NEC / PNP SILICON TRANSISTOR 2SA915 DESCRIPTION FEATURES The 2SA915 is designed for use in driver stages of audio frequency amplifiers. High Total Power Dissipation and High Breakdown Voltage: 1.0 W at 25 C Ambient Temperature/VCEQ = 120 V @ Complementary to the NEC-2SC1940 NPN Transistor. ABSOLUTE MAXIMUM RATINGS Maximum Temperatures Storage Temperature Junction Temperature PACKAGE DIMENSIONS in millimeters (inches) 7.0 MAX, 12 (0.275 MAX.) (0.047) | ote of f y 7 => on ~ am : ao 0.840.) 3 ~ (0.031) Za a 7 0.60.1 ac ze (0.024) z= oR 1 Os | Ss Maximum Power Dissipation (Ta=25 C) (ooane + 7 ey a ostio1 Total Power Dissipation ................... 1.0W (te\5 | 32 (0.022) Thermal Resistance(Junction to Ambient). . . .125 C/W 73 aS *3 Maximum Voltages and Currents (Ta= 25 C) 1. EMITTER g Veso Collector to Base Voltage .......... 120 V 2 bese Vceo Collector to Emitter Voltage ........ 120 V Vego Emitter to Base Voltage ........... -5.0 V Ic Collector Current ............. 50 mA Ip Base Current ........-.-000e eee 10 mA ELECTRICAL CHARACTERISTICS (Ta = 25 C) SYMBOL CHARACTERISTIC MIN, TYP. MAX, UNIT TEST CONDITIONS hee DC Current Gain 90 200 400 - Voce = 10V, Ip = -10 mA hre2 DC Current Gain 50 200 - Vce=-10V, 1=-1.0mA fT Gain Bandwidth Product 50 80 MHz Voce = -10V,1lE=10MA Cob Output Capacitance 2.5 35 pF Vog = 10V, Ie = 0, f = 1.0 MHz IcBo Collector Cutoff Current -100 nA VcB= 120 V,le=90 leBo Emitter Cutoff Current -100 nA Veg =-5.0V,1i=0 VBE Base to Emitter Voltage -650 -695 -750 mv VcE=10V, Io =-10 mA VCE (sat) Collector Saturation Voltage -0.18 -0.6 Vv Iq = 20 mA, Ig = 2.0 mA VBE(sat} Base Saturation Voltage -0.79 ~1.0 Vv Ic = 20 mA, Ig = 2.0mA Classification of heey Rank M L K Range 90 180 135 ~ 270 200 400 hee, Test Conditions: Voce =-10 V, ic=-10 mA 102 NEC TYPICAL CHARACTERISTICS (Ta=25 C unless otherwise noted) TOTAL POWER DISSIPATION vs. AMBIENT TEMPERATURE = I c 2& a a a a = a a a E | Be o 0 50 100 150 200 250 TaAmbient Temperature T COLLECTOR CURRENT vs. COLLECTOR TO EMITTER VOLTAGE -10 E-3 { = wo = -6 a Oo 5 3 -4 3 oO br? o ~20 -40 -60 80 100 Vce Collector to Emitter Voltage V COLLECTOR SATURATION VOLTAGE vs. COLLECTOR CURRENT 10 Io = lO+ig -5 Pulsed 0.05 0.02 Vce(sat) Collector Saturation Voltage ~V { o N ~-0,01 -0.1-0.2 -0.5 -1 -2 I Collector CurrentmA -5 -10 ~20 -50 -100 \Collector Current mA VBE (sat) Base Saturation Voltage V ~ 0.05 - 0.02 SAFE OPERATING AREAS (TRANSIENT THERMAL RESISTANCE METHOD) 30 ~ 200 duty cycle 100 - 450 -20 -10 ~20 -50 -100 -200 -300 Vce Collector to Emitter Voltage V COLLECTOR CURRENT vs. BASE TO EMITTER VOLTAGE ~100 =~1l0V Pulsed 50 Ic Collector Current mA 0.2 -0.1 -0.5 0.6 -0.8 -0.9 -1.0 -0.7 Vpe Base to Emitter Voltage -V BASE SATURATION VOLTAGE vs, COLLECTOR CURRENT Ip = 101g 35 Pulsed 70.2 Ot 0.01 0.1-0.2-05 -1 2 5 10 20 -50 100 Ic Collector Current~mA Ic Collector Current--mA hep DC Current Gain ft Gain Bandwidth Product MHz 2SA915 COLLECTOR CURRENT vs. COLLECTOR TO EMITTER VOLTAGE ~80 40 30 -20 -10 8 -2 -4 -6 -8 -10 Vce Coliector to Emitter Voltage -V DC CURRENT GAIN vs. COLLECTOR CURRENT 1000 . - Pulsed 500 200 100 20 10 -0.1-0.2 -0.5-1 ~2 ~-5 10-20 ~50- 100 I Collector Current mA GAIN BANDWIDTH PRODUCT vs. EMITTER CURRENT 1000 500 10 pail pint | rides 0.10.22 0.5 1 2 5 10 20 50 100 le ~Emitter Current mA 103 2SA915 NEC INPUT AND OUTPUT CAPACITANCE vs. REVERSE VOLTAGE 100 f=1.0 MHz 50 Cib Input Capacitance pF Cob Output Capacitance pF 2 <0) 1 1-2 =5 -10-20 501002005001000 VcpCollector to Base Voitage-V VepEmitter ta Base Voltage -V 104