T4-LDS-0293, Rev. 1 (5/6/13) ©2013 Microsemi Corporation Page 1 of 6
LC6.5 – LC170A
Available
1500 Watt Low Capacitance
Transient Voltage Suppressor
Screening in
reference to
MIL-PRF-19500
available
DESCRIPTION
DO-202AA (DO-13)
Package
Also available in:
Case 1 package
(plastic equi valent)
LCE6.5 LCE170A
DO-215AB package
(Gull wing surface mount)
SMCGLCE6.5
SMCGLCE170A
DO-214AB package
(J-bend surface mount)
SMCJLCE6.5
SMCJLCE170A
MSC Lawrence
6 Lake Street,
Lawrence, MA 01841
Tel: 1-800-446-1158 or
(978) 620-2600
Fax: (978) 689-0803
MSC Ireland
Gort Road Business Park,
Ennis, Co. Clare, Ireland
Tel: +353 (0) 65 6840044
Fax: +353 (0) 65 6822298
Website:
www.microsemi.com
This hermetically sealed Transient Voltage Suppressor (TVS) product family includes a
rectifier diode element in series and in the opposite direction. This allows it to present a very
low (< 100 pF) capacitance to the system it is protecting (see Figure 2). The low capacitance
of these devices makes them particularly useful for protecting lines carrying high frequency
signals. They are also useful in protecting from the secondary effects of lightning in airborne
avionics per IEC61000-4-5, RTCA/DO-160G, and ARINC 429. If bidirectional transient
capability is required, two of these low capacitance TVS devices may be used in parallel in
opposite directions (anti-parallel) for complete ac protection as shown in Figure 4.
Important: For the latest information, visit our website http://www.microsemi.com.
FEATURES
Unidirectional low-capacitance TVS series for flexible thru-hole mounti ng.
For bidirectional applications, use two in anti-parallel (see Figure 4).
Suppresses transients up to 1500 watts @ 10/1000 µs (see Figure 1).
Clamps transients in less than 100 pico seconds (theoreti cal f or unidire ctional).*
Working voltage (VWM) range 6.5 V to 170 V.
5% and 10% tolerance versions available.
Hermeti c sealed DO-13 metal package.
Screening options available in reference to MIL-PRF-19500.
(See Part Nomenclature for all available options.)
RoHS compliant versions available.
*measurement li mita t ion
APPLICATIONS / BENEFITS
Protect ion from swit ching tr an sien ts and indu ced RFI.
Low capacitance for data line protection up to 1 MHz.
Protect ion for fast data rate lines in aircraft up to:
- RTCA/DO-160G Level 5 Waveform 4 and Level 2 Waveform 5A (also see MicroNote 130)
- ARINC 429, Part 1, paragraph 2.4.1.1 up to bit rates of 100 kb/s
ESD & EFT protection per IEC 61000-4-2 and -4-4.
Secondary lightning protection per IEC61000-4-5 with 42 oh ms source imp edan ce:
Class 1: LC6.5 to LC170A
Class 2: LC6.5 to LC150A
Class 3: LC6.5 to LC70A
Class 4: LC6.5 to LC36A
Secondary lightning protection per IEC61000-4-5 with 12 oh ms source imp edan ce:
Class 1 : LC6.5 to LC90A
Class 2: LC6.5 to LC45A
Class 3: LC6.5 to LC22A
Class 4: LC6.5 to LC11A
Secondary lightning protection per IEC61000-4-5 with 2 ohms source impedance:
Class 2: LC6.5 to LC20A
Class 3: LC6.5 to LC10A
Inherently radiation hard as described in Microsemi MicroNote 050.
T4-LDS-0293, Rev. 1 (5/6/13) ©2013 Microsemi Corporation Page 2 of 6
LC6.5 – LC170A
MAXIMUM RATINGS
Parameters/Test Conditions
Symbol
Value
Unit
Ju nction a nd Storage Temperature
TJ and TSTG
-65 to +175
ºC
Thermal Resi stan ce, Jun cti on to Lead @ 0.375 in ch
(10 mm) from body
RӨJL 50 ºC/W
Thermal Resi stan ce, Jun cti on to Ambient (1)
RӨJA
110
ºC/W
Peak Pulse Power @ TL = +25 ºC (2)
PPP
1500
W
Power Dissipation @ TL +125 ºC (3)
PD
1
W
Solder Temperature @ 10 s
TSP
260
oC
Notes: 1. When mounted on FR4 PC board with 4 mm2 copper pads (1 oz) and track width 1 mm, length 25 mm.
2. At 10/1000 µs with repeti tion rate of 0.01% or less (see Figure 1).
3. At 3/8 inch (10 mm) from body. TVS devices are not typically used for dc power dissipation and are instead operat ed at or less than their
rated standoff voltage (VWM) except for transients that briefly drive the device into avalanc he breakdown (VBR to VC region). Also see
Figures 2, 3 and 4 for further protection details in rated peak pulse power for unidirectional and bidirectional configurations respectively.
CASE: Welded, hermeti cal ly sealed metal and gla ss.
TERMINALS: Tin-lead plated or RoHS compliant annealed matte-tin plating. Sol derable per MIL-STD-750 method 2026.
MARKING: Part number and polarity diode symbol.
POLARITY: Cathode connected to case and polarity indicated by diode symbol.
TAPE & REEL option: Standard per EIA-296 (add “TR” suffix to part number). Consult fa ctory for quan titi es.
WEIGHT: Approximately 1.4 grams.
See Package Dimensions on last page.
MQ LC 6.5 A (e3)
Reliability Le vel
MQ (reference JAN)
MX (reference JANTX)
MV (reference JANTXV)
MSP (referen ce JANS)
Blank = Commercial
Low Capacitance
RoHS Compli ance
e3 = RoHS compliant
Blank = non-RoHS compliant
Tolerance Level
A = +/- 5 %
blank = +/- 10 %
Reverse Standoff Voltage (VWM)
(See Electrical Characteristics
table)
SYMBOLS & DEFINITIONS
Symbol
Definition
I(BR)
Breakdown Current: The current used for m easuring breakdown voltage V(BR).
V(BR)
Breakdown Voltage: This is the breakdown voltage the device will exhibit at 25 oC.
VWM
Rated Working Standoff Voltage: The maximum peak voltage that can be applied over the operating temperature range.
VC
Maximum Clamping Voltage: The maximum peak voltage appearing across the TVS when subjected to the peak pulse
current in a one millisecond time interval. The peak pulse voltage is the combination of voltage rise due to both the
series resistan ce and thermal rise and positive temperature coefficient (αV(BR)).
IPP
Peak Impulse Current: The peak current during the impulse.
PPP
Peak Pulse Power: The pulse power as determined by the product of VC and IPP.
ID Standby Current: The current at the standof f volta ge VWM.
T4-LDS-0293, Rev. 1 (5/6/13) ©2013 Microsemi Corporation Page 3 of 6
LC6.5 – LC170A
PART
NUMBER
RATED
WORKING
STANDOFF
VOLTAGE
VWM
Volts
BREAKDOWN VOLTAGE MAXIMUM
STANDBY
CURRENT
ID @VWM
µA
MAXIMUM
CLAMPING
VOLTAGE
VC @ IPP
Volts
MAXIMUM
PEAK
IMPULSE
CURRENT
IPP @
10/100 0 µs
Amps
MAXIMUM
CAPACI-
TANCE
C @ 0
Volts,
f = 1 MHz
pF
WORKING
INVERSE
BLOCKING
VOLTAGE
VWIB
Volts
INVERSE
BLOCKING
LEAKAGE
CURRENT
IIB @ VWIB
µA
PEAK
INVERSE
BLOCKING
VOLTAGE
VOLTS
VPIB
Volts
V(BR)
Volts
@
I(BR)
mA
MIN
MAX
LC6.5
LC6.5A
LC7.0
LC7.0A
6.5
6.5
7.0
7.0
7.22
7.22
7.78
7.78
8.82
7.98
9.51
8.60
10
10
10
10
1000
1000
500
500
12.3
11.2
13.3
12.0
100
100
100
100
100
100
100
100
75
75
75
75
10
10
10
10
100
100
100
100
LC7.5
LC7.5A
LC8.0
LC8.0A
7.5
7.5
8.0
8.0
8.33
8.33
8.89
8.89
10.2
9.21
10.9
9.83
10
10
1
1
250
250
100
100
14.3
12.9
15.0
13.6
100
100
100
100
100
100
100
100
75
75
75
75
10
10
10
10
100
100
100
100
LC8.5
LC8.5A
LC9.0
LC9.0A
8.5
8.5
9.0
9.0
9.44
9.44
10.0
10.0
11.5
10.4
12.2
11.1
1
1
1
1
50
50
10
10
15.9
14.4
16.9
15.4
94
100
89
97
100
100
100
100
75
75
75
75
10
10
10
10
100
100
100
100
LC10
LC10A
LC11
LC11A
10
10
11
11
11.1
11.1
12.2
12.2
13.6
12.3
14.9
13.5
1
1
1
1
5
5
5
5
18.8
17.0
20.1
18.2
80
88
74
82
100
100
100
100
75
75
75
75
10
10
10
10
100
100
100
100
LC12
LC12A
LC13
LC13A
12
12
13
13
13.3
13.3
14.4
14.4
16.3
14.7
17.6
15.9
1
1
1
1
5
5
5
5
22.0
19.9
23.8
21.5
68
75
63
70
100
100
100
100
75
75
75
75
10
10
10
10
100
100
100
100
LC14
LC14A
LC15
LC15A
14
14
15
15
15.6
15.6
16.7
16.7
19.1
17.2
20.4
18.5
1
1
1
1
5
5
5
5
25.8
23.2
26.9
24.4
58
65
56
61
100
100
100
100
75
75
75
75
10
10
10
10
100
100
100
100
LC16
LC16A
LC17
LC17A
16
16
17
17
17.8
17.8
18.9
18.9
21.8
19.7
23.1
20.9
1
1
1
1
5
5
5
5
28.8
26.0
30.5
27.6
52
57
49
54
100
100
100
100
75
75
75
75
10
10
10
10
100
100
100
100
LC18
LC18A
LC20
LC20A
18
18
20
20
20.0
20.0
22.2
22.2
24.4
22.1
27.1
24.5
1
1
1
1
5
5
5
5
32.2
29.2
35.8
32.4
46
51
42
46
100
100
100
100
75
75
75
75
10
10
10
10
100
100
100
100
LC22
LC22A
LC24
LC24A
22
22
24
24
24.4
24.4
26.7
26.7
29.8
26.9
32.6
29.5
1
1
1
1
5
5
5
5
39.4
35.5
43.0
38.9
38
42
35
39
100
100
100
100
75
75
75
75
10
10
10
10
100
100
100
100
LC26
LC26A
LC28
LC28A
26
26
28
28
28.9
28.9
31.1
31.1
35.3
31.9
38.0
34.4
1
1
1
1
5
5
5
5
46.6
42.1
50.1
45.4
32
36
30
33
100
100
100
100
75
75
75
75
10
10
10
10
100
100
100
100
LC30
LC30A
LC33
LC33A
30
30
33
33
33.3
33.3
36.7
36.7
40.7
36.8
44.9
40.6
1
1
1
1
5
5
5
5
53.5
48.4
58.0
53.3
28
31
25.4
28.1
100
100
100
100
75
75
75
75
10
10
10
10
100
100
100
100
LC36
LC36A
LC40
LC40A
36
36
40
40
40.0
40.0
44.4
44.4
48.9
44.2
54.3
49.1
1
1
1
1
5
5
5
5
64.3
58.1
71.4
64.5
23.3
25.8
21.0
23.3
100
100
100
100
75
75
75
75
10
10
10
10
100
100
100
100
LC43
LC43A
LC45
LC45A
43
43
45
45
47.8
47.8
50.0
50.0
58.4
52.8
61.1
55.3
1
1
1
1
5
5
5
5
76.7
69.4
80.3
72.7
19.5
21.6
18.7
20.6
100
100
100
100
150
150
150
150
10
10
10
10
200
200
200
200
LC48
LC48A
LC51
LC51A
48
48
51
51
53.3
53.3
56.7
56.7
65.1
58.9
69.3
62.7
1
1
1
1
5
5
5
5
85.5
77.4
91.1
82.4
17.5
19.4
16.5
18.2
100
100
100
100
150
150
150
150
10
10
10
10
200
200
200
200
continued
T4-LDS-0293, Rev. 1 (5/6/13) ©2013 Microsemi Corporation Page 4 of 6
LC6.5 – LC170A
PART
NUMBER
RATED
WORKING
STANDOFF
VOLTAGE
VWM
Volts
BREAKDOWN VOLTAGE MAXIMUM
STANDBY
CURRENT
ID @VWM
µA
MAXIMUM
CLAMPING
VOLTAGE
VC @ IPP
Volts
MAXIMUM
PEAK
IMPULSE
CURRENT
IPP @
10/100 0 µs
Amps
MAXIMUM
CAPACI-
TANCE
C @ 0
Volts,
f = 1 MHz
pF
WORKING
INVERSE
BLOCKING
VOLTAGE
VWIB
Volts
INVERSE
BLOCKING
LEAKAGE
CURRENT
IIB @ VWIB
µA
PEAK
INVERSE
BLOCKING
VOLTAGE
VOLTS
VPIB
Volts
V(BR)
Volts
@
I(BR)
mA
MIN
MAX
LC54
LC54A
LC58
LC58A
54
54
58
58
60.0
60.0
64.4
64.4
73.3
66.3
78.7
71.2
1
1
1
1
5
5
5
5
96.3
87.1
103.0
93.6
15.6
17.2
14.6
16.0
100
100
100
100
150
150
150
150
10
10
10
10
200
200
200
200
LC60
LC60A
LC64
LC64A
60
60
64
64
66.7
66.7
71.1
71.1
81.5
73.7
86.9
78.6
1
1
1
1
5
5
5
5
107.0
96.8
114.0
103.0
14.0
15.5
13.2
14.6
90
90
90
90
150
150
150
150
10
10
10
10
200
200
200
200
LC70
LC70A
LC75
LC75A
70
70
75
75
77.8
77.8
83.3
83.3
95.1
86.0
102.0
92.1
1
1
1
1
5
5
5
5
125
113
134
121
12.0
13.3
11.2
12.4
90
90
90
90
150
150
150
150
10
10
10
10
200
200
200
200
LC80
LC80A
LC90
LC90A
80
80
90
90
88.7
88.7
100
100
108
98.0
122
111
1
1
1
1
5
5
5
5
142
129
160
146
10.6
11.6
9.4
10.3
90
90
90
90
150
150
300
300
10
10
10
10
200
200
200
200
LC100
LC100A
LC110
LC110A
100
100
110
110
111
111
122
122
136
123
149
135
1
1
1
1
5
5
5
5
179
162
196
178
8.4
9.3
7.7
8.4
90
90
90
90
300
300
300
300
10
10
10
10
200
200
400
400
LC120
LC120A
LC130
LC130A
120
120
130
130
133
133
144
144
163
147
176
159
1
1
1
1
5
5
5
5
214
193
231
209
7.0
7.8
6.5
7.2
90
90
90
90
300
300
300
300
10
10
10
10
400
400
400
400
LC150
LC150A
LC160
LC160A
150
150
160
160
167
167
178
178
204
185
218
197
1
1
1
1
5
5
5
5
268
243
287
259
5.6
6.2
5.2
5.8
90
90
90
90
300
300
300
300
10
10
10
10
400
400
400
400
LC170
LC170A
170
170
189
189
231
209
1
1
5
5
304
275
4.9
5.4
90
90
300
300
10
10
400
400
NOTE 1: TVS devices are normally select ed according t o the reverse standoff voltage (VWM) which should be equal to or greater than the DC or peak
operating volt age l evel.
T4-LDS-0293, Rev. 1 (5/6/13) ©2013 Microsemi Corporation Page 5 of 6
LC6.5 – LC170A
Pulse Time (tw) in µs
FIGURE 1
Peak Pulse Power vs Pulse Time (tw) in µs
PPP - Peak Pulse Power - kW
T4-LDS-0293, Rev. 1 (5/6/13) ©2013 Microsemi Corporation Page 6 of 6
LC6.5 – LC170A
NOTES:
1 Dimensions are in inches.
2 Millimeter equivalents are given for information only.
3 The major diameter is essentially constant along its length.
4 Dimension to al low for pinch or seal deformation anywhere along
tubulation.
5 Symbol for bidirectional transient suppressor.
6 Lead 1 is electrically connec ted to the case.
7 In accordanc e with ASME Y14.5M, diameters are equivalent to Φx
symbology.
The TVS low capacitance device configuration is shown in figure 2. As a further option for unidirectional applications, an additional
low capacitanc e rectifier diode may be used in parallel in the same polarity di rection as the TVS as shown in figure 3. In
applications where random high voltage transients occur, this will prevent reverse transients from damaging the internal low
capacitance rectifier diode and also provide a low voltage conducting direction. The added rectifier diode should be of similar low
capacitance and also have a higher reverse voltage rating than the TVS clamping voltage VC. The Microsemi recommended
rectifier part number is the “LCR80” for the application in figure 3. If using two (2) low capacitance TVS devices in anti-parallel for
bidirectional applications, this added protective feature for both directions (including the reverse of each rectifier diode) is also
provided. The unidirectional and bidirectional configurations in figure 3 and 4 will both res ult in twice the capacitance of figure 2.
FIGURE 2 FIGURE 3 FIGURE 4
TVS with internal Low Optional Unidirectional Optional Bidirectional
Capacitanc e Dio de configuration (TVS and configuration (two TVS
separate rectifier diode devices in anti-parallel)
in parallel)
Dimensions
Symbol
Inches
Millimeters
Notes
Min
Max
Min
Max
BD
0.215
0.235
5.46
5.97
BL
0.315
0.350
8.00
8.90
3
CD
0.045
0.100
1.14
2.54
4
CL
-
0.210
-
5.33
LD
0.026
0.035
0.660
0.889
LL
1.000
1.625
25.40
41.28