5 Tcs CS Active Time 25 nsec
PS6 TWR WR Active Time 25 nsec
PS7 TRD RD Active Time 25 nsec
Note 1: These parameters are characterized, but not tested in manufacturing.
© 2009 Microchip Technology Inc. Preliminary DS61143F-page 153
PIC32MX3XX/4XX
FIGURE 28-21: PARALLEL MASTER PORT READ TIMING DIAGRAM
TPB TPB TPB TPB TPB TPB TPB TPB
PB Clock
PMALL/PMALH
PMD<7:0>
PMA<13:18>
PMRD
PMCS<2:1>
PMWR
PM5
Data
Address<7:0>
PM1
PM3
PM6
Data
PM7
Address<7:0>
Address
PM4
PM2
TABLE 28-38: PARALLEL MASTER PORT READ TIMING REQUIREMENTS
AC CHARACTERISTICS
Standard Operating Conditions: 2.3V to 3.6V
(unless otherwise stated)
Operating temperature -40°C TA +85°C for Industrial
Param.
No. Symbol Characteristics(1) Min. Typical Max. Units Conditions
PM1 TLAT PMALL/PMALH Pulse Width 1 TPB ——
PM2 T
ADSU Address Out Valid to PMALL/PMALH
Invalid (address setup time)
—2 TPB ——
PM3 T
ADHOLD PMALL/PMALH Invalid to Address Out
Invalid (address hold time)
—1 TPB ——
PM4 T
AHOLD PMRD Inactive to Address Out Invalid
(address hold time)
1—nsec
PM5 TRD PMRD Pulse Width 1 TPB ——
PM6 TDSU PMRD or PMENB Active to Data In
Valid (data setup time)
5—nsec
PM7 TDHOLD PMRD or PMENB Inactive to Data In
Invalid (data hold time)
—0nsec
Note 1: These parameters are characterized, but not tested in manufacturing.
PIC32MX3XX/4XX
DS61143F-page 154 Preliminary © 2009 Microchip Technology Inc.
FIGURE 28-22: PARALLEL MASTER PORT WRITE TIMING DIAGRAM
TPB TPB TPB TPB TPB TPB TPB TPB
PB Clock
PMALL/PMALH
PMD<7:0>
PMA<13:18>
PMWR
PMCS<2:1>
PMRD
PM12 PM13
PM11
Address
Address<7:0> Data
PM2 + PM3
PM1
TABLE 28-39: PARALLEL MASTER PORT WRITE TIMING REQUIREMENTS
AC CHARACTERISTICS
Standard Operating Conditions: 2.3V to 3.6V
(unless otherwise stated)
Operating temperature -40°C TA +85°C for Industrial
Param.
No. Symbol Characteristics(1) Min. Typical Max. Units Conditions
PM11 TWR PMWR Pulse Width 1 TPB ——
PM12 TDVSU Data Out Valid before PMWR or
PMENB goes Inactive (data setup time)
—2 TPB ——
PM13 TDVHOLD PMWR or PMEMB Invalid to Data Out
Invalid (data hold time)
—1 TPB ——
Note 1: These parameters are characterized, but not tested in manufacturing.
© 2009 Microchip Technology Inc. Preliminary DS61143F-page 155
PIC32MX3XX/4XX
FIGURE 28-23: EJTAG TIMING CHARACTERISTICS
TABLE 28-40: OTG ELECTRICAL SPECIFICATIONS
AC CHARACTERISTICS
Standard Operating Conditions: 2.3V to 3.6V
(unless otherwise stated)
Operating temperature -40°C TA +85°C for Industrial
Param.
No. Symbol Characteristics(1) Min. Typ Max. Units Conditions
USB313 VUSB USB Voltage 3.0 3.6 V Voltage on bus must
be in this range for
proper USB operation.
USB315 VILUSB Input Low Voltage for USB Buffer 0.8 V
USB316 VIHUSB Input High Voltage for USB Buffer 2.0 V
USB318 VDIFS Differential Input Sensitivity 0.2 V
USB319 VCM Differential Common Mode Range 0.8 2.5 V The difference
between D+ and D-
must exceed this value
while VCM is met.
USB320 ZOUT Driver Output Impedance 28.0 44.0 Ω
USB321 VOL Voltage Output Low 0.0 0.3 V 1.5 kΩ load connected
to 3.6V
USB322 VOH Voltage Output High 2.8 3.6 V 1.5 kΩ load connected
to ground
Note 1: These parameters are characterized, but not tested in manufacturing.
TTCKeye
TTCKhigh TTCKlow Trf
Trf
Trf
Trf
TTsetup TThold
TTDOout TTDOzstate
Defined Undefined
TTRST*low
Trf
TCK
TDO
TRST*
TDI
TMS
PIC32MX3XX/4XX
DS61143F-page 156 Preliminary © 2009 Microchip Technology Inc.
TABLE 28-41: EJTAG TIMING REQUIREMENTS
AC CHARACTERISTICS
Standard Operating Conditions: 2.3V to 3.6V
(unless otherwise stated)
Operating temperature -40°C TA +85°C for Industrial
Param.
No. Symbol Description(1) Min. Max. Units Conditions
EJ1 TTCKCYC TCK Cycle Time 25 nsec
EJ2 TTCKHIGH TCK High Time 10 nsec
EJ3 TTCKLOW TCK Low Time 10 nsec
EJ4 TTSETUP TAP Signals Setup Time Before
Rising TCK
5 nsec
EJ5 TTHOLD TAP Signals Hold Time After
Rising TCK
3 nsec
EJ6 TTDOOUT TDO Output Delay Time From
Falling TCK
5 nsec
EJ7 TTDOZSTATE TDO 3-State Delay Time From
Falling TCK
5 nsec
EJ8 TTRSTLOW TRST Low Time 25 nsec
EJ9 TRF TAP Signals Rise/Fall Time, All
Input and Output
nsec
Note 1: These parameters are characterized, but not tested in manufacturing.
© 2009 Microchip Technology Inc. Preliminary DS61143F-page 157
PIC32MX3XX/4XX
29.0 PACKAGING INFORMATION
29.1 Package Marking Information
PIC32MX360F
512L-80I/PT
0510017
3
e
Legend: XX...X Customer-specific information
Y Year code (last digit of calendar year)
YY Year code (last 2 digits of calendar year)
WW Week code (week of January 1 is week ‘01’)
NNN Alphanumeric traceability code
Pb-free JEDEC designator for Matte Tin (Sn)
*This package is Pb-free. The Pb-free JEDEC designator ( )
can be found on the outer packaging for this package.
Note: In the event the full Microchip part number cannot be marked on one line, it will
be carried over to the next line, thus limiting the number of available
characters for customer-specific information.
3
e
64-Lead TQFP (10x10x1 mm)
XXXXXXXXXX
XXXXXXXXXX
XXXXXXXXXX
YYWWNNN
Example
100-Lead TQFP (12x12x1 mm)
XXXXXXXXXXXX
XXXXXXXXXXXX
YYWWNNN
Example
PIC32MX360F
256L-80I/PT
0510017
3
e
XXXXXXXXXX
64-Lead QFN (9x9x0.9 mm)
XXXXXXXXXX
XXXXXXXXXX
YYWWNNN
PIC32MX360F
Example
512L-80I/MR
0510017
3
e
PIC32MX3XX/4XX
DS61143F-page 158 Preliminary © 2009 Microchip Technology Inc.
29.2 Package Details
The following sections give the technical details of the packages.
 !"#$%&
' (
  !"#$%&"' ()"&'"!&)&#*&&&#
 +'%!&!&,!-' 
 '!!#.#&"#'#%!&"!!#%!&"!!!&$#/''!#
 '!#&.0/
1+2 1!'!&$& "!**&"&&!
.32 %'!("!"*&"&&(%%'&"!!
' ( 3&'!&"&4#*!(!!&4%&&#&
&&255***''54
6&! 77..
'!7'&! 8 89 :
8"')%7#! 8 ;
7#& /1+
9 <& = = 
##44!!  /  /
&#%%  / = /
3&7& 7 / ; /
3&& 7 .3
3& > /> >
9 ?#& . 1+
9 7& 1+
##4?#& . 1+
##47&  1+
7#4!!  = 
7#?#& )   
#%& > > >
#%&1&&' > > >
D
D1
E
E1
e
b
N
NOTE 1 123 NOTE 2
c
L
A1
L1
A2
A
φ
β
α
  * +@/1
© 2009 Microchip Technology Inc. Preliminary DS61143F-page 159
PIC32MX3XX/4XX
 !"#$%&
' ( 3&'!&"&4#*!(!!&4%&&#&
&&255***''54
PIC32MX3XX/4XX
DS61143F-page 160 Preliminary © 2009 Microchip Technology Inc.
Note: For the most current package drawings, please see the Microchip Packaging Specification located at
http://www.microchip.com/packaging
© 2009 Microchip Technology Inc. Preliminary DS61143F-page 161
PIC32MX3XX/4XX
Note: For the most current package drawings, please see the Microchip Packaging Specification located at
http://www.microchip.com/packaging
PIC32MX3XX/4XX
DS61143F-page 162 Preliminary © 2009 Microchip Technology Inc.
Note: For the most current package drawings, please see the Microchip Packaging Specification located at
http://www.microchip.com/packaging
© 2009 Microchip Technology Inc. Preliminary DS61143F-page 163
PIC32MX3XX/4XX
## !"#$%&
' (
  !"#$%&"' ()"&'"!&)&#*&&&#
 +'%!&!&,!-' 
 '!!#.#&"#'#%!&"!!#%!&"!!!&$#/''!#
 '!#&.0/
1+2 1!'!&$& "!**&"&&!
.32 %'!("!"*&"&&(%%'&"!!
' ( 3&'!&"&4#*!(!!&4%&&#&
&&255***''54
6&! 77..
'!7'&! 8 89 :
8"')%7#! 8 
7#& 1+
9 <& = = 
##44!!  /  /
&#%%  / = /
3&7& 7 / ; /
3&& 7 .3
3& > /> >
9 ?#& . 1+
9 7& 1+
##4?#& . 1+
##47&  1+
7#4!!  = 
7#?#& )  @ 
#%& > > >
#%&1&&' > > >
D
D1
E
E1
e
bN
123
NOTE 1 NOTE 2
c
LA1 L1
A
A2
α
β
φ
  * +1
PIC32MX3XX/4XX
DS61143F-page 164 Preliminary © 2009 Microchip Technology Inc.
## !"#$%&
' ( 3&'!&"&4#*!(!!&4%&&#&
&&255***''54
© 2009 Microchip Technology Inc. Preliminary DS61143F-page 165
PIC32MX3XX/4XX
APPENDIX A: REVISION HISTORY
Revision E (July 2008)
Updated the PIC32MX340F128H features in
Table 1 to include 4 programmable DMA
channels.
Revision F (June 2009)
This revision includes minor typographical and
formatting changes throughout the data sheet text.
Global changes include:
Changed all instances of OSCI to OSC1 and
OSCO to OSC2
Changed all instances of VDDCORE and
VDDCORE/VCAP to VCAP/VDDCORE
Deleted registers in most sections, refer to the
related section of the PIC32MX3XX/4XX Family
Reference Manual (DS61132).
The other changes are referenced by their respective
section in the following table.
TABLE A-1: MAJOR SECTION UPDATES
Section Name Update Description
“High-Performance 80 MHz MIPS-
Based 32-bit Flash Microcontroller
64/100-Pin General Purpose and
USB”
Added a Packages” column to Table 1 and Table 2.
Corrected all pin diagrams to update the following pin names.
Previous: Current:
PGC!/EMUC1 PGEC1
PGD!/EMUD1 PGED1
PGC2/EMUC2 PGEC2
PGD2/EMUD2 PGED2
Shaded appropriate pins in each diagram to indicate which pins are 5V tol-
erant.
Added 64-Lead QFN package pin diagrams, one for General Purpose and
one for USB.
Section 1.0 “Device Overview” Reconstructed Figure 1-1 to include Timers, ADC, and RTCC in the block
diagram.
Section 2.0 “Guidelines for Getting
Started with 32-bit Microcontrollers”
Added a new section to the data sheet that provides the following informa-
tion:
• Basic Connection Requirements
• Capacitors
• Master Clear PIN
• ICSP Pins
• External Oscillator Pins
• Configuration of Analog and Digital Pins
• Unused I/Os
Section 4.0 “Memory Organization” Updated the memory maps, Figure 4-1 through Figure 4-6.
All summary peripheral register maps were relocated to Section 4.0
“Memory Organization”.
Section 7.0 “Interrupt Controller” Removed the “Address” column from Table 7-1.
Section 12.0 “I/O Ports” Added a second paragraph to Section 12.1.3 “Analog Inputs” to clarify
that all pins that share ANx functions are analog by default, because the
AD1PCFG register has a default value of 0x0000.
Section 26.0 “Special Features” Modified bit names and locations in Register 26-5 “DEVID: Device and
Revision ID Register”.
Replaced “TSTARTUP” with “TPU”, and “64-ms nominal delay” with “TPWRT”,
in Section 26.3.1 “On-Chip Regulator and POR”.
The information that appeared in the Watchdog Timer and the Program-
ming and Diagnostics sections of 61143E version of this data sheet has
been incorporated into the Special Features section:
Section 26.2 “Watchdog Timer (WDT)”
Section 26.4 “Programming and Diagnostics”
PIC32MX3XX/4XX
DS61143F-page 166 Preliminary © 2009 Microchip Technology Inc.
Section 28.0 “Electrical
Characteristics”
In Section 28.1 “DC Characteristics”:
Added the 64-Lead QFN package to Table 28-3.
Updated data in Table 28-5.
Updated data in Table 28-7.
Updated data in Section 28.2 “AC Characteristics and Timing Parame-
ters”, Table 28-4, Table 28-5, Table 28-7 and Table 28-8.
Updated data in Table 28-10.
Added OS42 parameter to Table 28-17.
Replaced Table 28-23.
Replaced Table 28-24.
Replaced Table 28-25.
Updated Table 28-36.
Section 29.0 “Packaging Information” Added 64-Lead QFN package marking information to Section 29.1
“Package Marking Information”.
Added the 64-Lead QFN (MR) package drawing and land pattern to
Section 29.2 “Package Details”.
“Product Identification System” Added the MR package designator for the 64-Lead (9x9x0.9) QFN.
TABLE A-1: MAJOR SECTION UPDATES (CONTINUED)
Section Name Update Description
© 2009 Microchip Technology Inc. Preliminary DS61143F-page 167
PIC32MX3XX/4XX
INDEX
A
AC Characteristics 128
Internal RC Accuracy 130
AC Electrical Specifications
Parallel Master Port Read Requirements 153
Parallel Master Port Write Requirements 154
Parallel Slave Port Requirements 152
B
Block Diagrams
A/D Module 93
Comparator I/O Operating Modes 95
Comparator Voltage Reference 97
Connections for On-Chip Voltage Regulator 109
Input Capture 77
JTAG Compliant Application Showing Daisy-Chaining of
Components 110
Output Compare Module 79
Reset System 57
RTCC 91
Type B Timer 19, 65, 75
UART 85
WDT 108
Brown-out Reset (BOR)
and On-Chip Voltage Regulator 109
C
Comparator
Operation 96
Comparator Voltage Reference
Configuring 98
CPU Module 15, 19
D
DC Characteristics 120
I/O Pin Input Specifications 124
I/O Pin Output Specifications 125
Idle Current (IIDLE) 122
Operating Current (IDD) 121
Power-Down Current (IPD) 123
Program Memory 125
Temperature and Voltage Specifications 120
E
Electrical Characteristics 119
AC 128
Errata 10
F
Flash Program Memory 55
RTSP Operation 55
I
I/O Ports 71, 85
Parallel I/O (PIO) 72
P
Packaging 157
Details 158
Marking 157
PIC32 Family USB Interface Diagram 70
Pinout I/O Descriptions (table) 12
Power-on Reset (POR)
and On-Chip Voltage Regulator 109
S
Serial Peripheral Interface (SPI) 57, 67, 81, 89, 91, 100
Special Features 101
T
Timer1 Module 59, 65, 73, 75
Timing Diagrams
10-bit A/D Conversion (CHPS = 01, SIMSAM = 0, ASAM
= 0, SSRC = 000) 150
I2Cx Bus Data (Master Mode) 142
I2Cx Bus Data (Slave Mode) 144
I2Cx Bus Start/Stop Bits (Master Mode) 142
I2Cx Bus Start/Stop Bits (Slave Mode) 144
Input Capture (CAPx) 135
OC/PWM 136
Output Compare (OCx) 136
Parallel Master Port Write 153, 154
Parallel Slave Port 152
SPIx Master Mode (CKE = 0) 137
SPIx Master Mode (CKE = 1) 138
SPIx Slave Mode (CKE = 0) 139
SPIx Slave Mode (CKE = 1) 141
Timer1, 2, 3, 4, 5, 6, 7, 8, 9 External Clock 134
Transmission (8-bit or 9-bit Data) 86
UART Reception with Receive Overrun 87
Timing Requirements
CLKO and I/O 131
Timing Specifications
I2Cx Bus Data Requirements (Master Mode) 142
I2Cx Bus Data Requirements (Slave Mode) 144
Output Compare Requirements 136
Simple OC/PWM Mode Requirements 136
SPIx Master Mode (CKE = 0) Requirements 137
SPIx Master Mode (CKE = 1) Requirements 138
SPIx Slave Mode (CKE = 1) Requirements 141
V
VDDCORE/VCAP Pin 108
Voltage Reference Specifications 126
Voltage Regulator (On-Chip) 108
W
Watchdog Timer
Operation 108
WWW, On-Line Support 10
PIC32MX3XX/4XX
DS61143F-page 168 Preliminary © 2009 Microchip Technology Inc.
NOTES:
© 2009 Microchip Technology Inc. Preliminary DS61143F-page 169
PIC32MX3XX/4XX
Product Identification System
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.
Architecture MX = 32-bit RISC MCU core
Product Groups 3xx = General purpose microcontroller family
4xx = USB
Flash Memory Family F = Flash program memory
Program Memory Size 32 = 32K
64 = 64K
128 = 128K
256 = 256K
512 = 512K
Pin Count H = 64-pin
L = 100-pin
Temperature Range I = -40°C to +85°C (Industrial)
Package PT = 64-Lead (10x10x1 mm) TQFP (Thin Quad Flatpack)
PT = 100-Lead (12x12x1 mm) TQFP (Thin Quad Flatpack)
MR = 64-Lead (9x9x0.9 mm) QFN (Plastic Quad Flat)
Pattern Three-digit QTP, SQTP, Code or Special Requirements
(blank otherwise)
ES = Engineering Sample
Examples:
PIC32MX320F032H-40I/PT:
General purpose PIC32MX, 32 KB program
memory, 64-pin, Industrial temp.,
TQFP package.
PIC32MX360F256L-80I/PT:
General purpose PIC32MX, 256 KB program
memory, 100-pin, Industrial temp.,
TQFP package.
Microchip Brand
Architecture
Flash Memory Family
Pin Count
Product Groups
Program Memory Size (KB)
PIC32 MX 3XX F 512 H T - 80 I / PT - XXX
Flash Memory Family
Speed
Pattern
Package
Temperature Range
Tape and Reel Flag (if applicable)
DS61143F-page 170 Preliminary © 2009 Microchip Technology Inc.
AMERICAS
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://support.microchip.com
Web Address:
www.microchip.com
Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455
Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088
Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075
Cleveland
Independence, OH
Tel: 216-447-0464
Fax: 216-447-0643
Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924
Detroit
Farmington Hills, MI
Tel: 248-538-2250
Fax: 248-538-2260
Kokomo
Kokomo, IN
Tel: 765-864-8360
Fax: 765-864-8387
Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
Santa Clara
Santa Clara, CA
Tel: 408-961-6444
Fax: 408-961-6445
Toronto
Mississauga, Ontario,
Canada
Tel: 905-673-0699
Fax: 905-673-6509
ASIA/PACIFIC
Asia Pacific Office
Suites 3707-14, 37th Floor
Tower 6, The Gateway
Harbour City, Kowloon
Hong Kong
Tel: 852-2401-1200
Fax: 852-2401-3431
Australia - Sydney
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755
China - Beijing
Tel: 86-10-8528-2100
Fax: 86-10-8528-2104
China - Chengdu
Tel: 86-28-8665-5511
Fax: 86-28-8665-7889
China - Hong Kong SAR
Tel: 852-2401-1200
Fax: 852-2401-3431
China - Nanjing
Tel: 86-25-8473-2460
Fax: 86-25-8473-2470
China - Qingdao
Tel: 86-532-8502-7355
Fax: 86-532-8502-7205
China - Shanghai
Tel: 86-21-5407-5533
Fax: 86-21-5407-5066
China - Shenyang
Tel: 86-24-2334-2829
Fax: 86-24-2334-2393
China - Shenzhen
Tel: 86-755-8203-2660
Fax: 86-755-8203-1760
China - Wuhan
Tel: 86-27-5980-5300
Fax: 86-27-5980-5118
China - Xiamen
Tel: 86-592-2388138
Fax: 86-592-2388130
China - Xian
Tel: 86-29-8833-7252
Fax: 86-29-8833-7256
China - Zhuhai
Tel: 86-756-3210040
Fax: 86-756-3210049
ASIA/PACIFIC
India - Bangalore
Tel: 91-80-3090-4444
Fax: 91-80-3090-4080
India - New Delhi
Tel: 91-11-4160-8631
Fax: 91-11-4160-8632
India - Pune
Tel: 91-20-2566-1512
Fax: 91-20-2566-1513
Japan - Yokohama
Tel: 81-45-471- 6166
Fax: 81-45-471-6122
Korea - Daegu
Tel: 82-53-744-4301
Fax: 82-53-744-4302
Korea - Seoul
Tel: 82-2-554-7200
Fax: 82-2-558-5932 or
82-2-558-5934
Malaysia - Kuala Lumpur
Tel: 60-3-6201-9857
Fax: 60-3-6201-9859
Malaysia - Penang
Tel: 60-4-227-8870
Fax: 60-4-227-4068
Philippines - Manila
Tel: 63-2-634-9065
Fax: 63-2-634-9069
Singapore
Tel: 65-6334-8870
Fax: 65-6334-8850
Taiwan - Hsin Chu
Tel: 886-3-6578-300
Fax: 886-3-6578-370
Taiwan - Kaohsiung
Tel: 886-7-536-4818
Fax: 886-7-536-4803
Taiwan - Taipei
Tel: 886-2-2500-6610
Fax: 886-2-2508-0102
Thailand - Bangkok
Tel: 66-2-694-1351
Fax: 66-2-694-1350
EUROPE
Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829
France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781
Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340
Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
UK - Wokingham
Tel: 44-118-921-5869
Fax: 44-118-921-5820
WORLDWIDE SALES AND SERVICE
03/26/09