Low Power, Chip Scale,
10-Bit SD/HD Video Encoder
Data Sheet
ADV7390/ADV7391/ADV7392/ADV7393
Rev. J Document Feedback
Information furnished by Analog Devices is believed to be accurate and reliable. However, no
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other
rights of third parties that may result from its use. Specifications subject to change without notice. No
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.
Trademarks and registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781.329.4700 ©20062018 Analog Devices, Inc. All rights reserved.
Technical Support www.analog.com
FEATURES
3 high quality, 10-bit video DACs
16× (216 MHz) DAC oversampling for SD
8× (216 MHz) DAC oversampling for ED
4× (297 MHz) DAC oversampling for HD
37 mA maximum DAC output current
Multiformat video input support
4:2:2 YCrCb (SD, ED, and HD)
4:4:4 RGB (SD)
Multiformat video output support
Composite (CVBS) and S-Video (Y-C)
Component YPrPb (SD, ED, and HD)
Component RGB (SD, ED, and HD)
Lead frame chip scale package (LFCSP) options
32-lead, 5 mm × 5 mm LFCSP
40-lead, 6 mm × 6 mm LFCSP
Wafer level chip scale package (WLCSP) option
30-ball, 5 × 6 WLCSP with single DAC output
Advanced power management
Patented content-dependent low power DAC operation
Automatic cable detection and DAC power-down
Individual DAC on/off control
Sleep mode with minimal power consumption
74.25 MHz 8-/10-/16-bit high definition input support
Compliant with SMPTE 274M (1080i), 296M (720p),
and 240M (1035i)
EIA/CEA-861B compliance support
NTSC M, PAL B/D/G/H/I/M/N, PAL 60 support
NTSC and PAL square pixel operation (24.54 MHz/29.5 MHz)
Macrovision Rev 7.1.L1 (SD) and Rev 1.2 (ED) compliant
Copy generation management system (CGMS)
Closed captioning and wide screen signaling (WSS)
Integrated subcarrier locking to external video source
Complete on-chip video timing generator
On-chip test pattern generation
Programmable features
Luma and chroma filter responses
Vertical blanking interval (VBI)
Subcarrier frequency (fSC) and phase
Luma delay
High definition (HD) programmable features
(720p/1080i/1035i)
4× oversampling (297 MHz)
Internal test pattern generator
Color and black bar, hatch, flat field/frame
Fully programmable YCrCb to RGB matrix
Gamma correction
Programmable adaptive filter control
Programmable sharpness filter control
CGMS (720p/1080i) and CGMS Type B (720p/1080i)
Dual data rate (DDR) input support
Enhanced definition (ED) programmable features
(525p/625p)
8× oversampling (216 MHz output)
Internal test pattern generator
Black bar, hatch, flat field/frame
Individual Y and PrPb output delay
Gamma correction
Programmable adaptive filter control
Fully programmable YCrCb to RGB matrix
Undershoot limiter
Macrovision Rev 1.2 (525p/625p) (ADV7390/ADV7392 only)
CGMS (525p/625p) and CGMS Type B (525p)
Dual data rate (DDR) input support
Standard definition (SD) programmable features
16× oversampling (216 MHz)
Internal test pattern generator
Color and black bar
Controlled edge rates for start and end of active video
Individual Y and PrPb output delay
Undershoot limiter
Gamma correction
Digital noise reduction (DNR)
Multiple chroma and luma filters
Luma-SSAF filter with programmable gain/attenuation
PrPb SSAF
Separate pedestal control on component and
composite/S-Video output
VCR FF/RW sync mode
Macrovision Rev 7.1.L1 (ADV7390/ADV7392 only)
Copy generation management system (CGMS)
Wide screen signaling (WSS)
Closed captioning
Serial MPU interface with I2C compatibility
2.7 V or 3.3 V analog operation
1.8 V digital operation
1.8 V or 3.3 V I/O operation
Temperature range: −40°C to +85°C
W Grade automotive range: −40°C to +105°C
Qualified for automotive applications
ADV7390/ADV7391/ADV7392/ADV7393 Data Sheet
Rev. J | Page 2 of 107
TABLE OF CONTENTS
Features .............................................................................................. 1
Revision History ............................................................................... 3
Applications ....................................................................................... 5
General Description ......................................................................... 5
Functional Block Diagrams ............................................................. 6
Specifications ..................................................................................... 7
Power Supply Specifications........................................................ 7
Input Clock Specifications .......................................................... 7
Analog Output Specifications ..................................................... 7
Digital Input/Output Specifications3.3 V ............................. 8
Digital Input/Output Specifications1.8 V ............................. 8
MPU Port Timing Specifications ............................................... 8
Digital Timing Specifications3.3 V ........................................ 9
Digital Timing Specifications1.8 V ...................................... 10
Video Performance Specifications ........................................... 11
Power Specifications .................................................................. 11
Timing Diagrams ........................................................................ 12
Absolute Maximum Ratings .......................................................... 18
Thermal Resistance .................................................................... 18
ESD Caution ................................................................................ 18
Pin Configurations and Function Descriptions ......................... 19
Typical Performance Characteristics ........................................... 21
MPU Port Description ................................................................... 26
I2C Operation .............................................................................. 26
Register Map Access ....................................................................... 28
Register Programming ............................................................... 28
Subaddress Register (SR7 to SR0) ............................................ 28
ADV7390/ADV7391 Input Configuration ................................. 46
Standard Definition .................................................................... 46
Enhanced Definition/High Definition .................................... 46
Enhanced Definition (at 54 MHz) ........................................... 46
ADV7392/ADV7393 Input Configuration ................................. 47
Standard Definition .................................................................... 47
Enhanced Definition/High Definition .................................... 48
Enhanced Definition (at 54 MHz) ........................................... 48
Output Configuration .................................................................... 49
Design Features ............................................................................... 50
Output Oversampling ................................................................ 50
HD Interlace External HSYNC and VSYNC Considerations
....................................................................................................... 51
ED/HD Timing Reset ................................................................ 51
SD Subcarrier Frequency Lock ................................................. 51
SD VCR FF/RW Sync ................................................................ 52
Vertical Blanking Interval ......................................................... 52
SD Subcarrier Frequency Control ............................................ 52
SD Noninterlaced Mode ............................................................ 52
SD Square Pixel Mode ............................................................... 53
Filters ............................................................................................ 54
ED/HD Test Pattern Color Controls ....................................... 55
Color Space Conversion Matrix ............................................... 55
SD Luma and Color Scale Control ........................................... 57
SD Hue Adjust Control .............................................................. 57
SD Brightness Detect ................................................................. 57
SD Brightness Control ............................................................... 57
SD Input Standard Autodetection ............................................ 58
Double Buffering ........................................................................ 58
Programmable DAC Gain Control .......................................... 58
Gamma Correction .................................................................... 59
ED/HD Sharpness Filter and Adaptive Filter Controls ......... 60
ED/HD Sharpness Filter and Adaptive Filter Application
Examples ...................................................................................... 61
SD Digital Noise Reduction ...................................................... 62
SD Active Video Edge Control ................................................. 64
External Horizontal and Vertical Synchronization Control . 65
Low Power Mode ........................................................................ 66
Cable Detection .......................................................................... 66
DAC Autopower-Down ............................................................. 66
Sleep Mode .................................................................................. 66
Pixel and Control Port Readback ............................................. 67
Reset Mechanisms ...................................................................... 67
SD Teletext Insertion ................................................................. 67
Printed Circuit Board Layout and Design .................................. 69
Unused Pins ................................................................................ 69
DAC Configurations .................................................................. 69
Video Output Buffer and Optional Output Filter .................. 69
Printed Circuit Board (PCB) Layout ....................................... 70
Additional Layout Considerations for the WLCSP Package 71
Typical Applications Circuits .................................................... 72
Copy Generation Management System ....................................... 74
SD CGMS .................................................................................... 74
Data Sheet ADV7390/ADV7391/ADV7392/ADV7393
Rev. J | Page 3 of 107
ED CGMS..................................................................................... 74
HD CGMS .................................................................................... 74
CGMS CRC Functionality ......................................................... 74
SD Wide Screen Signaling .............................................................. 77
SD Closed Captioning .................................................................... 78
Internal Test Pattern Generation ................................................... 79
SD Test Patterns ........................................................................... 79
ED/HD Test Patterns .................................................................. 79
SD Timing ........................................................................................ 80
HD Timing ....................................................................................... 85
Video Output Levels ....................................................................... 86
SD YPrPb Output Levels—SMPTE/EBU N10 ........................ 86
ED/HD YPrPb Output Levels ................................................... 87
SD/ED/HD RGB Output Levels ................................................ 88
SD Output Plots .......................................................................... 89
Video Standards .............................................................................. 90
Configuration Scripts ..................................................................... 92
Standard Definition .................................................................... 92
Enhanced Definition .................................................................. 99
High Definition ......................................................................... 101
ADV7390/ADV7391/ADV7392/ADV7393 Evaluation Board
......................................................................................................... 104
Outline Dimensions ...................................................................... 105
Ordering Guide ......................................................................... 107
Automotive Products ................................................................ 107
REVISION HISTORY
8/2018—Rev. I to Rev. J
Changes to Figure 93 ...................................................................... 72
Changes to Figure 94 ...................................................................... 73
Updated Outline Dimensions ......................................................105
Changes to Ordering Guide .........................................................107
2/2015—Rev. H to Rev. I
Changed ADV739x to ADV7390/ADV7391/ADV7392/
ADV7393 ............................................................................. Universal
Changes to Figure 19 ...................................................................... 19
Changes to Table 15 ........................................................................ 20
Changes to Figure 144 ..................................................................104
Updated Outline Dimensions ......................................................106
Changes to Ordering Guide .........................................................107
9/2014—Rev. G to Rev. H
Changed Storage Temperature Range from −60°C to +100°C to
−60°C to +150°C; Table 13 ............................................................. 18
Updated Figure 145, Outline Dimensions .................................105
Changes to Ordering Guide .........................................................107
2/2013—Rev. F to Rev. G
Change to Features Section .............................................................. 1
Changes to Table 14 ........................................................................ 18
Changes to Figure 62 ...................................................................... 48
Changes to Ordering Guide .........................................................107
11/2012—Rev. E to Rev. F
Updated Outline Dimensions ......................................................105
Changes to Ordering Guide .........................................................107
2/2012—Rev. D to Rev. E
Changes to Table 1 ............................................................................ 5
Changes to Digital Input/Output Specifications—
1.8 V Section ...................................................................................... 8
Changes to Table 15 ........................................................................ 21
Changes to Table 20 ........................................................................ 31
Changes to Table 23 ........................................................................ 34
Changes to Table 28 ........................................................................ 39
Changes to 16-Bit 4:4:4 RGB Mode Section ................................ 47
Added External Sync Polarity Section .......................................... 51
Deleted ED/HD Nonstandard Timing Mode Section, Figure 63,
and Table 41, Renumbered Sequentially ...................................... 51
Changed SD Subcarrier Frequency Lock, Subcarrier Phase
Reset, and Timing Reset Section to SD Subcarrier Frequency
Lock Section ..................................................................................... 52
Deleted Subaddress 0x84, Bits[2:1] Section, Timing Reset (TR)
Mode Section, Subcarrier Phase Reset (SCR) Mode Section,
Figure 64, and Figure 65 ................................................................. 52
Changes to Ordering Guide ......................................................... 121
11/2011—Rev. C to Rev. D
Changes to Features Section ............................................................ 1
Updated Outline Dimensions and changes to Automotive
Products Section ............................................................................ 107
9/2011—Rev. B to Rev. C
Changes to MPU Port Description Section ................................. 26
Changes to Ordering Guide ......................................................... 107
7/2010—Rev. A to Rev. B
Changes to Features Section ............................................................ 1
Change to Applications Section ...................................................... 5
Changes to General Description ..................................................... 5
Added Table 2, Renumbered Subsequent Tables .......................... 5
Added Figure 2, Renumbered Subsequent Figures ...................... 6
Changes to Full-Drive Output Current Parameter, Table 5 ........ 7
Changes to Table 14 ........................................................................ 18
Added Figure 20 .............................................................................. 19
Changes to Table 15 ........................................................................ 19
ADV7390/ADV7391/ADV7392/ADV7393 Data Sheet
Rev. J | Page 4 of 107
Changes to ADV7390/ADV7391 Input Configuration
Section .............................................................................................. 45
Added Additional Layout Considerations for the WLCSP
Package Section ............................................................................... 71
Added Figure 97 .............................................................................. 73
Changes to Configuration Scripts Section .................................. 92
Changes to Subaddress 0x00, Table 66 ........................................ 93
Changes to Subaddress 0x00, Table 80 ........................................ 95
Changes to Subaddress 0x00, Table 83 ........................................ 95
Changes to Subaddress 0x00, Table 97 ........................................ 98
Updated Outline Dimensions, Added Figure 150 .................... 106
Changes to Ordering Guide ........................................................ 106
3/2009Rev. 0 to Rev. A
Changes to Features Section............................................................ 1
Deleted Detailed Features Section, Changes to Table 1............... 4
Changes to Figure 1, Added Figure 2 ............................................. 5
Changes to Table 2, Input Clock Specifications Section, and
Analog Output Specifications Section ........................................... 6
Changes to Digital Input/Output Specifications3.3 V Section
and Table 5 ......................................................................................... 7
Added Digital Input/Output Specifications1.8 V Section and
Table 6 ................................................................................................ 7
Changes to MPU Port Timing Specifications Section,
Default Conditions ........................................................................... 7
Changes to Digital Timing Specifications3.3 V Section and
Table 8 ................................................................................................ 8
Added Digital Timing Specifications1.8 V Section and
Table 9 ................................................................................................ 9
Added Video Performance Specifications Section, Default
Conditions ....................................................................................... 10
Added Power Specifications Section, Default Conditions ........ 10
Changes to Table 11 ........................................................................ 10
Changes to Figure 16 ...................................................................... 16
Changes to Table 12 ........................................................................ 17
Changes to Table 14, Pin 19 and Pin 1 Descriptions ................. 18
Changes to MPU Port Description Section ................................ 25
Changes to I2C Operation Section ............................................... 25
Added Table 15 ............................................................................... 25
Changes to Table 17 ....................................................................... 28
Changes to Table 19, 0x30 Bit Description ................................. 30
Changes to Table 27 ....................................................................... 37
Changes to Table 29, 0x8B Bit Description ................................. 39
Changes to Table 30 ....................................................................... 40
Changes to Table 31 ....................................................................... 41
Added Table 32 ............................................................................... 42
Renamed Features Section to Design Features Section ............. 48
Changes to ED/HD Nonstandard Timing Mode Section ......... 48
Added the HD Interlace External HSYNC and VSYNC
Considerations Section .................................................................. 49
Changes to SD Subcarrier Frequency Lock, Subcarrier Reset,
and Timing Reset Section.............................................................. 49
Changes to Subaddress 0x8C to Subaddress 0x8F Section ....... 51
Changes to Programming the FSC Section ................................... 51
Changes to Subaddress 0x82, Bit 4 Section ................................. 51
Added SD Manual CSC Matrix Adjust Feature Section ............ 54
Added Table 47 ............................................................................... 55
Changes to Subaddress 0x9C to Subaddress 0x9F Section ....... 56
Changes to Subaddress 0xBA Section.......................................... 56
Added Sleep Mode Section ........................................................... 65
Changes to Pixel and Control Port Readback Section .............. 66
Changes to Reset Mechanisms Section ....................................... 66
Added SD Teletext Insertion Section ........................................... 66
Added Figure 87 ............................................................................. 67
Added Figure 88 ............................................................................. 68
Changes to DAC Configuration Section ..................................... 68
Added Unused Pins Section .......................................................... 68
Changes to Power Supply Sequencing Section ........................... 70
Changes to Internal Test Pattern Generation Section ............... 77
Changes to SD Timing, Mode 0 (CCIR-656)Slave Option
(Subaddress 0x8A = XXXXX000) Section .................................. 78
10/2006Revision 0: Initial Version
Data Sheet ADV7390/ADV7391/ADV7392/ADV7393
Rev. J | Page 5 of 107
APPLICATIONS
Mobile handsets
Digital still cameras
Portable media and DVD players
Portable game consoles
Digital camcorders
Set-top box (STB)
Automotive infotainment (ADV7392 and ADV7393 only)
GENERAL DESCRIPTION
The ADV7390/ADV7391/ADV7392/ADV7393 are a family of
high speed, digital-to-analog video encoders on single monolithic
chips. Three 2.7 V/3.3 V, 10-bit video DACs (a single DAC for
the WLCSP package) provide support for composite (CVBS),
S-Video (Y-C), or component (YPrPb/RGB) analog outputs in
either standard definition (SD) or high definition (HD) video
formats. The single DAC WLCSP package supports CVBS
(NTSC and PAL) output only in SD resolution (see Table 2).
Optimized for low power operation, occupying a minimal
footprint, and requiring few external components, these
encoders are ideally suited to portable and power-sensitive
applications requiring TV-out functionality. Cable detection
and DAC auto power-down features ensure that power
consumption is kept to a minimum.
The ADV7390/ADV7391 have an 8-bit video input port that
supports SD video formats over an SDR interface and HD video
formats over a DDR interface. The ADV7392/ADV7393 have
a 16-bit video input port that can be configured in a variety of
ways. SD RGB input is supported.
All members of the family support embedded EAV/SAV timing
codes, external video synchronization signals, and the I2and
communication protocol. Table 1 and Table 2 list the video
standards directly supported by the ADV7390/ADV7391/
ADV7392/ADV7393 family.
Table 1. Standards Directly Supported by the LFCSP Packages
Active
Resolution
I/P
1
Frame
Rate (Hz)
Clock
Input
(MHz) Standard
720 × 240 P 59.94 27
720 × 288 P 50 27
720 × 480 I 29.97 27 ITU-R
BT.601/656
720 × 576 I 25 27 ITU-R
BT.601/656
640 × 480 I 29.97 24.54 NTSC
square pixel
768 × 576 I 25 29.5 PAL
square pixel
720 × 483
P
59.94
27
720 × 483 P 59.94 27 BTA T-1004
720 × 483 P 59.94 27 ITU-R BT.1358
720 × 576 P 50 27 ITU-R BT.1358
720 × 483 P 59.94 27 ITU-R BT.1362
720 × 576 P 50 27 ITU-R BT.1362
1920 × 1035 I 30 74.25 SMPTE 240M
1920 × 1035 I 29.97 74.1758 SMPTE 240M
1280 × 720 P 60, 50, 30,
25, 24
74.25 SMPTE 296M
1280 × 720 P 23.97,
59.94,
29.97
74.1758 SMPTE 296M
1920 × 1080 I 30, 25 74.25 SMPTE 274M
1920 × 1080 I 29.97 74.1758 SMPTE 274M
1920 × 1080 P 30, 25, 24 74.25 SMPTE 274M
1920 × 1080 P 23.98,
29.97
74.1758 SMPTE 274M
1920 × 1080 P 24 74.25 ITU-R BT.709-5
1 I = interlaced, P = progressive.
Table 2. Standards Directly Supported by the WLCSP Package
Active
Resolution I/P1
Frame
Rate (Hz)
Clock Input
(MHz) Standard
720 × 480 I 29.97 27 ITU-R
BT.601/656
720 × 576 I 25 27 ITU-R
BT.601/656
640 × 480 I 29.97 24.54 NTSC Square
Pixel
768 × 576 I 25 29.5 PAL Square
Pixel
1 I = interlaced, P = progressive.
ADV7390/ADV7391/ADV7392/ADV7393 Data Sheet
Rev. J | Page 6 of 107
FUNCTIONAL BLOCK DIAGRAMS
GND_IO
V
DD_IO
RESET HSYNC VSYNC
11-BIT
DAC 1 DAC 1
11-BIT
DAC 2 DAC 2
11-BIT
DAC 3 DAC 3
MULTIPLEXER
REFERENCE
AND CABLE
DETECT
16× / 4 × OVERSAMPL I NG PLL
VIDEO TIMING GENERATOR
POWER
MANAGEMENT
CONTROL
CLKIN PV
DD
PGND EXT_LF COMP
R
SET
PROGRAMMABLE
ED/HD F ILTERS
SHARPNESS AND
ADAPTIVE FILTER
CONTROL
YCrCb
HDTV
TEST
PATTERN
GENERATOR
YCbCr
TO
RGB MATRI X
ASYNC
BYPASS
DGND (2) V
DD
(2) SCL SDA ALSB SFL
MPU PORT SUBCARRIE R FREQUENCY
LOCK (SFL)
YCrCb
TO
RGB
PROGRAMMABLE
CHROMINANCE
FILTER
ADD
BURST SI N/CO S DDS
BLOCK
16×
FILTER
16×
FILTER
FILTER
AGND V
AA
ADD
SYNC
VBI DAT A SERV ICE
INSERTION
PROGRAMMABLE
LUMINANCE
FILTER
06234-001
ADV7390/ADV7391
8- BIT SD
OR
8- BIT ED/ HD
SDR/DDR
SD/E D/HD I NPUT
4:2:2 TO 4: 4: 4
DEINTERLEAVE
Figure 1. ADV7390/ADV7391 (32-Lead LFCSP)
GND_IO
V
DD_IO
RESET HSYNC VSYNC
11-BIT
DAC 1 DAC 1
MULTIPLEXER
REFERENCE
AND CABLE
DETECT
16× O VERSAMPLING PLL
VIDEO TIMING GENERATOR
POWER
MANAGEMENT
CONTROL
CLKIN PV
DD
PGND EXT_LF COMP
R
SET
DGND (2) V
DD
(2) SCL SDA ALSB SFL
MPU PORT SUBCARRIE R FREQUENCY
LOCK (SFL)
PROGRAMMABLE
CHROMINANCE
FILTER
ADD
BURST SI N/CO S DDS
BLOCK
16×
FILTER
16×
FILTER
AGND V
AA
ADD
SYNC
VBI DAT A SERV ICE
INSERTION
PROGRAMMABLE
LUMINANCE
FILTER
06234-146
ADV7390BCBZ
8- BIT SD SDR/DDR
SD INP UT
4:2:2 TO 4: 4: 4
DEINTERLEAVE
Figure 2. ADV7390BCBZ-A (30-Ball WLCSP)
GND_IO
V
DD_IO
RESET HSYNC VSYNC
DAC 1
DAC 2
DAC 3
MULTIPLEXER
REFERENCE
AND CABLE
DETECT
VIDEO TIMING GENERATOR
POWER
MANAGEMENT
CONTROL
CLKIN PV
DD
PGND EXT_LF COMP
R
SET
PROGRAMMABLE
ED/HD F ILTERS
SHARPNESS AND
ADAPTIVE FILTER
CONTROL
YCrCb
HDTV
TEST
PATTERN
GENERATOR
YCbCr
TO
RGB MATRI X
ASYNC
BYPASS
DGND (2) V
DD
(2) SCL SDA ALSB SFL
MPU PORT SUBCARRIER FREQUENCY
LOCK (SFL)
YCrCb
TO
RGB
PROGRAMMABLE
CHROMINANCE
FILTER
SIN/CO S DDS
BLOCK
16×
FILTER
16×
FILTER
FILTER
AGND V
AA
VBI DAT A SERV ICE
INSERTION
PROGRAMMABLE
LUMINANCE
FILTER
06234-145
ADV7392/ADV7393
ADD
SYNC
RGB
TO
YCrCb
MATRIX
SDR/DDR
SD/ED/HD INPUT
4:2:2 TO 4:4:4
DEINTERLEAVE
8-/10-/16- B IT SD
OR
8-/10-/16- B IT ED/H D
ADD
BURST
16x/ 4 x OVERSAMPL I NG PLL
12-BIT
DAC 1
12-BIT
DAC 2
12-BIT
DAC 3
Figure 3. ADV7392/ADV7393 (40-Lead LFCSP)
Data Sheet ADV7390/ADV7391/ADV7392/ADV7393
Rev. J | Page 7 of 107
SPECIFICATIONS
POWER SUPPLY SPECIFICATIONS
All specifications TMIN to TMAX (−40°C to +85°C), unless otherwise noted.
Table 3.
Parameter Min Typ Max Unit
SUPPLY VOLTAGES
VDD 1.71 1.8 1.89 V
VDD_IO 1.71 3.3 3.63 V
PVDD 1.71 1.8 1.89 V
VAA 2.6 3.3 3.465 V
POWER SUPPLY REJECTION RATIO 0.002 %/%
INPUT CLOCK SPECIFICATIONS
VDD = 1.71 V to 1.89 V, PVDD = 1.71 V to 1.89 V, VAA = 2.6 V to 3.465 V, VDD_IO = 1.71 V to 3.63 V. All specifications TMIN to TMAX (−40°C
to +85°C), unless otherwise noted.
Table 4.
Parameter Conditions1 Min Typ Max Unit
fCLKIN SD/ED 27 MHz
ED (at 54 MHz) 54 MHz
HD 74.25 MHz
CLKIN High Time, t9 40 % of one clock cycle
CLKIN Low Time, t10 40 % of one clock cycle
CLKIN Peak-to-Peak Jitter Tolerance 2 ±ns
1 SD = standard definition, ED = enhanced definition (525p/625p), HD = high definition.
ANALOG OUTPUT SPECIFICATIONS
VDD = 1.71 V to 1.89 V, PVDD = 1.71 V to 1.89 V, VAA = 2.6 V to 3.465 V, VDD_IO = 1.71 V to 3.63 V. All specifications TMIN to TMAX (−40°C
to +85°C), unless otherwise noted.
Table 5.
Parameter Conditions Min Typ Max Unit
Full-Drive Output Current RSET = 510 Ω, RL = 37.5 Ω 33 34.6 37 mA
All DACs enabled
RSET = 510 Ω, RL = 37.5 Ω 31.5 33.5 37 mA
DAC 1 enabled only1
Low-Drive Output Current RSET = 4.12 kΩ, RL = 300 Ω 4.3 mA
DAC-to-DAC Matching
DAC 1, DAC 2, DAC 3
2.0
%
Output Compliance, VOC 0 1.4 V
Output Capacitance, COUT 10 pF
Analog Output Delay2 6 ns
DAC Analog Output Skew DAC 1, DAC 2, DAC 3 1 ns
1 The recommended method of bringing this value back to the ideal value is by adjusting Register 0x0B to the recommended value of 0x12.
2 Output delay measured from the 50% point of the rising edge of the input clock to the 50% point of the DAC output full-scale transition.
ADV7390/ADV7391/ADV7392/ADV7393 Data Sheet
Rev. J | Page 8 of 107
DIGITAL INPUT/OUTPUT SPECIFICATIONS3.3 V
VDD = 1.71 V to 1.89 V, PVDD = 1.71 V to 1.89 V, VAA = 2.6 V to 3.465 V, VDD_IO = 2.97 V to 3.63 V. All specifications TMIN to TMAX (−40°C
to +85°C), unless otherwise noted.
Table 6.
Parameter Conditions Min Typ Max Unit
Input High Voltage, VIH 2.0 V
Input Low Voltage, VIL 0.8 V
Input Leakage Current, IIN VIN = VDD_IO ±10 µA
Input Capacitance, CIN 4 pF
Output High Voltage, VOH ISOURCE = 400 µA 2.4 V
Output Low Voltage, VOL ISINK = 3.2 mA 0.4 V
Three-State Leakage Current VIN = 0.4 V, 2.4 V ±1 µA
Three-State Output Capacitance 4 pF
DIGITAL INPUT/OUTPUT SPECIFICATIONS1.8 V
When VDD_IO is set to 1.8 V, all the digital video inputs and control inputs, such as I2C, HS, and VS, should use 1.8 V levels. VDD = 1.71 V
to 1.89 V, PVDD = 1.71 V to 1.89 V, VAA = 2.6 V to 3.465 V, VDD_IO = 1.71 V to 1.89 V. All specifications TMIN to TMAX (−40°C to +85°C),
unless otherwise noted.
Table 7.
Parameter Conditions Min Typ Max Unit
Input High Voltage, VIH 0.7 VDD_IO V
Input Low Voltage, VIL 0.3 VDD_IO V
Input Capacitance, CIN 4 pF
Output High Voltage, VOH ISOURCE = 400 µA VDD_IO0.4 V
Output Low Voltage, VOL ISINK = 3.2 mA 0.4 V
Three-State Output Capacitance 4 pF
MPU PORT TIMING SPECIFICATIONS
VDD = 1.71 V to 1.89 V, PVDD = 1.71 V to 1.89 V, VAA = 2.6 V to 3.465 V, VDD_IO = 1.71 V to 3.63 V. All specifications TMIN to TMAX (−40°C
to +85°C), unless otherwise noted.
Table 8.
Parameter
Conditions
Min
Typ
Max
Unit
MPU PORT, I2C MODE1 See Figure 17
SCL Frequency 0 400 kHz
SCL High Pulse Width, t1 0.6 µs
SCL Low Pulse Width, t2 1.3 µs
Hold Time (Start Condition), t3 0.6 µs
Setup Time (Start Condition), t4 0.6 µs
Data Setup Time, t5 100 ns
SDA, SCL Rise Time, t6 300 ns
SDA, SCL Fall Time, t7 300 ns
Setup Time (Stop Condition), t8 0.6 µs
1 Guaranteed by characterization.
Data Sheet ADV7390/ADV7391/ADV7392/ADV7393
Rev. J | Page 9 of 107
DIGITAL TIMING SPECIFICATIONS3.3 V
VDD = 1.71 V to 1.89 V, PVDD = 1.71 V to 1.89 V, VAA = 2.6 V to 3.465 V, VDD_IO = 2.97 V to 3.63 V. All specifications TMIN to TMAX (−40°C
to +85°C), unless otherwise noted.
Table 9.
Parameter Conditions1 Min Typ Max Unit
VIDEO DATA AND VIDEO CONTROL PORT2, 3
Data Input Setup Time, t114 SD 2.1 ns
ED/HD-SDR 2.3 ns
ED/HD-DDR 2.3 ns
ED (at 54 MHz) 1.7 ns
Data Input Hold Time, t124 SD 1.0 ns
ED/HD-SDR 1.1 ns
ED/HD-DDR 1.1 ns
ED (at 54 MHz) 1.0 ns
Control Input Setup Time, t114 SD 2.1 ns
ED/HD-SDR or ED/HD-DDR
2.3
ns
ED (at 54 MHz) 1.7 ns
Control Input Hold Time, t124 SD 1.0 ns
ED/HD-SDR or ED/HD-DDR 1.1 ns
ED (at 54 MHz) 1.0 ns
Control Output Access Time, t134 SD 12 ns
ED/HD-SDR, ED/HD-DDR, or ED (at 54 MHz) 10 ns
Control Output Hold Time, t144 SD 4.0 ns
ED/HD-SDR, ED/HD-DDR, or ED (at 54 MHz) 3.5 ns
PIPELINE DELAY5
SD1
CVBS/Y-C Outputs (2×) SD oversampling disabled 68 Clock cycles
CVBS/Y-C Outputs (8×) SD oversampling enabled 79 Clock cycles
CVBS/Y-C Outputs (16×) SD oversampling enabled 67 Clock cycles
Component Outputs (2×)
SD oversampling disabled
78
Clock cycles
Component Outputs (8×) SD oversampling enabled 69 Clock cycles
Component Outputs (16×) SD oversampling enabled 84 Clock cycles
ED1
Component Outputs (1×) ED oversampling disabled 41 Clock cycles
Component Outputs (4×) ED oversampling enabled 49 Clock cycles
Component Outputs (8×) ED oversampling enabled 46 Clock cycles
HD1
Component Outputs (1×) HD oversampling disabled 40 Clock cycles
Component Outputs (2×) HD oversampling enabled 42 Clock cycles
Component Outputs (4×) HD oversampling enabled 44 Clock cycles
RESET CONTROL
RESET Low Time 100 ns
1 SD = standard definition, ED = enhanced definition (525p/625p), HD = high definition, SDR = single data rate, DDR = dual data rate.
2 Video data: P[15:0] for ADV7392/ADV7393 or P[7:0] for ADV7390/ADV7391.
3 Video control: HSYNC and VSYNC.
4 Guaranteed by characterization.
5 Guaranteed by design.
ADV7390/ADV7391/ADV7392/ADV7393 Data Sheet
Rev. J | Page 10 of 107
DIGITAL TIMING SPECIFICATIONS1.8 V
VDD = 1.71 V to 1.89 V, PVDD = 1.71 V to 1.89 V, VAA = 2.6 V to 3.465 V, VDD_IO = 1.71 V to 1.89 V. All specifications TMIN to TMAX (−40°C
to +85°C), unless otherwise noted.
Table 10.
Parameter Conditions1 Min Typ Max Unit
VIDEO DATA AND VIDEO CONTROL PORT2, 3
Data Input Setup Time, t114 SD 1.4 ns
ED/HD-SDR 1.9 ns
ED/HD-DDR 1.9 ns
ED (at 54 MHz) 1.6 ns
Data Input Hold Time, t124 SD 1.4 ns
ED/HD-SDR 1.5 ns
ED/HD-DDR 1.5 ns
ED (at 54 MHz) 1.3 ns
Control Input Setup Time, t114 SD 1.4 ns
ED/HD-SDR or ED/HD-DDR
1.2
ns
ED (at 54 MHz) 1.0 ns
Control Input Hold Time, t124 SD 1.4 ns
ED/HD-SDR or ED/HD-DDR 1.0 ns
ED (at 54 MHz) 1.0 ns
Control Output Access Time, t134 SD 13 ns
ED/HD-SDR, ED/HD-DDR, or ED (at 54 MHz) 12 ns
Control Output Hold Time, t144 SD 4.0 ns
ED/HD-SDR, ED/HD-DDR, or ED (at 54 MHz) 5.0 ns
PIPELINE DELAY5
SD1
CVBS/Y-C Outputs (2×) SD oversampling disabled 68 Clock cycles
CVBS/Y-C Outputs (8×) SD oversampling enabled 79 Clock cycles
CVBS/Y-C Outputs (16×) SD oversampling enabled 67 Clock cycles
Component Outputs (2×)
SD oversampling disabled
78
Clock cycles
Component Outputs (8×) SD oversampling enabled 69 Clock cycles
Component Outputs (16×) SD oversampling enabled 84 Clock cycles
ED1
Component Outputs (1×) ED oversampling disabled 41 Clock cycles
Component Outputs (4×) ED oversampling enabled 49 Clock cycles
Component Outputs (8×) ED oversampling enabled 46 Clock cycles
HD1
Component Outputs (1×) HD oversampling disabled 40 Clock cycles
Component Outputs (2×) HD oversampling enabled 42 Clock cycles
Component Outputs (4×) HD oversampling enabled 44 Clock cycles
RESET CONTROL
RESET Low Time 100 ns
1 SD = standard definition, ED = enhanced definition (525p/625p), HD = high definition, SDR = single data rate, DDR = dual data rate.
2 Video data: P[15:0] for ADV7392/ADV7393 or P[7:0] for ADV7390/ADV7391.
3 Video control: HSYNC and VSYNC.
4 Guaranteed by characterization.
5 Guaranteed by design.
Data Sheet ADV7390/ADV7391/ADV7392/ADV7393
Rev. J | Page 11 of 107
VIDEO PERFORMANCE SPECIFICATIONS
VDD = 1.8 V, PVDD = 1.8 V, VAA = 3.3 V, VDD_IO = 3.3 V, TA = +25°C.
Table 11.
Parameter Conditions Min Typ Max Unit
STATIC PERFORMANCE
Resolution 10 Bits
Integral Nonlinearity (INL)1 RSET = 510 Ω, RL = 37.5 Ω 0.5 LSBs
Differential Nonlinearity (DNL)1, 2 RSET = 510 Ω, RL = 37.5 Ω 0.5 LSBs
STANDARD DEFINTION (SD) MODE
Luminance Nonlinearity 0.5 ±%
Differential Gain NTSC 0.5 %
Differential Phase NTSC 0.6 Degrees
Signal-to-Noise Ratio (SNR)
3
Luma ramp
58
dB
Flat field full bandwidth 75 dB
ENHANCED DEFINITION (ED) MODE
Luma Bandwidth 12.5 MHz
Chroma Bandwidth 5.8 MHz
HIGH DEFINITION (HD) MODE
Luma Bandwidth 30.0 MHz
Chroma Bandwidth 13.75 MHz
1 Measured on DAC 1, DAC 2, and DAC 3.
2 Differential nonlinearity (DNL) measures the deviation of the actual DAC output voltage step from the ideal. For +ve DNL, the actual step value lies above the ideal
step value. Forve DNL, the actual step value lies below the ideal step value.
3 Measured on the ADV7392/ADV7393 operating in 10-bit input mode.
POWER SPECIFICATIONS
VDD = 1.8 V, PVDD = 1.8 V, VAA = 3.3 V, VDD_IO = 3.3 V, TA = +25°C.
Table 12.
Parameter Conditions Min Typ Max Unit
NORMAL POWER MODE1, 2
IDD3 SD (16× oversampling enabled), CVBS (only one DAC turned on) 33 mA
SD (16× oversampling enabled), YPrPb (three DACs turned on) 68 mA
ED (8× oversampling enabled)4 59 mA
HD (4× oversampling enabled)4 81 101 mA
IDD_IO 1 10 mA
IAA5 One DAC enabled 50 mA
All DACs enabled 122 151 mA
IPLL 4 10 mA
SLEEP MODE
I
DD
5
µA
IAA 0.3 µA
IDD_IO 0.2 µA
IPLL 0.1 µA
1 RSET = 510 Ω (all DACs operating in full-drive mode).
2 75% color bar test pattern applied to pixel data pins.
3 IDD is the continuous current required to drive the digital core.
4 Applicable to both single data rate (SDR) and dual data rate (DDR) input modes.
5 IAA is the total current required to supply all DACs.
ADV7390/ADV7391/ADV7392/ADV7393 Data Sheet
Rev. J | Page 12 of 107
TIMING DIAGRAMS
The following abbreviations are used in Figure 4 to Figure 11:
t9 = clock high time
t10 = clock low time
t11 = data setup time
t12 = data hold time
t13 = control output access time
t14 = control output hold time
In addition, see Table 35 for the ADV7390/ADV7391 pixel port
input configuration and Table 36 for the ADV7392/ADV7393
pixel port input configuration.
t9
CLKIN
t10
CONTROL
OUTPUTS
HSYNC
VSYNC
Cr2
Cb2Cr0
Cb0
IN MASTER/SLAVE MODE
IN SLAVE MODE
Y0 Y1 Y2
PIXEL PORT
CONTROL
INPUTS
t12
t11 t13
t14
06234-002
Figure 4. SD Input, 8-/10-Bit 4:2:2 YCrCb, Input Mode 000
IN MASTER/SLAVE MODE
IN SLAVE MODE
CLKIN
CONTROL
OUTPUTS
t9t10
Cr2
Cb2
Cr0Cb0
Y0 Y1 Y2 Y3
t12
t14
t11 t13
HSYNC
VSYNC
CONTROL
INPUTS
PIXEL PORT
PIXEL PORT
06234-003
Figure 5. SD Input, 16-Bit 4:2:2 YCrCb, Input Mode 000
Data Sheet ADV7390/ADV7391/ADV7392/ADV7393
Rev. J | Page 13 of 107
CONTROL
OUTPUTS
t9t10
t11
G0 G1 G2
B0 B1 B2
R0 R1 R2
t12
t14
t13
PIXEL PORT
PIXEL PORT
PIXEL PORT
CLKIN
HSYNC
VSYNC
CONTROL
INPUTS
06234-004
Figure 6. SD Input, 16-Bit 4:4:4 RGB, Input Mode 000
CONTROL
OUTPUTS
PIXEL PORT
PIXEL PORT
Y0 Y1 Y2 Y3 Y4 Y5
Cr4Cb4Cr2Cb2Cr0Cb0
CLKIN
t
9
t
10
t
12
t
11
t
14
t
13
HSYNC
VSYNC
CONTROL
INPUTS
06234-005
Figure 7. ED/HD-SDR Input, 16-Bit 4:2:2 YCrCb, Input Mode 001
CLKIN*
CONTROL
OUTPUTS
Cr2
Y2Cb2
Y1
Cr0Y0Cb0
t
9
t
10
t
12
t
11
t
12
t
11
t
14
t
13
PIXEL PORT
HSYNC
VSYNC
CONTROL
INPUTS
*LUM A/CHROM A CLOCK RE LATIONS HIP CAN BE INVERTED USING S UBADDRE SS 0x01, BITS 1 AND 2.
06234-006
Figure 8. ED/HD-DDR Input, 8-/10-Bit 4:2:2 YCrCb (HSYNC/VSYNC), Input Mode 010
ADV7390/ADV7391/ADV7392/ADV7393 Data Sheet
Rev. J | Page 14 of 107
CONTROL
OUTPUTS
PIXEL PORT
*LUM A/CHROM A CLOCK RE LATIONS HIP CAN BE INVERTED USI NG SUBADDRES S 0x01, BITS 1 AND 2.
Y1Cr0Y0Cb0XY00003FF
CLKIN*
t
9
t
10
t
12
t
11
t
12
t
11
t
14
t
13
06234-007
Figure 9. ED/HD-DDR Input, 8-/10-Bit 4:2:2 YCrCb (EAV/SAV), Input Mode 010
CLKIN
CONTROL
OUTPUTS
Y1Cr0Y0Cb0 Cr2
Y2
Cb2
t9t10
t12
t11 t13
t14
PIXEL PORT
HSYNC
VSYNC
CONTROL
INPUTS
06234-008
Figure 10. ED (at 54 MHz) Input, 8-/10-Bit 4:2:2 YCrCb (HSYNC/VSYNC), Input Mode 111
CLKIN
CONTROL
OUTPUTS
3FF 00 00 XY Cb0 Y0 Cr0 Y1
PIXEL PORT
t
11
t
12
t
10
t
9
t
14
t
13
06234-009
Figure 11. ED (at 54 MHz) Input, 8-/10-Bit 4:2:2 YCrCb (EAV/SAV), Input Mode 111
Data Sheet ADV7390/ADV7391/ADV7392/ADV7393
Rev. J | Page 15 of 107
Y0 Y1 Y2 Y3
a
Cr2Cb2Cr0Cb0
b
Y OUTPUT
HSYNC
VSYNC
a = AS PE R RE LEVANT ST ANDARD.
b = PIPELINE DELAY. PLEASE REFER TO RELEVANT PIPELINE DELAY. THIS CAN BE FOUND IN THE DIGITAL TIMING
SPECIFICATION SECTION OF THE DATA SHEET.
A FALLING EDGE OF HSYNC INTO THE ENCODER GENERATES A SYNC FALLING EDGE ON THE OUTPUT AFTER A TIME
EQUAL TO THE PIPELINE DELAY.
PIXEL PORT
PIXEL PORT*
06234-010
Figure 12. ED-SDR, 16-Bit 4:2:2 YCrCb (HSYNC/VSYNC) Input Timing Diagram
Cb0 Y0 Cr0 Y1
a
a(MIN) = 244 CLOCK CY CLES FOR 525p.
a(MIN) = 264 CLOCK CY CLES FOR 625p.
b = PIPELINE DELAY. PLEASE REFER TO RELEVANT PIPELINE DELAY. THIS CAN BE FOUND IN THE DIGITAL TIMING
SPECIFICATION SECTION OF THE DATA SHEET.
A FALLING EDGE OF HSYNC INTO THE ENCODER GENERATES A SYNC FALLING EDGE ON THE OUTPUT AFTER A TIME
EQUAL TO THE PIPELINE DELAY.
HSYNC
VSYNC
b
Y OUTPUT
PIXEL PORT
06234-011
Figure 13. ED-DDR, 8-/10-Bit 4:2:2 YCrCb (HSYNC/VSYNC) Input Timing Diagram
ADV7390/ADV7391/ADV7392/ADV7393 Data Sheet
Rev. J | Page 16 of 107
Y0 Y1 Y2 Y3
a
Cr2Cb2Cr0Cb0
b
Y OUTPUT
HSYNC
VSYNC
a = AS PE R RE LEVANT ST ANDARD.
b = PIPELINE DELAY. PLEASE REFER TO RELEVANT PIPELINE DELAY. THIS CAN BE FOUND IN THE DIGITAL TIMING
SPECIFICATION SECTION OF THE DATA SHEET.
A FALLING EDGE OF HSYNC INTO THE ENCODER GENERATES A FALLING EDGE OF TRI-LEVEL SYNC ON THE OUTPUT
AFTER A TIME EQUAL TO THE PIPELINE DELAY.
PIXEL PORT
PIXEL PORT
06234-012
Figure 14. HD-SDR, 16-Bit 4:2:2 YCrCb (HSYNC/VSYNC) Input Timing Diagram
PIXEL PORT Cb0 Y0 Cr0 Y1
a
HSYNC
VSYNC
b
Y OUTPUT
a = AS PE R RE LEVANT ST ANDARD.
b = PIPELINE DELAY. PLEASE REFER TO RELEVANT PIPELINE DELAY. THIS CAN BE FOUND IN THE DIGITAL TIMING
SPECIFICATION SECTION OF THE DATA SHEET.
A FALLING EDGE OF HSYNC INTO THE ENCODER GENERATES A FALLING EDGE OF TRI-LEVEL SYNC ON THE OUTPUT
AFTER A TIME EQUAL TO THE PIPELINE DELAY.
06234-013
Figure 15. HD-DDR, 8-/10-Bit 4:2:2 YCrCb (HSYNC/VSYNC) Input Timing Diagram
Data Sheet ADV7390/ADV7391/ADV7392/ADV7393
Rev. J | Page 17 of 107
Cb YCr Y
PAL = 264 CLOCK CY CLES
NTSC = 244 CLOCK CY CLES
PIXEL PORT
VSYNC
HSYNC
06234-014
Figure 16. SD Input Timing Diagram (Timing Mode 1)
t
3
t
3
t
4
t
7
t
8
t
5
SDA
SCL
t
1
t
2
t
6
06234-015
Figure 17. MPU Port Timing Diagram (I2C Mode)
ADV7390/ADV7391/ADV7392/ADV7393 Data Sheet
Rev. J | Page 18 of 107
ABSOLUTE MAXIMUM RATINGS
Table 13.
Parameter1 Rating
VAA to AGND −0.3 V to +3.9 V
V
DD
to DGND
−0.3 V to +2.3 V
PVDD to PGND −0.3 V to +2.3 V
VDD_IO to GND_IO −0.3 V to +3.9 V
AGND to DGND −0.3 V to +0.3 V
AGND to PGND −0.3 V to +0.3 V
AGND to GND_IO −0.3 V to +0.3 V
DGND to PGND −0.3 V to +0.3 V
DGND to GND_IO −0.3 V to +0.3 V
PGND to GND_IO −0.3 V to +0.3 V
Digital Input Voltage to GND_IO −0.3 V to VDD_IO + 0.3 V
Analog Outputs to AGND −0.3 V to VAA
Max CLKIN Input Frequency 80 MHz
Storage Temperature Range (tS) −60°C to +150°C
Junction Temperature (tJ) 150°C
Lead Temperature (Soldering, 10 sec) 260°C
1 Analog output short circuit to any power supply or common can be of an
indefinite duration.
Stresses at or above those listed under Absolute Maximum
Ratings may cause permanent damage to the product. This is a
stress rating only; functional operation of the product at these
or any other conditions above those indicated in the operational
section of this specification is not implied. Operation beyond
the maximum operating conditions for extended periods may
affect product reliability.
THERMAL RESISTANCE
θJA is specified for the worst-case conditions, that is, a device
soldered in a circuit board for surface-mount packages.
Table 14. Thermal Resistance1
Package Type θJA2 θJC-TOP3 θJC-BOTTOM4 Unit
30-Ball WLCSP 35 1 N/A °C/W
32-Lead LFCSP
27
32
1.2
°C/W
40-Lead LFCSP
26
32
1
°C/W
1 Values are based on a JEDEC 4-layer test board.
2 With the exposed metal paddle on the underside of the LFCSP soldered to
the PCB ground.
3 This is the thermal resistance of the junction to the top of the package.
4 This is the thermal resistance of the junction to the bottom of the package.
The ADV7390/ADV7391/ADV7392/ADV7393 are RoHS-
compliant, Pb-free products. The lead finish is 100% pure Sn
electroplate. The device is suitable for Pb-free applications up to
255°C (±5°C) IR reflow (JEDEC STD-20).
The ADV7390/ADV7391/ADV7392/ADV7393 are backward
compatible with conventional SnPb soldering processes. The
electroplated Sn coating can be soldered with SnPb solder pastes
at conventional reflow temperatures of 220°C to 235°C.
ESD CAUTION
Data Sheet ADV7390/ADV7391/ADV7392/ADV7393
Rev. J | Page 19 of 107
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS
PIN 1
INDICATOR
1
VDD_IO
NOTES
1. T HE E X P OSED P AD S HOULD BE CONNECT E D
TO ANALO G GROUND (AGND) .
2P2 3
P3 4
P4 5
VDD 6DGND 7
P5 8P6
24 RSET
23 COMP
22 DAC 1
21 DAC 2
20 DAC 3
19 VAA
18 AGND
17 PVDD
9P7 10ALSB 11SDA 12SCL 13CLKIN 14
RESET 15PGND 16EXT_LF
32 GND_IO
31 P1
30 P0
29 DGND
28 VDD
27 HSYNC
26 VSYNC
25 SFL
TOP VIEW
(No t t o Scal e)
ADV7390/
ADV7391
06234-017
Figure 18. ADV7390/ADV7391 Pin Configuration
V
DD_IO
P4
P5
P6
P7
V
DD
DGND
P8
P9
P10
PV
DD
AGND
V
AA
DAC 3
DAC 2
DAC 1
COMP
R
SET
EXT_LF
PGND
P0
V
DD
DGND
P1
P2
P3
GND_IO
SFL
HSYNC
VSYNC
P11
ALSB
SDA
P12
P14
P13
P15
CLKIN
RESET
SCL
06234-018
NOTES
1. THE EX POSED P AD S HOULD BE CONNECT E D
TO ANALOG GROUND ( AGND).
1
2
3
4
5
6
7
8
9
10
23
24
25
26
27
28
29
30
22
21
11
12
13
15
17
16
18
19
20
14
33
34
35
36
37
38
39
40
32
31
ADV7392/
ADV7393
TOP VIEW
(No t t o Scal e)
Figure 19. ADV7392/ADV7393 Pin Configuration
06234-147
1
A
B
C
D
E
F
2 3 4
VDD P0 V
DD_IO
RSET
DAC1
HSYNC
VSYNC SFL P1 P2
VAA COMP DGND P3 P4
AGND GND_IO RESET VDD DGND
PVDD EXT_LF ALSB P5 P6
PGND SDA SCL CLKIN P7
5
TOP VIEW
(BAL L SI DE DO WN)
Not t o Scal e
BALL A1 CORNER
Figure 20. ADV7390BCBZ-A Pin Configuration
Table 15. Pin Function Descriptions
Pin No.1
Mnemonic
Input/
Output Description
ADV7390/
ADV7391
ADV7392/
ADV7393
ADV7390
WLCSP
9 to 7, 4 to 2,
31, 30
N/A F5, E5, E4, C5,
C4, B5, B4, A4
P7 to P0 I 8-Bit Pixel Port (P7 to P0). P0 is the LSB. See Table 35 for
input modes (ADV7390/ADV7391).
N/A 18 to 15, 11 to
8, 5 to 2, 39 to
37, 34
N/A P15 to P0 I 16-Bit Pixel Port (P15 to P0). P0 is the LSB. See Table 36 for
input modes (ADV7392/ADV7393).
13 19 F4 CLKIN I Pixel Clock Input for HD (74.25 MHz), ED2 (27 MHz or 54 MHz),
or SD (27 MHz).
27 33 A2 HSYNC I/O Horizontal Synchronization Signal. This pin can also be
configured to output an SD, ED, or HD horizontal
synchronization signal. See the External Horizontal and
Vertical Synchronization Control section.
26 32 B2 VSYNC I/O Vertical Synchronization Signal. This pin can also be
configured to output an SD, ED, or HD vertical
synchronization signal. See the External Horizontal and
Vertical Synchronization Control section.
25 31 B3 SFL I/O Subcarrier Frequency Lock (SFL) Input.
ADV7390/ADV7391/ADV7392/ADV7393 Data Sheet
Rev. J | Page 20 of 107
Pin No.1
Mnemonic
Input/
Output Description
ADV7390/
ADV7391
ADV7392/
ADV7393
ADV7390
WLCSP
24 30 A1 RSET I Controls the amplitudes of the DAC 1, DAC 2, and DAC 3
outputs. For full-drive operation (for example, into a 37.5 Ω
load), a 510 Ω resistor must be connected from RSET to AGND.
For low-drive operation (for example, into a 300 Ω load), a
4.12 kΩ resistor must be connected from RSET to AGND.
23 29 C2 COMP O Compensation Pin. Connect a 2.2 nF capacitor from COMP
to VAA.
N/A N/A B1 DAC 1 O DAC Output. Full-drive and low-drive capable DAC
22, 21, 20 28, 27, 26 N/A DAC 1, DAC 2,
DAC 3
O DAC Outputs. Full-drive and low-drive capable DACs.
12 14 F3 SCL I I2C Clock Input.
11 13 F2 SDA I/O I2C Data Input/Output.
10 12 E3 ALSB I ALSB sets up the LSB3 of the MPU I2C address.
14 20 D3 RESET I Resets the on-chip timing generator and sets the
ADV7390/ADV7391/ADV7392/ADV7393 into its default
mode.
19 25 C1 VAA P Analog Power Supply (2.7 V or 3.3 V).
5, 28 6, 35 A3, D4 VDD P Digital Power Supply (1.8 V). For dual-supply
configurations, VDD can be connected to other 1.8 V
supplies through a ferrite bead or suitable filtering.
1
1
A5
V
DD_IO
P
Input/Output Digital Power Supply (1.8 V or 3.3 V).
17 23 E1 PVDD P PLL Power Supply (1.8 V). For dual-supply configurations,
PVDD can be connected to other 1.8 V supplies through a
ferrite bead or suitable filtering.
16 22 E2 EXT_LF I External Loop Filter for the Internal PLL.
15 21 F1 PGND G PLL Ground Pin.
18 24 D1 AGND G Analog Ground Pin.
6, 29 7, 36 C3, D5 DGND G Digital Ground Pin.
32 40 D2 GND_IO G Input/Output Supply Ground Pin.
EPAD G Exposed Pad. Connect to analog ground (AGND).
1 N/A means not applicable.
2 ED = enhanced definition = 525p and 625p.
3 LSB = least significant bit. In the ADV7390/ADV7392, setting the LSB to 0 sets the I2C address to 0xD4. Setting it to 1 sets the I2C address to 0xD6. In the
ADV7391/ADV7393, setting the LSB to 0 sets the I2C address to 0x54. Setting it to 1 sets the I2C address to 0x56.
Data Sheet ADV7390/ADV7391/ADV7392/ADV7393
Rev. J | Page 21 of 107
TYPICAL PERFORMANCE CHARACTERISTICS
FREQUENCY (MHz)
EDPr/Pb RESPONSE. LINEAR INTERP FROM 4:2:2 TO 4:4:4
0
GAIN (d B)
–70
–60
–50
–40
–30
–20
–10
–80 20020 40 60 80 100 120 140 160 1800
06234-019
Figure 21. ED 8× Oversampling, PrPb Filter (Linear) Response
FREQUENCY (MHz)
EDPr/Pb RESPONSE. SSAF INTERP FROM 4:2:2 TO 4:4:4
0
GAIN (d B)
–70
–60
–50
–40
–30
–20
–10
–80 20020 40 60 80 100 120 140 160 1800
06234-020
Figure 22. ED 8× Oversampling, PrPb Filter (SSAF) Response
FREQUENCY (MHz)
Y RESPONSE IN ED 8× OVERSAMPLING MODE
0
GAIN (d B)
–70
–60
–50
–40
–30
–20
–10
–80 20020 40 60 80 100 120 140 160 1800
06234-021
Figure 23. ED 8× Oversampling, Y Filter Response
FREQUENCY (MHz)
Y RESPONSE IN ED 8× OVERSAMPLING MODE
GAI N (dB)
–2.5
–2.0
–1.5
–1.0
–0.5
0
0.5
1.0
–3.0 122 4 6 8 100
06234-022
Figure 24. ED 8× Oversampling, Y Filter Response (Focus on Pass Band)
FREQUENCY (MHz)
HD Pr/Pb RESPONSE. SSAF INTERP FROM 4:2:2 TO 4:4:4
10
0
GAI N (dB)
–70
–60
–50
–40
–30
–20
–10
–100
–80
–90
148.018.5 37.0 55.5 74.0 92.5 111.0 129.50
06234-023
Figure 25. HD 4× Oversampling, PrPb (SSAF) Filter Response
(4:2:2 Input)
HD Pr/P b RESP ONSE. 4:4:4 INPUT M ODE
GAI N ( dB)
FREQUENCY (MHz)
0
–10
–20
–30
–40
–50
–60
–70
–80
–90
–100 10 20 30 40 50 60 70 80 90 100 110 120 130 140
06234-024
Figure 26. HD 4× Oversampling, PrPb (SSAF) Filter Response
(4:4:4 Input)
ADV7390/ADV7391/ADV7392/ADV7393 Data Sheet
Rev. J | Page 22 of 107
FREQUENCY (MHz)
Y RESPONSE IN HD 4× OVERSAMPLING MODE
10
0
GAI N (dB)
–70
–60
–50
–40
–30
–20
–10
–100
–80
–90
148.0
18.5 37.0 55.5 74.0 92.5 111.0 129.5
0
06234-025
Figure 27. HD 4× Oversampling, Y Filter Response
Y PASS BAND IN HD 4x OV E RS AM P LING MO DE
3.0
–12.0
27.750 46.250
FREQUENCY (MHz)
GAI N ( dB)
1.5
0
–1.5
–3.0
–4.5
–6.0
–7.5
–9.0
–10.5
30.063 32.375 34.688 37.000 39.312 41.625 43.937
06234-026
Figure 28. HD 4× Oversampling, Y Filter Response (Focus on Pass Band)
FREQUENCY (MHz)
MAGNIT UDE (dB)
0
121086420
–10
–30
–50
–60
–70
–20
–40
06234-027
Figure 29. SD NTSC, Luma Low-Pass Filter Response
FREQUENCY (MHz)
MAGNITUDE ( dB)
0
121086420
–10
–30
–50
–60
–70
–20
–40
06234-028
Figure 30. SD PAL, Luma Low-Pass Filter Response
FREQUENCY (MHz)
MAGNITUDE ( dB)
0
12108
6420
–10
–30
–50
–60
–70
–20
–40
06234-029
Figure 31. SD NTSC, Luma Notch Filter Response
FREQUENCY (MHz)
MAGNITUDE ( dB)
0
121086420
–10
–30
–50
–60
–70
–20
–40
06234-030
Figure 32. SD PAL, Luma Notch Filter Response
Data Sheet ADV7390/ADV7391/ADV7392/ADV7393
Rev. J | Page 23 of 107
FREQUENCY (MHz)
Y RESPONSE I N SD O VER SAMPL I N G MO DE
GAIN (d B)
0
–50
–80020 40 60 80 100 120 140 160 180 200
–10
–40
–60
–70
–20
–30
06234-031
Figure 33. SD 16× Oversampling, Y Filter Response
FREQUENCY (MHz)
MAGNIT UDE (dB)
0
1210
8642
0
–10
–30
–50
–60
–70
–20
–40
06234-032
Figure 34. SD Luma SSAF Filter Response up to 12 MHz
FREQUENCY (MHz)
4
7
MAGNIT UDE (dB)
2
–2
–6
–8
–12
0
–4
5
–10
6
01234
06234-033
Figure 35. SD Luma SSAF Filter, Programmable Responses
FREQUENCY (MHz) 7
MAGNITUDE ( dB)
5
4
2
1
–1
3
5
0
6
01234
06234-034
Figure 36. SD Luma SSAF Filter, Programmable Gain
FREQUENCY (MHz) 7
MAG NI TUDE ( dB)
1
0
–2
–3
–5
–1
5
–4
6
01234
06234-035
Figure 37. SD Luma SSAF Filter, Programmable Attenuation
FREQUENCY (MHz)
0
12
MAGNITUDE ( dB)
–10
–30
–50
–60
–70
–20
–40
10
8
462
0
06234-036
Figure 38. SD Luma CIF Low-Pass Filter Response
ADV7390/ADV7391/ADV7392/ADV7393 Data Sheet
Rev. J | Page 24 of 107
FREQUENCY (MHz)
0
12
MAGNIT UDE (dB)
–10
–30
–50
–60
–70
–20
–40
10
8
4620
06234-037
Figure 39. SD Luma QCIF Low-Pass Filter Response
FREQUENCY (MHz)
0
12
MAGNIT UDE (dB)
–10
–30
–50
–60
–70
–20
–40
10
8
4620
06234-038
Figure 40. SD Chroma 3.0 MHz Low-Pass Filter Response
FREQUENCY (MHz)
0
12
MAGNIT UDE (dB)
–10
–30
–50
–60
–70
–20
–40
10
8
4620
06234-039
Figure 41. SD Chroma 2.0 MHz Low-Pass Filter Response
FREQUENCY (MHz)
0
12
MAGNITUDE ( dB)
–10
–30
–50
–60
–70
–20
–40
10
8
4620
06234-040
Figure 42. SD Chroma 1.3 MHz Low-Pass Filter Response
FREQUENCY (MHz)
0
12
MAGNIT UDE (dB)
–10
–30
–50
–60
–70
–20
–40
10
8
4620
06234-041
Figure 43. SD Chroma 1.0 MHz Low-Pass Filter Response
FREQUENCY (MHz)
0
12
MAGNITUDE ( dB)
–10
–30
–50
–60
–70
–20
–40
10
8
462
0
06234-042
Figure 44. SD Chroma 0.65 MHz Low-Pass Filter Response
Data Sheet ADV7390/ADV7391/ADV7392/ADV7393
Rev. J | Page 25 of 107
FREQUENCY (MHz)
0
12
MAG NI TUDE ( dB)
–10
–30
–50
–60
–70
–20
–40
10
8
4620
06234-043
Figure 45. SD Chroma CIF Low-Pass Filter Response
FREQUENCY (MHz)
0
12
MAGNIT UDE (dB)
–10
–30
–50
–60
–70
–20
–40
10
8
46
20
06234-044
Figure 46. SD Chroma QCIF Low-Pass Filter Response
ADV7390/ADV7391/ADV7392/ADV7393 Data Sheet
Rev. J | Page 26 of 107
MPU PORT DESCRIPTION
Devices such as a microprocessor can communicate with the
ADV7390/ADV7391/ADV7392/ADV7393 through a 2-wire
serial (I2C-compatible) bus. After power-up or reset, the MPU
port is configured for I2C operation.
I2C OPERATION
The ADV7390/ADV7391/ADV7392/ADV7393 support a 2-wire
serial (I2C-compatible) microprocessor bus driving multiple
peripherals. This port operates in an open-drain configuration.
Two wires, serial data (SDA) and serial clock (SCL), carry
information between any device connected to the bus and the
ADV7390/ADV7391/ADV7392/ADV7393. The slave address
depends on the device (ADV7390, ADV7391, ADV7392, or
ADV7393), the operation (read or write), and the state of the
ALSB pin (0 or 1). See Table 16, Figure 47, and Figure 48. The
LSB sets either a read or a write operation. Logic 1 corresponds
to a read operation, and Logic 0 corresponds to a write operation.
A1 is controlled by setting the ALSB pin of the ADV7390/
ADV7391/ADV7392/ADV7393 to Logic 0 or Logic 1.
Table 16. ADV7390/ADV7391/ADV7392/ADV7393 I2C
Slave Addresses
Device ALSB Operation Slave Address
ADV7390
and
ADV7392
0 Write 0xD4
0 Read 0xD5
1 Write 0xD6
1
Read
0xD7
ADV7391
and
ADV7393
0 Write 0x54
0 Read 0x55
1 Write 0x56
1 Read 0x57
1 1 010 1 A1 X
READ/WRITE
CONTROL
0 WRI TE
1 READ
06234-045
ADDRESS
CONTROL
SET UP BY
ALSB
Figure 47. ADV7390/ADV7392 I2C Slave Address
0 1 0 1 0 1A1 X
READ/WRITE
CONTROL
0 WRI TE
1 READ
06234-046
ADDRESS
CONTROL
SET UP BY
ALSB
Figure 48. ADV7391/ADV7393 I2C Slave Address
The various devices on the bus use the following protocol. The
master initiates a data transfer by establishing a start condition,
defined by a high-to-low transition on SDA while SCL remains
high. This indicates that an address/data stream follows. All
peripherals respond to the start condition and shift the next
eight bits (7-bit address plus the R/W bit).
The bits are transferred from MSB down to LSB. The peripheral
that recognizes the transmitted address responds by pulling the
data line low during the ninth clock pulse. This is known as an
acknowledge bit. All other devices withdraw from the bus at
this point and maintain an idle condition. The idle condition
occurs when the device monitors the SDA and SCL lines waiting
for the start condition and the correct transmitted address. The
R/W bit determines the direction of the data.
Logic 0 on the LSB of the first byte means that the master writes
information to the peripheral. Logic 1 on the LSB of the first byte
means that the master reads information from the peripheral.
The ADV7390/ADV7391/ADV7392/ADV7393 act as a standard
slave device on the bus. The data on the SDA pin is eight bits
long, supporting the 7-bit addresses plus the R/W bit. It interprets
the first byte as the device address and the second byte as the
starting subaddress. There is a subaddress auto-increment
facility. This allows data to be written to or read from registers
in ascending subaddress sequence starting at any valid subaddress.
A data transfer is always terminated by a stop condition. The
user can also access any unique subaddress register on a one-
by-one basis without updating all the registers.
Stop and start conditions can be detected at any stage during
the data transfer. If these conditions are asserted out of sequence
with normal read and write operations, they cause an immediate
jump to the idle condition. During a given SCL high period, the
user should issue only a start condition, a stop condition, or a
stop condition followed by a start condition. If an invalid
subaddress is issued by the user, the ADV7390/ADV7391/
ADV7392/ADV7393 do not issue an acknowledge but returns
to the idle condition. If the user uses the auto-increment method
of addressing the encoder and exceeds the highest subaddress,
the following actions are taken:
In read mode, the highest subaddress register contents are
output until the master device issues a no acknowledge.
This indicates the end of a read. A no acknowledge condition
occurs when the SDA line is not pulled low on the ninth pulse.
In write mode, the data for the invalid byte is not loaded
into any subaddress register, a no acknowledge is issued by
the ADV7390/ADV7391/ADV7392/ADV7393, and the
part returns to the idle condition.
Figure 49 shows an example of data transfer for a write sequence
and the start and stop conditions. Figure 50 shows bus write
and read sequences.
Data Sheet ADV7390/ADV7391/ADV7392/ADV7393
Rev. J | Page 27 of 107
SDA
SCL
START ADDR R/WACK SUBADDRESS ACK DATAACK STOP
1–7 89
S1–7 1–7 P
8989
06234-047
Figure 49. I2C Data Transfer
WRITE
SEQUENCE
READ
SEQUENCE
S SLAVE ADDR A(S) SUBADDR A(S) DATA DATA A(S) P
S SLAVE ADDR A(S) SUBADDR A(S) S SLAVE ADDR A(S) DATA DATAA(M) A(M) P
S = START BIT
P = STOP BIT A(S) = ACKNOW LEDG E B Y SLAVE
A(M) = ACKNOWLEDG E B Y MASTER A(S) = NO-ACKNO WLE DGE BY SLAVE
A(M) = NO-ACKNO WLE DGE BY MASTER
LSB = 0 LSB = 1
A(S)
06234-048
Figure 50. I2C Read and Write Sequence
ADV7390/ADV7391/ADV7392/ADV7393 Data Sheet
Rev. J | Page 28 of 107
REGISTER MAP ACCESS
A microprocessor can read from or write to all registers of the
ADV7390/ADV7391/ADV7392/ADV7393 via the MPU port,
except for registers that are specified as read-only or write-only
registers.
The subaddress register determines the register accessed by the
next read or write operation. All communication through the
MPU port starts with an access to the subaddress register. A
read/write operation is then performed from/to the target
address, incrementing to the next address until the transaction
is complete.
REGISTER PROGRAMMING
Table 17 to Table 34 describe the functionality of each register.
All registers can be read from as well as written to, unless
otherwise stated.
SUBADDRESS REGISTER (SR7 TO SR0)
The subaddress register is an 8-bit write-only register. After the
MPU port is accessed and a read/write operation is selected, the
subaddress is set up. The subaddress register determines which
register performs the next operation.
Table 17. Register 0x00
SR7 to Bit Number Register Reset
SR0 Register Bit Description 7 6 5 4 3 2 1 0 Setting Value
0x00 Power
mode
Sleep mode. With this control enabled, the current consumption is
reduced to µA level. All DACs and the internal PLL circuit are
disabled. Registers can be read from and written to in sleep mode.
0 Sleep
mode off
0x12
1 Sleep
mode on
PLL and oversampling control. This control allows the internal PLL
circuit to be powered down and the oversampling to be switched off.
0 PLL on
1 PLL off
DAC 3: power on/off. 0 DAC 3 off
1 DAC 3 on
DAC 2: power on/off. 0 DAC 2 off
1 DAC 2 on
DAC 1: power on/off. 0 DAC 1 off
1 DAC 1 on
Reserved. 0 0 0
Table 18. Register 0x01 to Register 0x09
SR7 to Bit Number1 Reset
SR0 Register Bit Description 7 6 5 4 3 2 1 0 Register Setting Value
0x01 Mode
select
Reserved. 0 0x00
DDR clock edge alignment
(used only for ED2 and HD
DDR modes)
0
0
Chroma clocked in on rising clock edge and
luma clocked in on falling clock edge.
0 1 Reserved.
1 0 Reserved.
1 1 Luma clocked in on rising clock edge and
chroma clocked in on falling clock edge.
Reserved 0
Input mode
(see Subaddress 0x30, Bits[7:3]
for ED/HD standard selection)
0 0 0 SD input.
0 0 1 ED/HD-SDR input.3
0 1 0 ED/HD-DDR input.
0 1 1 Reserved.
1 0 0 Reserved.
1 0 1 Reserved.
1 1 0 Reserved.
1 1 1 ED (at 54 MHz) input.
Reserved 0
Data Sheet ADV7390/ADV7391/ADV7392/ADV7393
Rev. J | Page 29 of 107
SR7 to Bit Number1 Reset
SR0 Register Bit Description 7 6 5 4 3 2 1 0 Register Setting Value
0x02 Mode
Register 0
Reserved 0 Zero must be written to this bit. 0x20
HD interlace external VSYNC
and
HSYNC
0
Default.
1 If using HD HSYNC/VSYNCinterlace mode,
setting this bit to 1 is recommended (see the
HD Interlace External HSYNC and VSYNC
Considerations section for more information).
Test pattern black bar4 0 Disabled.
1 Enabled.
Manual CSC matrix adjust 0 Disable manual CSC matrix adjust.
1
Enable manual CSC matrix adjust.
Sync on RGB 0 No sync.
1 Sync on all RGB outputs.
RGB/YPrPb output select 0 RGB component outputs.
1 YPrPb component outputs.
SD sync output enable 0 No sync output.
1 Output SD syncs on HSYNC and VSYNC pins.
ED/HD sync output enable 0 No sync output.
1
Output ED/HD syncs on HSYNC and
VSYNC pins.
0x03 ED/HD
CSC
Matrix 0
x x LSBs for GY. 0x03
0x04 ED/HD
CSC
Matrix 1
x x LSBs for RV. 0xF0
x x LSBs for BU.
x x LSBs for GV.
x x LSBs for GU.
0x05 ED/HD
CSC
Matrix 2
x x x x x x x x Bits[9:2] for GY. 0x4E
0x06 ED/HD
CSC
Matrix 3
x x x x x x x x Bits[9:2] for GU. 0x0E
0x07 ED/HD
CSC
Matrix 4
x x x x x x x x Bits[9:2] for GV. 0x24
0x08 ED/HD
CSC
Matrix 5
x x x x x x x x Bits[9:2] for BU. 0x92
0x09 ED/HD
CSC
Matrix 6
x x x x x x x x Bits[9:2] for RV. 0x7C
1 x = Logic 0 or Logic 1.
2 ED = enhanced definition = 525p and 625p.
3 Available on the ADV7392/ADV7393 (40-pin devices) only.
4 Subaddress 0x31, Bit 2 must also be enabled (ED/HD). Subaddress 0x84, Bit 6 must also be enabled (SD).
ADV7390/ADV7391/ADV7392/ADV7393 Data Sheet
Rev. J | Page 30 of 107
Table 19. Register 0x0B to Register 0x17
SR7 to Bit Number1 Reset
SR0 Register Bit Description 7 6 5 4 3 2 1 0 Register Setting Value
0x0B DAC 1, DAC 2,
DAC 3 output
levels
Positive gain to DAC output voltage 0 0 0 0 0 0 0 0 0%. 0x00
0 0 0 0 0 0 0 1 +0.018%.
0 0 0 0 0 0 1 0 +0.036%.
0 0 1 1 1 1 1 1 +7.382%.
0 1 0 0 0 0 0 0 +7.5%.
Negative gain to DAC output voltage 1 1 0 0 0 0 0 0 −7.5%.
1 1 0 0 0 0 0 1 −7.382%.
1 0 0 0 0 0 1 0 −7.364%.
1 1 1 1 1 1 1 1 −0.018%.
0x0D DAC power
mode
DAC 1 low power mode 0 DAC 1 low power
disabled.
0x00
1
DAC 1 low power enabled.
DAC 2 low power mode 0 DAC 2 low power
disabled.
1 DAC 2 low power enabled.
DAC 3 low power mode 0 DAC 3 low power
disabled.
1 DAC 3 low power enabled.
SD/ED oversample rate select 0 SD = 16×, ED = 8×.
1 SD = 8×, ED = 4×.
Reserved 0 0 0 0
0x10 Cable detection DAC 1 cable detect 0 Cable detected on
DAC 1.
0x00
Read only 1 DAC 1 unconnected.
DAC 2 cable detect
0
Cable detected on
DAC 2.
Read only 1 DAC 2 unconnected.
Reserved 0 0
Unconnected DAC autopower-down
0
DAC autopower-down
disable.
1 DAC autopower-down
enable.
Reserved 0 0 0
0x13 Pixel Port
Readback A2
P[7:0] readback (ADV7390/ADV7391) x x x x x x x x Read only. 0xXX
P[15:8] readback (ADV7392/ADV7393)
0x14 Pixel Port
Readback B2
P[7:0] readback (ADV7392/ADV7393) x x x x x x x x Read only. 0xXX
0x16 Control port
readback2
Reserved x x x Read only. 0xXX
VSYNC readback x
HSYNC readback x
SFL readback x
Reserved x x
0x17
Software reset
Reserved
0
0x00
Software reset 0 Writing a 1 resets the
device; this is a self-
clearing bit.
1
Reserved. 0 0 0 0 0 0
1 x = Logic 0 or Logic 1.
2 For correct operation, Subaddress 0x01[6:4] must equal the default value of 000.
Data Sheet ADV7390/ADV7391/ADV7392/ADV7393
Rev. J | Page 31 of 107
Table 20. Register 0x30
SR7 to Bit Number Reset
SR0 Register Bit Description 7 6 5 4 3 2 1 0 Register Setting Note Value
0x30 ED/HD Mode
Register 1
ED/HD output standard 0 0 EIA-770.2 output
EIA-770.3 output
ED
HD
0x00
0 1 EIA-770.1 output
1 0 Output levels for full
input range
1 1 Reserved
ED/HD input
synchronization format
0 External HSYNC, VSYNC
and field inputs1
1 Embedded EAV/SAV
codes
ED/HD standard2
0
0
0
0
0
SMPTE 293M, ITU-BT.1358
525p at 59.94 Hz
0 0 0 1 0 BTA-1004, ITU-BT.1362 525p at 59.94 Hz
0 0 0 1 1 ITU-BT.1358 625p at 50 Hz
0 0 1 0 0 ITU-BT.1362 625p at 50 Hz
0 0 1 0 1 SMPTE 296M-1,
SMPTE 274M-2
720p at
60 Hz/59.94 Hz
0 0 1 1 0 SMPTE 296M-3 720p at 50 Hz
0 0 1 1 1 SMPTE 296M-4,
SMPTE 274M-5
720p at
30 Hz/29.97 Hz
0 1 0 0 0 SMPTE 296M-6 720p at 25 Hz
0
1
0
0
1
SMPTE 296M-7,
SMPTE 296M-8
720p at
24 Hz/23.98 Hz
0 1 0 1 0 SMPTE 240M 1035i at
60 Hz/59.94 Hz
0 1 0 1 1 Reserved
0 1 1 0 0 Reserved
0 1 1 0 1 SMPTE 274M-4,
SMPTE 274M-5
1080i at
30 Hz/29.97 Hz
0 1 1 1 0 SMPTE 274M-6 1080i at 25 Hz
0 1 1 1 1 SMPTE 274M-7,
SMPTE 274M-8
1080p at
30 Hz/29.97 Hz
1 0 0 0 0 SMPTE 274M-9 1080p at 25 Hz
1 0 0 0 1 SMPTE 274M-10,
SMPTE 274M-11
1080p at
24 Hz/23.98 Hz
1 0 0 1 0 ITU-R BT.709-5 1080Psf at 24 Hz
10011 to 11111 Reserved
1 Synchronization can be controlled with a combination of either HSYNC and VSYNC inputs or HSYNC and field inputs, depending on Subaddress 0x34, Bit 6.
2 See the HD Interlace External HSYNC and VSYNC Considerations section for more information.
ADV7390/ADV7391/ADV7392/ADV7393 Data Sheet
Rev. J | Page 32 of 107
Table 21. Register 0x31 to Register 0x33
SR7 to Bit Number Reset
SR0 Register Bit Description 7 6 5 4 3 2 1 0 Register Setting Value
0x31 ED/HD Mode
Register 2
ED/HD pixel data valid 0 Pixel data valid off. 0x00
1 Pixel data valid on.
HD oversample rate select 0 .
1 .
ED/HD test pattern enable 0 HD test pattern off.
1 HD test pattern on.
ED/HD test pattern hatch/field 0 Hatch.
1 Field/frame.
ED/HD vertical blanking interval (VBI)
open
0
Disabled.
1 Enabled.
ED/HD undershoot limiter 0 0 Disabled.
0 1 −11 IRE.
1 0 −6 IRE.
1 1 −1.5 IRE.
ED/HD sharpness filter 0 Disabled.
1 Enabled.
0x32 ED/HD Mode
Register 3
ED/HD Y delay with respect to the
falling edge of HSYNC
0 0 0 0 clock cycles. 0x00
0 0 1 One clock cycle.
0 1 0 Two clock cycles.
0 1 1 Three clock cycles.
1 0 0 Four clock cycles.
ED/HD color delay with respect to the
falling edge of HSYNC
0 0 0 0 clock cycles.
0
0
1
One clock cycle.
0 1 0 Two clock cycles.
0 1 1 Three clock cycles.
1 0 0 Four clock cycles.
ED/HD CGMS enable
0
Disabled.
1 Enabled.
ED/HD CGMS CRC enable 0 Disabled.
1 Enabled.
0x33 ED/HD Mode
Register 4
ED/HD Cr/Cb sequence 0 Cb after falling edge of HSYNC. 0x68
1
Cr after falling edge of HSYNC.
Reserved 0 0 must be written to this bit.
ED/HD input format 0 8-bit input.
1 10-bit input1.
Sinc compensation filter on DAC 1, DAC
2, DAC 3
0
Disabled.
1 Enabled.
Reserved 0 0 must be written to this bit.
ED/HD chroma SSAF filter 0 Disabled.
1 Enabled.
Reserved 1 1 must be written to this bit.
ED/HD double buffering 0 Disabled.
1 Enabled.
1 Available on the ADV7392/ADV7393 (40-pin devices) only.
Data Sheet ADV7390/ADV7391/ADV7392/ADV7393
Rev. J | Page 33 of 107
Table 22. Register 0x34 to Register 0x38
SR7 to Bit Number1 Reset
SR0 Register Bit Description 7 6 5 4 3 2 1 0 Register Setting Value
0x34 ED/HD Mode
Register 5
ED/HD timing reset 0 Internal ED/HD timing counters enabled. 0x48
1 Resets the internal ED/HD timing counters.
ED/HD HSYNC control2 0 HSYNC output control (see Table 55).
1
ED/HD VSYNC control2 0 VSYNC output control (see Table 56).
1
Reserved 1
ED Macrovision® enable3 0 ED Macrovision disabled.
1 ED Macrovision enabled.
Reserved
0
0 must be written to this bit.
ED/HD VSYNC input/field
input
0 0 = Field input.
1 1 = VSYNC input.
ED/HD horizontal/vertical
counter mode4
0 Update field/line counter.
1 Field/line counter free running.
0x35 ED/HD Mode
Register 6
Reserved 0 0x00
Reserved
0
ED/HD sync on PrPb 0 Disabled.
1 Enabled.
ED/HD color DAC swap 0 DAC 2 = Pb, DAC 3 = Pr.
1 DAC 2 = Pr, DAC 3 = Pb.
ED/HD gamma correction
curve select
0 Gamma Correction Curve A.
1 Gamma Correction Curve B.
ED/HD gamma correction
enable
0 Disabled.
1 Enabled.
ED/HD adaptive filter
mode
0
Mode A.
1 Mode B.
ED/HD adaptive filter
enable
0 Disabled.
1
Enabled.
0x36 ED/HD Y level5 ED/HD Test Pattern Y level x x x x x x x x Y level value. 0xA0
0x37 ED/HD Cr level5 ED/HD Test Pattern Cr level x x x x x x x x Cr level value. 0x80
0x38 ED/HD Cb level5 ED/HD Test Pattern Cb level x x x x x x x x Cb level value. 0x80
1 x = Logic 0 or Logic 1.
2 Used in conjunction with ED/HD sync output enable in Subaddress 0x02, Bit 7 = 1.
3 Applies to the ADV7390 and ADV7392 only.
4 When set to 0, the horizontal/vertical counters automatically wrap around at the end of the line/field/frame of the selected standard. When set to 1, the
horizontal/vertical counters are free running and wrap around when external sync signals indicate to do so.
5 For use with ED/HD internal test patterns only (Subaddress 0x31, Bit 2 = 1).
ADV7390/ADV7391/ADV7392/ADV7393 Data Sheet
Rev. J | Page 34 of 107
Table 23. Register 0x39 to Register 0x43
SR7 to Bit Number Reset
SR0 Register Bit Description 7 6 5 4 3 2 1 0 Register Setting Value
0x39 ED/HD Mode
Register 7
Reserved 0 0 0 0 0 0x00
ED/HD EIA/CEA-861B
synchronization compliance
0 Disabled
1 Enabled
Reserved 0 0
0X3A ED/HD Mode
Register 8
INV_PHSYNC_POL 0 Disabled 0x00
1 Enabled
INV_PVSYNC_POL 0 Disabled
1 Enabled
INV_PBLANK_POL
0
Disabled
1 Enabled
Reserved 0 0 0 0 0
0x40 ED/HD
sharpness filter
gain
ED/HD sharpness filter gain
Value A
0 0 0 0 Gain A = 0 0x00
0 0 0 1 Gain A = +1
0 1 1 1 Gain A = +7
1 0 0 0 Gain A = −8
1 1 1 Gain A = −1
ED/HD sharpness filter gain
Value B
0 0 0 0 Gain B = 0
0 0 0 1 Gain B = +1
0 1 1 1 Gain B = +7
1
0
0
0
Gain B = −8
1 1 1 1 Gain B = −1
0x41 ED/HD CGMS
Data 0
ED/HD CGMS data bits 0 0 0 0 C19 C18 C17 C16 CGMS C19 to C1
6
0x00
0x42 ED/HD CGMS
Data 1
ED/HD CGMS data bits C15 C14 C13 C12 C11 C10 C9 C8 CGMS C15 to C8 0x00
0x43 ED/HD CGMS
Data 2
ED/HD CGMS data bits C7 C6 C5 C4 C3 C2 C1 C0 CGMS C7 to C0 0x00
Data Sheet ADV7390/ADV7391/ADV7392/ADV7393
Rev. J | Page 35 of 107
Table 24. Register 0x44 to Register 0x57
SR7 to Bit Number1 Register Reset
SR0 Register Bit Description 7 6 5 4 3 2 1 0 Setting Value
0x44
ED/HD Gamma A0
ED/HD Gamma Curve A (Point 24)
x
x
x
x
x
x
x
x
A0
0x00
0x45 ED/HD Gamma A1 ED/HD Gamma Curve A (Point 32) x x x x x x x x A1 0x00
0x46 ED/HD Gamma A2 ED/HD Gamma Curve A (Point 48) x x x x x x x x A2 0x00
0x47 ED/HD Gamma A3 ED/HD Gamma Curve A (Point 64) x x x x x x x x A3 0x00
0x48 ED/HD Gamma A4 ED/HD Gamma Curve A (Point 80) x x x x x x x x A4 0x00
0x49 ED/HD Gamma A5 ED/HD Gamma Curve A (Point 96) x x x x x x x x A5 0x00
0x4A ED/HD Gamma A6 ED/HD Gamma Curve A (Point 128) x x x x x x x x A6 0x00
0x4B ED/HD Gamma A7 ED/HD Gamma Curve A (Point 160) x x x x x x x x A7 0x00
0x4C
ED/HD Gamma A8
ED/HD Gamma Curve A (Point 192)
x
x
x
x
x
x
x
x
A8
0x00
0x4D ED/HD Gamma A9 ED/HD Gamma Curve A (Point 224) x x x x x x x x A9 0x00
0x4E ED/HD Gamma B0 ED/HD Gamma Curve B (Point 24) x x x x x x x x B0 0x00
0x4F ED/HD Gamma B1 ED/HD Gamma Curve B (Point 32) x x x x x x x x B1 0x00
0x50 ED/HD Gamma B2 ED/HD Gamma Curve B (Point 48) x x x x x x x x B2 0x00
0x51 ED/HD Gamma B3 ED/HD Gamma Curve B (Point 64) x x x x x x x x B3 0x00
0x52 ED/HD Gamma B4 ED/HD Gamma Curve B (Point 80) x x x x x x x x B4 0x00
0x53 ED/HD Gamma B5 ED/HD Gamma Curve B (Point 96) x x x x x x x x B5 0x00
0x54 ED/HD Gamma B6 ED/HD Gamma Curve B (Point 128) x x x x x x x x B6 0x00
0x55
ED/HD Gamma B7
ED/HD Gamma Curve B (Point 160)
x
x
x
x
x
x
x
x
B7
0x00
0x56 ED/HD Gamma B8 ED/HD Gamma Curve B (Point 192) x x x x x x x x B8 0x00
0x57 ED/HD Gamma B9 ED/HD Gamma Curve B (Point 224) x x x x x x x x B9 0x00
1 x = Logic 0 or Logic 1.
ADV7390/ADV7391/ADV7392/ADV7393 Data Sheet
Rev. J | Page 36 of 107
Table 25. Register 0x58 to Register 0x5D
SR7 to Bit Number1 Register Reset
SR0 Register Bit Description 7 6 5 4 3 2 1 0 Setting Value
0x58 ED/HD Adaptive Filter Gain 1 ED/HD Adaptive Filter Gain 1,
Value A
0 0 0 0 Gain A = 0 0x00
0 0 0 1 Gain A = +1
0 1 1 1 Gain A = +7
1 0 0 0 Gain A = −8
1 1 1 1 Gain A = −1
ED/HD Adaptive Filter Gain 1,
Value B
0 0 0 0 Gain B = 0
0 0 0 1 Gain B = +1
0 1 1 1 Gain B = +7
1 0 0 0 Gain B = −8
1 1 1 1 Gain B = −1
0x59 ED/HD Adaptive Filter Gain 2 ED/HD Adaptive Filter Gain 2,
Value A
0 0 0 0 Gain A = 0 0x00
0 0 0 1 Gain A = +1
0 1 1 1 Gain A = +7
1 0 0 0 Gain A = −8
1 1 1 1 Gain A = −1
ED/HD Adaptive Filter Gain 2,
Value B
0 0 0 0 Gain B = 0
0
0
0
1
Gain B = +1
0 1 1 1 Gain B = +7
1 0 0 0 Gain B = −8
1 1 1 1 Gain B = −1
0x5A ED/HD Adaptive Filter Gain 3 ED/HD Adaptive Filter Gain 3,
Value A
0 0 0 0 Gain A = 0 0x00
0 0 0 1 Gain A = +1
0
1
1
1
Gain A = +7
1 0 0 0 Gain A = −8
1 1 1 1 Gain A = −1
ED/HD Adaptive Filter Gain 3,
Value B
0
0
0
0
Gain B = 0
0 0 0 1 Gain B = +1
0 1 1 1 Gain B = +7
1 0 0 0 Gain B = −8
1 1 1 1 Gain B = −1
0x5B ED/HD Adaptive Filter
Threshold A
ED/HD Adaptive Filter Threshold A x x x x x x x x Threshold A 0x00
0x5C ED/HD Adaptive Filter
Threshold B
ED/HD Adaptive Filter Threshold B x x x x x x x x Threshold B 0x00
0x5D ED/HD Adaptive Filter
Threshold C
ED/HD Adaptive Filter Threshold C x x x x x x x x Threshold C 0x00
1 x = Logic 0 or Logic 1.
Data Sheet ADV7390/ADV7391/ADV7392/ADV7393
Rev. J | Page 37 of 107
Table 26. Register 0x5E to Register 0x6E
SR7 to Bit Number Register Reset
SR0 Register Bit Description 7 6 5 4 3 2 1 0 Setting Value
0x5E ED/HD CGMS Type B
Register 0
ED/HD CGMS Type B
enable
0 Disabled 0x00
1 Enabled
ED/HD CGMS Type B
CRC enable
0 Disabled
1 Enabled
ED/HD CGMS Type B
header bits
H5
H4
H3
H2
H1
H0
H5 to H0
0x5F ED/HD CGMS Type B
Register 1
ED/HD CGMS Type B
data bits
P7 P6 P5 P4 P3 P2 P1 P0 P7 to P0 0x00
0x60 ED/HD CGMS Type B
Register 2
ED/HD CGMS Type B
data bits
P15 P14 P13 P12 P11 P10 P9 P8 P15 to P8 0x00
0x61 ED/HD CGMS Type B
Register 3
ED/HD CGMS Type B
data bits
P23 P22 P21 P20 P19 P18 P17 P16 P23 to P16 0x00
0x62 ED/HD CGMS Type B
Register 4
ED/HD CGMS Type B
data bits
P31 P30 P29 P28 P27 P26 P25 P24 P31 to P24 0x00
0x63 ED/HD CGMS Type B
Register 5
ED/HD CGMS Type B
data bits
P39 P38 P37 P36 P35 P34 P33 P32 P39 to P32 0x00
0x64 ED/HD CGMS Type B
Register 6
ED/HD CGMS Type B
data bits
P47 P46 P45 P44 P43 P42 P41 P40 P47 to P40 0x00
0x65 ED/HD CGMS Type B
Register 7
ED/HD CGMS Type B
data bits
P55 P54 P53 P52 P51 P50 P49 P48 P55 to P48 0x00
0x66 ED/HD CGMS Type B
Register 8
ED/HD CGMS Type B
data bits
P63 P62 P61 P60 P59 P58 P57 P56 P63 to P56 0x00
0x67 ED/HD CGMS Type B
Register 9
ED/HD CGMS Type B
data bits
P71 P70 P69 P68 P67 P66 P65 P64 P71 to P64 0x00
0x68 ED/HD CGMS Type B
Register 10
ED/HD CGMS Type B
data bits
P79 P78 P77 P76 P75 P74 P73 P72 P79 to P72 0x00
0x69
ED/HD CGMS Type B
Register 11
ED/HD CGMS Type B
data bits
P87
P86
P85
P84
P83
P82
P81
P80
P87 to P80
0x00
0x6A ED/HD CGMS Type B
Register 12
ED/HD CGMS Type B
data bits
P95 P94 P93 P92 P91 P90 P89 P88 P95 to P88 0x00
0x6B ED/HD CGMS Type B
Register 13
ED/HD CGMS Type B
data bits
P103 P102 P101 P100 P99 P98 P97 P96 P103 to P96 0x00
0x6C ED/HD CGMS Type B
Register 14
ED/HD CGMS Type B
data bits
P111 P110 P109 P108 P107 P106 P105 P104 P111 to P104 0x00
0x6D ED/HD CGMS Type B
Register 15
ED/HD CGMS Type B
data bits
P119 P118 P117 P116 P115 P114 P113 P112 P119 to P112 0x00
0x6E ED/HD CGMS Type B
Register 16
ED/HD CGMS Type B
data bits
P127 P126 P125 P124 P123 P122 P121 P120 P127 to P120 0x00
ADV7390/ADV7391/ADV7392/ADV7393 Data Sheet
Rev. J | Page 38 of 107
Table 27. Register 0x80 to Register 0x83
SR7 to Bit Number Reset
SR0 Register Bit Description 7 6 5 4 3 2 1 0 Register Setting Value
0x80 SD Mode
Register 1
SD standard 0 0 NTSC 0x10
0 1 PAL B, PAL D, PAL G, PAL H, PAL I
1 0 PAL M
1 1 PAL N
SD luma filter
0
0
0
LPF NTSC
0 0 1 LPF PAL
0 1 0 Notch NTSC
0 1 1 Notch PAL
1 0 0 Luma SSAF
1 0 1 Luma CIF
1 1 0 Luma QCIF
1 1 1 Reserved
SD chroma filter 0 0 0 1.3 MHz
0
0
1
0.65 MHz
0 1 0 1.0 MHz
0 1 1 2.0 MHz
1 0 0 Reserved
1 0 1 Chroma CIF
1 1 0 Chroma QCIF
1 1 1 3.0 MHz
0x82 SD Mode
Register 2
SD PrPb SSAF filter 0 Disabled 0x0B
1 Enabled
SD DAC Output 1 0 See Table 37
1
Reserved 0
SD pedestal 0 Disabled
1
Enabled
SD square pixel mode 0 Disabled
1 Enabled
SD VCR FF/RW sync 0 Disabled
1 Enabled
SD pixel data valid 0 Disabled
1 Enabled
SD active video edge
control
0 Disabled
1 Enabled
0x83
SD Mode
Register 3
SD pedestal YPrPb output
0
No pedestal on YPrPb
0x04
1 7.5 IRE pedestal on YPrPb
SD Output Levels Y 0 Y = 700 mV/300 mV
1 Y = 714 mV/286 mV
SD Output Levels PrPb 0 0 700 mV p-p (PAL), 1000 mV p-p (NTSC)
0 1 700 mV p-p
1 0 1000 mV p-p
1 1 648 mV p-p
SD vertical blanking
interval (VBI) open
0 Disabled
1
Enabled
SD closed captioning field
control
0 0 Closed captioning disabled
0 1 Closed captioning on odd field only
1 0 Closed captioning on even field only
1
1
Closed captioning on both fields
Reserved 0 Reserved
Data Sheet ADV7390/ADV7391/ADV7392/ADV7393
Rev. J | Page 39 of 107
Table 28. Register 0x84 to Register 0x87
SR7 to Bit Number Reset
SR0 Register Bit Description 7 6 5 4 3 2 1 0 Register Setting Value
0x84
SD Mode
Register 4
Reserved
0
0x00
SD SFL/SCR/TR mode select 0 0 Disabled.
1 1 SFL mode enabled.
SD active video length 0 720 pixels.
1 710 (NTSC), 702 (PAL).
SD chroma 0 Chroma enabled.
1 Chroma disabled.
SD burst 0 Enabled.
1 Disabled.
SD color bars
0
Disabled.
1 Enabled.
SD luma/chroma swap 0 DAC 2 = luma, DAC 3 = chroma.
1
DAC 2 = chroma, DAC 3 = luma.
0x86 SD Mode
Register 5
NTSC color subcarrier adjust (delay from
the falling edge of output HSYNC pulse to
the start of color burst)
0 0 5.17 μs. 0x02
0 1 5.31 μs.
1 0 5.59 μs (must be set for
Macrovision compliance).
1
1
Reserved.
Reserved 0
SD EIA/CEA-861B synchronization
compliance
0 Disabled.
1 Enabled.
Reserved 0 0
SD horizontal/vertical counter mode1 0 Update field/line counter.
1 Field/line counter free running.
SD RGB color swap2 0 Normal.
1 Color reversal enabled.
0x87 SD Mode
Register 6
SD luma and color scale control 0 Disabled. 0x00
1 Enabled.
SD luma scale saturation 0 Disabled.
1 Enabled.
SD hue adjust
0
Disabled.
1 Enabled.
SD brightness 0 Disabled.
1 Enabled.
SD luma SSAF gain 0 Disabled.
1
Enabled.
SD input standard autodetection 0 Disabled.
1 Enabled.
Reserved 0 0 must be written to this bit.
SD RGB input enable2 0 SD YCrCb input.
1 SD RGB input.
1 When set to 0, the horizontal/vertical counters automatically wrap around at the end of the line/field/frame of the selected standard. When set to 1, the
horizontal/vertical counters are free running and wrap around when external sync signals indicate to do so.
2 Available on the ADV7392/ADV7393 (40-pin devices) only.
ADV7390/ADV7391/ADV7392/ADV7393 Data Sheet
Rev. J | Page 40 of 107
Table 29. Register 0x88 to Register 0x89
SR7 to Bit Number Reset
SR0 Register Bit Description 7 6 5 4 3 2 1 0 Register Setting Value
0x88 SD Mode Register 7 Reserved 0 0x00
SD noninterlaced mode 0 Disabled.
1 Enabled.
SD double buffering 0 Disabled.
1 Enabled.
SD input format 0 0 8-bit YCbCr input.
0 1 16-bit YCbCr input.1
1 0 10-bit YCbCr/16-bit SD RGB
input.1
1 1 Reserved.
SD digital noise reduction 0 Disabled.
1 Enabled.
SD gamma correction enable 0 Disabled.
1 Enabled.
SD gamma correction curve select 0 Gamma Correction Curve A.
1 Gamma Correction Curve B.
0x89 SD Mode Register 8 SD undershoot limiter 0 0 Disabled. 0x00
0 1 −11 IRE.
1 0 −6 IRE.
1 1 −1.5 IRE.
Reserved 0 0 must be written to this bit.
Reserved 0 Reserved.
SD chroma delay 0 0 Disabled.
0 1 4 clock cycles.
1 0 8 clock cycles.
1 1 Reserved.
Reserved 0 0 0 must be written to these bits.
1 Available on the ADV7392/ADV7393 (40-pin devices) only.
Table 30. Register 0x8A to Register 0x98
SR7 to Bit Number1 Reset
SR0 Register Bit Description 7 6 5 4 3 2 1 0 Register Setting Value
0x8A SD Timing Register 0 SD slave/master mode 0 Slave mode. 0x08
1 Master mode.
SD timing mode 0 0 Mode 0.
0 1 Mode 1.
1 0 Mode 2.
1 1 Mode 3.
Reserved 1
SD luma delay 0 0 No delay.
0 1 Two clock cycles.
1 0 Four clock cycles.
1 1 Six clock cycles.
SD minimum luma value 0 −40 IRE.
1 −7.5 IRE.
SD timing reset x A low-high-low transition
resets the internal SD
timing counters.
Data Sheet ADV7390/ADV7391/ADV7392/ADV7393
Rev. J | Page 41 of 107
SR7 to Bit Number1 Reset
SR0 Register Bit Description 7 6 5 4 3 2 1 0 Register Setting Value
0x8B SD Timing Register 1
Note: Applicable in
master modes only,
that is, Subaddress
0x8A, Bit 0 = 1.
SD HSYNC width 0 0 ta = one clock cycle. 0x00
0 1 ta = four clock cycles.
1 0 ta = 16 clock cycles.
1 1 ta = 128 clock cycles.
SD HSYNC to VSYNC delay 0 0 tb = 0 clock cycles.
0 1 tb = four clock cycles.
1 0 tb = eight clock cycles.
1 1 tb = 18 clock cycles.
SD HSYNC to VSYNC rising
edge delay (Mode 1 only)
X
2 0 tc = tb.
X2 1 tc = tb + 32 µs.
SD VSYNC width (Mode 2 only) 0 0 One clock cycle.
0 1 Four clock cycles.
1 0 16 clock cycles.
1 1 128 clock cycles.
SD HSYNC to pixel data adjust 0 0 0 clock cycles.
0 1 One clock cycle.
1 0 Two clock cycles.
1 1 Three clock cycles.
0x8C SD FSC Register 03 Subcarrier Frequency Bits[7:0] x x x x x x x x Subcarrier Frequency
Bits[7:0].
0x1F
0x8D SD FSC Register 13 Subcarrier Frequency Bits[15:8] x x x x x x x x Subcarrier Frequency
Bits[15:8].
0x7C
0x8E SD FSC Register 23 Subcarrier Frequency Bits[23:16] x x x x x x x x Subcarrier Frequency
Bits[23:16].
0xF0
0x8F SD FSC Register 33 Subcarrier Frequency Bits[31:24] x x x x x x x x Subcarrier Frequency
Bits[31:24].
0x21
0x90 SD FSC Phase Subcarrier Phase Bits[9:2] x x x x x x x x Subcarrier Phase Bits[9:2]. 0x00
0x91 SD Closed Captioning Extended data on even fields x x x x x x x x Extended Data Bits[7:0]. 0x00
0x92 SD Closed Captioning Extended data on even fields x x x x x x x x Extended Data Bits[15:8]. 0x00
0x93 SD Closed Captioning Data on odd fields x x x x x x x x Data Bits[7:0]. 0x00
0x94
SD Closed Captioning
Data on odd fields
x
x
x
x
x
x
x
x
Data Bits[15:8].
0x00
0x95
SD Pedestal Register 0
Pedestal on odd fields
17
16
15
14
13
12
11
10
Setting any of these bits
to 1 disables the
pedestal on the line
number indicated by
the bit settings.
0x00
0x96 SD Pedestal Register 1 Pedestal on odd fields 25 24 23 22 21 20 19 18 0x00
0x97 SD Pedestal Register 2 Pedestal on even fields 17 16 15 14 13 12 11 10 0x00
0x98 SD Pedestal Register 3 Pedestal on even fields 25 24 23 22 21 20 19 18 0x00
1 x = Logic 0 or Logic 1.
2 X = don’t care.
3 SD subcarrier frequency registers default to NTSC subcarrier frequency values.
Table 31. Register 0x99 to Register 0xA5
SR7 to Bit Number1 Reset
SR0 Register Bit Description 7 6 5 4 3 2 1 0 Register Setting Value
0x99 SD CGMS/WSS 0 SD CGMS data x x x x CGMS Data Bits[C19:C16] 0x00
SD CGMS CRC
0
Disabled
1 Enabled
SD CGMS on odd fields 0 Disabled
1 Enabled
SD CGMS on even fields 0 Disabled
1
Enabled
SD WSS 0 Disabled
1 Enabled
0x9A SD CGMS/WSS 1 SD CGMS/WSS data x x x x x x CGMS Data Bits[C13:C8] or
WSS Data Bits[W13:W8]
0x00
ADV7390/ADV7391/ADV7392/ADV7393 Data Sheet
Rev. J | Page 42 of 107
SR7 to Bit Number1 Reset
SR0 Register Bit Description 7 6 5 4 3 2 1 0 Register Setting Value
SD CGMS data x x CGMS Data Bits[C15:C14]
0x9B
SD CGMS/WSS 2
SD CGMS/WSS data
x
x
x
x
x
x
x
x
CGMS Data Bits[C7:C0] or
WSS Data Bits[W7:W0]
0x00
0x9C SD scale LSB LSBs for SD Y scale value x x SD Y Scale Bits[1:0] 0x00
LSBs for SD Cb scale value x x SD Cb Scale Bits[1:0]
LSBs for SD Cr scale value
x
x
SD Cr Scale Bits[1:0]
LSBs for SD FSC phase x x Subcarrier Phase Bits[1:0]
0x9D SD Y scale SD Y scale value x x x x x x x x SD Y Scale Bits[9:2] 0x00
0x9E SD Cb scale SD Cb scale value x x x x x x x x SD Cb Scale Bits[9:2] 0x00
0x9F SD Cr scale SD Cr scale value x x x x x x x x SD Cr Scale Bits[9:2] 0x00
0xA0 SD hue adjust SD hue adjust value x x x x x x x x SD Hue Adjust Bits[7:0] 0x00
0xA1 SD brightness/WSS SD brightness value x x x x x x x SD Brightness Bits[6:0] 0x00
SD blank WSS data 0 Disabled
1
Enabled
0xA2 SD luma SSAF SD luma SSAF gain/attenuation
(only applicable if Subaddress
0x87, Bit 4 = 1)
0 0 0 0 −4 dB 0x00
0 1 1 0 0 dB
1
1
0
0
+4 dB
Reserved 0 0 0 0
0xA3 SD DNR 0 Coring gain border (in DNR
mode, the values in brackets
apply)
0 0 0 0 No gain 0x00
0 0 0 1 +1/16 [−1/8]
0 0 1 0 +2/16 [−2/8]
0
0
1
1
+3/16 [−3/8]
0 1 0 0 +4/16 [−4/8]
0 1 0 1 +5/16 [−5/8]
0 1 1 0 +6/16 [−6/8]
0 1 1 1 +7/16 [−7/8]
1 0 0 0 +8/16 [−1]
Coring gain data (in DNR
mode, the values in brackets
apply)
0 0 0 0 No gain
0 0 0 1 +1/16 [−1/8]
0 0 1 0 +2/16 [−2/8]
0
0
1
1
+3/16 [−3/8]
0 1 0 0 +4/16 [−4/8]
0 1 0 1 +5/16 [−5/8]
0 1 1 0 +6/16 [−6/8]
0 1 1 1 +7/16 [−7/8]
1 0 0 0 +8/16 [−1]
Data Sheet ADV7390/ADV7391/ADV7392/ADV7393
Rev. J | Page 43 of 107
SR7 to Bit Number1 Reset
SR0 Register Bit Description 7 6 5 4 3 2 1 0 Register Setting Value
0xA4 SD DNR 1 DNR threshold 0 0 0 0 0 0 0 0x00
0 0 0 0 0 1 1
1 1 1 1 1 0 62
1 1 1 1 1 1 63
Border area 0 Two pixels
1 Four pixels
Block size 0 Eight pixels
1 16 pixels
0xA5 SD DNR 2 DNR input select 0 0 1 Filter A 0x00
0 1 0 Filter B
0 1 1 Filter C
1 0 0 Filter D
DNR mode 0 DNR mode
1 DNR sharpness mode
DNR block offset 0 0 0 0 0 pixel offset
0 0 0 1 One pixel offset
1 1 1 0 14 pixel offset
1 1 1 1 15 pixel offset
1 x = Logic 0 or Logic 1.
Table 32. Register 0xA6 to Register 0xBB
SR7 to Bit Number1 Reset
SR0
Register
Bit Description
7
6
5
4
3
2
1
0
Register Setting
Value
0xA6 SD Gamma A0 SD Gamma Curve A (Point 24) x x x x x x x x A0 0x00
0xA7 SD Gamma A1 SD Gamma Curve A (Point 32) x x x x x x x x A1 0x00
0xA8 SD Gamma A2 SD Gamma Curve A (Point 48) x x x x x x x x A2 0x00
0xA9 SD Gamma A3 SD Gamma Curve A (Point 64) x x x x x x x x A3 0x00
0xAA SD Gamma A4 SD Gamma Curve A (Point 80) x x x x x x x x A4 0x00
0xAB SD Gamma A5 SD Gamma Curve A (Point 96) x x x x x x x x A5 0x00
0xAC
SD Gamma A6
SD Gamma Curve A (Point 128)
x
x
x
x
x
x
x
x
A6
0x00
0xAD SD Gamma A7 SD Gamma Curve A (Point 160) x x x x x x x x A7 0x00
0xAE SD Gamma A8 SD Gamma Curve A (Point 192) x x x x x x x x A8 0x00
0xAF SD Gamma A9 SD Gamma Curve A (Point 224) x x x x x x x x A9 0x00
0xB0 SD Gamma B0 SD Gamma Curve B (Point 24) x x x x x x x x B0 0x00
0xB1 SD Gamma B1 SD Gamma Curve B (Point 32) x x x x x x x x B1 0x00
0xB2 SD Gamma B2 SD Gamma Curve B (Point 48) x x x x x x x x B2 0x00
0xB3 SD Gamma B3 SD Gamma Curve B (Point 64) x x x x x x x x B3 0x00
0xB4 SD Gamma B4 SD Gamma Curve B (Point 80) x x x x x x x x B4 0x00
0xB5 SD Gamma B5 SD Gamma Curve B (Point 96) x x x x x x x x B5 0x00
0xB6
SD Gamma B6
SD Gamma Curve B (Point 128)
x
x
x
x
x
x
x
x
B6
0x00
0xB7 SD Gamma B7 SD Gamma Curve B (Point 160) x x x x x x x x B7 0x00
0xB8 SD Gamma B8 SD Gamma Curve B (Point 192) x x x x x x x x B8 0x00
0xB9 SD Gamma B9 SD Gamma Curve B (Point 224) x x x x x x x x B9 0x00
0xBA SD brightness detect SD brightness value x x x x x x x x Read only 0xXX
ADV7390/ADV7391/ADV7392/ADV7393 Data Sheet
Rev. J | Page 44 of 107
SR7 to Bit Number1 Reset
SR0 Register Bit Description 7 6 5 4 3 2 1 0 Register Setting Value
0xBB Field count Field count x x x Read only 0x0X
Reserved
0
0
0
Reserved
Encoder version code 0 0 Read only; first
encoder version2
0 1 Read only; second
encoder version
1 x = Logic 0 or Logic 1.
2 See the HD Interlace External HSYNC and VSYNC Considerations section for information about the first encoder version.
Table 33. Register 0xC9 to Register 0xCE
SR7 to Bit Number Reset
SR0 Register Bit Description 7 6 5 4 3 2 1 0 Register Setting Value
0xC9
Teletext control
Teletext enable
0
Disabled.
0x00
1 Enabled.
Teletext request mode 0 Line request signal.
1 Bit request signal.
Teletext input pin
select1
0 VSYNC.
1 P0.
Reserved 0 0 0 0 0 Reserved.
0xCA Teletext request
control
Teletext request falling
edge position control
0 0 0 0 0 clock cycles. 0x00
0 0 0 1 One clock cycle.
1 1 1 0 14 clock cycles.
1 1 1 1 15 clock cycles.
Teletext request rising
edge position control
0 0 0 0 0 clock cycles.
0 0 0 1 One clock cycle.
1 1 1 0 14 clock cycles.
1 1 1 1 15 clock cycles.
0xCB TTX Line Enable 0 Teletext on odd fields 22 21 20 19 18 17 16 15 Setting any of these bits
to 1 enables teletext on
the line number indicated
by the bit settings.
0x00
0xCC TTX Line Enable 1 Teletext on odd fields 14 13 12 11 10 9 8 7 0x00
0xCD TTX Line Enable 2 Teletext on even fields 22 21 20 19 18 17 16 15 0x00
0xCE TTX Line Enable 3 Teletext on even fields 14 13 12 11 10 9 8 7 0x00
1 The use of P0 as the teletext input pin is available on the ADV7392/ADV7393 (40-pin devices) only.
Data Sheet ADV7390/ADV7391/ADV7392/ADV7393
Rev. J | Page 45 of 107
Table 34. Register 0xE0 to Register 0xF1
SR7 to Bit Number1 Reset
SR0 Register2 Bit Description 7 6 5 4 3 2 1 0 Register Setting Value
0xE0 Macrovision MV control bits x x x x x x x x 0x00
0xE1 Macrovision MV control bits x x x x x x x x 0x00
0xE2 Macrovision MV control bits x x x x x x x x 0x00
0xE3 Macrovision MV control bits x x x x x x x x 0x00
0xE4 Macrovision MV control bits x x x x x x x x 0x00
0xE5 Macrovision MV control bits x x x x x x x x 0x00
0xE6 Macrovision MV control bits x x x x x x x x 0x00
0xE7 Macrovision MV control bits x x x x x x x x 0x00
0xE8 Macrovision MV control bits x x x x x x x x 0x00
0xE9
Macrovision
MV control bits
x
x
x
x
x
x
x
x
0x00
0xEA Macrovision MV control bits x x x x x x x x 0x00
0xEB Macrovision MV control bits x x x x x x x x 0x00
0xEC Macrovision MV control bits x x x x x x x x 0x00
0xED Macrovision MV control bits x x x x x x x x 0x00
0xEE Macrovision MV control bits x x x x x x x x 0x00
0xEF Macrovision MV control bits x x x x x x x x 0x00
0xF0 Macrovision MV control bits x x x x x x x x 0x00
0xF1
Macrovision
MV control bits
0
0
0
0
0
0
0
x
Bits[7:1] must be 0.
0x00
1 x = Logic 0 or Logic 1.
2 Macrovision registers are available on the ADV7390 and the ADV7392 only.
ADV7390/ADV7391/ADV7392/ADV7393 Data Sheet
Rev. J | Page 46 of 107
ADV7390/ADV7391 INPUT CONFIGURATION
The ADV7390/ADV7391 support a number of different input
modes. The desired input mode is selected using Subaddress 0x01,
Bits[6:4]. The ADV7390/ADV7391 default to standard definition
(SD) mode on power-up. Table 35 provides an overview of all
possible input configurations. Each input mode is described in
detail in this section. Note that the WLCSP option is only
configured to support SD as shown in Figure 51.
Table 35. ADV7390/ADV7391 Input Configuration
Input Mode P7 P6 P5 P4 P3 P2 P1 P0
000 SD YCrCb
010 ED/HD-DDR YCrCb
111 ED (at 54 MHz) YCrCb
STANDARD DEFINITION
Subaddress 0x01, Bits[6:4] = 000
SD YCrCb data can be input in an interleaved 4:2:2 format over
an 8-bit bus rate of 27 MHz. A 27 MHz clock signal must be
provided on the CLKIN pin. If required, external synchroni-
zation signals can be provided on the HSYNC and VSYNC pins.
Embedded EAV/SAV timing codes are also supported. The
ITU-R BT.601/656 input standard is supported. The interleaved
pixel data is input on Pin P7 to Pin P0, with Pin P0 being the LSB.
MPEG2
DECODER
CLKIN
P[7:0]
27MHz
YCrCb
ADV7390/
ADV7391
VSYNC,
HSYNC
2
8
06234-049
Figure 51. SD Example Application
ENHANCED DEFINITION/HIGH DEFINITION
Subaddress 0x01, Bits[6:4] = 010
Enhanced definition (ED) or high definition (HD) YCrCb data
can be input in an interleaved 4:2:2 format over an 8-bit DDR
bus. The clock signal must be provided on the CLKIN pin. If
required, external synchronization signals can be provided on
the HSYNC and VSYNC pins. Embedded EAV/SAV timing
codes are also supported.
8-Bit 4:2:2 ED/HD YCrCb Mode (DDR)
In 8-bit DDR 4:2:2 YCrCb input mode, the Y pixel data is input
on Pin P7 to Pin P0 on either the rising or falling edge of CLKIN.
Pin P0 is the LSB.
The CrCb pixel data is also input on Pin P7 to Pin P0 on the
opposite edge of CLKIN. Pin P0 is the LSB.
Whether the Y data is clocked in on the rising or falling edge of
CLKIN is determined by Subaddress 0x01, Bits[2:1] (see Figure 52
and Figure 53).
3FF 00 00 XY Y0 Y1Cr0
CLKIN
NOTES
1. SUBADDRESS 0x01 [2:1] SHOULD BE SET TO 00 IN THIS CASE.
P[7:0] Cb0
0
6234-050
Figure 52. ED/HD-DDR Input Sequence (EAV/SAV)—Option A
3FF 00 00 XY Cb0 Cr0Y1
CLKIN
P[7:0] Y0
NOTES
1. SUBADDRESS 0x01 [2:1] SHOULD BE SET TO 11 IN THIS CASE.
06234-051
Figure 53. ED/HD-DDR Input Sequence (EAV/SAV)—Option B
MPEG2
DECODER
CLKIN
P[7:0]
INTERLACE D TO
PROGRESSIVE
YCrCb
ADV7390/
ADV7391
VSYNC,
HSYNC
8
2
YCrCb
06234-052
Figure 54. ED/HD-DDR Example Application
ENHANCED DEFINITION (AT 54 MHz)
Subaddress 0x01, Bits[6:4] = 111
ED YCrCb data can be input in an interleaved 4:2:2 format over
an 8-bit bus rate of 54 MHz.
A 54 MHz clock signal must be provided on the CLKIN pin.
Embedded EAV/SAV timing codes are supported. External
synchronization signals are not supported in this mode.
The interleaved pixel data is input on Pin P7 to Pin P0, with Pin P0
being the LSB.
3FF 00 00 XY Cb0 Y0 Y1Cr0
CLKIN
P[7:0]
06234-053
Figure 55. ED (at 54 MHz) Input Sequence (EAV/SAV)
Data Sheet ADV7390/ADV7391/ADV7392/ADV7393
Rev. J | Page 47 of 107
ADV7392/ADV7393 INPUT CONFIGURATION
The ADV7392/ADV7393 support a number of different input
modes. The desired input mode is selected using Subaddress 0x01,
Bits[6:4]. The ADV7392/ADV7393 default to standard definition
(SD) mode on power-up. Table 36 provides an overview of all
possible input configurations. Each input mode is described in
detail in this section.
STANDARD DEFINITION
Subaddress 0x01, Bits[6:4] = 000
Standard definition YCrCb data can be input in 4:2:2 format over
an 8-, 10-, or 16-bit bus. SD RGB data can be input in 4:4:4 format
over a 16-bit bus.
A 27 MHz clock signal must be provided on the CLKIN pin. If
required, external synchronization signals can be provided on
the HSYNC and VSYNC pins. Embedded EAV/SAV timing
codes are also supported in 8-bit and 10-bit modes.
8-Bit 4:2:2 YCrCb Mode
Subaddress 0x87, Bit 7 = 0;
Subaddress 0x88, Bits[4:3] = 00
In 8-bit 4:2:2 YCrCb input mode, the interleaved pixel data is
input on Pin P15 to Pin P8, with Pin P8 being the LSB. The
ITU-R BT.601/656 input standard is supported.
10-Bit 4:2:2 YCrCb Mode
Subaddress 0x87, Bit 7 = 0;
Subaddress 0x88, Bits[4:3] = 10
In 10-bit 4:2:2 YCrCb input mode, the interleaved pixel data is
input on Pin P15 to Pin P6, with Pin P6 being the LSB. The ITU-
R BT.601/656 input standard is supported.
16-Bit 4:2:2 YCrCb Mode
Subaddress 0x87, Bit 7 = 0;
Subaddress 0x88, Bits[4:3] = 01
In 16-bit 4:2:2 YCrCb input mode, the Y pixel data is input on
Pin P15 to Pin P8, with Pin P8 being the LSB.
The CrCb pixel data is input on Pin P7 to Pin P0, with Pin P0
being the LSB.
The pixel data is updated at half the rate of the clock, that is, at a
rate of 13.5 MHz (see Figure 5).
16-Bit 4:4:4 RGB Mode
Embedded EAV/SAV timing codes are not supported with SD RGB
mode. Also, master timing mode is not supported for SD RGB
input mode, therefore, external synchronization must be used.
Subaddress 0x87, Bit 7 = 1
In 16-bit 4:4:4 RGB input mode, the red pixel data is input on
Pin P4 to Pin P0, the green pixel data is input on Pin P10 to
Pin P5, and the blue pixel data is input on Pin P15 to Pin P11.
The P0, P5, and P11 pins are the respective bus LSBs.
The pixel data is updated at half the rate of the clock, that is, at a
rate of 13.5 MHz (see Figure 6).
MPEG2
DECODER
CLKIN
P[15:8]/P[15:6]
27MHz
YCrCb
ADV7392/
ADV7393
VSYNC,
HSYNC
2
8/10
06234-054
Figure 56. SD Example Application
Table 36. ADV7392/ADV7393 Input Configuration
Input Mode
1
P15
P14
P13
P12
P11
P10
P9
P8
P7
P6
P5
P4
P3
P2
P1
P0
000 SD2 SD RGB input enable (0x87[7]) = 0
8-bit YCrCb
10-bit YCrCb
16-bit3 Y CrCb
SD RGB input enable (0x87[7]) = 1
16-bit3 B G R
001 ED/HD-SDR (16-bit) Y CrCb
010 ED/HD-DDR4 ED/HD input format (0x33[2]) = 0
8-bit YCrCb
ED/HD input format (0x33[2]) = 1
10-bit YCrCb
111 ED (at 54 MHz) ED/HD input format (0x33[2]) = 0
8-bit YCrCb
ED/HD input format (0x33[2]) = 1
10-bit YCrCb
1 The input mode is determined by Subaddress 0x01, Bits[6:4].
2 In SD mode, the width of the input data is determined by Subaddress 0x88, Bits[4:3].
3 External synchronization signals must be used in this input mode. Embedded EAV/SAV timing codes are not supported.
4 ED = enhanced definition = 525p and 625p.
ADV7390/ADV7391/ADV7392/ADV7393 Data Sheet
Rev. J | Page 48 of 107
ENHANCED DEFINITION/HIGH DEFINITION
Subaddress 0x01, Bits[6:4] = 001 or 010
ED or HD YCrCb data can be input in a 4:2:2 format over an
8-/10-bit DDR bus or a 16-bit SDR bus.
The clock signal must be provided on the CLKIN pin. If
required, external synchronization signals can be provided on
the HSYNC and VSYNC pins. Embedded EAV/SAV timing
codes are also supported.
16-Bit 4:2:2 YCrCb Mode (SDR)
In 16-bit 4:2:2 YCrCb input mode, the Y pixel data is input on
Pin P15 to Pin P8, with P8 being the LSB.
The CrCb pixel data is input on Pin P7 to Pin P0, with Pin P0
being the LSB.
8-/10-Bit 4:2:2 YCrCb Mode (DDR)
In 8-/10-bit DDR 4:2:2 YCrCb input mode, the Y pixel data is
input on Pin P15 to Pin P8/P6 on either the rising or falling
edge of CLKIN. Pin P8/P6 is the LSB.
The CrCb pixel data is also input on Pin P15 to Pin P8/P6
on the opposite edge of CLKIN. P8/P6 is the LSB.
The 10-bit mode is enabled using Subaddress 0x33, Bit 2.
Whether the Y data is clocked in on the rising or falling edge of
CLKIN is determined by Subaddress 0x01, Bits[2:1] (see Figure 57
and Figure 58).
3FF 00 00 X
Y
Y0 Y1
Cr0
CLKIN
NOTES
1. SUBADDRE S S 0x01 [ 2: 1] S HOULD BE S E T TO 00 IN THIS CASE .
2. 10-BIT M ODE I S E NABLED USING S UBADDRE SS 0x33, BIT 2.
P[15:8]/
P]15:6] Cb0
06234-055
Figure 57. ED/HD-DDR Input Sequence (EAV/SAV)Option A
3FF 00 00 XY Cb0 Cr0Y1
CLKIN
P[15:8]/
P[15:P6] Y0
NOTES
1. SUBADDRE S S 0x01 [ 2: 1] S HOULD BE S E T TO 11 IN THIS CAS E .
2. 10-BIT M ODE I S E NABLED USING S UBADDRE S S 0x33, BIT 2.
06234-056
Figure 58. ED/HD-DDR Input Sequence (EAV/SAV)Option B
M
PEG2
DECODER
CLKIN
P[7:0]
P[15:8]
INT E RLACED T O
PROGRESSIVE
YCrCb
ADV7392/
ADV7393
VSYNC
HSYNC
8
CrCb
8
Y
2
06234-057
Figure 59. ED/HD-SDR Example Application
MPEG2
DECODER
CLKIN
P[15:8]/P[15:6]
INTERL ACE D TO
PROGRESSIVE
YCrCb
ADV7392/
ADV7393
VSYNC
HSYNC
8/10
2
YCrCb
06234-058
Figure 60. ED/HD-DDR Example Application
ENHANCED DEFINITION (AT 54 MHz)
Subaddress 0x01, Bits[6:4] = 111
ED YCrCb data can be input in an interleaved 4:2:2 format on
an 8-/10-bit bus at a rate of 54 MHz.
A 54 MHz clock signal must be provided on the CLKIN pin.
Embedded EAV/SAV timing codes are supported. External
synchronization signals are not supported in this mode.
The interleaved pixel data is input on Pin P15 to Pin P8/P6,
with Pin P8/P6 being the LSB.
The 10-bit mode is enabled using Subaddress 0x33, Bit 2.
3FF 00 00 XY Cb0 Y0 Y1Cr0
CLKIN
P[15:8]/P[15:6]
NOTES
1. 10- BIT M ODE I S E NABLED USING S UBADDRE S S 0x33, BIT 2.
06234-059
Figure 61. ED (at 54 MHz) Input Sequence (EAV/SAV)
MPEG2
DECODER
CLKIN
P[15:8]/P[15:6]
54MHz
ADV7392/
ADV7393
VSYNC,
HSYNC
YCrCb
8/10
YCrCb
INTERL ACE D TO
PROGRESSIVE
06234-060
Figure 62 ED (at 54 MHz) Example Application
Data Sheet ADV7390/ADV7391/ADV7392/ADV7393
Rev. J | Page 49 of 107
OUTPUT CONFIGURATION
The ADV7390/ADV7391/ADV7392/ADV7393 support a number of different output configurations. Table 37 to Table 39 list all possible
output configurations.
Table 37. SD Output Configurations
RGB/YPrPb Output Select1
(Subaddress 0x02, Bit 5)
SD DAC Output 1
(Subaddress 0x82, Bit 1)
SD Luma/Chroma Swap
(Subaddress 0x84, Bit 7) DAC 1 DAC 2 DAC 3
0 0 0 G B R
1 0 0 Y Pb Pr
1 1 0 CVBS Luma Chroma
1 1 1 CVBS Chroma Luma
1 If SD RGB output is selected, a color reversal is possible using Subaddress 0x86, Bit 7.
Table 38. ED/HD Output Configurations
RGB/YPrPb Output Select
(Subaddress 0x02, Bit 5)
ED/HD Color DAC Swap
(Subaddress 0x35, Bit 3) DAC 1 DAC 2 DAC 3
0 0 G B R
0 1 G R B
1 0 Y Pb Pr
1
1
Y
Pr
Pb
Table 39. ED (at 54 MHz) Output Configurations
RGB/YPrPb Output Select
(Subaddress 0x02, Bit 5)
ED/HD Color DAC Swap
(Subaddress 0x35, Bit 3) DAC 1 DAC 2 DAC 3
0 0 G B R
0 1 G R B
1
0
Y
Pb
Pr
1 1 Y Pr Pb
ADV7390/ADV7391/ADV7392/ADV7393 Data Sheet
Rev. J | Page 50 of 107
DESIGN FEATURES
OUTPUT OVERSAMPLING
The ADV7390/ADV7391/ADV7392/ADV7393 include an on-
chip phase-locked loop (PLL) that allows for oversampling of
SD, ED, and HD video data. By default, the PLL is disabled. The
PLL can be enabled using Subaddress 0x00, Bit 1 = 0.
Table 40 shows the various oversampling rates supported in the
ADV7390/ADV7391/ADV7392/ADV7393.
External Sync Polarity
For SD and ED/HD modes, the ADV7390/ADV7391/ADV7392/
ADV7393 parts typically expect HS and VS to be low during
their respective blanking periods. However, when the CEA861
compliance bit is enabled (0x39, Bit 5 for ED/HD modes and
0x86, Bit 3 for SD modes), the part expects the HS or VS to be
active low or high depending on the input format selected
(0x30, Bits[7:3]).
If a different polarity other than the default is required for
ED/HD modes, 0x3A, Bits[2:0] can be used to invert PHSYNCB,
PVSYNCB or PBLANKB individually regardless of whether
CEA-861-B mode is enabled. It is not possible to invert
S_HSYNC or S_VSYNC.
Table 40. Output Oversampling Modes and Rates
Input Mode
(0x01, Bits[6:4])
PLL and Oversampling
Control (0x00, Bit 1)
SD/ED Oversample Rate
Select (0x0D, Bit 3)1
HD Oversample Rate
Select (0x31, Bit 1)1
Oversampling Mode
and Rate
000 SD 1 X X SD (2×)
000 SD 0 1 X SD (8×)
000 SD 0 0 X SD (16×)
001/010
ED
1
X
X
ED (1×)
001/010 ED 0 1 X ED (4×)
001/010 ED 0 0 X ED (8×)
001/010 HD 1 X X HD (1×)
001/010 HD 0 X 1 HD (2×)
001/010
HD
0
X
0
HD (4×)
111
ED (at 54 MHz)
1
X
X
ED (at 54 MHz) (1×)
111 ED (at 54 MHz) 0 1 X ED (at 54 MHz) (4×)
111 ED (at 54 MHz) 0 0 X ED (at 54 MHz) (8×)
1 X = don’t care
Data Sheet ADV7390/ADV7391/ADV7392/ADV7393
Rev. J | Page 51 of 107
HD INTERLACE EXTERNAL HSYNC AND VSYNC
CONSIDERATIONS
If the encoder revision code (Subaddress 0xBB, Bits[7:6]) = 01
or higher, the user should set Subaddress 0x02, Bit 1 to high.
To ensure correct timing in HD interlace modes when using
HSYNC and VSYNC synchronization signals. If this bit is set to
low, the first active pixel on each line is masked in HD interlace
modes and the Pr and Pb outputs are swapped when using the
YCrCb 4:2:2 input format. Setting Subaddress 0x02, Bit 1 to low
causes the encoder to behave in the same way as the first
version of silicon (that is, this setting is backward compatible).
If the encoder revision code (Subaddress 0xBB, Bits[7:6]) = 00,
the setting of Subaddress 0x02, Bit 1 has no effect. In this
version of the encoder, the first active pixel is masked and the
Pr and Pb outputs are swapped when using YCrCb 4:2:2 input
format. To avoid these limitations, use the newer revision of
silicon or use a different type of synchronization.
These considerations apply only to the HD interlace modes
with external HSYNC and VSYNC synchronization (EAV/SAV
mode is not affected and always has correct timing).
There is no negative effect in setting Subaddress 0x02, Bit 0 to
high, and this bit can remain high for all the other video
standards.
ED/HD TIMING RESET
Subaddress 0x34, Bit 0
An ED/HD timing reset is achieved by setting the ED/HD
timing reset control bit (Subaddress 0x34, Bit 0) to 1. In this
state, the horizontal and vertical counters remain reset. When
this bit is set back to 0, the internal counters resume counting.
This timing reset applies to the ED/HD timing counters only.
SD SUBCARRIER FREQUENCY LOCK
Subcarrier Frequency Lock (SFL) Mode
In subcarrier frequency lock (SFL) mode (Subaddress 0x84,
Bits[2:1] = 11), the ADV7390/ADV7391/ADV7392/ADV7393
can be used to lock to an external video source. The SFL mode
allows the ADV7390/ADV7391/ADV7392/ADV7393 to
automatically alter the subcarrier frequency to compensate for
line length variations. When the part is connected to a device
such as an ADV7403 video decoder that outputs a digital data
stream in the SFL format, the part automatically changes to the
compensated subcarrier frequency on a line-by-line basis (see
Figure 63). This digital data stream is 67 bits wide, and the
subcarrier is contained in Bit 0 to Bit 21. Each bit is two clock
cycles long.
LLC1 SFL
P19 TO
P10
ADV7403
VIDEO
DECODER
CLKIN
SFL
PIXEL PORT5
RTC
LOW
128
TIME SLOT 01
13 0
14
21
19
F
SC PLL INCREME NT2
VALID
SAMPLE INVALID
SAMPLE
6768
0
RESET BIT4
RESERVED
ADV7390/ADV7391/
ADV7392/ADV7393
8/LINE
LOCKED
CLOCK 5 BITS
RESERVED
1FO R E X AM P LE, V CR OR CABLE .
2FSC PLL INCREME NT IS 22 BITS LONG. VALUE L OADED I NTOADV7390/ADV7391/ ADV 7392/ADV7393 F SC DDS RE GIS TER I S
FSC PLL INCREM E NTS BI TS[21: 0] P LUS BI TS[0: 9] OF S UBCARRIER F RE QUENCY REGISTERS.
3SEQ UE NCE BIT
PAL : 0 = LINE NORMAL , 1 = L INE I NV E RTED
NTSC: 0 = NO CHANGE
4RESET ADV7390/ADV7391/ADV7392/ ADV 7393 DDS .
5REFER TO THEADV7390/ADV7391 AND ADV7392/ADV7393 I NP UT CONFIGURATION TABLES FOR PIXEL DATA PINASSIGNMENTS.
COMPOSITE
VIDEO
1
H/L TRANSITION
COUNT START 14 BI TS
SUBCARRIER
PHASE
SEQUENCE
BIT3
DAC 1
DAC 2
DAC 3
4 BIT S
RESERVED
06234-064
Figure 63. SD Subcarrier Frequency Lock Timing and Connections Diagram (Subaddress 0x84, Bits [2:1] = 11)
ADV7390/ADV7391/ADV7392/ADV7393 Data Sheet
Rev. J | Page 52 of 107
SD VCR FF/RW SYNC
Subaddress 0x82, Bit 5
In DVD record applications where the encoder is used with a
decoder, the VCR FF/RW sync control bit can be used for non-
standard input video, that is, in fast forward or rewind modes.
In fast forward mode, the sync information at the start of a new
field in the incoming video usually occurs before the correct
number of lines/fields is reached. In rewind mode, this sync
signal usually occurs after the total number of lines/fields is
reached. Conventionally, this means that the output video has
corrupted field signals because one signal is generated by the
incoming video and another is generated when the internal
line/field counters reach the end of a field.
When the VCR FF/RW sync control is enabled (Subaddress 0x82,
Bit 5), the line/field counters are updated according to the
incoming VSYNC signal and when the analog output matches
the incoming VSYNC signal. This control is available in all
slave-timing modes except Slave Mode 0.
VERTICAL BLANKING INTERVAL
Subaddress 0x31, Bit 4; Subaddress 0x83, Bit 4
The ADV7390/ADV7391/ADV7392/ADV7393 are able to
accept input data that contains vertical blanking interval (VBI)
data (such as CGMS, WSS, VITS) in SD, ED, and HD modes.
If VBI is disabled (Subaddress 0x31, Bit 4 for ED/HD; Subaddress
0x83, Bit 4 for SD), VBI data is not present at the output and the
entire VBI is blanked. These control bits are valid in all master
and slave timing modes.
For the SMPTE 293M (525p) standard, VBI data can be inserted
on Line 13 to Line 42 of each frame or on Line 6 to Line 43 for
the ITU-R BT.1358 (625p) standard. VBI data can be present on
Line 10 to Line 20 for NTSC and on Line 7 to Line 22 for PAL.
In SD Timing Mode 0 (slave option), if VBI is enabled, the
blanking bit in the EAV/SAV code is overwritten. It is possible
to use VBI in this timing mode as well.
If CGMS is enabled and VBI is disabled, the CGMS data is,
nevertheless, available at the output.
SD SUBCARRIER FREQUENCY CONTROL
Subaddress 0x8C to Subaddress 0x8F
The ADV7390/ADV7391/ADV7392/ADV7393 are able to
generate the color subcarrier used in CVBS and S-Video (Y-C)
outputs from the input pixel clock. Four 8-bit registers are used
to set up the subcarrier frequency. The value of these registers is
calculated using the following equation:
32
2
MHz27 ×
=
linevideooneincyclesclockofNumber
linevideooneinperiodssubcarrierofNumber
RegisterFrequencySubcarrier
where the sum is rounded to the nearest integer.
For example, in NTSC mode:
569408543
2
1716
5.227 32 =×
=ValueRegisterSubcarrier
where:
Subcarrier Register Value = 569408543d = 0×21F07C1F
SD FSC Register 0: 0x1F
SD FSC Register 1: 0x7C
SD FSC Register 2: 0xF0
SD FSC Register 3: 0x21
Programming the FSC
The subcarrier frequency register value is divided into four FSC
registers as shown in the previous example. The four subcarrier
frequency registers must be updated sequentially, starting with
Subcarrier Frequency Register 0 and ending with Subcarrier
Frequency Register 3. The subcarrier frequency updates only
after the last subcarrier frequency register byte is received by
the ADV7390/ADV7391/ADV7392/ADV7393. The SD input
standard autodetection feature must be disabled.
Typical FSC Values
Table 41 outlines the values that should be written to the
subcarrier frequency registers for NTSC and PAL B/D/G/H/I.
Table 41. Typical FSC Values
Subaddress Description NTSC PAL B/D/G/H/I
0x8C FSC0 0x1F 0xCB
0x8D FSC1 0x7C 0x8A
0x8E FSC2 0xF0 0x09
0x8F FSC3 0x21 0x2A
SD NONINTERLACED MODE
Subaddress 0x88, Bit 1
The ADV7390/ADV7391/ADV7392/ADV7393 support an SD
noninterlaced mode. Using this mode, progressive inputs at
twice the frame rate of NTSC and PAL (240p/59.94 Hz and
288p/50 Hz, respectively) can be input into the ADV7390/
ADV7391/ADV7392/ADV7393. The SD noninterlaced mode
can be enabled using Subaddress 0x88, Bit 1.
A 27 MHz clock signal must be provided on the CLKIN pin.
Embedded EAV/SAV timing codes or external horizontal and
vertical synchronization signals provided on the HSYNC and
VSYNC pins can be used to synchronize the input pixel data.
All input configurations, output configurations, and features
available in NTSC and PAL modes are available in SD noninter-
laced mode. For 240p/59.94 Hz input, the ADV7390/ADV7391/
ADV7392/ADV7393 should be configured for NTSC operation
and Subaddress 0x88, Bit 1 should be set to 1.
For 288p/50 Hz input, the ADV7390/ADV7391/ADV7392/
ADV7393 should be configured for PAL operation and
Subaddress 0x88, Bit 1 should be set to 1.
Data Sheet ADV7390/ADV7391/ADV7392/ADV7393
Rev. J | Page 53 of 107
SD SQUARE PIXEL MODE
Subaddress 0x82, Bit 4
The ADV7390/ADV7391/ADV7392/ADV7393 support an SD
square pixel mode (Subaddress 0x82, Bit 4). For NTSC operation,
an input clock of 24.5454 MHz is required. The active resolution
is 640 × 480. For PAL operation, an input clock of 29.5 MHz is
required. The active resolution is 768 × 576.
For CVBS and S-Video (Y-C) outputs, the SD subcarrier
frequency registers must be updated to reflect the input clock
frequency used in SD square pixel mode. The SD input standard
autodetection feature must be disabled in SD square pixel
mode. In square pixel mode, the timing diagrams shown in
Figure 64 and Figure 65 apply.
YC
rYF
F0
00
0X
Y8
01
08
01
0F
F
0
0F
FA
BA
BA
B8
01
08
01
0F
F0
00
0X
YC
bYC
rC
b
YC
b
Y
C
r
EAV CODE SAV CODE
ANCILLARY DATA
(HANC)
4 CLO CK 4 CL OCK
272 CLO CK 1280 CLO CK
4 CLO CK 4 CLO CK
344 CLO CK 1536 CLO CK
END OF ACTIVE
VIDEO LINE START OF ACTIVE
VIDEO LINE
ANALOG
VIDEO
INPUT PIXELS
NTSC/PAL M SYSTEM
(525 L I NE S /60Hz)
PAL SYSTEM
(625 L I NE S /50Hz)
Y
06234-065
Figure 64. Square Pixel Mode EAV/SAV Embedded Timing
FIELD
PIXEL
DATA
PAL = 308 CL OCK CYCL E S
NTS C = 236 CLOCK CY CLES
Cb YCr Y
HSYNC
06234-066
Figure 65. Square Pixel Mode Active Pixel Timing
ADV7390/ADV7391/ADV7392/ADV7393 Data Sheet
Rev. J | Page 54 of 107
FILTERS
Table 42 shows an overview of the programmable filters available
on the ADV7390/ADV7391/ADV7392/ADV7393.
Table 42. Selectable Filters
Filter Subaddress
SD Luma LPF NTSC 0x80
SD Luma LPF PAL 0x80
SD Luma Notch NTSC 0x80
SD Luma Notch PAL 0x80
SD Luma SSAF 0x80
SD Luma CIF 0x80
SD Luma QCIF 0x80
SD Chroma 0.65 MHz 0x80
SD Chroma 1.0 MHz 0x80
SD Chroma 1.3 MHz 0x80
SD Chroma 2.0 MHz
0x80
SD Chroma 3.0 MHz 0x80
SD Chroma CIF 0x80
SD Chroma QCIF 0x80
SD PrPb SSAF 0x82
ED/HD Sinc Compensation Filter 0x33
ED/HD Chroma SSAF 0x33
SD Internal Filter Response
Subaddress 0x80, Bits[7:2]; Subaddress 0x82, Bit 0
The Y filter supports several different frequency responses,
including two low-pass responses, two notch responses, an
extended (SSAF) response with or without gain boost atten-
uation, a CIF response, and a QCIF response. The PrPb filter
supports several different frequency responses, including six
low-pass responses, a CIF response, and a QCIF response, as
shown in Figure 38 and Figure 39.
If SD Luma SSAF gain is enabled (Subaddress 0x87, Bit 4), there
are 13 response options in the range −4 dB to +4 dB. The desired
response can be programmed using Subaddress 0xA2. Variation
in frequency responses is shown in Figure 35 to Figure 37.
In addition to the chroma filters listed in Table 42, the ADV7390/
ADV7391/ADV7392/ADV7393 contain an SSAF filter that is
specifically designed for the color difference component
outputs, Pr and Pb. This filter has a cutoff frequency of
~2.7 MHz and a gain of 40 dB at 3.8 MHz (see Figure 66). This
filter can be controlled with Bit 0 of Sub-address 0x82, Bit 0.
FREQUENCY (MHz)
0
GAIN (d B)
–10
–30
–50
–60
–20
–40
6543210
EXTENDED (SSAF) PrPb FILT E R M ODE
06234-067
Figure 66. PrPb SSAF Filter
If this filter is disabled, one of the chroma filters shown in
Table 43 can be selected and used for the CVBS or luma/
chroma signal.
Table 43. Internal Filter Specifications
Filter
Pass-Band
Ripple (dB)1 3 dB Bandwidth (MHz)2
Luma LPF NTSC 0.16 4.24
Luma LPF PAL 0.1 4.81
Luma Notch NTSC 0.09 2.3/4.9/6.6
Luma Notch PAL 0.1 3.1/5.6/6.4
Luma SSAF
0.04
6.45
Luma CIF 0.127 3.02
Luma QCIF Monotonic 1.5
Chroma 0.65 MHz Monotonic 0.65
Chroma 1.0 MHz Monotonic 1
Chroma 1.3 MHz 0.09 1.395
Chroma 2.0 MHz 0.048 2.2
Chroma 3.0 MHz Monotonic 3.2
Chroma CIF Monotonic 0.65
Chroma QCIF Monotonic 0.5
1 Pass-band ripple is the maximum fluctuation from the 0 dB response in the
pass band, measured in decibels. The pass band is defined to have 0 Hz to fc
(Hz) frequency limits for a low-pass filter and 0 Hz to f1 (Hz) and f2 (Hz) to
infinity for a notch filter, where fc, f1, and f2 are the −3 dB points.
2 3 dB bandwidth refers to the −3 dB cutoff frequency.
Data Sheet ADV7390/ADV7391/ADV7392/ADV7393
Rev. J | Page 55 of 107
ED/HD Sinc Compensation Filter Response
Subaddress 0x33, Bit 3
The ADV7390/ADV7391/ADV7392/ADV7393 include a filter
designed to counter the effect of sinc roll-off in DAC 1, DAC 2,
and DAC 3 while operating in ED/HD mode. This filter is
enabled by default. It can be disabled using Subaddress 0x33, Bit 3.
The benefit of the filter is illustrated in Figure 67 and Figure 68.
FREQUENCY (MHz)
0.5
–0.5 305
0
GAI N ( dB)
10 15 20 25
0.4
0.1
–0.2
–0.3
–0.4
0.3
0.2
0
–0.1
06234-068
Figure 67. ED/HD Sinc Compensation Filter Enabled
FREQUENCY (MHz)
0.5
–0.5 3050
GAI N ( dB)
10 15 20 25
0.4
0.1
–0.2
–0.3
–0.4
0.3
0.2
0
–0.1
06234-069
Figure 68. ED/HD Sinc Compensation Filter Disabled
ED/HD TEST PATTERN COLOR CONTROLS
Subaddress 0x36 to Subaddress 0x38
Three 8-bit registers at Subaddress 0x36 to Subaddress 0x38
are used to program the output color of the internal ED/HD
test pattern generator (Subaddress 0x31, Bit 2 = 1), whether it
be the lines of the crosshatch pattern or the uniform field test
pattern. They are not functional as color controls for external
pixel data input.
The values for the luma (Y) and color difference (Cr and Cb)
signals used to obtain white, black, and saturated primary and
complementary colors conform to the ITU-R BT.601-4
standard.
Table 44 shows sample color values that can be programmed
into the color registers when the output standard selection is set
to EIA770.2/EIA770.3 (Subaddress 0x30, Bits[1:0] = 00).
Table 44. Sample Color Values for EIA770.2/EIA770.3
ED/HD Output Standard Selection
Sample Color Y Value Cr Value Cb Value
White 235 (0xEB) 128 (0x80) 128 (0x80)
Black 16 (0x10) 128 (0x80) 128 (0x80)
Red 81 (0x51) 240 (0xF0) 90 (0x5A)
Green 145 (0x91) 34 (0x22) 54 (0x36)
Blue 41 (0x29) 110 (0x6E) 240 (0xF0)
Yellow
210
(0xD2)
146
(0x92)
16
(0x10)
Cyan
170
(0xAA)
16
(0x10)
166
(0xA6)
Magenta 106 (0x6A) 222 (0xDE) 202 (0xCA)
COLOR SPACE CONVERSION MATRIX
Subaddress 0x03 to Subaddress 0x09
The internal color space conversion (CSC) matrix automatically
performs all color space conversions based on the input mode
programmed in the mode select register (Subaddress 0x01,
Bits[6:4]). Table 45 and Table 46 show the options available in
this matrix.
An SD color space conversion from RGB-in to YPrPb-out is
possible on the ADV7392/ADV7393. An ED/HD color space
conversion from RGB-in to YPrPb-out is not possible.
Table 45. SD Color Space Conversion Options
Input Output1
YPrPb/RGB Out
(Subaddress 0x02,
Bit 5)
RGB In/YCrCb In
(Subaddress 0x87,
Bit 7)
YCrCb YPrPb 1 0
YCrCb RGB 0 0
RGB2 YPrPb 1 1
RGB2 RGB 0 1
1 CVBS/Y-C outputs are available for all CSC combinations.
2 Available on the ADV7392/ADV7393 (40-pin devices) only.
Table 46. ED/HD Color Space Conversion Options
Input Output
YPrPb/RGB Out
(Subaddress 0x02, Bit 5)
YCrCb YPrPb 1
YCrCb RGB 0
SD Manual CSC Matrix Adjust Feature
The SD manual CSC matrix adjust feature (available for the
ADV7392 and ADV7393 only) provides custom coefficient
manipulation for RGB to YPbPr conversion (for YPbPr to RGB
conversion, this matrix adjustment is not available).
Normally, there is no need to modify the SD matrix coefficients
because the CSC matrix automatically performs the color space
conversion based on the output color space selected (see Table 46).
Note that Bit 7 in subaddress 0x87 must be set to enable RGB
input and, therefore, use the CSC manual adjustment.
ADV7390/ADV7391/ADV7392/ADV7393 Data Sheet
Rev. J | Page 56 of 107
The SD CSC matrix scalar uses the following equations:
Y = (a1 × R) + (a2 × G) + (a3 × B) + a4
Pr = (b1 × R) + (b2 × G) + (b3 × B) + b4
Pb = (c1 × R) + (c2 × G) + (c3 × B) + c4
The coefficients and their default values are located in the
registers shown in Table 47.
Table 47. SD Manual CSC Matrix Default Values
Coefficient Subaddress Default
a1 0xBD 0x42
a2 0xBE 0x81
a3 0xBF 0x19
a4 0xC0 0x10
b1 0xC1 0x70
b2 0xC2 0x5E
b3 0xC3 0x12
b4 0xC4 0x80
c1 0xC5 0x26
c2 0xC6 0x4A
c3
0xC7
0x70
c4 0xC8 0x80
ED/HD Manual CSC Matrix Adjust Feature
The ED/HD manual CSC matrix adjust feature provides custom
coefficient manipulation for color space conversions and is used
in ED and HD modes only. The ED/HD manual CSC matrix
adjust feature can be enabled using Subaddress 0x02, Bit 3.
Normally, there is no need to enable this feature because the CSC
matrix automatically performs the color space conversion based
on the input mode chosen (ED or HD) and the output color
space selected (see Table 46). For this reason, the ED/HD
manual CSC matrix adjust feature is disabled by default.
If RGB output is selected, the ED/HD CSC matrix scalar uses
the following equations:
R = GY × Y + RV × Pr
G = GY × Y − (GU × Pb) − (GV × Pr)
B = GY × Y + BU × Pb
Note that subtractions are implemented in the hardware.
If YPrPb output is selected, the following equations are used:
Y = GY × Y
Pr = RV × Pr
Pb = BU × Pb
where:
GY = Subaddress 0x05, Bits[7:0] and Subaddress 0x03, Bits[1:0].
GU = Subaddress 0x06, Bits[7:0] and Subaddress 0x04, Bits[7:6].
GV = Subaddress 0x07, Bits[7:0] and Subaddress 0x04, Bits[5:4].
BU = Subaddress 0x08, Bits[7:0] and Subaddress 0x04, Bits[3:2].
RV = Subaddress 0x09, Bits[7:0] and Subaddress 0x04, Bits[1:0].
On power-up, the CSC matrix is programmed with the default
values shown in Table 48.
Table 48. ED/HD Manual CSC Matrix Default Values
Subaddress Default
0x03 0x03
0x04 0xF0
0x05
0x4E
0x06 0x0E
0x07 0x24
0x08 0x92
0x09 0x7C
When the ED/HD manual CSC matrix adjust feature is
enabled, the default coefficient values in Subaddress 0x03
to Subaddress 0x09 are correct for the HD color space only.
The color components are converted according to the following
1080i and 720p standards (SMPTE 274M, SMPTE 296M):
R = Y + 1.575Pr
G = Y − 0.468Pr − 0.187Pb
B = Y + 1.855Pb
The conversion coefficients should be multiplied by 315 before
being written to the ED/HD CSC matrix registers. This is
reflected in the default values for GY = 0x13B, GU = 0x03B,
GV = 0x093, BU = 0x248, and RV = 0x1F0.
If the ED/HD manual CSC matrix adjust feature is enabled and
another input standard (such as ED) is used, the scale values for
GY, GU, GV, BU, and RV must be adjusted according to this
input standard color space. The user should consider that the
color component conversion may use different scale values.
For example, SMPTE 293M uses the following conversion:
R = Y + 1.402Pr
G = Y − 0.714Pr − 0.344Pb
B = Y + 1.773Pb
The programmable CSC matrix is used for external ED/HD
pixel data and is not functional when internal test patterns are
enabled.
Programming the CSC Matrix
If custom manipulation of the ED/HD CSC matrix coefficients
is required for a YCrCb-to-RGB color space conversion, use the
following procedure:
1. Enable the ED/HD manual CSC matrix adjust feature
(Subaddress 0x02, Bit 3).
2. Set the output to RGB (Subaddress 0x02, Bit 5).
3. Disable sync on PrPb (Subaddress 0x35, Bit 2).
4. Enable sync on RGB (optional) (Subaddress 0x02, Bit 4).
The GY value controls the green signal output level, the BU
value controls the blue signal output level, and the RV value
controls the red signal output level.
Data Sheet ADV7390/ADV7391/ADV7392/ADV7393
Rev. J | Page 57 of 107
SD LUMA AND COLOR SCALE CONTROL
Subaddress 0x9C to Subaddress 0x9F
When enabled, the SD luma and color scale control feature can
be used to scale the SD Y, Cb, and Cr output levels. This feature
can be enabled using Subaddress 0x87, Bit 0. This feature affects
all SD output signals, that is, CVBS, Y-C, YPrPb, and RGB.
When enabled, three 10-bit registers (SD Y scale, SD Cb scale,
and SD Cr scale) control the scaling of the SD Y, Cb, and Cr
output levels. The SD Y scale register contains the scaling factor
used to scale the Y level from 0.0 to 1.5 times its initial level.
The SD Cb scale and SD Cr scale registers contain the scaling
factors to scale the Cb and Cr levels from 0.0 to 2.0 times their
initial levels, respectively.
The values to be written to these 10-bit registers are calculated
using the following equation:
Y, Cb, or Cr Scale Value = Scale Factor × 512
For example, if Scale Factor = 1.3
Y, Cb, or Cr Scale Value = 1.3 × 512 = 665.6
Y, Cb, or Cr Scale Value = 666 (rounded to the nearest integer)
Y, Cb, or Cr Scale Value = 1010011010b
Subaddress 0x9C, SD scale LSB = 0x2A
Subaddress 0x9D, SD Y scale register = 0xA6
Subaddress 0x9E, SD Cb scale register = 0xA6
Subaddress 0x9F, SD Cr scale register = 0xA6
It is recommended that the SD luma scale saturation feature
(Subaddress 0x87, Bit 1) be enabled when scaling the Y output
level to avoid excessive Y output levels.
SD HUE ADJUST CONTROL
Subaddress 0xA0
When enabled, the SD hue adjust control register (Subaddress
0xA0) is used to adjust the hue on the SD composite and
chroma outputs. This feature can be enabled using Subaddress
0x87, Bit 2.
Subaddress 0xA0 contains the bits required to vary the hue of
the video data, that is, the variance in phase of the subcarrier
during active video with respect to the phase of the subcarrier
during the color burst. The ADV7390/ADV7391/ADV7392/
ADV7393 provide a range of ±22.5° in increments of 0.17578125°.
For normal operation (zero adjustment), this register is set to
0x80. Value 0xFF and Value 0x00 represent the upper and lower
limits, respectively, of the attainable adjustment in NTSC mode.
Value 0xFF and Value 0x01 represent the upper and lower
limits, respectively, of the attainable adjustment in PAL mode.
The hue adjust value is calculated using the following equation:
Hue Adjust (°) = 0.17578125° (HCRd − 128)
Where HCRd = the hue adjust control register (decimal).
For example, to adjust the hue by +4°, write 0x97 to the hue
adjust control register.
4128 151 0x97
0.17578125 d




where the sum is rounded to the nearest integer.
To adjust the hue by −4°, write 0x69 to the hue adjust control
register.
4128 105 0x69
0.17578125 d




where the sum is rounded to the nearest integer.
SD BRIGHTNESS DETECT
Subaddress 0xBA
The ADV7390/ADV7391/ADV7392/ADV7393 allow
monitoring of the brightness level of the incoming video data.
This feature is used to monitor the average brightness of the
incoming Y signal on a field-by-field basis. The information is
read from the I2C and, based on this information, the color
saturation, contrast, and brightness controls can be adjusted
(for example, to compensate for very dark pictures).
The luma data is monitored in the active video area only. The
average brightness I2C register is updated on the falling edge of
every VSYNC signal. The SD brightness detect register
(Subaddress 0xBA) is a read-only register.
SD BRIGHTNESS CONTROL
Subaddress 0xA1, Bits[6:0]
When this feature is enabled, the SD brightness/WSS control
register (Subaddress 0xA1) is used to control brightness by
adding a programmable setup level onto the scaled Y data. This
feature can be enabled using Subaddress 0x87, Bit 3.
For NTSC with pedestal, the setup can vary from 0 IRE to 22.5 IRE.
For NTSC without pedestal (see Figure 69) and for PAL, the
setup can vary from −7.5 IRE to +15 IRE.
NTSC WITHOUT PEDESTAL
NO SETUP
VALUE ADDED
POSITIVE SETUP
VALUE ADDED
100 IRE
0 IRE
NEGATIVE SETUP
VALUE ADD ED
–7.5 IRE
+7.5 IRE
06234-070
Figure 69. Examples of Brightness Control Values
The SD brightness control register is an 8-bit register. The seven
LSBs of this 8-bit register are used to control the brightness
level, which can be a positive or negative value.
For example, to add a +20 IRE brightness level to an NTSC
signal with pedestal, write 0x28 to Subaddress 0xA1.
0 × (SD Brightness Value) =
0 × (IRE Value × 2.015631) =
0 × (20 × 2.015631) = 0 × (40.31262) ≈ 0x28
ADV7390/ADV7391/ADV7392/ADV7393 Data Sheet
Rev. J | Page 58 of 107
To add a 7 IRE brightness level to a PAL signal, write 0x72 to
Subaddress 0xA1.
0 × (SD Brightness Value) =
0 × (IRE Value × 2.075631) =
0 × (7 × 2.015631) = 0x(14.109417) ≈ 0001110b
0001110b into twos complement = 1110010b = 0x72
Table 49. Sample Brightness Control Values1
Setup Level
(NTSC) with
Pedestal
Setup Level
(NTSC) Without
Pedestal
Setup
Level
(PAL)
Brightness
Control Value
22.5 IRE 15 IRE 15 IRE 0x1E
15 IRE 7.5 IRE 7.5 IRE 0x0F
7.5 IRE 0 IRE 0 IRE 0x00
0 IRE 7.5 IRE 7.5 IRE 0x71
1 Values in the range of 0x3F to 0x44 may result in an invalid output signal.
SD INPUT STANDARD AUTODETECTION
Subaddress 0x87, Bit 5
The ADV7390/ADV7391/ADV7392/ADV7393 include an SD
input standard autodetect feature that can be enabled by setting
Subaddress 0x87, Bits[5:1].
When enabled, the ADV7390/ADV7391/ADV7392/ADV7393
can automatically identify an NTSC or a PAL B/D/G/H/I input
stream. The ADV7390/ADV7391/ADV7392/ADV7393
automatically update the subcarrier frequency registers with the
appropriate value for the identified standard. The ADV7390/
ADV7391/ADV7392/ADV7393 are also configured to correctly
encode the identified standard.
The SD standard bits (Subaddress 0x80, Bits[1:0]) and the
subcarrier frequency registers are not updated to reflect the
identified standard. All registers retain their default or user-
defined values.
DOUBLE BUFFERING
Subaddress 0x33, Bit 7 for ED/HD;
Subaddress 0x88, Bit 2 for SD
Double-buffered registers are updated once per field. Double
buffering improves overall performance because modifications
to register settings are not be made during active video but take
effect prior to the start of the active video on the next field.
Using Subaddress 0x33, Bit 7, double buffering can be activated
on the following ED/HD registers: the ED/HD Gamma A and
Gamma B curves and ED/HD CGMS registers.
Using Subaddress 0x88, Bit 2, double buffering can be activated
on the following SD registers: the SD Gamma A and Gamma B
curves, SD Y scale, SD Cr scale, SD Cb scale, SD brightness, SD
closed captioning, and SD Macrovision Bits[5:0]
(Subaddress 0xE0, Bits[5:0]).
PROGRAMMABLE DAC GAIN CONTROL
Subaddress 0x0B
It is possible to adjust the DAC output signal gain up or down
from its absolute level. This is illustrated in Figure 70.
DAC 1 to DAC 3 are controlled by Register 0x0B.
In Case A of Figure 70, the video output signal is gained. The
absolute level of the sync tip and the blanking level increase
with respect to the reference video output signal. The overall
gain of the signal is increased from the reference signal.
In Case B of Figure 70, the video output signal is reduced. The
absolute level of the sync tip and the blanking level decrease
with respect to the reference video output signal. The overall
gain of the signal is reduced from the reference signal.
CASE B
700mV
300mV
NEGATIVE GAIN PROGRAMMED IN
DAC OUT P UT LE V EL REGIST ERS,
SUBADDRESS 0x0B
CASE A
GAI N P ROGRAM M E D IN DAC OUTPUT LEVEL
REGIST E RS , SUBADDRES S 0x0B
700mV
300mV
06234-071
Figure 70. Programmable DAC GainPositive and Negative Gain
The range of this feature is specified for ±7.5% of the nominal
output from the DACs. For example, if the output current of the
DAC is 4.33 mA, the DAC gain control feature can change this
output current from 4.008 mA (−7.5%) to 4.658 mA (+7.5%).
Data Sheet ADV7390/ADV7391/ADV7392/ADV7393
Rev. J | Page 59 of 107
The reset value of the control registers is 0x00; that is, nominal
DAC current is output. Table 50 is an example of how the output
current of the DACs varies for a nominal 4.33 mA output current.
Table 50. DAC Gain Control
Subaddress 0x0B
DAC Current
(mA) % Gain Note
0100 0000 (0x40) 4.658 7.5000%
0011 1111 (0x3F) 4.653 7.3820%
0011 1110 (0x3E) 4.648 7.3640%
... ... ...
... ... ...
0000 0010 (0x02) 4.43 0.0360%
0000 0001 (0x01) 4.38 0.0180%
0000 0000 (0x00) 4.33 0.0000% Reset value,
nominal
1111 1111 (0xFF) 4.25 −0.0180%
1111 1110 (0xFE) 4.23 −0.0360%
...
...
...
... ... ...
1100 0010 (0xC2) 4.018 −7.3640%
1100 0001 (0xC1) 4.013 −7.3820%
1100 0000 (0xC0) 4.008 −7.5000%
GAMMA CORRECTION
Subaddress 0x44 to Subaddress 0x57 for ED/HD;
Subaddress 0xA6 to Subaddress 0xB9 for SD
Generally, gamma correction is applied to compensate for the
nonlinear relationship between signal input and output
brightness level (as perceived on a CRT). It can also be applied
wherever nonlinear processing is used.
Gamma correction uses the function
SignalOUT = (SignalIN)γ
where γ is the gamma correction factor.
Gamma correction is available for SD and ED/HD video. For
both variations, there are twenty 8-bit registers. They are used
to program Gamma Correction Curve A and Gamma
Correction Curve B.
ED/HD gamma correction is enabled using Subaddress 0x35,
Bit 5. ED/HD Gamma Correction Curve A is programmed at
Subaddress 0x44 to Subaddress 0x4D, and ED/HD Gamma
Correction Curve B is programmed at Subaddress 0x4E to
Subaddress 0x57.
SD gamma correction is enabled using Subaddress 0x88, Bit 6.
SD Gamma Correction Curve A is programmed at Subaddress
0xA6 to Subaddress 0xAF, and SD Gamma Correction Curve B
is programmed at Subaddress 0xB0 to Subaddress 0xB9.
Gamma correction is performed on the luma data only. The
user can choose one of two correction curves, Curve A or
Curve B. Only one of these curves can be used at a time. For
ED/HD gamma correction, curve selection is controlled using
Subaddress 0x35, Bit 4. For SD gamma correction, curve
selection is controlled using Subaddress 0x88, Bit 7.
The shape of the gamma correction curve is controlled by
defining the curve response at 10 different locations along the
curve. By altering the response at these locations, the shape of
the gamma correction curve can be modified. Between these
points, linear interpolation is used to generate intermediate
values. Considering the curve to have a total length of 256
points, the 10 programmable locations are at the following
points: 24, 32, 48, 64, 80, 96, 128, 160, 192, and 224. The
following locations are fixed and cannot be changed: 0, 16, 240,
and 255.
From the curve locations, 16 to 240, the values at the
programmable locations and, therefore, the response of the
gamma correction curve, should be calculated to produce the
following result:
xDESIRED = (xINPUT)γ
where:
xDESIRED is the desired gamma corrected output.
xINPUT is the linear input signal.
γ is the gamma correction factor.
To program the gamma correction registers, calculate the
10 programmable curve values using the following formula:
16
)16
240(
16240
16 +
×
=γ
γ
n
n
where:
γn is the value to be written into the gamma correction register
for point n on the gamma correction curve.
n = 24, 32, 48, 64, 80, 96, 128, 160, 192, or 224.
γ is the gamma correction factor.
For example, setting γ = 0.5 for all programmable curve data
points results in the following yn values:
y24 = [(8/224)0.5 × 224] + 16 = 58
y32 = [(16/224)0.5 × 224] + 16 = 76
y48 = [(32/224)0.5 × 224] + 16 = 101
y64 = [(48/224)0.5 × 224] + 16 = 120
y80 = [(64/224)0.5 × 224] + 16 = 136
y96 = [(80/224)0.5 × 224] + 16 = 150
y128 = [(112/224)0.5 × 224] + 16 = 174
y160 = [(144/224)0.5 × 224] + 16 = 195
y192 = [(176/224)0.5 × 224] + 16 = 214
y224 = [(208/224)0.5 × 224] + 16 = 232
where the sum of each equation is rounded to the nearest integer.
ADV7390/ADV7391/ADV7392/ADV7393 Data Sheet
Rev. J | Page 60 of 107
The gamma curves in Figure 71 and Figure 72 are examples
only; any user-defined curve in the range from 16 to 240 is
acceptable.
LOCATION
00
50
100
150
200
250
300
50 100 150 200 250
0.5
SIGNAL INPUT
GAMMA CORRECTE D AMPLITUDE
SIGNAL OUT P UT
GAMMA CORRECTION BLOCK OUTP UT TO A RAMP INPUT
06234-072
Figure 71. Signal Input (Ramp) and Signal Output for Gamma 0.5
LOCATION
00
50
100
150
200
250
300
50 100 150 200 250
GAMMA CORRECTE D AMPLITUDE
GAMMA CORRECTION BLOCK TO A RAMP INPUT FOR
VARI OUS G AM M A VALUES
0.3
0.5
1.5
1.8
SIGNAL INPUT
06234-073
Figure 72. Signal Input (Ramp) and Selectable Output Curves
ED/HD SHARPNESS FILTER AND ADAPTIVE FILTER
CONTROLS
Subaddress 0x40; Subaddress 0x58 to Subaddress 0x5D
There are three filter modes available on the ADV7390/ADV7391/
ADV7392/ADV7393: sharpness filter mode and two adaptive
filter modes.
ED/HD Sharpness Filter Mode
To enhance or attenuate the Y signal in the frequency ranges
shown in Figure 73, the ED/HD sharpness filter must be
enabled (Subaddress 0x31, Bit 7 = 1) and the ED/HD adaptive
filter must be disabled (Subaddress 0x35, Bit 7 = 0).
To select one of the 256 individual responses, the corresponding
gain values, ranging from −8 to +7 for each filter, must be
programmed into the ED/HD sharpness filter gain register at
Subaddress 0x40.
ED/HD Adaptive Filter Mode
In ED/HD adaptive filter mode, the following registers are used:
ED/HD Adaptive Filter Threshold A
ED/HD Adaptive Filter Threshold B
ED/HD Adaptive Filter Threshold C
ED/HD Adaptive Filter Gain 1
ED/HD Adaptive Filter Gain 2
ED/HD Adaptive Filter Gain 3
ED/HD sharpness filter gain
To activate the adaptive filter control, the ED/HD sharpness
filter and the ED/HD adaptive filter must be enabled
(Subaddress 0x31, Bit 7 = 1, and Subaddress 0x35, Bit 7 = 1,
respectively).
The derivative of the incoming signal is compared to the three
programmable threshold values: ED/HD adaptive filter
(Threshold A, Threshold B, and Threshold C) registers
(Subaddress 0x5B, Subaddress 0x5C, and Subaddress 0x5D).
The recommended threshold range is 16 to 235, although any
value in the range of 0 to 255 can be used.
The edges can then be attenuated with the settings in the
ED/HD adaptive filter (Gain 1, Gain 2, and Gain 3) registers
(Subaddress 0x58, Subaddress 0x59 and Subaddress 0x5A), and
the ED/HD sharpness filter gain register (Subaddress 0x40).
There are two adaptive filter modes available. The mode is
selected using the ED/HD adaptive filter mode control
(Subaddress 0x35, Bit 6) as follows:
Mode A is used when the ED/HD adaptive filter mode
control is set to 0. In this case, Filter B (LPF) is used in the
adaptive filter block. In addition, only the programmed
values for Gain B in the ED/HD sharpness filter gain
register and ED/HD adaptive filter (Gain 1, Gain 2, and
Gain 3) registers are applied when needed. The Gain A
values are fixed and cannot be changed.
Mode B is used when ED/HD adaptive filter mode control is
set to 1. In this mode, a cascade of Filter A and Filter B is used.
Both settings for Gain A and Gain B in the ED/HD sharpness
filter gain register and ED/HD adaptive filter (Gain 1, Gain 2,
and Gain 3) registers become active when needed.
Data Sheet ADV7390/ADV7391/ADV7392/ADV7393
Rev. J | Page 61 of 107
FREQUENCY (MHz)
FILTER A RESPONSE (Gain Ka)
MAGNITUDE
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
FREQUENCY (MHz)
FILTER B RESPONSE (Gain Kb)
MAGNITUDE
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
FREQUENCY (MHz)
MAG NI TUDE RES P ONSE ( Linear Scal e)
1.0
1.1
1.2
1.3
1.4
1.5
1.6
10 12
INPUT
SIGNAL
STEP
FREQUENCY RESPONSE IN SHARPNESS
FILTER M ODE W ITH Ka = 3 AND Kb = 7
SHARPNESS AND ADAP TIVE FILTER CO NTROL BLOCK
02468
06234-074
Figure 73. ED/HD Sharpness and Adaptive Filter Control
Block
f
e
d
a
b
c
1
R4
R2
CH1 500mV M 4.00µs CH1
ALL FIELDS
REF A 500mV 4.00µs 1
R2
R1
1
CH1 500mV M 4.00µs CH1
ALL FIELDS
REF A 500mV 4.00µs 1
9.99978ms 9.99978ms
06234-075
Figure 74. ED/HD Sharpness Filter Control with Different Gain Settings for ED/HD Sharpness Filter Gain Values
ED/HD SHARPNESS FILTER AND ADAPTIVE FILTER
APPLICATION EXAMPLES
Sharpness Filter Application
The ED/HD sharpness filter can be used to enhance or
attenuate the Y video output signal. The register settings in
Table 51 are used to achieve the results shown in Figure 74.
Input data is generated by an external signal source.
Table 51. ED/HD Sharpness Control Settings for Figure 74
Subaddress Register Setting Reference1
0x00 0xFC
0x01 0x10
0x02 0x20
0x30 0x00
0x31 0x81
0x40 0x00 a
0x40 0x08 b
0x40 0x04 c
0x40 0x40 d
0x40 0x80 e
0x40 0x22 f
1 See Figure 74.
Adaptive Filter Control Application
The register settings in Table 52 are used to obtain the results
shown in Figure 76, that is, to remove the ringing on the input
Y signal, as shown in Figure 75. Input data is generated by an
external signal source.
Table 52. Register Settings for Figure 76
Subaddress Register Setting
0x00 0xFC
0x01 0x38
0x02 0x20
0x30 0x00
0x31 0x81
0x35
0x80
0x40 0x00
0x58 0xAC
0x59 0x9A
0x5A 0x88
0x5B 0x28
0x5C 0x3F
0x5D 0x64
ADV7390/ADV7391/ADV7392/ADV7393 Data Sheet
Rev. J | Page 62 of 107
06234-076
Figure 75. Input Signal to ED/HD Adaptive Filter
06234-077
Figure 76. Output Signal from ED/HD Adaptive Filter (Mode A)
When the adaptive filter mode is changed to Mode B
(Subaddress 0x35, Bit 6), the output shown in Figure 77
can be obtained.
06234-078
Figure 77. Output Signal from ED/HD Adaptive Filter (Mode B)
SD DIGITAL NOISE REDUCTION
Subaddress 0xA3 to Subaddress 0xA5
Digital noise reduction (DNR) is applied to the Y data only.
A filter block selects the high frequency, low amplitude compo-
nents of the incoming signal (DNR input select). The absolute
value of the filter output is compared to a programmable
threshold value (DNR threshold control). There are two DNR
modes available: DNR mode and DNR sharpness mode.
In DNR mode, if the absolute value of the filter output is
smaller than the threshold, it is assumed to be noise. A
programmable amount (coring gain border, coring gain data) of
this noise signal is subtracted from the original signal. In DNR
sharpness mode, if the absolute value of the filter output is less
than the programmed threshold, it is assumed to be noise as
before. However, if the level exceeds the threshold, now being
identified as a valid signal, a fraction of the signal (coring gain
border, coring gain data) is added to the original signal to boost
high frequency components and sharpen the video image.
In MPEG systems, it is common to process the video information
in blocks of 8 pixels × 8 pixels for MPEG2 systems or 16 pixels
× 16 pixels for MPEG1 systems (block size control). DNR can
be applied to the resulting block transition areas known to
contain noise. Generally, the block transition area contains two
pixels. It is possible to define this area to contain four pixels
(border area).
It is also possible to compensate for variable block positioning
or differences in YCrCb pixel timing with the use of the DNR
block offset.
The digital noise reduction registers are three 8-bit registers.
They are used to control the DNR processing.
BLOCK SIZE CONTROL
BORDER ARE A
BLOCK OFFSET
CORI NG GAIN DATA
CORI NG GAIN BO RDER
GAIN
DNR CONTROL
FILTER
OUTPUT
> THRE S HOLD?
INPUT FILTER
BLOCK
FILTER OUTPUT
< THRE S HOLD DNR OUT
+
+
MAI N S I GNAL PATH
ADD SIGNAL
ABOVE
THRESHOLD
RANGE FRO M
ORIGINAL SIGNAL
DNR
SHARPNESS
MODE
NOISE
SIGNAL PATH
Y DAT A
INPUT
BLOCK SIZE CONTROL
BORDER ARE A
BLOCK OFFSET
CORI NG GAIN DAT A
CORI NG GAIN BO RDER
GAIN
DNR CONTROL
FILTER
OUTPUT
< THRE S HOLD?
INPUT FILTER
BLOCK
FILTER OUTPUT
> THRE S HOLD DNR OUT
MAI N S I GNAL PATH
SUBTRACT
SIGNAL IN
THRESHOLD
RANGE FRO M
ORIGINAL SIGNAL
DNR MO DE
NOISE
SIGNAL PATH
Y DAT A
INPUT
+
06234-079
Figure 78. SD DNR Block Diagram
Data Sheet ADV7390/ADV7391/ADV7392/ADV7393
Rev. J | Page 63 of 107
Coring Gain BorderSubaddress 0xA3, Bits[3:0]
These four bits are assigned to the gain factor applied to border
areas. In DNR mode, the range of gain values is 0 to 1 in
increments of 1/8. This factor is applied to the DNR filter
output that lies below the set threshold range. The result is then
subtracted from the original signal.
In DNR sharpness mode, the range of gain values is 0 to 0.5 in
increments of 1/16. This factor is applied to the DNR filter
output that lies above the threshold range. The result is added to
the original signal.
Coring Gain Data—Subaddress 0xA3, Bits[7:4]
These four bits are assigned to the gain factor applied to the luma
data inside the MPEG pixel block. In DNR mode, the range of
gain values is 0 to 1 in increments of 1/8. This factor is applied
to the DNR filter output that lies below the set threshold range.
The result is then subtracted from the original signal.
In DNR sharpness mode, the range of gain values is 0 to 0.5 in
increments of 1/16. This factor is applied to the DNR filter
output that lies above the threshold range. The result is added to
the original signal.
OXXXXXXOOXXXXXXO
OXXXXXXOOXXXXXXO
OXXXXXXOOXXXXXXO
DNR27 TO DNR24 = 0x01
OFFSET CAUSED
BY VARIATIONS IN
INPUT TIMING
APPLY BORDER
CORING GAIN
APPLY DATA
CORING GAIN
06234-080
Figure 79. SD DNR Offset Control
DNR ThresholdSubaddress 0xA4, Bits[5:0]
These six bits are used to define the threshold value in the range
of 0 to 63. The range is an absolute value.
Border AreaSubaddress 0xA4, Bit 6
When this bit is set to Logic 1, the block transition area can be
defined to consist of four pixels. If this bit is set to Logic 0, the
border transition area consists of two pixels, where one pixel
refers to two clock cycles at 27 MHz.
720 ×485 PI XE LS
(NTSC)
8 × 8 PIXEL BLO CK
TWO-PIXEL
BORDER DATA
8 × 8 PIXEL BLO CK
06234-081
Figure 80. SD DNR Border Area
Block SizeSubaddress 0xA4, Bit 7
This bit is used to select the size of the data blocks to be
processed. Setting the block size control function to Logic 1
defines a 16 pixel × 16 pixel data block, and Logic 0 defines an
8 pixel × 8 pixel data block, where one pixel refers to two clock
cycles at 27 MHz.
DNR Input SelectSubaddress 0xA5, Bits[2:0]
These three bits are assigned to select the filter that is applied to
the incoming Y data. The signal that lies in the pass band of the
selected filter is the signal processed by DNR. Figure 81 shows
the filter responses selectable with this control.
FILTER C
FILTER B
FILTER A
FILTER D
FREQUENCY (MHz)
0
0.2
0.4
0.6
MAGNITUDE
0.8
1.0
012 3 456
06234-082
Figure 81. SD DNR Input Select
DNR ModeSubaddress 0xA5, Bit 3
This bit controls the DNR mode selected. Logic 0 selects DNR
mode; Logic 1 selects DNR sharpness mode.
DNR works on the principle of defining low amplitude, high
frequency signals as probable noise and subtracting this noise
from the original signal.
In DNR mode, it is possible to subtract a fraction of the signal
that lies below the set threshold, assumed to be noise, from the
original signal. The threshold is set in DNR Register 1.
When DNR sharpness mode is enabled, it is possible to add a
fraction of the signal that lies above the set threshold to the
original signal because this data is assumed to be valid data and
not noise. The overall effect is that the signal is boosted (similar
to using the extended SSAF filter).
Block Offset ControlSubaddress 0xA5, Bits[7:4]
Four bits are assigned to this control, which allows a shift in the
data block of 15 pixels maximum. The coring gain positions are
fixed. The block offset shifts the data in steps of one pixel such
that the border coring gain factors can be applied at the same
position regardless of variations in input timing of the data.
ADV7390/ADV7391/ADV7392/ADV7393 Data Sheet
Rev. J | Page 64 of 107
SD ACTIVE VIDEO EDGE CONTROL
Subaddress 0x82, Bit 7
The ADV7390/ADV7391/ADV7392/ADV7393 are able to
control fast rising and falling signals at the start and end of
active video to minimize ringing.
When the active video edge control feature is enabled
(Subaddress 0x82, Bit 7 = 1), the first three pixels and the last
three pixels of the active video on the luma channel are scaled
so that maximum transitions on these pixels are not possible.
At the start of active video, the first three pixels are multiplied
by 1/8, 1/2, and 7/8, respectively. Approaching the end of active
video, the last three pixels are multiplied by 7/8, 1/2, and 1/8,
respectively. All other active video pixels pass through
unprocessed.
100 IRE
0 IRE
100 IRE
12.5 I RE
87.5 I RE
0 IRE
50 IRE
LUMA CHANNEL WITH
ACTIVE VIDEO EDGE
DISABLED
LUMA CHANNEL WITH
ACTIVE VIDEO EDGE
ENABLED
06234-083
Figure 82. Example of Active Video Edge Functionality
VOLTS
0 2 4
F2
L135
6 8 10 12
IRE:FLT
–50
0
0
50
100
0.5
06234-084
Figure 83. Example of Video Output with Subaddress 0x82, Bit 7 = 0
VOLTS
0 2–2 4 6 8 10 12
F2
L135
IRE:FLT
–50
0
50
100
0
0.5
06234-085
Figure 84. Example of Video Output with Subaddress 0x82, Bit 7 = 1
Data Sheet ADV7390/ADV7391/ADV7392/ADV7393
Rev. J | Page 65 of 107
EXTERNAL HORIZONTAL AND VERTICAL SYNCHRONIZATION CONTROL
For timing synchronization purposes, the ADV7390/ADV7391/ADV7392/ADV7393 are able to accept either EAV/SAV time codes
embedded in the input pixel data or external synchronization signals provided on the HSYNC and VSYNC pins (see Table 53). It is also
possible to output synchronization signals on the HSYNC and VSYNC pins (see Table 54 to Table 56).
Table 53. Timing Synchronization Signal Input Options
Signal Pin Condition
SD HSYNC In HSYNC SD slave timing (Mode 1, Mode 2, or Mode 3) selected (Subaddress 0x8A[2:0])1
SD VSYNC/FIELD In VSYNC SD slave timing (Mode 1, Mode 2, or Mode 3) selected (Subaddress 0x8A[2:0])1
ED/HD HSYNC In HSYNC ED/HD timing synchronization inputs enabled (Subaddress 0x30, Bit 2 = 0)
ED/HD VSYNC/FIELD In VSYNC ED/HD timing synchronization inputs enabled (Subaddress 0x30, Bit 2 = 0)
1 SD and ED/HD timing synchronization outputs must also be disabled (Subaddress 0x02[7:6] = 00).
Table 54. Timing Synchronization Signal Output Options
Signal Pin Condition
SD HSYNC Out HSYNC SD timing synchronization outputs enabled (Subaddress 0x02, Bit 6 = 1)1
SD VSYNC/FIELD Out VSYNC SD timing synchronization outputs enabled (Subaddress 0x02, Bit 6 = 1)1
ED/HD HSYNC Out HSYNC ED/HD timing synchronization outputs enabled (Subaddress 0x02, Bit 7 = 1)2
ED/HD VSYNC/FIELD Out VSYNC
ED/HD timing synchronization outputs enabled (Subaddress 0x02, Bit 7 = 1)2
1 ED/HD timing synchronization outputs must also be disabled (Subaddress 0x02, Bit 7 = 0).
2 ED/HD timing synchronization inputs must also be disabled; that is, embedded EAV/SAV timing codes must be enabled (Subaddress 0x30, Bit 2 = 1).
Table 55. HSYNC Output Control1, 2
ED/HD Input Sync Format
(Subaddress 0x30,
Bit 2)
ED/HD HSYNC Control
(Subaddress 0x34,
Bit 1)
ED/HD Sync
Output Enable
(Subaddress 0x02,
Bit 7)
SD Sync
Output Enable
(Subaddress 0x02,
Bit 6) Signal on HSYNC Pin Duration
X X 0 0 Tristate N/A
X X 0 1 Pipelined SD HSYNC See the SD Timing
section.
0 0 1 X Pipelined ED/HD HSYNC As per HSYNC
timing.
1 0 1 X Pipelined ED/HD HSYNC
based on AV Code H bit
Same as line
blanking interval.
X 1 1 X Pipelined ED/HD HSYNC
based on horizontal
counter
Same as embedded
HSYNC.
1 In all ED/HD standards where there is an HSYNC output, the start of the HSYNC pulse is aligned with the falling edge of the embedded HSYNC in the output video.
2 X = don’t care.
Table 56. VSYNC Output Control1, 2
ED/HD Input
Sync Format
(Subaddress
0x30, Bit 2)
ED/HD VSYNC
Control
(Subaddress
0x34, Bit 2)
ED/HD Sync
Output Enable
(Subaddress
0x02, Bit 7)
SD Sync
Output Enable
(Subaddress
0x02, Bit 6) Video Standard Signal on VSYNC Pin Duration
x x 0 0 x Tristate N/A
x x 0 1 Interlaced Pipelined SD VSYNC/field See the SD Timing
section.
0 0 1 x x Pipelined ED/HD VSYNC
or field signal
As per VSYNC or
field signal timing.
1 0 1 x All HD interlaced
standards
Pipelined field signal
based on AV Code F bit
Field.
1 0 1 x All ED/HD
progressive
standards
Pipelined VSYNC based
on AV Code V bit
Vertical blanking
interval.
ADV7390/ADV7391/ADV7392/ADV7393 Data Sheet
Rev. J | Page 66 of 107
ED/HD Input
Sync Format
(Subaddress
0x30, Bit 2)
ED/HD VSYNC
Control
(Subaddress
0x34, Bit 2)
ED/HD Sync
Output Enable
(Subaddress
0x02, Bit 7)
SD Sync
Output Enable
(Subaddress
0x02, Bit 6) Video Standard Signal on VSYNC Pin Duration
X 1 1 X All ED/HD standards
except 525p
Pipelined ED/HD VSYNC
based on the vertical
counter
Aligned with
serration lines.
X 1 1 X 525p Pipelined ED/HD VSYNC
based on the vertical
counter
Vertical blanking
interval.
1 In all ED/HD standards where there is a VSYNC output, the start of the VSYNC pulse is aligned with the falling edge of the embedded VSYNC in the output video.
2 X = don’t care.
LOW POWER MODE
Subaddress 0x0D, Bits[2:0]
For power-sensitive applications, the ADV7390/ADV7391/
ADV7392/ADV7393 support an Analog Devices, Inc.,
proprietary low power mode of operation. To use this low
power mode, the DACs must be operating in full-drive mode
(RSET = 510 Ω, RL = 37.5 Ω). Low power mode is not available in
low-drive mode (RSET = 4.12 kΩ, RL = 300 Ω). Low power mode
can be independently enabled or disabled on each DAC using
Subaddress 0x0D, Bits[2:0]. Low power mode is disabled by
default on all DACs.
In low-power mode, DAC current consumption is content
dependent and, on a typical video stream, it can be reduced by
as much as 40%. For applications requiring the highest possible
video performance, low power mode should be disabled.
CABLE DETECTION
Subaddress 0x10, Bits[1:0]
The ADV7390/ADV7391/ADV7392/ADV7393 include an
Analog Devices proprietary cable detection feature. The cable
detection feature is available on DAC 1 and DAC 2 when
operating in full-drive mode (RSET = 510 Ω, RL = 37.5 Ω,
assuming a connected cable). The feature is not available in low-
drive mode (RSET = 4.12 kΩ, RL = 300 Ω). For a DAC to be
monitored, the DAC must be powered up in Subaddress 0x00.
The cable detection feature can be used with all SD, ED, and
HD video standards. It is available for all output configurations,
that is, CVBS, Y-C, YPrPb, and RGB output configurations.
For CVBS/Y-C output configurations, both DAC 1 and DAC 2
are monitored; that is, the CVBS and Y-C luma outputs are
monitored. For YPrPb and RGB output configurations, only
DAC 1 is monitored; that is, the luma or green output is
monitored.
Once per frame, the ADV7390/ADV7391/ADV7392/ADV7393
monitor DAC 1 and/or DAC 2, updating Subaddress 0x10, Bit 0
and/or Bit 1, respectively. If a cable is detected on one of the
DACs, the relevant bit is set to 0. If not, the bit is set to 1.
DAC AUTOPOWER-DOWN
Subaddress 0x10, Bit 4
For power-sensitive applications, a DAC autopower-down feature
can be enabled using Subaddress 0x10, Bit 4. This feature is
available only when the cable detection feature is enabled.
With this feature enabled, the cable detection circuitry monitors
DAC 1 and/or DAC 2 once per frame and, if they are unconnected,
automatically powers down some or all of the DACs. Which DAC
or DACs are powered down depends on the selected output
configuration. For CVBS/Y-C output configurations, if DAC 1
is unconnected, only DAC 1 powers down. If DAC 2 is
unconnected, DAC 2 and DAC 3 power down.
For YPrPb and RGB output configurations, if DAC 1 is
unconnected, all three DACs are powered down. DAC 2 is not
monitored for YPrPb and RGB output configurations.
Once per frame, DAC 1 and/or DAC 2 is monitored. If a cable is
detected, the appropriate DAC or DACs remain powered up for
the duration of the frame. If no cable is detected, the appropriate
DAC or DACs power down until the next frame, when the
process is repeated.
SLEEP MODE
Subaddress 0x00, Bit 0
In sleep mode, most of the digital I/O pins of the ADV7390/
ADV7391/ADV7392/ADV7393 are disabled. For inputs, this
means that the external data is ignored, and internally the logic
normally driven by a given input is just tied low or high. This
includes CLKIN.
For digital output pins, this means that the pin goes into tristate
(high impedance) mode.
There are some exceptions to allow the user to continue to
communicate with the part via I2C: the RESET, ALSB, SDA and
SCL pins are kept alive.
Most of the analogue circuitry is powered down when in sleep
mode. In addition, the cable detect feature no longer works as
the DACs are powered down.
Sleep mode is enabled using Subaddress 0x00, Bit 0.
Data Sheet ADV7390/ADV7391/ADV7392/ADV7393
Rev. J | Page 67 of 107
PIXEL AND CONTROL PORT READBACK
Subaddress 0x13, Subaddress 0x14, Subaddress 0x16
The ADV7390/ADV7391/ADV7392/ADV7393 support the
readback of most digital inputs via the I2C MPU port. This
feature is useful for board-level connectivity testing with
upstream devices.
The pixel port (P[15:0] or P[7:0]), HSYNC, VSYNC, and SFL
are available for readback via the MPU port. The readback
registers are located at Subaddress 0x13, Subaddress 0x14, and
Subaddress 0x16.
When using this feature, apply a clock signal to the CLKIN pin
to register the levels applied to the input pins. The SD input
mode (Subaddress 0x01, Bits[6:4] = 000) must be selected when
using this feature.
RESET MECHANISMS
Subaddress 0x17, Bit 1
A hardware reset is activated with a high-to-low transition on
the RESET pin in accordance with the timing specifications.
This resets all registers to their default values. After a hardware
reset, the MPU port is configured for I2C operation. For correct
device operation, a hardware reset is necessary after power-up.
The ADV7390/ADV7391/ADV7392/ADV7393 also have a
software reset accessible via the I2C MPU port. A software reset
is activated by writing a 1 to Subaddress 0x17, Bit 1. This resets
all registers to their default values. This bit is self-clearing; that
is, after a 1 has been written to the bit, the bit automatically
returns to 0.
A hardware reset is necessary after power-up for correct device
operation. If no hardware reset functionality is required by the
application, the RESET pin can be connected to an RC network
to provide the hardware reset necessary after power-up. After
power-up, the time constant of the RC network holds the
RESET pin low long enough to cause a reset to take place. All
subsequent resets can be done via software.
SD TELETEXT INSERTION
Subaddress 0xC9 to Subaddress 0xCE
The ADV7390/ADV7391/ADV7392/ADV7393 support the
insertion of teletext data, using a two pin interface, when
operating in PAL mode. Teletext insertion is enabled using
Subaddress 0xC9, Bit 0.
In accordance with the PAL WST teletext standard, teletext data
should be inserted into the ADV7390/ADV7391/ADV7392/
ADV7393 at a rate of 6.9375 Mbps. On the ADV7390/ADV7391,
the teletext data is inserted on the VSYNC pin. On the
ADV7392/ADV7393, the teletext data can be inserted on the
VSYNC or P0 pin (selectable through Subaddress 0xC9, Bit 2).
When teletext insertion is enabled, a teletext request signal is
output from the ADV7390/ADV7391/ADV7392/ADV7393 to
indicate when teletext data should be inserted. The teletext
request signal is output on the SFL pin. The position (relative to
the teletext data) and width of the request signal are
configurable using Subaddress 0xCA. The request signal can
operate in either a line or bit mode. The request signal mode is
controlled using Subaddress 0xC9, Bit 1.
To account for the noninteger relationship between the teletext
insertion rate (6.9375 Mbps) and the pixel clock (27 MHz),
a teletext insertion protocol is implemented in the ADV7390/
ADV7391/ADV7392/ADV7393. At a rate of 6.9375 Mbps, the
time taken for the insertion of 37 teletext bits equates to 144
pixel clock cycles (at 27 MHz). For every 37 teletext bits
inserted into the ADV7390/ADV7391/ADV7392/ADV7393,
the 10th, 19th, 28th, and 37th bits are carried for three pixel clock
cycles, and the remainder are carried for four pixel clock cycles
(totaling 144 pixel clock cycles). The teletext insertion protocol
repeats every 37 teletext bits or 144 pixel clock cycles until all 360
teletext bits are inserted.
06234-143
ADDRESS AND DATA
RUN-IN CLOCK
TELETEXT VBI LINE
45 BYTE S ( 360 BITS ) – P AL
Figure 85. Teletext VBI Line
ADV7390/ADV7391/ADV7392/ADV7393 Data Sheet
Rev. J | Page 68 of 107
06234-144
PROGRAMMABLE PULSE EDGES
t
PD
t
PD
CVBS/Y
HSYNC
TTX
DATA
t
SYNTTXOUT
10.2µs
TTX
DEL
TTX
ST
t
SYNTTXOUT
= 10.2µs.
t
PD
= PIPELINE DELAY THRO UGH ADV7390/ADV7391/ADV7392/ADV7393.
TTX
DEL
= TTX
REQ
TO TTX
DATA
(PROGRAM M ABLE RANG E = 4 BITS [ 0 TO 15 PIX EL CLO CK CY CLES] ) .
TTX
REQ
Figure 86. Teletext Functionality Diagram
Data Sheet ADV7390/ADV7391/ADV7392/ADV7393
Rev. J | Page 69 of 107
PRINTED CIRCUIT BOARD LAYOUT AND DESIGN
UNUSED PINS
If the HSYNC and VSYNC pins are not used, they should be tied
to VDD_IO through a pull-up resistor (10 kΩ or 4.7 kΩ). Any
other unused digital inputs should be tied to ground. Unused
digital output pins should be left floating. DAC outputs can
either be left floating or connected to GND. Disabling these
outputs is recommended.
DAC CONFIGURATIONS
The ADV7390/ADV7391/ADV7392/ADV7393 contain three
DACs. All three DACs can be configured to operate in full-
drive mode. Full-drive mode is defined as 34.7 mA full-scale
current into a 37.5 load, RL. Full drive is the recommended
mode of operation for the DACs.
Alternatively, all three DACs can be configured to operate in low-
drive mode. Low-drive mode is defined as 4.33 mA full-scale
current into a 300 load, RL.
The ADV7390/ADV7391/ADV7392/ADV7393 contain an RSET
pin. A resistor connected between the RSET pin and AGND is
used to control the full-scale output current and, therefore, the
output voltage levels of DAC 1, DAC 2, and DAC 3. For full-
drive operation, RSET must have a value of 510 Ω and RL must
have a value of 37.5 Ω. For low drive operation, RSET must have a
value of 4.12 kΩ, and RL must have a value of 300 Ω. The resistor
connected to the RSET pin should have a 1% tolerance.
The ADV7390/ADV7391/ADV7392/ADV7393 contain a
compensation pin, COMP. A 2.2 nF compensation capacitor
should be connected from the COMP pin to VAA.
VIDEO OUTPUT BUFFER AND OPTIONAL
OUTPUT FILTER
An output buffer is necessary on any DAC that operates in low-
drive mode (RSET = 4.12 kΩ, RL = 300 Ω). Analog Devices
produces a range of op amps suitable for this application, for
example, the AD8061. For more information about line driver
buffering circuits, see the relevant op amp data sheet.
An optional reconstruction (anti-imaging) low-pass filter (LPF)
may be required on the ADV7390/ADV7391/ADV7392/ADV7393
DAC outputs. The filter specifications vary with the application.
The use of 16× (SD), 8× (ED), or 4× (HD) oversampling can
remove the requirement for a reconstruction filter altogether.
For applications requiring an output buffer and reconstruction
filter, the ADA4430-1 and ADA4411-3 integrated video filter
buffers should be considered.
Table 57. ADV7390/ADV7391/ADV7392/ADV7393 Output
Rates
Input Mode
(Subaddress 0x01,
Bits[6:4]) Oversampling Output Rate (MHz)
SD Off 27 (2×)
On 108 (8×)
On 216 (16×)
ED Off 27 (1×)
On 108 (4×)
On 216 (8×)
HD Off 74.25 (1×)
On 148.5 (2×)
On
297
(4×)
Table 58. Output Filter Requirements
Application Oversampling
Cutoff
Frequency
(MHz)
Attenuation
50 dB at
(MHz)
SD > 6.5 20.5
> 6.5
101.5
16× > 6.5 209.5
ED > 12.5 14.5
> 12.5 95.5
> 12.5 203.5
HD > 30 44.25
> 30
118.5
> 30 267
560
60022pF600
DAC
OUTPUT 75BNC
OUTPUT
10µH
560
3
4
1
06234-086
Figure 87. Example of Output Filter for SD, 16× Oversampling
560Ω
6.8pF
600Ω
6.8pF 600Ω
DAC
OUTPUT 75Ω BNC
OUTPUT
4.7µH
560Ω
3
4
1
06234-087
Figure 88. Example of Output Filter for ED, 8× Oversampling
DAC
OUTPUT
390nH
33pF 33pF 75
500
30075Ω BNC
OUTPUT
500Ω
3
4
13
4
1
06234-088
Figure 89. Example of Output Filter for HD, 4× Oversampling
ADV7390/ADV7391/ADV7392/ADV7393 Data Sheet
Rev. J | Page 70 of 107
0
–80
–70
–60
–50
–40
–30
–20
–10
0
–30
–60
–90
–120
–150
–180
–210
–240
1M 10M 100M
FREQUENCY (Hz)
CIRCUI T F REQUENCY RESPONSE
1G
GRO UP DE LAY (S econds)
PHASE ( Degrees)
MAG NI TUDE ( dB) 21n
18n
15n
12n
9n
6n
3n
0
24n
GAI N ( dB)
06234-089
Figure 90. Output Filter Plot for SD, 16× Oversampling
0
–10
–20
–30
–40
–50
–60
–70
–80
–901M 10M 100M 1G
FREQUENCY (Hz)
CIRCUI T FRE QUENCY RESPONSE
MAGNITUDE ( dB)
GROUP DELAY (Seconds) PHASE
(Degrees)
GAI N ( dB)
320
240
160
80
0
–80
–160
–240
480
400
14n
12n
10n
8n
6n
4n
2n
0
18n
16n
06234-090
Figure 91. Output Filter Plot for ED, 8× Oversampling
0
–50 1
FREQUENCY (MHz)
CIRCUI T FRE QUENCY RE S P ONSE
GAI N ( dB)
PHASE ( Degrees)
10 100
–10
–20
–30
–40
200
–200
120
40
–40
–120
GRO UP DE LAY (S econds)
PHASE
(Degrees)
MAGNITUDE ( dB)
06234-091
Figure 92. Output Filter Plot for HD, 4× Oversampling
PRINTED CIRCUIT BOARD (PCB) LAYOUT
The ADV7390/ADV7391/ADV7392/ADV7393 are highly
integrated circuits containing both precision analog and high
speed digital circuitry. It is designed to minimize interference
effects on the integrity of the analog circuitry by the high speed
digital circuitry. It is imperative that these same design and
layout techniques be applied to the system-level design so that
optimal performance is achieved.
The layout should be optimized for lowest noise on the
ADV7390/ADV7391/ADV7392/ADV7393 power and ground
planes by shielding the digital inputs and providing good power
supply decoupling.
It is recommended to use a 4-layer printed circuit board with
ground and power planes separating the signal trace layer and
the solder side layer.
Component Placement
Component placement should be carefully considered to
separate noisy circuits, such as clock signals and high speed
digital circuitry, from analog circuitry.
The external loop filter components and components connected
to the COMP and RSET pins should be placed as close as possible
to, and on the same side of the PCB as, the ADV7390/ADV7391/
ADV7392/ADV7393. Adding vias to the PCB to get the
components closer to the ADV7390/ADV7391/ADV7392/
ADV7393 is not recommended.
It is recommended that the ADV7390/ADV7391/ADV7392/
ADV7393 be placed as close as possible to the output connector,
with the DAC output traces as short as possible.
The termination resistors on the DAC output traces should be
placed as close as possible to and on the same side of the PCB as
the ADV7390/ADV7391/ADV7392/ADV7393. The termination
resistors should overlay the PCB ground plane.
External filter and buffer components connected to the DAC
outputs should be placed as close as possible to the ADV7390/
ADV7391/ADV7392/ADV7393 to minimize the possibility of
noise pickup from neighboring circuitry and to minimize the
effect of trace capacitance on output bandwidth. This is particularly
important when operating in low-drive mode (RSET = 4.12 kΩ,
RL = 300 Ω).
Power Supplies
It is recommended that a separate regulated supply be provided
for each power domain (VAA, VDD, VDD_IO, and PVDD). For
optimal performance, linear regulators rather than switch mode
regulators should be used. If switch mode regulators must be
used, care must be taken with regard to the quality of the output
voltage in terms of ripple and noise. This is particularly true for
the VAA and PVDD power domains. Each power supply should be
individually connected to the system power supply at a single
point through a suitable filtering device, such as a ferrite bead.
Data Sheet ADV7390/ADV7391/ADV7392/ADV7393
Rev. J | Page 71 of 107
Power Supply Decoupling
It is recommended that each power supply pin be decoupled
with 10 nF and 0.1 μF ceramic capacitors. The VAA, PVDD,
VDD_IO, and both VDD pins should be individually decoupled to
ground. The decoupling capacitors should be placed as close as
possible to the ADV7390/ADV7391/ADV7392/ADV7393 with
the capacitor leads kept as short as possible to minimize lead
inductance.
A 1 μF tantalum capacitor is recommended across the VAA
supply in addition to the 10 nF and 0.1 μF ceramic capacitors.
Power Supply Sequencing
The ADV7390/ADV7391/ADV7392/ADV7393 are robust to all
power supply sequencing combinations. Any sequence can be
used. However, all power supplies should settle to their nominal
voltages within one second.
Digital Signal Interconnect
The digital signal traces should be isolated as much as possible
from the analog outputs and other analog circuitry. Digital
signal traces should not overlay the VAA or PVDD power plane.
Due to the high clock rates used, avoid long clock traces to the
ADV7390/ADV7391/ADV7392/ADV7393 to minimize noise
pickup.
Any pull-up termination resistors for the digital inputs should
be connected to the VDD_IO power supply.
Analog Signal Interconnect
DAC output traces should be treated as transmission lines with
appropriate measures taken to ensure optimal performance (for
example, impedance matched traces). The DAC output traces
should be kept as short as possible. The termination resistors on
the DAC output traces should be placed as close as possible to,
and on the same side of the PCB as, the ADV7390/ADV7391/
ADV7392/ADV7393.
To avoid crosstalk between the DAC outputs, it is recommended
that as much space as possible be left between the traces
connected to the DAC output pins. Adding ground traces
between the DAC output traces is also recommended.
ADDITIONAL LAYOUT CONSIDERATIONS FOR THE
WLCSP PACKAGE
Due to the high pad density and 0.5 mm pitch of the WLCSP, it
is not recommended that connections to inner bumps be routed
on the top PCB layer only.
The traces (track and space) must fit within the limits of the
solder mask openings. Routing all traces on the top surface
layer of the board, while possible, is usually not a feasible
solution due to the limitations of the geometries imposed by
the board fabrication technology. Given a pitch of 0.5 mm with
a typical solder mask opening diameter of 0.35 mm, there is only
a 0.15 mm distance between the solder mask openings.
An alternative to routing on the top surface is to route out on
buried layers. To achieve this, the pads are connected to the
lower layers using microvias. See the AN-617 Application Note,
MicroCSP Wafer Level Chip Scale Package for additional details
about the board layout for the WLCSP package.
ADV7390/ADV7391/ADV7392/ADV7393 Data Sheet
Rev. J | Page 72 of 107
TYPICAL APPLICATIONS CIRCUITS
P0
P1
P2
P3
P4
P5
P6
P7
P8
P9
P10
P11
P12
P13
P14
P15
DGNDPGND
DGNDPGND
0.1µF
GND_IO
0.01µF
GND_IO
33µF
GND_IO
10µF
GND_IO
FERRITE BE AD
3.3V V
DD_IO
POWER
SUPPLY
DECOUPLING
0.1µF
PGND
0.01µF
PGND
33µF
PGND
10µF
PGND
FERRITE BE AD
1.8V PV
DD
POWER
SUPPLY
DECOUPLING
0.1µF
AGND
0.01µF
AGND
33µF
AGND
10µF
AGND
FERRITE BE AD
3.3V V
AA
POWER
SUPPLY
DECOUPLING
0.1µF
DGND
0.01µF
DGND
33µF 10µF
DGND
FERRITE BE AD
1.8V
V
DD_IO
PV
DD
V
AA
V
DD
V
DD
POWER SUPPLY
DECOUPLING FOR
EACHPOWER PIN
V
DD_IO
PV
DD
V
AA
V
DD
ADV7390/ADV7391/
ADV7392/ADV7393
HSYNC
VSYNC
CLKIN
AGND
AGND
DGND
DGND
GND_IO
GND_IO
R
SET
AGND
510Ω
DAC 1
DAC 2
DAC 3
AGND
75Ω
AGND
75Ω
AGND
75Ω
DAC 1
DAC 2
DAC 3
COMP
V
AA
2.2nF
EXT_LF
12nF
150nF 170Ω
PV
DD
SDA
SCL
ALSB
RESET
PIXEL
PORT INPUTS
CONTROL
INPUTS/OUTPUTS
CLO CK INPUT
I2C PORT
DAC 1
DAC 1
DAC 3
DGND
V
DD
DAC1 TO DAC3 LOW DRIV E OPT ION
R
SET
AGND
4.12kΩ
EXTERNAL LOOP FILTER
LOOP FILTER COMPONENTS
SHOULD BE L OCATE D
CLOSE TO THE EXT_LF
PIN AND ON THE
SAME SIDE OF THE PCB
AS THE ADV 7390/ADV7391/
ADV7392/ADV7393.
NOTES
1. F OR OP TIM UM P E RFORM ANCE , EXTERNAL COMPONENT S CONNECT E D
TO THE COMP, R
SET
AND DAC OUT P UT PI NS S HOULD BE LOCATED
CLO S E TO, AND ON THE SAM E S IDE O F THE P CB AS , THE
ADV7390/ADV 7391/ADV7392/ ADV 7393.
2. T HE I
2
C DEVI CE ADDRE S S IS CO NFIGURABLE US ING THE AL S B P IN:
ALSB = 0, I
2
C DEVI CE ADDRE S S = 0xD4 ( ADV 7390/ADV7392) OR
0x54 (ADV7391/ ADV 7393)
ALSB = 1, I
2
C DEVI CE ADDRE S S = 0xD6 ( ADV 7390/ADV7392) OR
0x56 (ADV7391/ ADV 7393)
3. T HE RE S IST OR CONNE CTED T O THE R
SET
PIN S HOULD HAV E A 1%
TO LERANCE.
4. T HE RE COMME NDE D M ODE O F OP E RATION FOR THE DACs IS F ULL-
DRIVE (R
SET
= 510Ω, R
L
= 37.5Ω).
DAC1 TO DAC3 FULL DRIV E OPT ION
(RECOMMENDED)
75Ω
AGND
300Ω
ADA4411-3
DAC 2
1µF
AGND
OPTI O NAL LPF
OPTIONALLPF
OPTIONAL LPF
ADV7392/
ADV7393
ONLY
LPF
DAC 2
75Ω
AGND
300Ω
ADA4411-3
LPF
DAC 3
75Ω
AGND
300Ω
ADA4411-3
LPF
06234-092
TIE EITHER LOW
OR HIGH
Figure 93. ADV7390/ADV7391/ADV7392/ADV7393 (LFCSP) Typical Applications Circuit
Data Sheet ADV7390/ADV7391/ADV7392/ADV7393
Rev. J | Page 73 of 107
P0
P1
P2
P3
P4
P5
P6
P7
DGNDPGND
DGNDPGND
0.1µF
GND_IO
0.01µF
GND_IO
33µF
GND_IO
10µF
GND_IO
FERRITE BE AD
V
DD_IO
POWER
SUPPLY
DECOUPLING
0.1µF
PGND
0.01µF
PGND
33µF
PGND
10µF
PGND
FERRITE BE AD
PV
DD
POWER
SUPPLY
DECOUPLING
0.1µF
AGND
0.01µF
AGND
33µF
AGND
10µF
AGND
FERRITE BE AD
V
AA
POWER
SUPPLY
DECOUPLING
0.1µF
DGND
0.01µF
DGND
33µF 10µF
DGND
FERRITE BE AD
V
DD
POWER SUPPLY
DECOUPLING FOR
EACH PO WER PIN
V
DD_IO
PV
DD
V
AA
V
DD
ADV7390BCBZ
AGND
AGND
DGND
DGND
GND_IO
GND_IO
R
SET
AGND
510Ω
COMP
V
AA
2.2nF
EXT_LF
12nF
150nF 170Ω
PV
DD
SDA
SCL
RESET
PIXEL
PORT INPUTS
I2C PORT
DGND
V
DD
EXTERNAL LOOP FILTER
LOOP FILTER COMPONENTS
SHOULD BE L OCATE D
CLOSE TO THE EXT_LF
PIN AND ON THE
SAME SIDE OF THE PCB
AS THE ADV 7390.
NOTES
1. F OR OP TIM UM P E RFORM ANCE , EXTERNAL COMPONENT S CONNECT E D
TO THE COMP, R
SET
AND DAC OUT P UT PI NS S HOULD BE LOCATED
CLO S E TO, AND ON THE SAM E S IDE O F THE P CB AS , THE ADV 7390.
2. T HE I
2
C DEVI CE ADDRE S S IS CO NFIGURABLE US ING THE AL S B P IN:
ALSB = 0, I
2
C DEVI CE ADDRE S S = 0xD4
ALSB = 1, I
2
C DEVI CE ADDRE S S = 0xD6
3. T HE RE S IST OR CONNE CTED T O THE R
SET
PIN S HOULD HAV E A 1%
TO LERANCE.
4. T HE RE COMME NDE D M ODE O F OP E RATION FOR THE DACs IS F ULL-
DRIVE (R
SET
= 510Ω, R
L
= 37.5Ω).
1µF
AGND
DAC FULL DRIVE OPTION
(RECOMMENDED)
DAC 1
75Ω VIDEO
OPTIONAL LPF
DAC LOW DRIVE OPTION
VIDEO
DAC
R
SET
AGND
4.12kΩ
75Ω
AGND
300Ω
ADA4411-3
LPF
06234-148
ALSB TIE EITHER
LOW OR HIGH
CLKIN
CLO CK INPUT
HSYNC
VSYNC
CONTROL
INPUTS/OUTPUTS
3.3V
1.8V
3.3V
1.8V
V
DD_IO
PV
DD
V
AA
V
DD
Figure 94. ADV7390BCBZ-A (WLCSP) Typical Applications Circuit
ADV7390/ADV7391/ADV7392/ADV7393 Data Sheet
Rev. J | Page 74 of 107
COPY GENERATION MANAGEMENT SYSTEM
SD CGMS
Subaddress 0x99 to Subaddress 0x9B
The ADV7390/ADV7391/ADV7392/ADV7393 support a copy
generation management system (CGMS) that conforms to the
EIAJ CPR-1204 and ARIB TR-B15 standards. CGMS data is
transmitted on Line 20 of odd fields and Line 283 of even fields.
Subaddress 0x99, Bits[6:5] control whether CGMS data is
output on odd or even fields or both.
SD CGMS data can be transmitted only when the ADV7390/
ADV7391/ADV7392/ADV7393 are configured in NTSC mode.
The CGMS data is 20 bits long. The CGMS data is preceded by
a reference pulse of the same amplitude and duration as a
CGMS bit (see Figure 95).
ED CGMS
Subaddress 0x41 to Subaddress 0x43;
Subaddress 0x5E to Subaddress 0x6E
525p Mode
The ADV7390/ADV7391/ADV7392/ADV7393 support a copy
generation management system (CGMS) in 525p mode in
accordance with EIAJ CPR-1204-1.
When ED CGMS is enabled (Subaddress 0x32, Bit 6 = 1), 525p
CGMS data is inserted on Line 41. The 525p CGMS data
registers are at Subaddress 0x41, Subaddress 0x42, and
Subaddress 0x43.
The ADV7390/ADV7391/ADV7392/ADV7393 also support
CGMS Type B packets in 525p mode in accordance with CEA-
805-A.
When ED CGMS Type B is enabled (Subaddress 0x5E, Bit 0 = 1),
525p CGMS Type B data is inserted on Line 40. The 525p CGMS
Type B data registers are at Subaddress 0x5E to Subaddress 0x6E.
625p Mode
The ADV7390/ADV7391/ADV7392/ADV7393 support a copy
generation management system (CGMS) in 625p mode in
accordance with IEC 62375 (2004).
When ED CGMS is enabled (Subaddress 0x32, Bit 6 = 1), 625p
CGMS data is inserted on Line 43. The 625p CGMS data
registers are at Subaddress 0x42 and Subaddress 0x43.
HD CGMS
Subaddress 0x41 to Subaddress 0x43;
Subaddress 0x5E to Subaddress 0x6E
The ADV7390/ADV7391/ADV7392/ADV7393 support a copy
generation management system (CGMS) in HD mode (720p
and 1080i) in accordance with EIAJ CPR-1204-2.
When HD CGMS is enabled (Subaddress 0x32, Bit 6 = 1), 720p
CGMS data is applied to Line 24 of the luminance vertical
blanking interval.
When HD CGMS is enabled (Subaddress 0x32, Bit 6 = 1), 1080i
CGMS data is applied to Line 19 and Line 582 of the luminance
vertical blanking interval.
The HD CGMS data registers are at Subaddress 0x41,
Subaddress 0x42, and Subaddress 0x43.
The ADV7390/ADV7391/ADV7392/ADV7393 also support
CGMS Type B packets in HD mode (720p and 1080i) in
accordance with CEA-805-A.
When HD CGMS Type B is enabled (Subaddress 0x5E, Bit 0 = 1),
720p CGMS data is applied to Line 23 of the luminance vertical
blanking interval.
When HD CGMS Type B is enabled (Subaddress 0x5E, Bit 0 = 1),
1080i CGMS data is applied to Line 18 and Line 581 of the
luminance vertical blanking interval.
The HD CGMS Type B data registers are at Subaddress 0x5E to
Subaddress 0x6E.
CGMS CRC FUNCTIONALITY
If SD CGMS CRC (Subaddress 0x99, Bit 4) or ED/HD CGMS
CRC (Subaddress 0x32, Bit 7) is enabled, the upper six CGMS
data bits (C19 to C14) that comprise the 6-bit CRC check
sequence are automatically calculated on the ADV7390/
ADV7391/ADV7392/ADV7393. This calculation is based on
the lower 14 bits (C13 to C0) of the data in the CGMS data
registers, and the result is output with the remaining 14 bits to
form the complete 20 bits of the CGMS data. The calculation of
the CRC sequence is based on the polynomial x6 + x + 1 with a
preset value of 111111.
If SD CGMS CRC or ED/HD CGMS CRC is disabled, all 20 bits
(C19 to C0) are output directly from the CGMS registers (CRC
must be calculated by the user manually).
If ED/HD CGMS Type B CRC (Subaddress 0x5E, Bit 1) is
enabled, the upper six CGMS Type B data bits (P122 to P127)
that comprise the 6-bit CRC check sequence are automatically
calculated on the ADV7390/ADV7391/ADV7392/ADV7393.
This calculation is based on the lower 128 bits (H0 to H5 and
P0 to P121) of the data in the CGMS Type B data registers. The
result is output with the remaining 128 bits to form the
complete 134 bits of the CGMS Type B data. The calculation of
the CRC sequence is based on the polynomial x6 + x + 1 with a
preset value of 111111.
If ED/HD CGMS Type B CRC is disabled, all 134 bits (H0 to H5
and P0 to P127) are output directly from the CGMS Type B
registers (CRC must be calculated by the user manually).
Data Sheet ADV7390/ADV7391/ADV7392/ADV7393
Rev. J | Page 75 of 107
CRC SEQUENCE
REF
0 IRE
–40 IRE
+70 I RE
+100 I RE
11.2µs 2.235µs ± 20ns
49.1µs ± 0.5µs
C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19
06234-093
Figure 95. Standard Definition CGMS Waveform
C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12
CRC SEQ UE NCE
REF
5.8µ0.15µs
6T
0mV
–300mV
70% ±10%
T = 1/(
f
H
×33) = 963n s
f
H
= HORIZONTAL SCAN F RE QUENCY
T ± 30ns
+700mV
21.2µs ± 0.22µs
22T
C13 C14 C15 C16 C17 C18 C19
BIT 1 BIT 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . BIT 20
06234-094
Figure 96. Enhanced Definition (525p) CGMS Waveform
R S C0
LSB C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13
MSB
PEAK WHITE
SYNC LEVEL
500mV ±25mV
5.5µs ± 0.125µs
R = RUN-IN
S = START CODE
13.7µs
06234-095
Figure 97. Enhanced Definition (625p) CGMS Waveform
CRC SEQ UE NCE
REF
4T
3.128µs ± 90ns 17.2µs ± 160ns
22T T = 1/(
f
H× 1650/58) = 781.93n s
f
H = HORIZONTAL SCAN F RE QUENCY
1H
T ±30ns
0mV
–300mV
70% ±10%
+700mV
C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19
BIT 1 BIT 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . BIT 20
06234-096
Figure 98. High Definition (720p) CGMS Waveform
ADV7390/ADV7391/ADV7392/ADV7393 Data Sheet
Rev. J | Page 76 of 107
CRC SEQ UE NCE
REF
4T
4.15µs ± 60ns 22.84µs ± 210ns
22T T = 1/(fH× 2200/77) = 1.038µs
fH = HORIZONTAL SCAN F RE QUENCY
1H
T ±30ns
0mV
–300mV
70% ±10%
+700mV
C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19
BIT 1 BIT 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . BIT 20
06234-097
Figure 99. High Definition (1080i) CGMS Waveform
H0
H1
H2
H3
H4
H5
P0
P1
P2
P3
P4
CRC SEQUENCE
START
0mV
–300mV
70% ± 10%
+700mV
.
P122
P123
P124
P125
P126
P127
BIT 1 BIT 2
..
NOTES
1. PLEASE REFER TO THE CEA-805-A SPECIFICATION FOR TIMING INFORMATION.
BIT 134
06234-098
Figure 100. Enhanced Definition (525p) CGMS Type B Waveform
CRC SEQ UE NCE
START
0mV
–300mV
70% ±10%
+700mV
H0
H1
H2
H3
H4
H5
P0
P1
P2
P3
P4
. . .
P122
P123
P124
P125
P126
P127
BIT 1 BIT 2
NOTES
1. PLEASE REFER TO THE CEA-805-A SPECIFICATION FOR TIMING INFORMATION.
BIT 134
06234-099
Figure 101. High Definition (720p and 1080i) CGMS Type B Waveform
Data Sheet ADV7390/ADV7391/ADV7392/ADV7393
Rev. J | Page 77 of 107
SD WIDE SCREEN SIGNALING
Subaddress 0x99, Subaddress 0x9A, Subaddress 0x9B
The ADV7390/ADV7391/ADV7392/ADV7393 support wide
screen signaling (WSS) con-forming to the ETSI 300 294
standard. WSS data is transmitted on Line 23. WSS data can be
transmitted only when the device is configured in PAL mode.
The WSS data is 14 bits long. The function of each of these bits
is shown in Table 59. The WSS data is preceded by a run-in
sequence and a start code (see Figure 102). The latter portion of
Line 23 (after 42.5 µs from the falling edge of HSYNC) is
available for the insertion of video. WSS data transmission on
Line 23 can be enabled using Subaddress 0x99, Bit 7. It is
possible to blank the WSS portion of Line 23 with Subaddress
0xA1, Bit 7.
Table 59. Function of WSS Bits
Bit Number
Bit Description 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Setting
Aspect Ratio, Format, Position 1 0 0 0 4:3, full format, N/A
0 0 0 1 14:9, letterbox, center
0 0 1 0 14:9, letterbox, top
1 0 1 1 16:9, letterbox, center
0 1 0 0 16:9, letterbox, top
1 1 0 1 >16:9, letterbox, center
1 1 1 0 14:9, full format, center
0 1 1 1 16:0, N/A, N/A
Mode 0 Camera mode
1
Film mode
Color Encoding 0 Normal PAL
1 Motion Adaptive ColorPlus
Helper Signals 0 Not present
1 Present
Reserved 0 N/A
Teletext Subtitles 0 No
1 Yes
Open Subtitles
0
0
No
0 1 Subtitles in active image area
1 0 Subtitles out of active image area
1 1 Reserved
Surround Sound 0 No
1 Yes
Copyright
0
No copyright asserted or unknown
1 Copyright asserted
Copy Protection 0 Copying not restricted
1 Copying restricted
ACTIVE
VIDEO
RUN-IN
SEQUENCE START
CODE
500mV
11.0µs
38.4µs
42.5µs
W0 W1 W2 W3 W4 W5 W6 W7 W8 W9 W10 W11 W12 W13
06234-100
Figure 102. WSS Waveform Diagram
ADV7390/ADV7391/ADV7392/ADV7393 Data Sheet
Rev. J | Page 78 of 107
SD CLOSED CAPTIONING
Subaddress 0x91 to Subaddress 0x94
The ADV7390/ADV7391/ADV7392/ADV7393 support closed
captioning conforming to the standard television synchronizing
waveform for color trans-mission. When enabled, closed
captioning is transmitted during the blanked active line time of
Line 21 of the odd fields and Line 284 of the even fields. Closed
captioning can be enabled using Subaddress 0x83, Bits[6:5].
Closed captioning consists of a seven-cycle sinusoidal burst that
is frequency- and phase-locked to the caption data. After the
clock run-in signal, the blanking level is held for two data bits
and is followed by a Logic 1 start bit. Sixteen bits of data follow
the start bit. The data consists of two 8-bit bytes (seven data bits
and one odd parity bit per byte). The data for these bytes is
stored in SD closed captioning registers (Subaddress 0x93 to
Subaddress 0x94).
The ADV7390/ADV7391/ADV7392/ADV7393 also support the
extended closed captioning operation, which is active during
even fields and encoded on Line 284. The data for this operation is
stored in SD closed captioning registers (Subaddress 0x91 to
Subaddress 0x92).
The ADV7390/ADV7391/ADV7392/ADV7393 automatically
generate all clock run-in signals and timing that support closed
captioning on Line 21 and Line 284. All pixels inputs are ignored
on Line 21 and Line 284 if closed captioning is enabled.
The FCC Code of Federal Regulations (CFR) Title 47 Section
15.119 and EIA-608 describe the closed captioning information
for Line 21 and Line 284.
The ADV7390/ADV7391/ADV7392/ADV7393 use a single
buffering method. This means that the closed captioning buffer
is only 1-byte deep. Therefore, there is no frame delay in
outputting the closed captioning data, unlike other 2-byte deep
buffering systems. The data must be loaded one line before it is
output on Line 21 and Line 284. A typical implementation of
this method is to use VSYNC to interrupt a microprocessor,
which in turn loads the new data (two bytes) in every field. If no
new data is required for transmission, 0s must be inserted in
both data registers; this is called nulling. It is also important to
load control codes, all of which are double bytes, on Line 21.
Otherwise, a TV does not recognize them. If there is a message
such as “Hello World that has an odd number of characters, it
is important to add a blank character at the end to make sure that
the end-of-caption, 2-byte control code lands in the same field.
D0 TO D6 D0 TO D6
10.5 ±0.25µs 12.91µs
7 CYCLES OF
0.5035MHz
CLOCK RUN- IN
REFE RE NCE COLOR BURST
(9 CYCLES)
FREQUENCY = F
SC
= 3.579545M Hz
AMPLITUDE = 40 I RE
50 IRE
40 IRE
10.003µs 27.382µs 33.764µs
BYTE 1BYTE 0
TWO 7-BIT +PARITY
ASCII CHARACTE RS
(DATA)
S
T
A
R
T
P
A
R
I
T
Y
P
A
R
I
T
Y
06234-101
Figure 103. SD Closed Captioning Waveform, NTSC
Data Sheet ADV7390/ADV7391/ADV7392/ADV7393
Rev. J | Page 79 of 107
INTERNAL TEST PATTERN GENERATION
SD TEST PATTERNS
The ADV7390/ADV7391/ADV7392/ADV7393 are able to
internally generate SD color bar and black bar test patterns. For
this function, a 27 MHz clock signal must be applied to the
CLKIN pin.
The register settings in Table 60 are used to generate an SD NTSC
75% color bar test pattern. All other registers are set as normal/
default. Component YPrPb output is available on DAC 1 to
DAC 3. On power-up, the subcarrier frequency registers default
to the appropriate values for NTSC.
Table 60. SD NTSC Color Bar Test Pattern Register Writes
Subaddress Setting
0x00 0x1C
0x82 0xC9
0x84 0x40
For CVBS and S-Video (Y/C) output, 0xCB instead of 0xC9
should be written to Subaddress 0x82.
For component RGB output rather than YPrPb output, 0 should
be written to Subaddress 0x02, Bit 5.
To generate an SD NTSC black bar test pattern, the settings
shown in Table 60 should be used with an additional write of
0x24 to Subaddress 0x02.
For PAL output of either test pattern, the same settings are used
except that Subaddress 0x80 is programmed to 0x11, and the
subcarrier frequency (FSC) registers are programmed as shown
in Table 61.
Table 61. PAL FSC Register Writes
Subaddress Description Setting
0x8C FSC0 0xCB
0x8D FSC1 0x8A
0x8E FSC2 0x09
0x8F FSC3 0x2A
Note that, when programming the FSC registers, the user must
write the values in the sequence FSC0, FSC1, FSC2, FSC3. The full
FSC value to be written is only accepted after the FSC3 write is
complete.
ED/HD TEST PATTERNS
The ADV7390/ADV7391/ADV7392/ADV7393 are able to
internally generate ED/HD color bar, black bar, and hatch test
patterns. For ED test patterns, a 27 MHz clock signal must be
applied to the CLKIN pin. For HD test patterns, a 74.25 MHz
clock signal must be applied to the CLKIN pin.
The register settings in Table 62 are used to generate an ED
525p hatch test pattern. All other registers are set as normal/
default. Component YPrPb output is available on DAC 1 to
DAC 3. For component RGB output rather than YPrPb output,
0 should be written to Subaddress 0x02, Bit 5.
Table 62. ED 525p Hatch Test Pattern Register Writes
Subaddress Setting
0x00 0x1C
0x01 0x10
0x31
0x05
To generate an ED 525p black bar test pattern, the settings
shown in Table 62 should be used with an additional write of
0x24 to Subaddress 0x02.
To generate an ED 525p flat field test pattern, the settings
shown in Table 62 should be used, except that 0x0D should be
written to Subaddress 0x31.
The Y, Cr, and Cb levels for the hatch and flat field test patterns
can be controlled using Subaddress 0x36, Subaddress 0x37, and
Subaddress 0x38, respectively.
For ED/HD standards other than 525p, the settings shown in
Table 62 (and subsequent comments) are used, except that
Subaddress 0x30, Bits[7:3] are updated as appropriate.
ADV7390/ADV7391/ADV7392/ADV7393 Data Sheet
Rev. J | Page 80 of 107
SD TIMING
Mode 0 (CCIR-656)Slave Option (Subaddress 0x8A = X X X X X 0 0 0)
The ADV7390/ADV7391/ADV7392/ADV7393 are controlled by the SAV (start of active video) and EAV (end of active video) time codes
embedded in the pixel data. All timing information is transmitted using a 4-byte synchronization pattern. A synchronization pattern is
sent immediately before and after each line during active picture and retrace. If the VSYNC and HSYNC pins are not used, they should be
tied to VDD_IO when using this mode.
YC
rYF
F0
00
0X
Y8
01
08
01
0F
F
0
0F
FA
BA
BA
B8
01
08
01
0F
F0
00
0X
YC
bYC
rC
b
YC
b
Y
C
r
EAV CODE SAV CODE
ANCILLARY DATA
(HANC)
4 CLO CK 4 CLOCK
268 CLO CK 1440 CLO CK
4 CLO CK 4 CLO CK
280 CLO CK 1440 CLO CK
END OF ACTIVE
VIDEO LINE START OF ACTIVE
VIDEO LINE
ANALOG
VIDEO
INPUT PIXELS
NTSC/PAL M SYSTEM
(525 L INES/ 60Hz )
PAL SYSTEM
(625 L INES/ 50Hz )
Y
06234-102
Figure 104. SD Timing Mode 0, Slave Option
Mode 0 (CCIR-656)Master Option (Subaddress 0x8A = X X X X X 0 0 1)
The ADV7390/ADV7391/ADV7392/ADV7393 generate H and F signals required for the SAV and EAV time codes in the CCIR-656
standard. The H bit is output on HSYNC and the F bit is output on VSYNC.
522 523 524 525 8910 11 20 21 22
DISPLAY DISPLAY
VERTICAL BLANK
ODD FIELD
EVEN FIELD
H
F
260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 283 284 285
ODD FIELD EVEN FIELD
DISPLAY DISPLAY
VERTICAL BLANK
H
F
765
4
32
1
06234-103
Figure 105. SD Timing Mode 0, Master Option, NTSC
Data Sheet ADV7390/ADV7391/ADV7392/ADV7393
Rev. J | Page 81 of 107
622 623 624 625 21 22 23
DISPLAY DISPLAY
VERT ICAL BLANK
H
FODD FIELD
EVEN FIELD
309 310 311 312 314 315 316 317 318 319 320 334 335 336
DISPLAY DISPLAY
VERT ICAL BLANK
H
FODD FIELD EVEN FIELD
313
765
4
32
1
06234-104
Figure 106. SD Timing Mode 0, Master Option, PAL
ANALOG
VIDEO
H
F
06234-105
Figure 107. SD Timing Mode 0, Master Option, Data Transitions
Mode 1Slave Option (Subaddress 0x8A = X X X X X 0 1 0)
In this mode, the ADV7390/ADV7391/ADV7392/ADV7393 accept horizontal synchronization and odd/even field signals. When
HSYNC is low, a transition of the field input indicates a new frame, that is, vertical retrace. HSYNC and FIELD are input on the HSYNC and
VSYNC pins, respectively.
260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 283 284 285
ODD FIELD EVEN FI EL D
DISPLAY DISPLAY
VERT ICAL BLANK
522 523 524 525 5 9 10 11 20 21 22
DISPLAY DISPLAY
VERT ICAL BLANK
ODD FIELD
EVEN FIELD
FIELD
FIELD
HSYNC
HSYNC
7
6
4
3
2
18
06234-106
Figure 108. SD Timing Mode 1, Slave Option, NTSC
ADV7390/ADV7391/ADV7392/ADV7393 Data Sheet
Rev. J | Page 82 of 107
622 623 624 625 21 22 23
DISPLAY VERTICAL BL ANK
ODD FIELD
EVEN FIELD
FIELD
DISPLAY
309 310 311312 313 314 315 316 317 318 319 334 335 336
DISPLAY VERTICAL BL ANK
ODD FIELD EVEN FI EL D
DISPLAY
320
FIELD
57
6
4
3
2
1
HSYNC
HSYNC
06234-107
Figure 109. SD Timing Mode 1, Slave Option, PAL
Mode 1—Master Option (Subaddress 0x8A = X X X X X 0 1 1)
In this mode, the ADV7390/ADV7391/ADV7392/ADV7393 can generate horizontal synchronization and odd/even field signals. When
HSYNC is low, a transition of the field input indicates a new frame, that is, vertical retrace. The ADV7390/ADV7391/ADV7392/ADV7393
automatically blank all normally blank lines as required by the CCIR-624 standard. Pixel data is latched on the rising clock edge following
the timing signal transitions. HSYNC and FIELD are output on the HSYNC and VSYNC pins, respectively.
FIELD
PIXEL
DATACb YCr Y
HSYNC
PAL = 132 ×CLOCK/2
NTSC = 122 × CL OCK/2
06234-108
Figure 110. SD Timing Mode 1, Odd/Even Field Transitions (Master/Slave)
Mode 2Slave Option (Subaddress 0x8A = X X X X X 1 0 0)
In this mode, the ADV7390/ADV7391/ADV7392/ADV7393 accept horizontal and vertical synchronization signals. A coincident low
transition of both HSYNC and VSYNC inputs indicates the start of an odd field. A VSYNC low transition when HSYNC is high indicates
the start of an even field. The ADV7390/ADV7391/ADV7392/ADV7393 automatically blank all normally blank lines as required by the
CCIR-624 standard. HSYNC and VSYNC are input on the HSYNC and VSYNC pins, respectively.
Data Sheet ADV7390/ADV7391/ADV7392/ADV7393
Rev. J | Page 83 of 107
522 523 524 525 910 11 20 21 22
DISPLAY DISPLAY
VERT ICAL BLANK
ODD FIELD
EVEN FIELD
260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 283 284 285
ODD FIELD EVEN FI EL D
DISPLAY DISPLAY
VERT ICAL BLANK
57
6
4
3
2
18
HSYNC
VSYNC
HSYNC
VSYNC
06234-109
Figure 111. SD Timing Mode 2, Slave Option, NTSC
622 623 624 625 21 22 23
DISPLAY VERTICAL BL ANK
ODD FIELD
EVEN FIELD
DISPLAY
309 310 311 312 313 314 315 316 317 318 319 334 335 336
DISPLAY VERTICAL BL ANK
ODD FIELD EVEN FIELD
DISPLAY
320
765
4
3
2
1
HSYNC
VSYNC
HSYNC
VSYNC
06234-110
Figure 112. SD Timing Mode 2, Slave Option, PAL
Mode 2Master Option (Subaddress 0x8A = X X X X X 1 0 1)
In this mode, the ADV7390/ADV7391/ADV7392/ADV7393 can generate horizontal and vertical synchronization signals. A coincident
low transition of both HSYNC and VSYNC inputs indicates the start of an odd field. A VSYNC low transition when HSYNC is high
indicates the start of an even field. The ADV7390/ADV7391/ADV7392/ADV7393 automatically blank all normally blank lines as required
by the CCIR-624 standard. HSYNC and VSYNC are output on the HSYNC and VSYNC pins, respectively.
Cb Y
PIXEL
DATA
HSYNC
VSYNC
PAL = 132 ×CLOCK/2
NTSC = 122 × CL OCK/2
YCr
06234-111
Figure 113. SD Timing Mode 2, Even-to-Odd Field Transition (Master/Slave)
ADV7390/ADV7391/ADV7392/ADV7393 Data Sheet
Rev. J | Page 84 of 107
Cb
PIXEL
DATA
HSYNC
VSYNC
PAL = 132 ×CLOCK/2
NTS C = 122 × CLOCK/2
PAL = 864 ×CLOCK/2
NTS C = 858 × CLOCK/2
Cb
Y
YCr
06234-112
Figure 114. SD Timing Mode 2, Odd-to-Even Field Transition (Master/Slave)
Mode 3Master/Slave Option (Subaddress 0x8A = X X X X X 1 1 0 or X X X X X 1 1 1)
In this mode, the ADV7390/ADV7391/ADV7392/ADV7393 accept or generates horizontal synchronization and odd/even field signals.
When HSYNC is high, a transition of the field input indicates a new frame, that is, vertical retrace. The ADV7390/ADV7391/ADV7392/
ADV7393 automatically blank all normally blank lines as required by the CCIR-624 standard. HSYNC and VSYNC are output in master
mode and input in slave mode on the HSYNC and VSYNC pins, respectively.
260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 283 284 285
ODD FIELD EVEN FIELD
DISPLAY DISPLAY
VERT ICAL BLANK
522 523 524 525 910 11 20 21 22
DISPLAY DISPLAY
VERT ICAL BLANK
ODD FIELDEVEN FIELD
HSYNC
FIELD
HSYNC
FIELD
8
765
4
32
1
06234-113
Figure 115. SD Timing Mode 3, NTSC
622 623 624 625 5621 22 23
DISPLAY VERTICAL BL ANK
ODD FIELDEVEN FIELD
FIELD
DISPLAY
309 310 311 312 313 314 315 316 317 318 319 334 335 336
DISPLAY VERTICAL BL ANK
ODD FIELDEVEN FI EL D
FIELD
DISPLAY
320
4
32
17
HSYNC
HSYNC
06234-114
Figure 116. SD Timing Mode 3, PAL
Data Sheet ADV7390/ADV7391/ADV7392/ADV7393
Rev. J | Page 85 of 107
HD TIMING
VERT ICAL BLANKING INTERVAL
DISPLAY
DISPLAY
1124 1125
1 2 5 6 7 8 21
43 20 22 560
FIELD 1
FIELD 2 VE RTICAL BLANKING INTE RV AL
561 562 563 564 567 568 569 570 584
566565 583 585
1
123
HSYNC
VSYNC
HSYNC
VSYNC
06234-115
Figure 117. 1080i HSYNC and VSYNC Input Timing
ADV7390/ADV7391/ADV7392/ADV7393 Data Sheet
Rev. J | Page 86 of 107
VIDEO OUTPUT LEVELS
SD YPrPb OUTPUT LEVELSSMPTE/EBU N10
Pattern: 100% Color Bars
300mV
700mV
WHITE
YELLOW
CYAN
GREEN
MAGENTA
RED
BLUE
BLACK
06234-116
Figure 118. Y LevelsNTSC
WHITE
YELLOW
CYAN
GREEN
MAGENTA
RED
BLUE
BLACK
700mV
06234-117
Figure 119. Pr LevelsNTSC
WHITE
YELLOW
CYAN
GREEN
MAGENTA
RED
BLUE
BLACK
700mV
06234-118
Figure 120. Pb LevelsNTSC
700mV
300mV
WHITE
YELLOW
CYAN
GREEN
MAGENTA
RED
BLUE
BLACK
06234-119
Figure 121. Y LevelsPAL
WHITE
YELLOW
CYAN
GREEN
MAGENTA
RED
BLUE
BLACK
700mV
06234-120
Figure 122. Pr LevelsPAL
WHITE
YELLOW
CYAN
GREEN
MAGENTA
RED
BLUE
BLACK
700mV
06234-121
Figure 123. Pb LevelsPAL
Data Sheet ADV7390/ADV7391/ADV7392/ADV7393
Rev. J | Page 87 of 107
ED/HD YPrPb OUTPUT LEVELS
INPUT CODE
940
64
EIA- 770.2, STANDARD FOR Y OUTPUT VOLTAGE
300mV
700mV
700mV
960
64
EIA- 770.2, STANDARD FOR P r/Pb OUTPUT VOLTAGE
512
06234-122
Figure 124. EIA-770.2 Standard Output Signals (525p/625p)
782mV
714mV
286mV
700mV
INPUT CODE
940
64
EIA- 770.1, STANDARD FOR Y OUTPUT VOLTAGE
960
64
EIA- 770.1, STANDARD FOR P r/Pb OUTPUT VOLTAGE
512
06234-123
Figure 125. EIA-770.1 Standard Output Signals (525p/625p)
300mV
INPUT CODE
940
64
EIA- 770.3, STANDARD FOR Y OUTPUT VOLTAGE
700mV
700mV
600mV
960
64
EIA- 770.3, STANDARD FOR P r/Pb OUTPUT VOLTAGE
512
06234-124
Figure 126. EIA-770.3 Standard Output Signals (1080i/720p)
300mV
300mV
700mV
700mV
INP UT CODE
1023
64
Y–OUTPUT LEVELS FOR
FULL INPUT SELECTION OUTPUT VOLTAGE
1023
64
Pr/Pb–OUTPUT LEVELS FOR
FULL INPUT SELECTION OUTPUT VOLTAGE
INP UT CODE
06234-125
Figure 127. Output Levels for Full Input Selection
ADV7390/ADV7391/ADV7392/ADV7393 Data Sheet
Rev. J | Page 88 of 107
SD/ED/HD RGB OUTPUT LEVELS
Pattern: 100%/75% Color Bars
700mV/525mV
700mV/525mV
700mV/525mV
300mV
300mV
300mV
R
G
B
06234-126
Figure 128. SD/ED RGB Output LevelsRGB Sync Disabled
700mV/525mV
700mV/525mV
700mV/525mV
300mV
R
G
B
0mV
300mV
0mV
300mV
0mV
06234-127
Figure 129. SD/ED RGB Output LevelsRGB Sync Enabled
700mV/525mV
700mV/525mV
700mV/525mV
300mV
300mV
300mV
R
G
B
06234-128
Figure 130. HD RGB Output LevelsRGB Sync Disabled
300mV
0mV
0mV
700mV/525mV
700mV/525mV
700mV/525mV
300mV
R
G
B
600mV
300mV
0mV
600mV
600mV
06234-129
Figure 131. HD RGB Output LevelsRGB Sync Enabled
Data Sheet ADV7390/ADV7391/ADV7392/ADV7393
Rev. J | Page 89 of 107
SD OUTPUT PLOTS
0.5
0
APL = 44. 5%
525 LI NE NTSC
SLOW CLAMP TO 0. 00V AT 6. 72µs
10 20
F1
L76
30 40 50 60
100
50
0
–50
0
VOLTS IRE:FLT
MICROSECONDS
PRECISION MODE OFF
SYNCHRO NOUS SY NC = A
µ FRAMES SELECTED 1, 2
06234-130
Figure 132. NTSC Color Bars (75%)
0
NOISE RE DUCTION: 15. 05dB
APL = 44. 3%
525 LINE NT S C NO FILTERING
SLOW CLAMP TO 0. 00V AT 6. 72 µs
10 20 30 40 50 60
MICROSECONDS
PRECISION MODE OFF
SYNCHRONOUS S Y NC = S OURCE
µ FRAMES SELECTED 1, 2
F2
L238
50
0
0
IRE:FLT
0.6
0.4
0.2
0
–0.2
VOLTS
06234-131
Figure 133. NTSC Luma
0
NOI S E RE DUCTION: 15. 05dB
APL NEEDS S Y NC S OURCE.
525 LI NE NTSC NO FILTERING
SLOW CLAMP TO 0. 00 AT 6.72µs
10 20
F1
L76
30 40 50 60
50
–50
0
0.4
0.2
0
–0.2
–0.4
PRECISION MODE OFF
SYNCHRO NOUS SY NC = B
FRAMES SELECTED 1, 2
VOLTS IRE:FLT
MICROSECONDS
06234-132
Figure 134. NTSC Chroma
VOLTS
NOI S E RE DUCTION: 0. 00dB
APL = 39. 1%
625 LI NE NTSC NO FILTERING
SLOW CLAMP TO 0.00 AT 6. 72µs
10020
L608
30 40 50 60
0.4
0.2
0.6
0
–0.2
PRECISION MODE OFF
SYNCHRONOUS SOUND-IN-SYNC OFF
FRAME S S E LECT E D 1, 2, 3, 4
MICROSECONDS
06234-133
Figure 135. PAL Color Bars (75%)
VOLTS
APL NEEDS S Y NC S OURCE.
625 LINE PAL NO FILTERING
SLOW CLAMP TO 0. 00 AT 6.72µs
10020
L575
30 40 50 60
0
0.5
MICROSECONDS 70
NO BUNCH S I GNAL
PRECISION MODE OFF
SYNCHRONOUS SOUND-IN-SYNC OFF
FRAMES SELECTED 1
06234-134
Figure 136. PAL Luma
VOLTS
APL NEEDS S Y NC S OURCE.
625 LI NE PAL NO FILTERING
SLOW CLAMP TO 0.00 AT 6. 72µs
10020
L575
30 40 50 60
0
0.5
–0.5
NO BUNCH SIGNAL
PRECISION MODE OFF
SYNCHRONOUS SOUND-IN-SYNC OFF
FRAMES SELECTED 1
MICROSECONDS
06234-135
Figure 137. PAL Chroma
ADV7390/ADV7391/ADV7392/ADV7393 Data Sheet
Rev. J | Page 90 of 107
VIDEO STANDARDS
F
V
H*
F
F
272T
4T
*1
4T 1920T
EAV CODE SAV CODE DIGITAL
ACTIVE LINE
4 CLOCK 4 CLOCK
2112 2116 2156 2199
044 188 192 2111
0
00
00
00
0
F
FF
V
H* C
bC
rC
r
YY
FV H* = FVH AND PARITY BITS
SAV/EAV: LINE 1–562: F = 0
SAV/EAV: LINE 563– 1125: F = 1
SAV/EAV: LINE 1–20; 561–583; 1124–1125: V = 1
SAV/EAV: LINE 21–560; 584–1123: V = 0
FOR A FRAME RATE OF 30Hz: 40 SAMPLES
FOR A FRAME RATE OF 25Hz: 480 S AM P LES
INPUT PIXELS
ANALOG WAVEFORM
SAMPLE NUMBER
SMPTE 274M
DIGITAL HORIZONTAL BLANKI NG
ANCILLARY DATA
(O P TIONAL) OR BLANKING CODE
0
H
DATUM
06234-136
Figure 138. EAV/SAV Input Data Timing Diagram (SMPTE 274M)
Y
EAV CODE ANCILLARY DATA
(OPTIONAL) SAV CODE DIGITAL
ACTIVE LINE
719 723 736 799 853 0
FVH* = FVH AND PARITY BITS
SAV: LI NE 43–525 = 200H
SAV: LI NE 1–42 = 2AC
EAV: LI NE 43–525 = 274H
EAV: LI NE 1–42 = 2D8
4 CLO CK 4 CLO CK
857 719
0
H
DATUM
DIGITAL HORIZONTAL BLANKING
0
00
00
00
0C
bC
rC
r
YY
F
V
H*
SMPTE 293M
INPUT PIXELS
ANALOG WAVEFORM
SAMPLE NUMBER
F
FF
FF
V
H*
06234-137
Figure 139. EAV/SAV Input Data Timing Diagram (SMPTE 293M)
VERTICAL BLANK
522 523 524 525 1 2 5 6 7 8 9 12 13 14 15 16 42 43 44
ACTIVE
VIDEO
ACTIVE
VIDEO
06234-138
Figure 140. SMPTE 293M (525p)
Data Sheet ADV7390/ADV7391/ADV7392/ADV7393
Rev. J | Page 91 of 107
622 623 624 625 10 11 43 44 45
4
VERTICAL BL ANK ACTIVE
VIDEO
ACTIVE
VIDEO
1 2 5 6 7 8 9 12 13
06234-139
Figure 141. ITU-R BT.1358 (625p)
747 748 749 750 26 27
25 744 745
DISPLAY
VERTICAL BLANKING INT ERVAL
1234 5 678
06234-140
Figure 142. SMPTE 296M (720p)
DISPLAY
1124 1125 21
43 20 22 560
FIELD 1
DISPLAY
561 562 563 564 567 568 569 570 584
566565 583 585 1123
FIELD 2
VERTICAL BLANKING INTERVAL
VERTICAL BLANKING INTERVAL
1 2 5 6 7 8
06234-141
Figure 143. SMPTE 274M (1080i)
ADV7390/ADV7391/ADV7392/ADV7393 Data Sheet
Rev. J | Page 92 of 107
CONFIGURATION SCRIPTS
The scripts listed in the following pages can be used to configure the ADV7390/ADV7391/ADV7392/ADV7393 for basic operation.
Certain features are enabled by default. If required for a specific application, additional features can be enabled. Table 63 lists the scripts
available for SD modes of operation. Similarly, Table 98 and Table 115 list the scripts available for ED and HD modes of operation,
respectively. For all scripts, only the necessary register writes are included. All other registers are assumed to have their default values. The
WLCSP package supports only scripts in Table 65, Table 79, Table 82, and Table 96. In those scripts, Subaddress 0x00 must be set to 0x10.
STANDARD DEFINITION
Table 63. SD Configuration Scripts
Input Format Input Data Width1 Synchronization Format Input Color Space Output Color Space Table Number
525i (NTSC) 8-bit SDR EAV/SAV YCrCb YPrPb Table 64
525i (NTSC) 8-bit SDR EAV/SAV YCrCb CVBS/Y-C (S-Video) Table 65
525i (NTSC) 8-bit SDR HSYNC/
VSYNC YCrCb YPrPb Table 66
525i (NTSC) 8-bit SDR EAV/SAV YCrCb RGB Table 67
525i (NTSC) 8-bit SDR HSYNC
/
VSYNC YCrCb RGB Table 68
525i (NTSC) 10-bit SDR EAV/SAV YCrCb YPrPb Table 69
525i (NTSC) 10-bit SDR HSYNC/
VSYNC YCrCb YPrPb Table 70
525i (NTSC) 10-bit SDR HSYNC/
VSYNC YCrCb CVBS/Y-C (S-Video) Table 71
525i (NTSC) 10-bit SDR EAV/SAV YCrCb RGB Table 72
525i (NTSC) 10-bit SDR HSYNC/
VSYNC YCrCb RGB Table 73
525i (NTSC) 16-bit SDR HSYNC/
VSYNC YCrCb YPrPb Table 74
525i (NTSC) 16-bit SDR HSYNC/
VSYNC YCrCb RGB Table 75
525i (NTSC) 16-bit SDR HSYNC/
VSYNC RGB YPrPb Table 76
525i (NTSC) 16-bit SDR HSYNC/
VSYNC RGB CVBS/Y-C (S-Video) Table 77
525i (NTSC) 16-bit SDR HSYNC/
VSYNC RGB RGB Table 78
NTSC Sq. Pixel 8-bit SDR EAV/SAV YCrCb CVBS/Y-C (S-Video) Table 79
NTSC Sq. Pixel 16-bit SDR HSYNC/
VSYNC RGB CVBS/Y-C (S-Video) Table 80
625i (PAL) 8-bit SDR EAV/SAV YCrCb YPrPb Table 81
625i (PAL) 8-bit SDR EAV/SAV YCrCb CVBS/Y-C (S-Video) Table 82
625i (PAL) 8-bit SDR HSYNC/
VSYNC YCrCb YPrPb Table 83
625i (PAL)
8-bit SDR
EAV/SAV
YCrCb
RGB
Table 84
625i (PAL) 8-bit SDR HSYNC/
VSYNC YCrCb RGB Table 85
625i (PAL) 10-bBit SDR EAV/SAV YCrCb YPrPb Table 86
625i (PAL) 10-bit SDR HSYNC/
VSYNC YCrCb YPrPb Table 87
625i (PAL) 10-bit SDR HSYNC/
VSYNC YCrCb CVBS/Y-C (S-Video) Table 88
625i (PAL) 10-bit SDR EAV/SAV YCrCb RGB Table 89
625i (PAL) 10-bit SDR HSYNC/
VSYNC YCrCb RGB Table 90
625i (PAL) 16-bit SDR HSYNC/
VSYNC YCrCb YPrPb Table 91
625i (PAL) 16-bit SDR HSYNC/
VSYNC YCrCb RGB Table 92
625i (PAL) 16-bit SDR HSYNC/
VSYNC RGB YPrPb Table 93
625i (PAL) 16-bit SDR HSYNC/
VSYNC RGB CVBS/Y-C (S-Video) Table 94
625i (PAL) 16-bit SDR HSYNC/
VSYNC RGB RGB Table 95
PAL Sq. Pixel 8-bit SDR EAV/SAV YCrCb CVBS/Y-C (S-Video) Table 96
PAL Sq. Pixel 16-bit SDR HSYNC/
VSYNC RGB CVBS/Y-C (S-Video) Table 97
1 SDR = single data rate.
Data Sheet ADV7390/ADV7391/ADV7392/ADV7393
Rev. J | Page 93 of 107
Table 64. 8-Bit 525i YCrCb In (EAV/SAV), YPrPb Out
Subaddress Setting Description
0x17 0x02 Software reset.
0x00 0x1C All DACs enabled. PLL enabled (16×).
0x01 0x00 SD input mode.
0x80 0x10 NTSC standard. SSAF luma filter
enabled.
1.3 MHz chroma filter enabled.
0x82 0xC9 Pixel data valid. YPrPb out. SSAF PrPb
filter enabled. Active video edge
control enabled. Pedestal enabled.
Table 65. 8-Bit 525i YCrCb In (EAV/SAV), CVBS/Y-C Out
Subaddress Setting Description
0x17 0x02 Software reset
0x00
0x1C
All DACs enabled. PLL enabled (16×).
0x10 WLCSP required.
0x01 0x00 SD input mode.
0x80
0x10
NTSC standard. SSAF luma filter
enabled. 1.3 MHz chroma filter enabled.
0x82 0xCB Pixel data valid. CVBS/Y-C (S-Video)
out. SSAF PrPb filter enabled. Active
video edge control enabled. Pedestal
enabled.
Table 66. 8-Bit 525i YCrCb In, YPrPb Out
Subaddress Setting Description
0x17 0x02 Software reset.
0x00 0x1C All DACs enabled. PLL enabled (16×).
0x01 0x00 SD input mode.
0x80 0x10 NTSC standard. SSAF luma filter
enabled. 1.3 MHz chroma filter enabled.
0x82 0xC9 Pixel data valid. YPrPb out. SSAF PrPb
filter enabled. Active video edge
control enabled. Pedestal enabled.
0x8A 0x0C Timing Mode 2 (slave). HSYNC/VSYNC
synchronization.
Table 67. 8-Bit 525i YCrCb In (EAV/SAV), RGB Out
Subaddress Setting Description
0x17 0x02 Software reset.
0x00 0x1C All DACs enabled. PLL enabled (16×).
0x01 0x00 SD input mode.
0x02 0x10 RGB output enabled. RGB output sync
enabled.
0x80 0x10 NTSC standard. SSAF luma filter
enabled. 1.3 MHz chroma filter enabled.
0x82 0xC9 Pixel data valid. RGB out. SSAF PrPb
filter enabled. Active video edge
control enabled. Pedestal enabled.
Table 68. 8-Bit 525i YCrCb In, RGB Out
Subaddress Setting Description
0x17 0x02 Software reset.
0x00 0x1C All DACs enabled. PLL enabled (16×).
0x01 0x00 SD input mode.
0x02 0x10 RGB output enabled. RGB output sync
enabled.
0x80 0x10 NTSC standard. SSAF luma filter
enabled. 1.3 MHz chroma filter enabled.
0x82 0xC9 Pixel data valid. RGB out. SSAF PrPb
filter enabled. Active video edge
control enabled. Pedestal enabled.
0x8A 0x0C Timing Mode 2 (slave). HSYNC/VSYNC
synchronization.
Table 69. 10-Bit 525i YCrCb In (EAV/SAV), YPrPb Out
Subaddress Setting Description
0x17 0x02 Software reset.
0x00 0x1C All DACs enabled. PLL enabled (16×).
0x01
0x00
SD input mode.
0x80 0x10 NTSC standard. SSAF luma filter
enabled. 1.3 MHz chroma filter enabled.
0x82 0xC9 Pixel data valid. YPrPb out. SSAF PrPb
filter enabled. Active video edge
control enabled. Pedestal enabled.
0x88 0x10 10-bit input enabled.
Table 70. 10-Bit 525i YCrCb In, YPrPb Out
Subaddress Setting Description
0x17 0x02 Software reset.
0x00 0x1C All DACs enabled. PLL enabled (16×).
0x01 0x00 SD input mode.
0x80 0x10 NTSC standard. SSAF luma filter
enabled. 1.3 MHz chroma filter enabled.
0x82 0xC9 Pixel data valid. YPrPb out. SSAF PrPb
filter enabled. Active video edge
control enabled. Pedestal enabled.
0x88 0x10 10-bit input enabled.
0x8A 0x0C Timing Mode 2 (slave). HSYNC/VSYNC
synchronization.
ADV7390/ADV7391/ADV7392/ADV7393 Data Sheet
Rev. J | Page 94 of 107
Table 71. 10-Bit 525i YCrCb In, CVBS/Y-C Out
Subaddress Setting Description
0x17 0x02 Software reset.
0x00 0x1C All DACs enabled. PLL enabled (16×).
0x01 0x00 SD input mode.
0x80 0x10 NTSC standard. SSAF luma filter
enabled. 1.3 MHz chroma filter enabled.
0x82 0xCB Pixel data valid. CVBS/Y-C (S-Video) out.
SSAF PrPb filter enabled. Active video
edge control enabled. Pedestal enabled.
0x88 0x10 10-bit input enabled.
0x8A 0x0C Timing Mode 2 (slave). HSYNC/VSYNC
synchronization.
Table 72. 10-Bit 525i YCrCb In (EAV/SAV), RGB Out
Subaddress Setting Description
0x17 0x02 Software reset.
0x00 0x1C All DACs enabled. PLL enabled (16×).
0x01 0x00 SD input mode.
0x02 0x10 RGB output enabled. RGB output sync
enabled.
0x80 0x10 NTSC standard. SSAF luma filter
enabled. 1.3 MHz chroma filter enabled.
0x82 0xC9 Pixel data valid. RGB out. SSAF PrPb
filter enabled. Active video edge
control enabled. Pedestal enabled.
0x88 0x10 10-bit input enabled.
Table 73. 10-Bit 525i YCrCb In, RGB Out
Subaddress Setting Description
0x17 0x02 Software reset.
0x00 0x1C All DACs enabled. PLL enabled (16×).
0x01 0x00 SD input mode.
0x02 0x10 RGB output enabled. RGB output sync
enabled.
0x80 0x10 NTSC standard. SSAF luma filter
enabled. 1.3 MHz chroma filter enabled.
0x82 0xC9 Pixel data valid. RGB out. SSAF PrPb
filter enabled. Active video edge
control enabled. Pedestal enabled.
0x88 0x10 10-bit input enabled.
0x8A 0x0C Timing Mode 2 (slave). HSYNC/VSYNC
synchronization.
Table 74. 16-Bit 525i YCrCb In, YPrPb Out
Subaddress Setting Description
0x17 0x02 Software reset.
0x00 0x1C All DACs enabled. PLL enabled (16×).
0x01 0x00 SD input mode.
0x80 0x10 NTSC standard. SSAF luma filter
enabled. 1.3 MHz chroma filter enabled.
0x82 0xC9 Pixel data valid. YPrPb out. SSAF PrPb
filter enabled. Active video edge
control enabled. Pedestal enabled.
0x88 0x10 16-bit RGB input enabled.
0x8A 0x0C Timing Mode 2 (slave). HSYNC/VSYNC
synchronization.
Table 75. 16-Bit 525i YCrCb In, RGB Out
Subaddress Setting Description
0x17 0x02 Software reset
0x00 0x1C All DACs enabled. PLL enabled (16×).
0x01 0x00 SD input mode.
0x02 0x10 RGB output enabled. RGB output sync
enabled.
0x80 0x10 NTSC standard. SSAF luma filter
enabled. 1.3 MHz chroma filter enabled.
0x82 0xC9 Pixel data valid. RGB out. SSAF PrPb
filter enabled. Active video edge
control enabled. Pedestal enabled.
0x88 0x10 16-bit RGB input enabled.
0x8A
0x0C
Timing Mode 2 (slave).
HSYNC
/
VSYNC
synchronization.
Table 76. 16-Bit 525i RGB In, YPrPb Out
Subaddress Setting Description
0x17 0x02 Software reset.
0x00
0x1C
All DACs enabled. PLL enabled (16×).
0x01 0x00 SD input mode.
0x80 0x10 NTSC standard. SSAF luma filter
enabled. 1.3 MHz chroma filter enabled.
0x82 0xC9 Pixel data valid. YPrPb out. SSAF PrPb
filter enabled. Active video edge
control enabled. Pedestal enabled.
0x87 0x80 RGB input enabled.
0x88
0x10
16-bit RGB input enabled.
0x8A 0x0C Timing Mode 2 (slave). HSYNC/VSYNC
synchronization.
Data Sheet ADV7390/ADV7391/ADV7392/ADV7393
Rev. J | Page 95 of 107
Table 77. 16-Bit 525i RGB In, CVBS/Y-C Out
Subaddress Setting Description
0x17 0x02 Software reset.
0x00 0x1C All DACs enabled. PLL enabled (16×).
0x01 0x00 SD input mode.
0x80 0x10 NTSC standard. SSAF luma filter
enabled. 1.3 MHz chroma filter enabled.
0x82 0xCB Pixel data valid. CVBS/Y-C (S-Video) out.
SSAF PrPb filter enabled. Active video
edge control enabled. Pedestal enabled.
0x87 0x80 RGB input enabled.
0x88 0x10 16-bit RGB input enabled.
0x8A 0x0C Timing Mode 2 (slave). HSYNC/VSYNC
synchronization.
Table 78. 16-Bit 525i RGB In, RGB Out
Subaddress Setting Description
0x17 0x02 Software reset.
0x00 0x1C All DACs enabled. PLL enabled (16×).
0x01 0x00 SD input mode.
0x02 0x10 RGB output enabled. RGB output sync
enabled.
0x80 0x10 NTSC standard. SSAF luma filter
enabled. 1.3 MHz chroma filter enabled.
0x82 0xC9 Pixel data valid. RGB out. SSAF PrPb
filter enabled. Active video edge
control enabled. Pedestal enabled.
0x87 0x80 RGB input enabled.
0x88 0x10 16-bit RGB input enabled.
0x8A 0x0C Timing Mode 2 (slave). HSYNC/VSYNC
synchronization.
Table 79. 8-Bit NTSC Square Pixel YCrCb In (EAV/SAV),
CVBS/Y-C Out
Subaddress
Setting
Description
0x17 0x02 Software reset
0x00 0x1C All DACs enabled. PLL enabled (16×).
0x10 WLCSP required.
0x01 0x00 SD input mode.
0x80 0x10 NTSC standard. SSAF luma filter
enabled. 1.3 MHz chroma filter enabled.
0x82 0xDB Pixel data valid. CVBS/Y-C (S-Video)
out. SSAF PrPb filter enabled. Active
video edge control enabled. Pedestal
enabled. Square pixel mode enabled.
0x8C 0x55 Subcarrier frequency register values
for CVBS and/or S-Video (Y-C) output in
NTSC square pixel mode (24.5454 MHz
input clock).
0x8D 0x55
0x8E 0x55
0x8F 0x25
Table 80. 16-Bit NTSC Square Pixel RGB In, CVBS/Y-C Out
Subaddress Setting Description
0x17 0x02 Software reset.
0x00 0x1C All DACs enabled. PLL enabled (16×).
0x01 0x00 SD input mode.
0x80 0x10 NTSC standard. SSAF luma filter
enabled. 1.3 MHz chroma filter enabled.
0x82 0xDB Pixel data valid. CVBS/Y-C (S-Video) out.
SSAF PrPb filter enabled. Active video
edge control enabled. Pedestal
enabled. Square pixel mode enabled.
0x87 0x80 RGB input enabled.
0x88 0x10 16-bit RGB input enabled.
0x8A 0x0C Timing Mode 2 (slave). HSYNC/VSYNC
synchronization.
0x8C 0x55 Subcarrier frequency register values
for CVBS and/or S-Video (Y-C) output in
NTSC square pixel mode (24.5454 MHz
input clock).
0x8D 0x55
0x8E
0x55
0x8F 0x25
Table 81. 8-Bit 625i YCrCb In (EAV/SAV), YPrPb Out
Subaddress Setting Description
0x17
0x02
Software reset.
0x00 0x1C All DACs enabled. PLL enabled (16×).
0x01 0x00 SD input mode.
0x80 0x11 PAL standard. SSAF luma filter enabled.
1.3 MHz chroma filter enabled.
0x82 0xC1 Pixel data valid. YPrPb out. SSAF PrPb
filter enabled. Active video edge
control enabled.
Table 82. 8-Bit 625i YCrCb In (EAV/SAV), CVBS/Y-C Out
Subaddress Setting Description
0x17 0x02 Software reset.
0x00 0x1C All DACs enabled. PLL enabled (16×).
0x10 WLCSP required.
0x01 0x00 SD input mode.
0x80 0x11 PAL standard. SSAF luma filter enabled.
1.3 MHz chroma filter enabled.
0x82 0xC3 Pixel data valid. CVBS/Y-C (S-Video)
out. SSAF PrPb filter enabled. Active
video edge control enabled.
0x8C 0xCB Subcarrier frequency register values
for CVBS and/or S-Video (Y-C) output
in PAL mode (27 MHz input clock).
0x8D 0x8A
0x8E 0x09
0x8F 0x2A
ADV7390/ADV7391/ADV7392/ADV7393 Data Sheet
Rev. J | Page 96 of 107
Table 83. 8-Bit 625i YCrCb In, YPrPb Out
Subaddress Setting Description
0x17 0x02 Software reset.
0x00 0x1C All DACs enabled. PLL enabled (16×).
0x01 0x00 SD input mode.
0x80 0x11 PAL standard. SSAF luma filter enabled.
1.3 MHz chroma filter enabled.
0x82 0xC1 Pixel data valid. YPrPb out. SSAF PrPb
filter enabled. Active video edge
control enabled.
0x8A 0x0C Timing Mode 2 (slave). HSYNC/VSYNC
synchronization.
Table 84. 8-Bit 625i YCrCb In (EAV/SAV), RGB Out
Subaddress Setting Description
0x17 0x02 Software reset.
0x00 0x1C All DACs enabled. PLL enabled (16×).
0x01 0x00 SD input mode.
0x02 0x10 RGB output enabled. RGB output sync
enabled.
0x80 0x11 PAL standard. SSAF luma filter enabled.
1.3 MHz chroma filter enabled.
0x82 0xC1 Pixel data valid. RGB out. SSAF PrPb
filter enabled. Active video edge
control enabled.
Table 85. 8-Bit 625i YCrCb In, RGB Out
Subaddress Setting Description
0x17 0x02 Software reset.
0x00 0x1C All DACs enabled. PLL enabled (16×).
0x01 0x00 SD input mode.
0x02 0x10 RGB output enabled. RGB output sync
enabled.
0x80 0x11 PAL standard. SSAF luma filter enabled.
1.3 MHz chroma filter enabled.
0x82 0xC1 Pixel data valid. RGB out. SSAF PrPb
filter enabled. Active video edge
control enabled.
0x8A
0x0C
Timing Mode 2 (slave).
HSYNC
/
VSYNC
synchronization.
Table 86. 10-Bit 625i YCrCb In (EAV/SAV), YPrPb Out
Subaddress Setting Description
0x17 0x02 Software reset.
0x00
0x1C
All DACs enabled. PLL enabled (16×).
0x01 0x00 SD input mode.
0x80 0x11 PAL standard. SSAF luma filter enabled.
1.3 MHz chroma filter enabled.
0x82 0xC1 Pixel data valid. YPrPb out. SSAF PrPb
filter enabled. Active video edge
control enabled.
0x88 0x10 10-bit input enabled.
Table 87. 10-Bit 625i YCrCb In, YPrPb Out
Subaddress Setting Description
0x17 0x02 Software reset.
0x00 0x1C All DACs enabled. PLL enabled (16×).
0x01 0x00 SD input mode.
0x80 0x11 PAL standard. SSAF luma filter enabled.
1.3 MHz chroma filter enabled.
0x82 0xC1 Pixel data valid. YPrPb out. SSAF PrPb
filter enabled. Active video edge
control enabled.
0x88 0x10 10-bit input enabled.
0x8A 0x0C Timing Mode 2 (slave). HSYNC/VSYNC
synchronization.
Table 88. 10-Bit 625i YCrCb In, CVBS/Y-C Out
Subaddress Setting Description
0x17 0x02 Software reset.
0x00 0x1C All DACs enabled. PLL enabled (16×).
0x01 0x00 SD input mode.
0x80 0x11 PAL standard. SSAF luma filter enabled.
1.3 MHz chroma filter enabled.
0x82 0xC3 Pixel Data Valid. CVBS/Y-C (S-Video)
Out. SSAF PrPb filter enabled. Active
video edge control enabled.
0x88 0x10 10-bit input enabled.
0x8A 0x0C Timing Mode 2 (slave). HSYNC/VSYNC
synchronization.
0x8C 0xCB Subcarrier frequency register values
for CVBS and/or S-Video (Y-C) output
in PAL mode (27 MHz input clock).
0x8D 0x8A
0x8E 0x09
0x8F 0x2A
Table 89. 10-Bit 625i YCrCb In (EAV/SAV), RGB Out
Subaddress Setting Description
0x17 0x02 Software reset.
0x00 0x1C All DACs enabled. PLL enabled (16×).
0x01 0x00 SD input mode.
0x02 0x10 RGB output enabled. RGB output sync
enabled.
0x80 0x11 PAL standard. SSAF luma filter enabled.
1.3 MHz chroma filter enabled.
0x82 0xC1 Pixel data valid. RGB out. SSAF PrPb
filter enabled. Active video edge
control enabled.
0x88
0x10
10-bit input enabled.
Data Sheet ADV7390/ADV7391/ADV7392/ADV7393
Rev. J | Page 97 of 107
Table 90. 10-Bit 625i YCrCb In, RGB Out
Subaddress Setting Description
0x17 0x02 Software reset.
0x00 0x1C All DACs enabled. PLL enabled (16×).
0x01 0x00 SD input mode.
0x02 0x10 RGB output enabled. RGB output sync
enabled.
0x80 0x11 PAL standard. SSAF luma filter enabled.
1.3 MHz chroma filter enabled.
0x82 0xC1 Pixel data valid. RGB out. SSAF PrPb
filter enabled. Active video edge
control enabled.
0x88 0x10 10-bit input enabled.
0x8A 0x0C Timing Mode 2 (slave). HSYNC/VSYNC
synchronization.
Table 91. 16-Bit 625i YCrCb In, YPrPb Out
Subaddress Setting Description
0x17 0x02 Software reset.
0x00
0x1C
All DACs enabled. PLL enabled (16×).
0x01 0x00 SD input mode.
0x80 0x11 PAL standard. SSAF luma filter enabled.
1.3 MHz chroma filter enabled.
0x82 0xC1 Pixel data valid. YPrPb out. SSAF PrPb
filter enabled. Active video edge
control enabled.
0x88 0x10 16-bit RGB input enabled.
0x8A 0x0C Timing Mode 2 (slave). HSYNC/VSYNC
synchronization.
Table 92. 16-Bit 625i YCrCb In, RGB Out
Subaddress Setting Description
0x17 0x02 Software reset.
0x00
0x1C
All DACs enabled. PLL enabled (16×).
0x01 0x00 SD input mode.
0x02 0x10 RGB output enabled. RGB output sync
enabled.
0x80 0x11 PAL standard. SSAF luma filter enabled.
1.3 MHz chroma filter enabled.
0x82 0xC1 Pixel data valid. RGB out. SSAF PrPb
filter enabled. Active video edge
control enabled.
0x88 0x10 16-bit RGB input enabled.
0x8A 0x0C Timing Mode 2 (slave). HSYNC/VSYNC
synchronization.
Table 93. 16-Bit 625i RGB In, YPrPb Out
Subaddress Setting Description
0x17 0x02 Software reset.
0x00 0x1C All DACs enabled. PLL enabled (16×).
0x01 0x00 SD input mode.
0x80 0x11 PAL standard. SSAF luma filter enabled.
1.3 MHz chroma filter enabled.
0x82 0xC1 Pixel data valid. YPrPb out. SSAF PrPb
filter enabled. Active video edge
control enabled.
0x87 0x80 RGB input enabled.
0x88 0x10 16-bit RGB input enabled.
0x8A 0x0C Timing Mode 2 (slave). HSYNC/VSYNC
synchronization.
Table 94. 16-Bit 625i RGB In, CVBS/Y-C Out
Subaddress Setting Description
0x17 0x02 Software reset.
0x00 0x1C All DACs enabled. PLL enabled (16×).
0x01 0x00 SD input mode.
0x80 0x11 PAL standard. SSAF luma filter enabled.
1.3 MHz chroma filter enabled.
0x82 0xC3 Pixel data valid. CVBS/Y-C (S-Video)
out. SSAF PrPb filter enabled. Active
video edge control enabled.
0x87 0x80 RGB input enabled.
0x88 0x10 16-bit RGB input enabled.
0x8A 0x0C Timing Mode 2 (slave). HSYNC/VSYNC
synchronization.
0x8C 0xCB Subcarrier frequency register values
for CVBS and/or S-Video (Y-C) output
in PAL mode (27 MHz input clock).
0x8D 0x8A
0x8E 0x09
0x8F 0x2A
Table 95. 16-Bit 625i RGB In, RGB Out
Subaddress Setting Description
0x17 0x02 Software reset.
0x00 0x1C All DACs enabled. PLL enabled (16×).
0x01 0x00 SD input mode.
0x02 0x10 RGB output enabled. RGB output sync
enabled.
0x80 0x11 PAL standard. SSAF luma filter enabled.
1.3 MHz chroma filter enabled.
0x82 0xC1 Pixel data valid. RGB out. SSAF PrPb
filter enabled. Active video edge
control enabled.
0x87 0x80 RGB input enabled.
0x88 0x10 16-bit RGB input enabled.
0x8A 0x0C Timing Mode 2 (slave). HSYNC/VSYNC
synchronization.
ADV7390/ADV7391/ADV7392/ADV7393 Data Sheet
Rev. J | Page 98 of 107
Table 96. 8-Bit PAL Square Pixel YCrCb In (EAV/SAV),
CVBS/Y-C Out
Subaddress
Setting
Description
0x17 0x02 Software reset.
0x00 0x1C All DACs enabled. PLL enabled (16×).
0x10 WLCSP required.
0x01 0x00 SD input mode.
0x80 0x11 PAL standard. SSAF luma filter enabled.
1.3 MHz chroma filter enabled.
0x82 0xD3 Pixel data valid. CVBS/Y-C (S-Video)
out. SSAF PrPb filter enabled. Active
video edge control enabled. Square
pixel mode enabled.
0x8C 0x0C Subcarrier frequency register values
for CVBS and/or S-Video (Y-C) output
in PAL square pixel mode (29.5 MHz
input clock).
0x8D 0x8C
0x8E 0x79
0x8F 0x26
Table 97. 16-Bit PAL Square Pixel RGB In, CVBS/Y-C Out
Subaddress Setting Description
0x17 0x02 Software reset.
0x00 0x1C All DACs enabled. PLL enabled (16×).
0x01 0x00 SD input mode.
0x80 0x11 PAL standard. SSAF luma filter enabled.
1.3 MHz chroma filter enabled.
0x82 0xD3 Pixel data valid. CVBS/Y-C (S-Video)
out. SSAF PrPb filter enabled. Active
video edge control enabled. Square
pixel mode enabled.
0x87 0x80 RGB input enabled.
0x88 0x10 16-bit RGB input enabled.
0x8A 0x0C Timing Mode 2 (slave). HSYNC/VSYNC
synchronization.
0x8C 0x0C Subcarrier frequency register values
for CVBS and/or S-Video (Y-C) output
in PAL square pixel mode (29.5 MHz
input clock).
0x8D 0x8C
0x8E
0x79
0x8F 0x26
Data Sheet ADV7390/ADV7391/ADV7392/ADV7393
Rev. J | Page 99 of 107
ENHANCED DEFINITION
Table 98. ED Configuration Scripts
Input Format Input Data Width Synchronization Format Input Color Space Output Color Space Table Number
525p 8-bit DDR EAV/SAV YCrCb YPrPb Table 107
525p 8-bit DDR EAV/SAV YCrCb RGB Table 109
525p 10-bit DDR EAV/SAV YCrCb YPrPb Table 108
525p 10-bit DDR EAV/SAV YCrCb RGB Table 110
525p 16-bit SDR EAV/SAV YCrCb YPrPb Table 99
525p 16-bit SDR
HSYNC/VSYNC YCrCb YPrPb Table 100
525p 16-bit SDR EAV/SAV YCrCb RGB Table 101
525p 16-bit SDR
HSYNC/VSYNC YCrCb RGB Table 102
625p 8-bit DDR EAV/SAV YCrCb YPrPb Table 111
625p 8-bit DDR EAV/SAV YCrCb RGB Table 113
625p 10-bit DDR EAV/SAV YCrCb YPrPb Table 112
625p 10-bit DDR EAV/SAV YCrCb RGB Table 114
625p 16-bit SDR EAV/SAV YCrCb YPrPb Table 103
625p 16-bit SDR
HSYNC/VSYNC YCrCb YPrPb Table 104
625p 16-bit SDR EAV/SAV YCrCb RGB Table 105
625p 16-bit SDR
HSYNC/VSYNC YCrCb RGB Table 106
Table 99. 16-Bit 525p YCrCb In (EAV/SAV), YPrPb Out
Subaddress Setting Description
0x17 0x02 Software reset.
0x00 0x1C All DACs enabled. PLL enabled (8×).
0x01 0x10 ED-SDR input mode.
0x30 0x04
525p at 59.94 Hz. EAV/SAV synchroni-
zation. EIA-770.2 output levels.
0x31 0x01 Pixel data valid.
Table 100. 16-Bit 525p YCrCb In, YPrPb Out
Subaddress Setting Description
0x17 0x02 Software reset.
0x00 0x1C All DACs enabled. PLL enabled (8×).
0x01 0x10 ED-SDR input mode.
0x30 0x00
525p at 59.94 Hz. HSYNC/VSYNC synch-
ronization. EIA-770.2 output levels.
0x31 0x01 Pixel data valid.
Table 101. 16-Bit 525p YCrCb In (EAV/SAV), RGB Out
Subaddress Setting Description
0x17 0x02 Software reset.
0x00 0x1C All DACs enabled. PLL enabled (8×).
0x01 0x10 ED-SDR input mode.
0x02 0x10
RGB output enabled. RGB output sync
enabled.
0x30 0x04
525p at 59.94 Hz. EAV/SAV synchroni-
zation. EIA-770.2 output levels.
0x31 0x01 Pixel data valid.
Table 102. 16-Bit 525p YCrCb In, RGB Out
Subaddress Setting Description
0x17 0x02 Software reset.
0x00 0x1C All DACs enabled. PLL enabled (8×).
0x01 0x10 ED-SDR input mode.
0x02 0x10
RGB output enabled. RGB output sync
enabled.
0x30 0x00
525p at 59.94 Hz. HSYNC/VSYNC synch-
ronization. EIA-770.2 output levels.
0x31 0x01 Pixel data valid.
Table 103. 16-Bit 625p YCrCb In (EAV/SAV), YPrPb Out
Subaddress Setting Description
0x17 0x02 Software reset.
0x00 0x1C All DACs enabled. PLL enabled (8×).
0x01 0x10 ED-SDR input mode.
0x30 0x1C
625p at 50 Hz. EAV/SAV synchroni-
zation. EIA-770.2 output levels.
0x31 0x01 Pixel data valid.
Table 104. 16-Bit 625p YCrCb In, YPrPb Out
Subaddress Setting Description
0x17 0x02 Software reset.
0x00 0x1C All DACs enabled. PLL enabled (8×).
0x01 0x10 ED-SDR input mode.
0x30 0x18
625p at 50 Hz. HSYNC/VSYNC synch-
ronization. EIA-770.2 output levels.
0x31 0x01 Pixel data valid.
ADV7390/ADV7391/ADV7392/ADV7393 Data Sheet
Rev. J | Page 100 of 107
Table 105. 16-Bit 625p YCrCb In (EAV/SAV), RGB Out
Subaddress Setting Description
0x17 0x02 Software reset.
0x00 0x1C All DACs enabled. PLL enabled (8×).
0x01 0x10 ED-SDR input mode.
0x02 0x10
RGB output enabled. RGB output sync
enabled.
0x30 0x1C
625p at 50 Hz. EAV/SAV synchroniza-
tion. EIA-770.2 output levels.
0x31 0x01 Pixel data valid.
Table 106. 16-Bit 625p YCrCb In, RGB Out
Subaddress Setting Description
0x17 0x02 Software reset.
0x00 0x1C All DACs enabled. PLL enabled (8×).
0x01 0x10 ED-SDR input mode.
0x02 0x10
RGB output enabled. RGB output sync
enabled.
0x30 0x18
625p at 50 Hz. HSYNC/VSYNC synch-
ronization. EIA-770.2 output levels.
0x31 0x01 Pixel data valid.
Table 107. 8-Bit 525p YCrCb In (EAV/SAV), YPrPb Out
Subaddress Setting Description
0x17 0x02 Software reset.
0x00 0x1C All DACs enabled. PLL enabled (8×).
0x01 0x20
ED-DDR input mode. Luma data
clocked on falling edge of CLKIN.
0x30 0x04
525p at 59.94 Hz. EAV/SAV synchro-
nization. EIA-770.2 output levels.
0x31 0x01 Pixel data valid.
Table 108. 10-Bit 525p YCrCb In (EAV/SAV), YPrPb Out
Subaddress Setting Description
0x17 0x02 Software reset.
0x00 0x1C All DACs enabled. PLL enabled (8×).
0x01 0x20
ED-DDR input mode. Luma data
clocked on falling edge of CLKIN.
0x30 0x04
525p at 59.94 Hz. EAV/SAV synchro-
nization. EIA-770.2 output levels.
0x31 0x01 Pixel data valid.
0x33 0x6C 10-bit input enabled.
Table 109. 8-Bit 525p YCrCb In (EAV/SAV), RGB Out
Subaddress Setting Description
0x17 0x02 Software reset.
0x00 0x1C All DACs enabled. PLL enabled (8×).
0x01 0x20
ED-DDR input mode. Luma data
clocked on falling edge of CLKIN.
0x02 0x10
RGB output enabled. RGB output sync
enabled.
0x30 0x04
525p at 59.94 Hz. EAV/SAV synchro-
nization. EIA-770.2 output levels.
0x31 0x01 Pixel data valid.
Table 110. 10-Bit 525p YCrCb In (EAV/SAV), RGB Out
Subaddress Setting Description
0x17 0x02 Software reset.
0x00 0x1C All DACs enabled. PLL enabled (8×).
0x01 0x20
ED-DDR input mode. Luma data
clocked on falling edge of CLKIN.
0x02 0x10
RGB output enabled. RGB output sync
enabled.
0x30 0x04
525p at 59.94 Hz. EAV/SAV synchro-
nization. EIA-770.2 output levels.
0x31 0x01 Pixel data valid.
0x33 0x6C 10-bit input enabled.
Table 111. 8-Bit 625p YCrCb In (EAV/SAV), YPrPb Out
Subaddress Setting Description
0x17 0x02 Software reset.
0x00 0x1C All DACs enabled. PLL enabled (8×).
0x01 0x20
ED-DDR input mode. Luma data
clocked on falling edge of CLKIN.
0x30 0x1C
625p at 50 Hz. EAV/SAV synchroniza-
tion. EIA-770.2 output levels.
0x31 0x01 Pixel data valid.
Table 112. 10-Bit 625p YCrCb In (EAV/SAV), YPrPb Out
Subaddress Setting Description
0x17 0x02 Software reset.
0x00 0x1C All DACs enabled. PLL enabled (8×).
0x01 0x20
ED-DDR input mode. Luma data
clocked on falling edge of CLKIN.
0x30 0x1C
625p at 50 Hz. EAV/SAV synchroniza-
tion. EIA-770.2 output levels.
0x31 0x01 Pixel data valid.
0x33 0x6C 10-bit input enabled.
Data Sheet ADV7390/ADV7391/ADV7392/ADV7393
Rev. J | Page 101 of 107
Table 113. 8-Bit 625p YCrCb In (EAV/SAV), RGB Out
Subaddress Setting Description
0x17 0x02 Software reset.
0x00 0x1C All DACs enabled. PLL enabled (8×).
0x01 0x20 ED-DDR input mode. Luma data
clocked on falling edge of CLKIN.
0x02 0x10 RGB output enabled. RGB output sync
enabled.
0x30 0x1C 625p at 50 Hz. EAV/SAV synchroni-
zation. EIA-770.2 output levels.
0x31 0x01 Pixel data valid.
Table 114. 10-Bit 625p YCrCb In (EAV/SAV), RGB Out
Subaddress Setting Description
0x17 0x02 Software reset.
0x00 0x1C All DACs enabled. PLL enabled (8×).
0x01 0x20 ED-DDR input mode. Luma data
clocked on falling edge of CLKIN.
0x02 0x10 RGB output enabled. RGB output sync
enabled.
0x30 0x1C 625p at 50 Hz. EAV/SAV synchroni-
zation. EIA-770.2 output levels.
0x31 0x01 Pixel data valid.
0x33 0x6C 10-bit input enabled.
HIGH DEFINITION
Table 115. HD Configuration Scripts
Input Format Input Data Width Synchronization Format Input Color Space Output Color Space Table Number
720p 8-bit DDR EAV/SAV YCrCb YPrPb Table 124
720p
8-bit DDR
EAV/SAV
YCrCb
RGB
Table 126
720p 10-bit DDR EAV/SAV YCrCb YPrPb Table 125
720p 10-bit DDR EAV/SAV YCrCb RGB Table 127
720p 16-bit SDR EAV/SAV YCrCb YPrPb Table 116
720p 16-bit SDR HSYNC/
VSYNC YCrCb YPrPb Table 117
720p 16-bit SDR EAV/SAV YCrCb RGB Table 118
720p 16-bit SDR HSYNC/
VSYNC YCrCb RGB Table 119
1080i 8-bit DDR EAV/SAV YCrCb YPrPb Table 128
1080i 8-bit DDR EAV/SAV YCrCb RGB Table 130
1080i 10-bit DDR EAV/SAV YCrCb YPrPb Table 129
1080i 10-bit DDR EAV/SAV YCrCb RGB Table 131
1080i 16-bit SDR EAV/SAV YCrCb YPrPb Table 120
1080i 16-bit SDR HSYNC/
VSYNC YCrCb YPrPb Table 121
1080i
16-bit SDR
EAV/SAV
YCrCb
RGB
Table 122
1080i 16-bit SDR HSYNC/
VSYNC YCrCb RGB Table 123
ADV7390/ADV7391/ADV7392/ADV7393 Data Sheet
Rev. J | Page 102 of 107
Table 116. 16-Bit 720p YCrCb In (EAV/SAV), YPrPb Out
Subaddress Setting Description
0x17 0x02 Software reset.
0x00 0x1C All DACs enabled. PLL enabled (4×).
0x01 0x10 HD-SDR input mode.
0x30 0x2C
720p at 60 Hz/59.94 Hz. EAV/SAV syn-
chronization. EIA-770.3 output levels.
0x31 0x01 Pixel data valid. 4× oversampling.
Table 117. 16-Bit 720p YCrCb In, YPrPb Out
Subaddress Setting Description
0x17 0x02 Software reset.
0x00 0x1C All DACs enabled. PLL enabled (4×).
0x01 0x10 HD-SDR input mode.
0x30 0x28
720p at 60 Hz/59.94 Hz. HSYNC/VSYNC
synchronization. EIA-770.3 output levels.
0x31 0x01 Pixel data valid. 4× oversampling.
Table 118. 16-Bit 720p YCrCb In (EAV/SAV), RGB Out
Subaddress Setting Description
0x17 0x02 Software reset.
0x00 0x1C All DACs enabled. PLL enabled (4×).
0x01 0x10 HD-SDR input mode.
0x02 0x10
RGB output enabled. RGB output sync
enabled.
0x30 0x2C
720p at 60 Hz/59.94 Hz. EAV/SAV syn-
chronization. EIA-770.3 output levels.
0x31 0x01 Pixel data valid. 4× oversampling.
Table 119. 16-Bit 720p YCrCb In, RGB Out
Subaddress Setting Description
0x17 0x02 Software reset.
0x00 0x1C All DACs enabled. PLL enabled (4×).
0x01 0x10 HD-SDR input mode.
0x02 0x10
RGB output enabled. RGB output sync
enabled.
0x30 0x28
720p at 60 Hz/59.94 Hz. HSYNC/VSYNC
synchronization. EIA-770.3 output levels.
0x31 0x01 Pixel data valid. 4× oversampling.
Table 120. 16-Bit 1080i YCrCb In (EAV/SAV), YPrPb Out
Subaddress Setting Description
0x17 0x02 Software reset.
0x00 0x1C All DACs enabled. PLL enabled (4×).
0x01 0x10 HD-SDR input mode.
0x30 0x6C
1080i at 30 Hz/29.97 Hz. EAV/SAV syn-
chronization. EIA-770.3 output levels.
0x31 0x01 Pixel data valid. 4× oversampling.
Table 121. 16-Bit 1080i YCrCb In, YPrPb Out
Subaddress Setting Description
0x17 0x02 Software reset.
0x00 0x1C All DACs enabled. PLL enabled (4×).
0x01 0x10 HD-SDR input mode.
0x30 0x18
1080i at 30 Hz/29.97 Hz. HSYNC/VSYNC
synchronization. EIA-770.3 output levels.
0x31 0x01 Pixel data valid. 4× oversampling.
Table 122. 16-Bit 1080i YCrCb In (EAV/SAV), RGB Out
Subaddress Setting Description
0x17 0x02 Software reset.
0x00 0x1C All DACs enabled. PLL enabled (4×).
0x01 0x10 HD-SDR input mode.
0x02 0x10
RGB output enabled. RGB output sync
enabled.
0x30 0x6C
1080i at 30 Hz/29.97 Hz. EAV/SAV syn-
chronization. EIA-770.3 output levels.
0x31 0x01 Pixel data valid. 4× oversampling.
Table 123. 16-Bit 1080i YCrCb In, RGB Out
Subaddress Setting Description
0x17 0x02 Software reset.
0x00 0x1C All DACs enabled. PLL enabled (4×).
0x01 0x10 HD-SDR input mode.
0x02 0x10
RGB output enabled. RGB output sync
enabled.
0x30 0x18
1080i at 30 Hz/29.97 Hz. HSYNC/VSYNC
synchronization. EIA-770.3 output levels.
0x31 0x01 Pixel data valid. 4× oversampling.
Table 124. 8-Bit 720p YCrCb In (EAV/SAV), YPrPb Out
Subaddress Setting Description
0x17 0x02 Software reset.
0x00 0x1C All DACs enabled. PLL enabled (4×).
0x01 0x20
HD-DDR input mode. Luma data
clocked on falling edge of CLKIN.
0x30 0x2C
720p at 60 Hz/59.94 Hz. EAV/SAV syn-
chronization. EIA-770.3 output levels.
0x31 0x01 Pixel data valid. 4× oversampling.
Table 125. 10-Bit 720p YCrCb In (EAV/SAV), YPrPb Out
Subaddress Setting Description
0x17 0x02 Software reset.
0x00 0x1C All DACs enabled. PLL enabled (4×).
0x01 0x20
HD-DDR input mode. Luma data
clocked on falling edge of CLKIN.
0x30 0x2C
720p at 60 Hz/59.94 Hz. EAV/SAV syn-
chronization. EIA-770.3 output levels.
0x31 0x01 Pixel data valid. 4× oversampling.
0x33 0x6C 10-bit input enabled.
Data Sheet ADV7390/ADV7391/ADV7392/ADV7393
Rev. J | Page 103 of 107
Table 126. 8-Bit 720p YCrCb In (EAV/SAV), RGB Out
Subaddress Setting Description
0x17 0x02 Software reset.
0x00 0x1C All DACs enabled. PLL enabled (4×).
0x01 0x20 HD-DDR input mode. Luma data
clocked on falling edge of CLKIN.
0x02 0x10 RGB output enabled. RGB output sync
enabled.
0x30 0x2C 720p at 60 Hz/59.94 Hz. EAV/SAV syn-
chronization. EIA-770.3 output levels.
0x31 0x01 Pixel data valid. 4× oversampling.
Table 127. 10-Bit 720p YCrCb In (EAV/SAV), RGB Out
Subaddress Setting Description
0x17 0x02 Software reset.
0x00 0x1C All DACs enabled. PLL enabled (4×).
0x01 0x20 HD-DDR input mode. Luma data
clocked on falling edge of CLKIN.
0x02 0x10 RGB output enabled. RGB output sync
enabled.
0x30 0x2C 720p at 60 Hz/59.94 Hz. EAV/SAV syn-
chronization. EIA-770.3 output levels.
0x31 0x01 Pixel data valid. 4× oversampling.
0x33 0x6C 10-bit input enabled.
Table 128. 8-Bit 1080i YCrCb In (EAV/SAV), YPrPb Out
Subaddress Setting Description
0x17 0x02 Software reset.
0x00 0x1C All DACs enabled. PLL enabled (4×).
0x01 0x20 HD-DDR input mode. Luma data
clocked on falling edge of CLKIN.
0x30 0x6C 1080i at 30 Hz/29.97 Hz. EAV/SAV syn-
chronization. EIA-770.3 output levels.
0x31 0x01 Pixel data valid. 4× oversampling.
Table 129. 10-Bit 1080i YCrCb In (EAV/SAV), YPrPb Out
Subaddress Setting Description
0x17 0x02 Software reset.
0x00 0x1C All DACs enabled. PLL enabled (4×).
0x01 0x20 HD-DDR input mode. Luma data
clocked on falling edge of CLKIN.
0x30 0x6C 1080i at 30 Hz/29.97 Hz. EAV/SAV syn-
chronization. EIA-770.3 output levels.
0x31 0x01 Pixel data valid. 4× oversampling.
0x33 0x6C 10-bit input enabled.
Table 130. 8-Bit 1080i YCrCb In (EAV/SAV), RGB Out
Subaddress Setting Description
0x17 0x02 Software reset.
0x00 0x1C All DACs enabled. PLL enabled (4×).
0x01 0x20 HD-DDR input mode. Luma data
clocked on falling edge of CLKIN.
0x02 0x10 RGB output enabled. RGB output sync
enabled.
0x30 0x6C 1080i at 30 Hz/29.97 Hz. EAV/SAV syn-
chronization. EIA-770.3 output levels.
0x31 0x01 Pixel data valid. 4× oversampling.
Table 131. 10-Bit 1080i YCrCb In (EAV/SAV), RGB Out
Subaddress Setting Description
0x17 0x02 Software reset.
0x00 0x1C All DACs enabled. PLL enabled (4×).
0x01 0x20 HD-DDR input mode. Luma data
clocked on falling edge of CLKIN.
0x02 0x10 RGB output enabled. RGB output sync
enabled.
0x30 0x6C 1080i @ 30 Hz/29.97 Hz. EAV/SAV syn-
chronization. EIA-770.3 output levels.
0x31 0x01 Pixel data valid. 4× oversampling.
0x33 0x6C 10-bit input enabled.
ADV7390/ADV7391/ADV7392/ADV7393 Data Sheet
Rev. J | Page 104 of 107
ADV7390/ADV7391/ADV7392/ADV7393 EVALUATION BOARD
To accommodate evaluation of the ADV7390/ADV7391/
ADV7392/ADV7393, Analog Devices provides a two-board
solution. The ADV7390/ADV7391/ADV7392/ADV7393
evaluation platform front-end board contains an Analog
Devices decoder (ADV7403) and an FPGA. The back-end
board (where the actual ADV7390/ADV7391/ADV7392/
ADV7393 are attached) is connected to the front-end board
through a connector.
These two boards allow the user to perform a complete
evaluation of the part, although it is also possible to order only
the back-end board. Note that these two boards must be
ordered separately.
For more information about the evaluation boards, see the
evaluation board documentation available on the Analog
Devices product web page.
BACK-END EVALUATION BOARD
FRONT-END EVALUATION BOARD
EXPANSION PORT
ADV739x INTERFACE
ADV7403
DECODER
FPGA
USB
YC
YPrPb
RGB
CVBS
ADV7403 INTERFACE
ENCODER
YC
YPrPb
RGB
CVBS
06234-145
Figure 144. ADV7390/ADV7391/ADV7392/ADV7393 Front-End and Back-End Evaluation Boards
Data Sheet ADV7390/ADV7391/ADV7392/ADV7393
Rev. J | Page 105 of 107
OUTLINE DIMENSIONS
3.25
3.10 SQ
2.95
COMPLIANT TO JEDEC S TANDARDS MO-220- V HHD- 2
1
32
8
9
25
24
17
16
COPLANARITY
0.08
3.50 REF
0.50
BSC
PIN 1
INDICATOR
PIN 1
INDICATOR
0.30
0.25
0.18 0. 20 RE F
12° M AX 0. 80 M AX
0.65 T YP
1.00
0.85
0.80 0. 05 M AX
0.02 NO M
0.50
0.40
0.30
4.75
BSC SQ
0.60 M AX
0.60 M AX
0.20 M I N
11-10-2017-B
TOP VIEW
EXPOSED
PAD
BOTTOM VI EW
5.10
5.00 SQ
4.90
SEATING
PLANE
PKG-001050
FO R P ROPER CONNECT ION OF
THE EXPOSED PAD, REFER TO
THE P IN CONFI G URATI O N AND
FUNCTION DESCRIPT IONS
SECTION OF THIS DATA SHEET.
Figure 145. 32-Lead Lead Frame Chip Scale Package [LFCSP]
5 mm × 5 mm Body and 0.85 mm Package Height
(CP-32-2)
Dimensions shown in millimeters
10-19-2017-B
1
0.50
BSC
PIN 1
INDICATOR 32
9
16
17
24
25
8
0.05 M AX
0.02 NO M
0.20 REF
COPLANARITY
0.08
0.30
0.25
0.18
5.10
5.00 SQ
4.90
0.80
0.75
0.70
0.50
0.40
0.30
0.20 M IN
3.45
3.30 SQ
3.15
COM P LIANT TO JEDEC S TANDARDS MO-220-WHHD.
3.50 REF
BOTTOM VIEW
TOP VIEW
PKG-003530
SEATING
PLANE
EXPOSED
PAD
END VIEW
PIN 1
INDIC ATOR AREA OPTIONS
(SEE DETAIL A)
DETAIL A
(JEDEC 95)
FOR PRO PE R CONNECT ION OF
THE EXPOSED PAD, REFER TO
THE P IN CONFI G URATI ON AND
FUNCTION DESCRIPT IONS
SECTION OF THIS DATA SHEET.
Figure 146. 32-Lead Lead Frame Chip Scale Package [LFCSP]
5 mm × 5 mm Body and 0.75 mm Package Height
(CP-32-13)
Dimensions shown in millimeters
ADV7390/ADV7391/ADV7392/ADV7393 Data Sheet
Rev. J | Page 106 of 107
A
B
C
D
E
F
0.660
0.600
0.540
2.565
2.525
2.485
1
2
3
45
BOTTOM VIEW
(BALL SIDE UP)
TOP VIEW
(BALL SI DE DOWN)
SIDE VIEW
0.270
0.240
0.210
0.390
0.360
0.330
0.360
0.320
0.280
2.50
REF
2.00 REF
BALLA1
IDENTIFIER
COPLANARITY
0.05
SEATING
PLANE
3.045
3.005
2.965
0.50
BALL PITCH
10-31-2012-C
Figure 147. 30-Ball Wafer Level Chip Scale Package [WLCSP]
(CB-30-3)
Dimensions shown in millimeters
10-23-2017-B
0.50
BSC
BOTTOM VIEWTOP VIEW
SIDE VIEW
PIN 1
INDICATOR
0.05 M AX
0.02 NO M
0.20 REF
COPLANARITY
0.08
0.30
0.23
0.18
6.10
6.00 SQ
5.90
0.80
0.75
0.70
0.45
0.40
0.35
0.20 M IN
4.25
4.10 SQ
3.95
COM P LIANT TO JEDEC S TANDARDS MO-220-WJJD-5.
40
1
11
20
21
30
31
10
PKG-004354
PIN 1
INDIC ATOR AREA OPTIONS
(SEE DETAIL A)
DETAIL A
(JEDEC 95)
EXPOSED
PAD
SEATING
PLANE
FOR PRO P ER CONNECT IO N O F
THE EXPOSED PAD, REFER TO
THE PIN CONFI GURATION AND
FUNCTION DESCRIPT IONS
SECTION OF THIS DATA SHEET.
Figure 148. 40-Lead Lead Frame Chip Scale Package [LFCSP]
6 mm × 6 mm Body and 0.75 mm Package Height
(CP-40-9)
Dimensions shown in millimeters
Data Sheet ADV7390/ADV7391/ADV7392/ADV7393
Rev. J | Page 107 of 107
ORDERING GUIDE
Model1, 2
Temperature
Range
Macrovision3
Antitaping Package Description Package Option
ADV7390BCPZ −40°C to +85°C Yes 32-Lead Lead Frame Chip Scale Package [LFCSP] CP-32-2
ADV7390BCPZ-REEL −40°C to +85°C Yes 32-Lead Lead Frame Chip Scale Package [LFCSP] CP-32-2
ADV7390WBCPZ −40°C to +105°C Yes 32-Lead Lead Frame Chip Scale Package [LFCSP] CP-32-13
ADV7390WBCPZ-RL −40°C to +105°C Yes 32-Lead Lead Frame Chip Scale Package [LFCSP] CP-32-13
ADV7390BCBZ-A-RL −40°C to +85°C Yes 30-Ball Wafer Level Chip Scale Package [WLCSP] CB-30-3
ADV7391BCPZ −40°C to +85°C No 32-Lead Lead Frame Chip Scale Package [LFCSP] CP-32-2
ADV7391BCPZ-REEL −40°C to +85°C No 32-Lead Lead Frame Chip Scale Package [LFCSP] CP-32-2
ADV7391WBCPZ −40°C to +105°C No 32-Lead Lead Frame Chip Scale Package [LFCSP] CP-32-13
ADV7391WBCPZ-RL −40°C to +105°C No 32-Lead Lead Frame Chip Scale Package [LFCSP] CP-32-13
ADV7392BCPZ −40°C to +85°C Yes 40-Lead Lead Frame Chip Scale Package [LFCSP] CP-40-9
ADV7392BCPZ-REEL −40°C to +85°C Yes 40-Lead Lead Frame Chip Scale Package [LFCSP] CP-40-9
ADV7392BCPZ-3REEL −40°C to +85°C Yes 40-Lead Lead Frame Chip Scale Package [LFCSP] CP-40-9
ADV7392WBCPZ −40°C to +105°C Yes 40-Lead Lead Frame Chip Scale Package [LFCSP] CP-40-9
ADV7392WBCPZ-REEL −40°C to +105°C Yes 40-Lead Lead Frame Chip Scale Package [LFCSP] CP-40-9
ADV7393BCPZ −40°C to +85°C No 40-Lead Lead Frame Chip Scale Package [LFCSP] CP-40-9
ADV7393BCPZ-REEL −40°C to +85°C No 40-Lead Lead Frame Chip Scale Package [LFCSP] CP-40-9
ADV7393WBCPZ −40°C to +105°C No 40-Lead Lead Frame Chip Scale Package [LFCSP] CP-40-9
ADV7393WBCPZ-REEL −40°C to +105°C No 40-Lead Lead Frame Chip Scale Package [LFCSP] CP-40-9
EVAL-ADV739xFEZ Not available ADV739x Evaluation Platform Front-End Board
EVAL-ADV7390EBZ Yes ADV7390 Evaluation Board
EVAL-ADV7391EBZ No ADV7391 Evaluation Board
EVAL-ADV7392EBZ Yes ADV7392 Evaluation Board
EVAL-ADV7393EBZ No ADV7393 Evaluation Board
1 Z = RoHS Compliant Part.
2 W = Qualified for Automotive Applications.
3 Macrovision-enabled ICs require the buyer to be an approved licensee (authorized buyer) of ICs that are able to output Macrovision Rev 7.1.L1-compliant video.
AUTOMOTIVE PRODUCTS
The ADV7390W, ADV7391W, ADV7392W, and ADV7393W models are available with controlled manufacturing to support the quality
and reliability requirements of automotive applications. Note that these automotive models may have specifications that differ from the
commercial models; therefore, designers should review the Specifications section of this data sheet carefully. Only the automotive grade
products shown are available for use in automotive applications. Contact your local Analog Devices account representative for specific
product ordering information and to obtain the specific Automotive Reliability reports for these models.
I2C refers to a communications protocol originally developed by Philips Semiconductors (now NXP Semiconductors).
©2006–2018 Analog Devices, Inc. All rights reserved. Trademarks and
registered trademarks are the property of their respective owners.
D06234-0-8/18(J)