Standard Power MOSFETs File Number 1564 IRFF130, IRFF131, IRFF132, IRFF133 Power MOS Field-Effect Transistors N-Channel Enhancement-Mode Power Field-Effect Transistors 7.0A and 8.0A, 60V-100V rps(on) = 0.18 Q and 0.25Q Features: SOA is power-dissipation limited Nanosecond switching speeds Linear transfer characteristics High input impedance Majority carrier device The (RFF130, IRFF131, IRFF132 and IRFF133 are n-channel enhancement-mode silicon-gate power field- effect transistors designed for applications such as switch- ing regutators, switching converters, motor drivers, relay drivers, and drivers for high-power bipolar switching tran- sistors requiring high speed and low gate-drive power. These types can be operated directly from integrated circuits. The IRFF-types are supplied sn the JEDEC TO-205AF (LOW-PROFILE TO-39) metal package. Absolute Maximum Ratings N-CHANNEL ENHANCEMENT MODE s 92CS-33741 TERMINAL DIAGRAM TERMINAL DESIGNATION GATE CRAIN. SOURCE (CASE) 92CS- 37555 JEDEC TO-205AF Parameter IAFF130 IRFF131 (RFF 132 IRFF133 Units Vos Drain - Source Voltage @ 100 60 100 60 Vv DS Vocr Drain - Gate Voltage (Rgg 20KQ) @ 100 60 100 60 v Ip @ Tc = 25C Continuous Drain Current 8.0 8.0 7.0 7.0 A fom Pulsed Drain Current @) 32 32 28 28 A Yos Gate - Source Voltage 20 v Pp @ Tc = 25C Max. Power Dissipation 25 {See Fig. 14) w Linear Derating Factor 0.2 (See Fig. 14} wee mM inductive Current, Clamped (See Fig. 15 and 16} = 100uH A 32 32 { 28 | 28 Ty Operating Junction and -5 to 150 C Tstg Storage Temperature Range Lead Temperature 300 (0.063 in. {1.6mm} from case for 10s) C 3-259Standard Power MOSFETs IRFF130, IRFF131, IRFF132, IRFF133 3-260 Electrical Characteristics @Tc = 25C (Unless Otherwise Specified) Parameter Type Min. Typ. | Max. Units Test Conditions BVpss_Drain - Source Breakdowr. Voltage IAFF130 = warriz2 | 100 | - | v Vas = ov (RFF 134 = wneria3} 8 | ~ | 7 v p= 250nA Vesith Gate Threshold Voltage ALL 2.0 - 4.0 v Vos = Ygs- ip = 250A 'gss Gate-Source Leakage Forward ALL _ - 100 nA Ves. = 20V ggg _ Gate-Source Leakage Reverse ALL = = |-100 al Ves = -20V loss Zero Gate Voltage Drain Current ALL = = 250 nA Vps = Max. Rating. Vgg = OV = - 1000 uA Vos = Max. Rating x 0.8, Vgg = OV. Tc = 125C WDion) On-State Drain Current @ IRFF130 " iRFF131 | 80 7 A Vos > "pion! * Rpston) max. Ves = 1V IRFF132 7.0 _ _ A IRFF133 Rosion) Static Drain-Source On-State (RFF 130 _ en Resistance IRFF131 0.14 | 0.18 a Vs = 10V.ip = 4.08 IRFF132 _ 0,20 | 0.25 2 iRFF 133 : Sis Forward Transconductance @ ALL 40 75.5 [ Sia Vos 'pion * Rpsion} max.: 'p = 4-0A Ciss Input Capacitance ALL = 600 _ pF Vgg = OV. Vpg = 25V.f = 1.0MH2 Cogs Output Capacitance ALL = 300 _ pF See Fig. 10 Cissy Reverse Transfer Capacitance ALL = 100 _ pF tdjon) __Turn-On Delay Time ALL = 30 | 50 ns Vop = 0-5BVngg. Ip = 4.0A,Z, = 502 tr Rise Time ALL - B80 150 ns See Fig. 17 ta(otf) _ Turn-Off Delay Time ALL 50 | 100 ns (MOSFET switching times are essentially tf Fall Time ALL _ 0 150 ns independent of operating temperature.) Qg Total Gate Charge ; ALL _ 18 30 ac Ves = 10V. Ip = 18A, Vos = 0.8 Max. Rating. {Gate-Source Plus Gate-Drain) See Fig. 18 for test circuit. (Gate charge is essentially Qgs Gate-Source Charge ALL _ 9.0 14 ac independent of operating temperature.) Qga Gate-Drain ("Miller} Charge ALL - 9.0 14 ac Lp Internal Drain inductance ALL ~ 5.0 - aH Measured from the Modified MOSFET drain tead, 5 mm (0.2 symbol showing the in.) from header to internal device center of die. inductances. 2 Lo Ls internal Source Inductance ALL - 15 _ nH Measured trom the source lead. 5mm {0.2 in.) fram header ta S Ls source bonding pad. Ss Thermat Resistance [Ainge tunction-to-Case au [ | - [ 50 [ecw LRinsa__Junction-to-Ambient [oan [ - [ - [175 [ecw [Free air Operation ] Source-Drain Diode Ratings and Characteristics Ig Continuous Source Current IRFF130 _ _ 8.0 A Modified MOSFET symbol (Body Diode) IRFF131 * showing the integral reverse P-N junction rectifier. D inFFIa2 [ ~ [70 A IRFFI33 ism Pulse Source Current tRFF130 _ (Body Diode @ (RFF 131 32 A 6 (RFF T32 = ~ s IREF133 ze | A Vgp _Ciiode Forward Voltage @) IRFE130 _ ~ | 25 v Te = 28C, Ig # 8.08, Vag = OV (RFF 132 _ _ Te = 25C, le = 7.0A, Vag = OV IRFE133 2.3 v c 7 28C. Ig = 7.04. Veg ter Reverse Recovery Time ALL - 300 = ns Ty = 150C, Ip = 8.0A, dip/dt = 100A/us Ona Reverse Recovered Charge ALL = 1.5 - ac Ty = 150C, tc = 8.0A, dig/dt = 100A/ns ton Forward Turn-on Time ALL Intrinsic turn-on time is negligible. Turn-on speed is substantially controlled by Lg + Lp. @Ty = 25C to 150C. @pPulse Test: Pulse width < 300,35, Duty Cycle < 2%. Repetitive Rating: Pulse width timited by max. junction temperature. See Transient Thermal impedance Curve (Fig. 5).Standard Power MOSFETs IRFF130, IRFF131, IRFF132, IRFF133 20 Vos > (otony * Rasion) max. 3 2 2 o = = =< <1 = - = = & 3 = = = = 3 S 3 3 z zs < < = = 5 Ss a 3 Ty Ts 0 10 20 0 a0 50 0 2 4 6 8 10 Vs, DRAIN-TO SOURCE VOLTAGE (VOLTS) Vgs. GATE-TO-SOURCE VOLTAGE (VOLTS) Fig. 1 Typical Output Characteristics Fig. 2 Typical Transfer Characteristics 100 OPERATION (N THIS 50 AREA IS LIMITED PULSE TEST BY 20 | IRFF 132. 3 a s a @ = 2 = = = Sg pinerisz.s - = E s 2 2 o = 2 = < = 10 S 2 a 2 To? - 95 Ty= 150C MAX. Rihuc = 5.0C/W 02 SINGLE PULSE IRFFI3#,3 IRFF 130, 2 o1 0 oe M8 aw we 20 10 2 5 10 20 50 100 6200 500 Vos, DRAIN-TO-SOURCE VOLTAGE (VOLTS) Vos. ORAIN-TO-SQURCE VOLTAGE (VOLTS) Fig. 3 Typical Saturation Characteristics Fig. 4 Maximum Safe Operating Ares b z & a 2 =< =o FE we 22> Bs os oe ge ow ao 82 32 01 Pid Sz +" 22 0.05 4 oo 1. OUTY FACTOR, D>) . az " = on 2. PER UNIT BASE = Rinyc = 5.0 DEG. L/W. 3 THERMAL (MPEDANCE} 3. Tym - Te = Pom Zenactvl. S09 5 2 5 4 2 5 wd 2 w2 2 5 wt 2 5 io 2 5 10 ty, SQUARE WAVE PULSE OURATION (SECONDS) Fig. 5 Maximum Effective Transient Thermal Impedance, Junction-to-Case Vs. Pulse Duration 3-261Standard Power MOSFETs IRFF130, IRFF131, IRFF132, IRFF133 3-262 Ws, TRANSCONOUCTANCE (SIEMENS) Vos > 'Dion) * ADS{on) max. 80 ws PULSE 0 5 10 15 20 Bb Ip. ORAIN CURRENT (AMPERES) Fig. 6 Typical Transconductance Vs. Orain Current BVpcg DRAIN-TO-SOURCE BREAKDOWN VOLTAGE (NORMALIZED) 60 40 -20 0 20 40 60 80 100 120 140 Ty, JUNCTION TEMPERATURE {C} Fig. 8 Breakdown Voltage Vs. Temperature os ' Cigg = Cy + Coq, Cgs SHOATED Cres = Cog Cys , Coss * Cds + tits Cds + Cog C. CAPACITANCE (oF) 0 0 20 wn 40 50 Vps. ORAIN TO SOURCE VOLTAGE (VOLTS) Fig. 10 Typical Capacitance Vs. Drain-to-Source Voltage 6 w on lpn. REVERSE DRAIN CURRENT (AMPERES) N 0 05 1.0 is 2.0 25 320 Vp, SGURCE-TO-DRAIN VOLTAGE (VOLTS) Fig. 7 Typical Source-Drain Diode Forward Voltage O-SOURCE ON-STATE RESISTANCE (NORMALIZEO) Vgg = 10V ' i <4 Roston), ORAIN-T Q $0 40 -20 0 2 40 6 80 100 120 140 Ty. JUNCTION TEMPERATURE (C) Fig. 9 Normalized On-Resistance Vs. Temperature "Vigg = 20V 1 Vg = 50 | = 8OV, IAFF EO, Vgs. GATE TO SOURCE VOLTAGE (VOLTS) ip = BA FOR TEST CIRCUIT SEE FIGURE 1B 0 8 16 24 32 40 Og. TOTAL GATE CHARGE inf) Fig. 11 Typical Gate Charge Vs. Gate-to-Source VoltageStandard Power MOSFETs IRFF130, IRFF131, IRFF132, (RFF133 06 T g Ros(on) MEASUREO WITH CURRENT PULSE OF = 2.0 ys DURATION. INITIAL Ty = 25C. (HEATING = 05 |- EFFECT OF 2.0 ys PULSE IS MINIMAL} - 3 z g Bb "4 a = 2 04 : = = z Ves = | 5 a 2 03 = 2 3 3 { Zz 132,133 e { = 2 02 t 5 z : 7 3 s el = & 01 f- Vgg = 20 2 Gs ! } 0 10 20 30 40 50 60 2B 50 15 100 125 150 Ip. DRAIN CURRENT (AMPERES) Te, CASE TEMPERATURE (9C) Fig. 12 Typicat On-Resistance Vs. Drain Current Fig. 13 Maximum Drain Current Vs. Case Temperature: 40 % 30 2 Pp, POWER DISSIPATION (WATTS} we 3 0 20 40 60 80 100 20 140 Tc, CASE TEMPERATURE (C) Fig. 14 Power Vs. Temperature Derating Curve VARY fy TO O8TAIN REQUIRED PEAK ry wife] = . , = 0.58p55 Vc 0.758Vps5 = Fig. 15 Clamped Inductive Test Circuit Fig. 16 Clamped Inductive Waveforms *Yos CUARENT (ISOLATED REGULATOR SUPPLY} > Ey SAME TYPE ADJUST Ry TO OBTAIN SPECIFIED Ip 12v a RL GATTERY v; 4 PULSE T GENERATOR = \ out. CTT ' I > To score L asin { HIGH FREQUENCY a SHUNT Fig. 17 Switching Time Test Circuit CURRENT = CUARENT SHUNT SHUNT Fig. 18 Gate Charge Test Circuit 3-263