SWITCHMODE™ Power Rectifiers # Ultrafast "E" Series with High Reverse **Energy Capability** ... designed for use in switching power supplies, inverters and as free wheeling diodes, these state-of-the-art devices have the following features: - 10 mjoules Avalanche Energy Guaranteed - Excellent Protection Against Voltage Transients in Switching Inductive Load Circuits - Ultrafast 75 Nanosecond Recovery Time - 175°C Operating Junction Temperature - Low Forward Voltage - Low Leakage Current - High Temperature Glass Passivated Junction - Reverse Voltage to 1000 Volts #### **Mechanical Characteristics:** - · Case: Epoxy, Molded - Weight: 0.4 gram (approximately) - Finish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable - · Lead and Mounting Surface Temperature for Soldering Purposes: 220°C Max. for 10 Seconds, 1/16" from case - Shipped in plastic bags, 1000 per bag - Available Tape and Reeled, 5000 per reel, by adding a "RL" suffix to the part number - Polarity: Cathode Indicated by Polarity Band - Marking: U180E, U1100E # **MAXIMUM RATINGS** | | MUR | | | |--|------------------------------|---|--| | Symbol | 180E | 1100E | Unit | | V _{RRM}
V _{RWM}
V _R | 800 | 1000 | Volts | | lF(AV) | 1.0 @ T _A = 95°C | | Amps | | IFSM | 35 | | Amps | | TJ, Tstg | - 65 to +175 | | °C | | | VRRM
VRWM
VR
IF(AV) | Symbol 180E VRRM VRWM VR 800 IF(AV) 1.0 @ T, IFSM 3 | Symbol 180E 1100E VRRM VRWM VR 800 1000 IF(AV) 1.0 @ TA = 95°C IFSM 35 | $R_{\theta JA}$ Maximum Thermal Resistance, Junction to Ambient (1) Pulse Test: Pulse Width = 300 μs, Duty Cycle ≤ 2.0%. # **MUR1100E MUR180E** MUR1100E is a Motorola Preferred Device **ULTRAFAST RECTIFIERS** 1.0 AMPERE 800-1000 VOLTS SWITCHMODE is a trademark of Motorola, Inc. Preferred devices are Motorola recommended choices for future use and best overall value. See Note 1 °C/W # **MUR1100E MUR180E** # **ELECTRICAL CHARACTERISTICS** | | | MUR | | | |--|-------------------|-----------|----------|-------| | Rating | Symbol | 180E | 1100E | Unit | | Maximum Instantaneous Forward Voltage (1) (iF = 1.0 Amp, T _J = 150°C) (iF = 1.0 Amp, T _J = 25°C) | ٧F | | 50
75 | Volts | | Maximum Instantaneous Reverse Current (1) (Rated dc Voltage, T _J = 100°C) (Rated dc Voltage, T _J = 25°C) | İR | <u> </u> | 00 | μА | | Maximum Reverse Recovery Time (IF = 1.0 Amp, di/dt = 50 Amp/ μ s) (IF = 0.5 Amp, iR = 1.0 Amp, IREC = 0.25 Amp) | t _{rr} | 100
75 | | ns | | Maximum Forward Recovery Time
(I _F = 1.0 Amp, di/dt = 100 Amp/μs, Recovery to 1.0 V) | t _{fr} | 7 | 5 | ns | | Controlled Avalanche Energy (See Test Circuit in Figure 6) | W _{AVAL} | 1 | 0 | mJ | ⁽¹⁾ Pulse Test: Pulse Width = 300 μ s, Duty Cycle \leq 2.0%. # **ELECTRICAL CHARACTERISTICS** Figure 1. Typical Forward Voltage Figure 4. Power Dissipation Figure 2. Typical Reverse Current* * The curves shown are typical for the highest voltage device in the grouping. Typical reverse current for lower voltage selections can be estimated from these same curves if V_{R} is sufficiently below rated V_{R} . Figure 3. Current Derating (Mounting Method #3 Per Note 1) Figure 5. Typical Capacitance #### **MUR1100E MUR180E** Figure 6. Test Circuit The unclamped inductive switching circuit shown in Figure 6 was used to demonstrate the controlled avalanche capability of the new "E" series Ultrafast rectifiers. A mercury switch was used instead of an electronic switch to simulate a noisy environment when the switch was being opened. When S_1 is closed at t_0 the current in the inductor I_L ramps up linearly; and energy is stored in the coil. At t_1 the switch is opened and the voltage across the diode under test begins to rise rapidly, due to di/dt effects, when this induced voltage reaches the breakdown voltage of the diode, it is clamped at BV_{DUT} and the diode begins to conduct the full load current which now starts to decay linearly through the diode, and goes to zero at t_2 . By solving the loop equation at the point in time when S_1 is opened; and calculating the energy that is transferred to the diode it can be shown that the total energy transferred is equal to the energy stored in the inductor plus a finite amount of energy from the V_{DD} power supply while the diode is in breakdown (from t_1 to t_2) minus any losses due to finite com- Figure 7. Current-Voltage Waveforms ponent resistances. Assuming the component resistive elements are small Equation (1) approximates the total energy transferred to the diode. It can be seen from this equation that if the V_{DD} voltage is low compared to the breakdown voltage of the device, the amount of energy contributed by the supply during breakdown is small and the total energy can be assumed to be nearly equal to the energy stored in the coil during the time when S₁ was closed, Equation (2). The oscilloscope picture in Figure 8, shows the information obtained for the MUR8100E (similar die construction as the MUR1100E Series) in this test circuit conducting a peak current of one ampere at a breakdown voltage of 1300 volts, and using Equation (2) the energy absorbed by the MUR8100E is approximately 20 mjoules. Although it is not recommended to design for this condition, the new "E" series provides added protection against those unforeseen transient viruses that can produce unexplained random failures in unfriendly environments. # **EQUATION (1):** $$W_{AVAL} \approx \frac{1}{2}LI_{LPK}^{2} \left(\frac{BV_{DUT}}{BV_{DUT} - V_{DD}} \right)$$ ### **EQUATION (2):** $$W_{AVAI} \approx \frac{1}{2}LI_{LPK}^2$$ TIME BASE: 20 µs/DIV. CHANNEL 2: 0.5 AMPS/DIV. CHANNEL 1: V_{DUT} 500 VOLTS/DIV. Figure 8. Current-Voltage Waveforms # NOTE 1 — AMBIENT MOUNTING DATA Data shown for thermal resistance junction to ambient ($R_{\theta JA}$) for the mountings shown is to be used as typical guideline values for preliminary engineering or in case the tie point temperature cannot be measured. TYPICAL VALUES FOR $\textbf{R}_{\theta \textbf{J} \textbf{A}}$ IN STILL AIR | Mounting | | Lead Length, L | | | | |----------|-----------------|----------------|-----|-----|-------| | Method | | 1/8 | 1/4 | 1/2 | Units | | 1 | | 52 | 65 | 72 | °C/W | | 2 | $R_{\theta JA}$ | 67 | 80 | 87 | °C/W | | 3 | | | 50 | | °C/W | ### **MOUNTING METHOD 1** #### **MOUNTING METHOD 2** **Vector Pin Mounting** ### **MOUNTING METHOD 3** #### PACKAGE DIMENSIONS #### NOTES: - 1. ALL RULES AND NOTES ASSOCIATED WITH - JEDEC DO-41 OUTLINE SHALL APPLY. 2. POLARITY DENOTED BY CATHODE BAND. - LEAD DIAMETER NOT CONTROLLED WITHIN F DIMENSION. | | MILLIMETERS | | INC | HES | |-----|-------------|------|-------|-------| | DIM | MIN | MAX | MIN | MAX | | Α | 5.97 | 6.60 | 0.235 | 0.260 | | В | 2.79 | 3.05 | 0.110 | 0.120 | | D | 0.76 | 0.86 | 0.030 | 0.034 | | K | 27 94 | | 1 100 | | CASE 59-04 ISSUE M Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and manufacture are gistered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer. Mfax is a trademark of Motorola, Inc. #### How to reach us: **USA/EUROPE/Locations Not Listed**: Motorola Literature Distribution; P.O. Box 5405, Denver, Colorado 80217. 1–303–675–2140 or 1–800–441–2447 JAPAN: Motorola Japan Ltd.; SPD, Strategic Planning Office, 141, 4–32–1 Nishi-Gotanda, Shinagawa-ku, Tokyo, Japan. 81–3–5487–8488 Customer Focus Center: 1-800-521-6274 Mfax™: RMFAX0@email.sps.mot.com - TOUCHTONE 1-602-244-6609 Motorola Fax Back System - US & Canada ONLY 1-800-774-1848 ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Centre, 2, Dai King Street, Tai Po Industrial Estate, Tai Po, N.T., Hong Kong. 852–26668334 - http://sps.motorola.com/mfax/ MUR1100E/D