Is Now Part of To learn more about ON Semiconductor, please visit our website at www.onsemi.com Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild_questions@onsemi.com. ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. FDS4559 60V Complementary PowerTrenchMOSFET General Description Features This complementary MOSFET device is produced using Fairchild's advanced PowerTrench process that has been especially tailored to minimize the on-state resistance and yet maintain low gate charge for superior switching performance. * Q1: N-Channel RDS(on) = 55 m @ VGS = 10V 4.5 A, 60 V RDS(on) = 75 m @ VGS = 4.5V * Applications Q2: P-Channel -3.5 A, -60 V RDS(on) = 105 m @ VGS = -10V * DC/DC converter RDS(on) = 135 m @ VGS = -4.5V * Power management * LCD backlight inverter DD2 DD2 D1 D DD1 G2 S2 G G1 S1 S S Drain-Source Voltage Gate-Source Voltage ID Drain Current 2 8 1 TA = 25C unless otherwise noted Parameter VDSS VGSS 7 S Absolute Maximum Ratings Q1 - Continuous - Pulsed Power Dissipation for Dual Operation Power Dissipation for Single Operation (Note 1a) Q2 Units 60 -60 20 4.5 20 20 -3.5 -20 V V A 2 1.6 1.2 1 -55 to +175 C (Note 1a) 78 C/W (Note 1) 40 C/W (Note 1a) (Note 1b) (Note 1c) TJ, TSTG 3 Q1 Pin 1 SO-8 PD 4 6 SO-8 Symbol Q2 5 Operating and Storage Junction Temperature Range W Thermal Characteristics RJA Thermal Resistance, Junction-to-Ambient RJC Thermal Resistance, Junction-to-Case Package Marking and Ordering Information Device Marking Device Reel Size Tape width Quantity FDS4559 FDS4559 13" 12mm 2500 units 2000 Fairchild Semiconductor Corporation FDS4559 Rev C1(W) FDS4559 April 2002 Symbol Parameter TA = 25C unless otherwise noted Test Conditions Type Min Typ Max Units Drain-Source Avalanche Ratings (Note 1) W DSS IAR Single Pulse Drain-Source Avalanche Energy Maximum Drain-Source Avalanche Current VDD = 30 V, ID = 4.5 A Q1 90 mJ Q1 4.5 A Off Characteristics BVDSS BVDSS TJ IDSS IGSS Drain-Source Breakdown Voltage Breakdown Voltage Temperature Coefficient Zero Gate Voltage Drain Current Gate-Body Leakage On Characteristics VGS = 0 V, ID = 250 A VGS = 0 V, ID = -250 A ID = 250 A, Referenced to 25C ID = -250 A, Referenced to 25C VDS = 48 V, VGS = 0 V VDS = -48 V, VGS = 0 V VGS = +20 V, VDS = 0 V VGS = +20 V, VDS = 0 V Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 60 -60 VDS = VGS, ID = 250 A VDS = VGS, ID = -250 A ID = 250 A, Referenced to 25C ID = -250 A, Referenced to 25C VGS = 10 V, ID = 4.5 A VGS = 10 V, ID = 4.5 A, TJ = 125C VGS = 4.5 V, ID = 4 A VGS = -10 V, ID = -3.5 A VGS = -10 V, ID = -3.5 A, TJ = 125C VGS = -4.5 V, ID = -3.1 A VGS = 10 V, VDS = 5 V VGS = -10 V, VDS = -5 V VDS = 10 V, ID = 4.5 A VDS = -5 V, ID = -3 5 A Q1 Q2 Q1 Q2 Q1 1 -1 Q1 Q2 Q1 Q2 Q1 VDS = 25 V, VGS = 0 V, f = 1.0 MHz Q2 VDS = -30 V, VGS = 0 V, f = 1.0 MHz Q1 VDD = 30 V, ID = 1 A, VGS = 10V, RGEN = 6 V 58 -49 mV/C 1 -1 +100 +100 A 3 -3 V nA (Note 2) VGS(th) Gate Threshold Voltage VGS(th) TJ RDS(on) Gate Threshold Voltage Temperature Coefficient Static Drain-Source On-Resistance ID(on) On-State Drain Current gFS Forward Transconductance Q2 2.2 -1.6 -5.5 4 42 72 55 82 130 105 mV/C 55 94 75 105 190 135 20 -20 m A 14 9 S Q1 Q2 Q1 Q2 Q1 Q2 650 759 80 90 35 39 pF Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 11 7 8 10 19 19 6 12 12.5 15 2.4 2.5 2.6 3.0 Dynamic Characteristics Ciss Input Capacitance Coss Output Capacitance Crss Reverse Transfer Capacitance Switching Characteristics td(on) Turn-On Delay Time tr Turn-On Rise Time td(off) Turn-Off Delay Time tf Turn-Off Fall Time Qg Total Gate Charge Qgs Gate-Source Charge Qgd Gate-Drain Charge pF pF (Note 2) Q2 VDD = -30 V, ID = -1 A, VGS = -10 V, RGEN = 6 Q1 VDS = 30 V, ID = 4.5 A, VGS = 10 V Q2 VDS = -30 V, ID = -3.5 A, VGS = -10V 20 14 18 20 35 34 15 22 18 21 ns ns ns ns nC nC nC FDS4559 Rev C1(W) FDS4559 Electrical Characteristics Symbol Parameter (continued) TA = 25C unless otherwise noted Test Conditions Type Min Typ Max Units Drain-Source Diode Characteristics and Maximum Ratings IS Maximum Continuous Drain-Source Diode Forward Current VSD Drain-Source Diode Forward VGS = 0 V, IS = 1.3 A (Note 2) Voltage VGS = 0 V, IS = -1.3 A (Note 2) Q1 Q2 Q1 Q2 0.8 -0.8 1.3 -1.3 1.2 -1.2 A V Notes: 1. RJA is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. RJC is guaranteed by design while RCA is determined by the user's board design. a) 78C/W when mounted on a 0.5 in2 pad of 2 oz copper b) 125C/W when mounted on a .02 in2 pad of 2 oz copper c) 135C/W when mounted on a minimum pad. Scale 1 : 1 on letter size paper 2. Pulse Test: Pulse Width < 300s, Duty Cycle < 2.0% FDS4559 Rev C1(W) FDS4559 Electrical Characteristics FDS4559 Typical Characteristics: Q2 1.8 -ID, DRAIN CURRENT (A) VGS = -10V -6.0V 12 RDS(ON), NORMALIZED DRAIN-SOURCE ON-RESISTANCE 15 -4.5V -4.0V -5.0V -3.5V 9 6 -3.0V 3 -2.5V VGS = -3.5V 1.6 -4.0V 1.4 -4.5V -5.0V 1.2 -6.0V 0 -10V 1 2 3 4 0 5 2 4 6 8 10 -ID, DRAIN CURRENT (A) -VDS, DRAIN-SOURCE VOLTAGE (V) Figure 1. On-Region Characteristics. Figure 2. On-Resistance Variation with Drain Current and Gate Voltage. 2 0.4 ID = -3.5A VGS = -10V 1.8 RDS(ON), ON-RESISTANCE (OHM) RDS(ON), NORMALIZED DRAIN-SOURCE ON-RESISTANCE -8.0V 1 0.8 0 1.6 1.4 1.2 1 0.8 0.6 0.4 ID = -1.5A 0.3 TA = 125oC 0.2 0.1 TA = 25oC 0 -50 -25 0 25 50 75 100 125 150 175 2 4 o TJ, JUNCTION TEMPERATURE ( C) 6 8 10 -VGS, GATE TO SOURCE VOLTAGE (V) Figure 3. On-Resistance Variation with Temperature. Figure 4. On-Resistance Variation with Gate-to-Source Voltage. 100 TA = -55oC VDS = -5V -IS, REVERSE DRAIN CURRENT (A) 15 -ID, DRAIN CURRENT (A) -7.0V 25oC 12 125oC 9 6 3 0 VGS = 0V 10 TA = 125oC 25oC 1 -55oC 0.1 0.01 0.001 1 2 3 4 -VGS, GATE TO SOURCE VOLTAGE (V) Figure 5. Transfer Characteristics. 5 0 0.2 0.4 0.6 0.8 1 1.2 1.4 -VSD, BODY DIODE FORWARD VOLTAGE (V) Figure 6. Body Diode Forward Voltage Variation with Source Current and Temperature. FDS4559 Rev C1(W) FDS4559 Typical Characteristics: Q2 1200 VDS = 10V ID = -3.0A 20V f = 1 MHz V GS = 0 V 1000 8 30V CAPACITANCE (pF) -VGS, GATE-SOURCE VOLTAGE (V) 10 6 4 800 C ISS 600 400 2 200 C OSS C RSS 0 0 0 4 8 12 16 0 10 Qg, GATE CHARGE (nC) Figure 7. Gate Charge Characteristics. 30 40 50 60 Figure 8. Capacitance Characteristics. 40 P(pk), PEAK TRANSIENT POWER (W) 100 100s ID, DRAIN CURRENT (A) 20 -V DS , DRAIN TO SOURCE VOLTAGE (V) RDS(ON) LIMIT 10 10ms 100ms 1 1s 10s VGS = -10V SINGLE PULSE RJA = 135oC/W 0.1 DC TA = 25oC 0.01 0.1 1 10 100 -VDS, DRAIN-SOURCE VOLTAGE (V) Figure 9. Maximum Safe Operating Area. SINGLE PULSE RJA = 135C/W TA = 25C 30 20 10 0 0.01 0.1 1 10 100 1000 t1, TIME (sec) Figure 10. Single Pulse Maximum Power Dissipation. FDS4559 Rev C1(W) FDS4559 Typical Characteristics: Q1 1.8 VGS = 10V 6.0V 16 RDS(ON), NORMALIZED DRAIN-SOURCE ON-RESISTANCE ID, DRAIN-SOURCE CURRENT (A) 20 4.5V 5.0V 4.0V 12 8 3.5V 4 1.6 VGS = 4.0V 1.4 4.5V 5.0V 1.2 6.0V 8.0V 0.8 0 0 1 2 3 0 4 4 8 12 16 20 ID, DRAIN CURRENT (A) VDS, DRAIN-SOURCE VOLTAGE (V) Figure 11. On-Region Characteristics. Figure 12. On-Resistance Variation with Drain Current and Gate Voltage. 0.14 2.2 ID = 2.3A ID = 4.5A VGS = 10V 2 RDS(ON), ON-RESISTANCE (OHM) RDS(ON), NORMALIZED DRAIN-SOURCE ON-RESISTANCE 10V 1 1.8 1.6 1.4 1.2 1 0.8 0.6 0.4 -50 -25 0 25 50 75 100 125 150 0.12 0.1 TA = 125oC 0.08 0.06 0.04 TA = 25oC 0.02 0 175 2 4 6 8 10 o TJ, JUNCTION TEMPERATURE ( C) VGS, GATE TO SOURCE VOLTAGE (V) Figure 13. On-Resistance Variation with Temperature. Figure 14. On-Resistance Variation with Gate-to-Source Voltage. 100 20 ID, DRAIN CURRENT (A) 25oC IS, REVERSE DRAIN CURRENT (A) TA = -55oC VDS = 5V o 16 125 C 12 8 4 VGS = 0V 10 TA = 125oC 1 25oC 0.1 -55oC 0.01 0.001 0.0001 0 1 2 3 4 5 VGS, GATE TO SOURCE VOLTAGE (V) Figure 15. Transfer Characteristics. 6 0 0.2 0.4 0.6 0.8 1 1.2 VSD, BODY DIODE FORWARD VOLTAGE (V) Figure 16. Body Diode Forward Voltage Variation with Source Current and Temperature. FDS4559 Rev C1(W) FDS4559 Typical Characteristics: Q1 ID = 4.5A 900 VDS = 10V 8 30V f = 1MHz VGS = 0 V 800 20V CAPACITANCE (pF) VGS, GATE-SOURCE VOLTAGE (V) 10 6 4 2 700 CISS 600 500 400 300 200 COSS 100 0 CRSS 0 0 2 4 6 8 10 12 14 0 10 Qg, GATE CHARGE (nC) 20 30 40 50 Figure 17. Gate Charge Characteristics. Figure 18. Capacitance Characteristics. 40 100 SINGLE PULSE RJA = 135oC/W RDS(ON) LIMIT 100s 10 TA = 25oC 30 1m POWER (W) ID, DRAIN CURRENT (A) 60 VDS, DRAIN TO SOURCE VOLTAGE (V) 10ms 100ms 1 1s DC VGS= 10V SINGLE PULSE RJA= 135oC/W 0.1 20 10 TA= 25oC 0.01 0.1 1 10 0 0.01 100 0.1 VDS, DRAIN-SOURCE VOLTAGE (V) Figure 19. Maximum Safe Operating Area. r(t), NORMALIZED EFFECTIVE TRANSIENT THERMAL RESISTANCE 1 10 100 1000 SINGLE PULSE TIME (SEC) Figure 20. Single Pulse Maximum Power Dissipation. 1 D = 0.5 RJA(t) = r(t) + RJA RJA = 135C/W 0.2 0.1 0.1 0.05 P(pk) 0.02 0.01 t1 0.01 t2 TJ - TA = P * RJA(t) Duty Cycle, D = t1 / t2 SINGLE PULSE 0.001 0.0001 0.001 0.01 0.1 1 10 100 1000 t1, TIME (sec) Figure 21. Transient Thermal Response Curve. Thermal characterization performed using the conditions described in Note 1c. Transient thermal response will change depending on the circuit board design. FDS4559 Rev C1(W) TRADEMARKS The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks. F-PFS FRFET(R) SM Global Power Resource GreenBridge Green FPS Green FPS e-Series Gmax GTO IntelliMAX ISOPLANAR Making Small Speakers Sound Louder and BetterTM MegaBuck MICROCOUPLER MicroFET MicroPak MicroPak2 MillerDrive MotionMax MotionGrid(R) MTi(R) MTx(R) MVN(R) mWSaver(R) OptoHiT OPTOLOGIC(R) AccuPower AttitudeEngineTM Awinda(R) AX-CAP(R)* BitSiC Build it Now CorePLUS CorePOWER CROSSVOLT CTL Current Transfer Logic DEUXPEED(R) Dual CoolTM EcoSPARK(R) EfficientMax ESBC (R) (R) Fairchild Fairchild Semiconductor(R) FACT Quiet Series FACT(R) FastvCore FETBench FPS OPTOPLANAR(R) (R) Power Supply WebDesigner PowerTrench(R) PowerXSTM Programmable Active Droop QFET(R) QS Quiet Series RapidConfigure Saving our world, 1mW/W/kW at a timeTM SignalWise SmartMax SMART START Solutions for Your Success SPM(R) STEALTH SuperFET(R) SuperSOT-3 SuperSOT-6 SuperSOT-8 SupreMOS(R) SyncFET Sync-LockTM (R)* TinyBoost(R) TinyBuck(R) TinyCalc TinyLogic(R) TINYOPTO TinyPower TinyPWM TinyWire TranSiC TriFault Detect TRUECURRENT(R)* SerDes UHC(R) Ultra FRFET UniFET VCX VisualMax VoltagePlus XSTM XsensTM TM * Trademarks of System General Corporation, used under license by Fairchild Semiconductor. DISCLAIMER FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. TO OBTAIN THE LATEST, MOST UP-TO-DATE DATASHEET AND PRODUCT INFORMATION, VISIT OUR WEBSITE AT HTTP://WWW.FAIRCHILDSEMI.COM. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS. AUTHORIZED USE Unless otherwise specified in this data sheet, this product is a standard commercial product and is not intended for use in applications that require extraordinary levels of quality and reliability. This product may not be used in the following applications, unless specifically approved in writing by a Fairchild officer: (1) automotive or other transportation, (2) military/aerospace, (3) any safety critical application - including life critical medical equipment - where the failure of the Fairchild product reasonably would be expected to result in personal injury, death or property damage. Customer's use of this product is subject to agreement of this Authorized Use policy. In the event of an unauthorized use of Fairchild's product, Fairchild accepts no liability in the event of product failure. In other respects, this product shall be subject to Fairchild's Worldwide Terms and Conditions of Sale, unless a separate agreement has been signed by both Parties. ANTI-COUNTERFEITING POLICY Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Terms of Use Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors. PRODUCT STATUS DEFINITIONS Definition of Terms Datasheet Identification Product Status Advance Information Formative / In Design Preliminary First Production No Identification Needed Full Production Obsolete Not In Production Definition Datasheet contains the design specifications for product development. Specifications may change in any manner without notice. Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design. Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design. Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only. Rev. I76 (c) Fairchild Semiconductor Corporation www.fairchildsemi.com ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. PUBLICATION ORDERING INFORMATION LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com (c) Semiconductor Components Industries, LLC N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5817-1050 www.onsemi.com 1 ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative www.onsemi.com