19-3156; Rev 2; 12/04 +1.2V to +3.6V, 0.1A, 100Mbps, 8-Channel Level Translators Features 100Mbps Guaranteed Data Rate The MAX3013 features an EN input that, when at logic low, places all inputs/outputs on both sides in tristate and reduces the VCC and VL supply currents to 0.1A. This device operates at a guaranteed data rate of 100Mbps for VL > 1.8V. UCSP, QFN, and TSSOP Packages The MAX3013 accepts a VCC voltage from +1.65V to +3.6V and a VL voltage from +1.2V to (VCC - 0.4V), making it ideal for data transfer between low-voltage ASICs/PLDs and higher voltage systems. The MAX3013 is available in 5 x 4 UCSPTM, 20-pin 5mm x 5mm QFN, and 20-pin TSSOP packages. Bidirectional Level Translation VL Operation Down to +1.2V Ultra-Low 0.1A Supply Current in Shutdown Low-Quiescent Current (0.1A) Pin Configurations TOP VIEW Applications Low-Voltage ASIC Level Translation I/O VL1 1 20 I/O VCC1 I/O VL2 2 19 I/O VCC2 I/O VL3 3 18 I/O VCC3 I/O VL4 4 17 I/O VCC4 16 VCC VL 5 Cell Phones EN 6 SPITM, MICROWIRETM Level Translation Portable POS Systems Portable Communication Devices GPS Telecommunications Equipment MAX3013 15 GND I/O VL5 7 14 I/O VCC5 I/O VL6 8 13 I/O VCC6 I/O VL7 9 12 I/O VCC7 I/O VL8 10 11 I/O VCC8 TSSOP Pin Configurations continued at end of data sheet. UCSP is a trademark of Maxim Integrated Products, Inc. SPI is a trademark of Motorola, Inc. MICROWIRE is a trademark of National Semiconductor Corp. Typical Operating Circuit appears at end of data sheet. Ordering Information PART TEMP RANGE PIN-PACKAGE NUMBER OF VL VCC TRANSLATORS NUMBER OF VL VCC TRANSLATORS DATA RATE (Mbps) MAX3013EUP -40C to +85C 20 TSSOP 8 8 100 MAX3013EBP-T -40C to +85C 5 x 4 UCSP 8 8 100 MAX3013EGP -40C to +85C 20 QFN-EP* 8 8 100 *EP = Exposed paddle. ________________________________________________________________ Maxim Integrated Products For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com. 1 MAX3013 General Description The MAX3013 8-channel level translator provides the level shifting necessary to allow 100Mbps data transfer in a multivoltage system. Externally applied voltages, VCC and VL, set the logic levels on either side of the device. Logic signals present on the VL side of the device appear as a higher voltage logic signal on the VCC side of the device, and vice-versa. MAX3013 +1.2V to +3.6V, 0.1A, 100Mbps, 8-Channel Level Translators ABSOLUTE MAXIMUM RATINGS (All voltages referenced to GND.) VCC ...........................................................................-0.3V to +4V VL ..............................................................................-0.3V to +4V I/O VCC .......................................................-0.3V to (VCC + 0.3V) I/O VL.............................................................-0.3V to (VL + 0.3V) EN .................................................................-0.3V to (VL + 0.3V) Short-Circuit Duration I/O VL, I/O VCC to GND...........Continuous Continuous Power Dissipation (TA = +70C) 20-Pin TSSOP (derate 11mW/C above +70C) ..........879mW 5 x 4 UCSP (derate 10mW/C above +70C) ..............800mW 20-Pin QFN (derate 20.0mW/C above +70C) .............1.60W Operating Temperature Range ...........................-40C to +85C Junction Temperature ......................................................+150C Storage Temperature Range .............................-65C to +150C Lead Temperature (soldering, 10s) .................................+300C Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. ELECTRICAL CHARACTERISTICS (VCC = +1.65V to +3.6V, VL = +1.2V to (VCC - 0.4V) (Note 1), EN = VL, CIOVL 15pF, CIOVCC 40pF, TA = TMIN to TMAX. Typical values are at VCC = +3.3V, VL = +1.8V, TA = +25C.) (Note 2) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS POWER SUPPLIES VL Supply Range VCC Supply Range Supply Current from VCC Supply Current from VL VCC Tristate Output Mode Supply Current VL Tristate Output Mode Supply Current VL 1.2 VCC 0.4 V VCC 1.65 3.6 V A IQVCC IQVL ITS-VCC ITS-VL I/O VCC_ = 0, I/O VL _ = 0 or I/O VCC_ = VCC, I/O VL _ = VL 0.1 1 I/O VCC_ = 0, I/O VL _ = 0 or I/O VCC_ = VCC, I/O VL _ = VL 0.1 4 I/O VCC_ = 0, I/O VL _ = 0 or I/O VCC_ = VCC, I/O VL _ = VL, VL < VCC - 0.2V 0.1 100 TA = +25C, EN = 0 0.03 1 TA = +25C, EN = 0 0.1 0.2 1 2 A TA = +25C, EN = 0, VL = VCC - 0.2V TA = +25C, EN = 0, I/O Tristate Output Mode Leakage Current 0.15 TA = +25C, EN = 0, VL = VCC - 0.2V 30 A A A LOGIC-LEVEL THRESHOLDS I/O VL_ Input-Voltage High VIHL I/O VL_ Input-Voltage Low VILL I/O VCC_ Input-Voltage High VIHC I/O VCC_ Input-Voltage Low VILC EN Input-Voltage High VIH 2 2/3 x VL V 1/3 x VL 2/3 x VCC V 1/3 x VCC TA = +25C 2/3 x VL _______________________________________________________________________________________ V V V +1.2V to +3.6V, 0.1A, 100Mbps, 8-Channel Level Translators (VCC = +1.65V to +3.6V, VL = +1.2V to (VCC - 0.4V) (Note 1), EN = VL, CIOVL 15pF, CIOVCC 40pF, TA = TMIN to TMAX. Typical values are at VCC = +3.3V, VL = +1.8V, TA = +25C.) (Note 2) PARAMETER EN Input-Voltage Low SYMBOL VIL EN Input Current CONDITIONS MAX UNITS TA = +25C 1/3 x VL V TA = +25C 5 A I/O VL_ Output-Voltage High VOHL I/O VL_ source current = 20A I/O VL_ Output-Voltage Low VOLL I/O VL_ sink current = 20A I/O VCC_ Output-Voltage High VOHC I/O VCC_ source current = 20A I/O VCC_ Output-Voltage Low VOLC I/O VCC_ sink current = 20A MIN TYP 2/3 x VL V 1/3 x VL 2/3 x VCC V V 1/3 x VCC V TIMING CHARACTERISTICS (VCC = +1.65V to +3.6V, VL = +1.2V to (VCC - 0.4V) (Note 1), EN = VL, CIOVL 15pF, CIOVCC 40pF, TA = TMIN to TMAX. Typical values are at VCC = +3.3V, VL = +1.8V, TA = +25C.) (Note 2) PARAMETER I/O VCC_ Rise Time SYMBOL tRVCC I/O VCC_ Fall Time tFVCC CONDITIONS MIN TYP MAX CIOVCC = 15pF, Figure 1 2.5 CIOVCC = 20pF, Figure 1 3 CIOVCC = 40pF, Figure 1 4 CIOVCC = 15pF, Figure 1 2.5 CIOVCC = 20pF, Figure 1 3 CIOVCC = 40pF, Figure 1 4 I/O VCC_ One-Shot Output UNITS ns ns 18.5 I/O VL_ Rise Time tRVL CIOVL = 15pF, Figure 2 2.5 ns I/O VL_ Fall Time tFVL CIOVL = 15pF, Figure 2 2.5 ns 12.5 6.5 ns I/O VL_ One-Shot Output Impedance Propagation Delay (Driving I/O VL_) I/OVL-VCC CIOVCC = 15pF, Figure 1 _______________________________________________________________________________________ 3 MAX3013 ELECTRICAL CHARACTERISTICS (continued) TIMING CHARACTERISTICS (continued) (VCC = +1.65V to +3.6V, VL = +1.2V to (VCC - 0.4V) (Note 1), EN = VL, CIOVL 15pF, CIOVCC 40pF, TA = TMIN to TMAX. Typical values are at VCC = +3.3V, VL = +1.8V, TA = +25C.) (Note 2) PARAMETER SYMBOL Propagation Delay (Driving I/O VCC_) I/OVCC-VL CONDITIONS MIN TYP MAX UNITS CIOVL = 15pF, Figure 2 6 ns 4 ns Part-to-Part Skew tPPSKEW CIOVCC = 15pF, CIOVL = 15pF, VCC = 2.5V, VL = 1.8V (Note 3) Propagation Delay from I/O VL_ to I/O VCC_ after EN tEN-VCC CIOVCC = 15pF, Figure 3 1000 ns Propagation Delay from I/O VCC_ to I/O VL_ after EN tEN-VL CIOVL = 15pF, Figure 4 1000 ns Maximum Data Rate CIOVCC = 15pF, CIOVL = 15pF, VL > 1.8V 100 CIOVCC = 15pF, CIOVL = 15pF, VL > 1.2V 80 Mbps Note 1: VL must be less than or equal to VCC - 0.4V during normal operation. However, VL can be greater than VCC - 0.4V during starting up and shutting down conditions. Note 2: All units are 100% production tested at TA = +25C. Limits over the operating temperature range are guaranteed by design and not production tested. Note 3: Not production tested. Guaranteed by design. Typical Operating Characteristics (Data rate = 100Mbps, VCC = 3.3V, VL = 1.8V, TA = +25C, unless otherwise noted.) VL SUPPLY CURRENT vs. SUPPLY VOLTAGE 0.6 0.4 DRIVING I/O VL VL = 1.8V CIOVCC = 15pF 0.4 0.3 0.2 DRIVING I/O VL VL = 1.25V CIOVCC = 15pF 0.1 2.0 2.5 3.0 3.5 VCC SUPPLY VOLTAGE (V) 4.0 20 15 10 DRIVING I/O VL VL = 1.8V CIOVCC = 15pF 5 0 0 25 MAX3013 toc03 MAX3013 toc02 0.5 VL SUPPLY CURRENT (mA) 0.8 0.2 4 0.6 MAX3013 toc01 1.0 VCC SUPPLY CURRENT vs. SUPPLY VOLTAGE VCC SUPPLY CURRENT (mA) VL SUPPLY CURRENT vs. SUPPLY VOLTAGE VL SUPPLY CURRENT (mA) MAX3013 +1.2V to +3.6V, 0.1A, 100Mbps, 8-Channel Level Translators 0 1.5 2.0 2.5 3.0 VCC SUPPLY VOLTAGE (V) 3.5 4.0 2.0 2.5 3.0 3.5 VCC SUPPLY VOLTAGE (V) _______________________________________________________________________________________ 4.0 +1.2V to +3.6V, 0.1A, 100Mbps, 8-Channel Level Translators 15 10 DRIVING I/O VL VL = 1.25V CIOVCC = 15pF 5 3.2 2.8 2.4 2.0 2.5 3.0 3.5 MAX3013 toc06 13 12 -40 4.0 -15 10 35 60 85 -40 -15 10 35 60 VCC SUPPLY VOLTAGE (V) TEMPERATURE (C) TEMPERATURE (C) VL SUPPLY CURRENT vs. CAPACITIVE LOAD ON I/O VCC VCC SUPPLY CURRENT vs. CAPACITIVE LOAD ON I/O VCC RISE/FALL TIME vs. CAPACITIVE LOAD ON I/O VCC 0.6 0.4 0.2 19 16 13 20 CAPACITIVE LOAD (pF) 30 tRISE 0.9 0.6 tFALL DRIVING I/O VL DRIVING I/O VL 10 10 1.2 0.3 DRIVING I/O VL 0 40 85 MAX3013 toc09 22 RISE/FALL TIME (ns) VCC SUPPLY CURRENT (mA) 0.8 1.5 MAX3013 toc08 25 MAX3013toc07 1.0 0 14 DRIVING I/O VCC CIOVL = 15pF 2.0 1.5 15 DRIVING I/O VCC CIOVL = 15pF 0 VL SUPPLY CURRENT (mA) 3.6 16 VCC SUPPLY CURRENT (mA) VL SUPPLY CURRENT (mA) 20 MAX3013 toc05 4.0 MAX3013 toc04 VCC SUPPLY CURRENT (mA) 25 VCC SUPPLY CURRENT vs. TEMPERATURE VL SUPPLY CURRENT vs. TEMPERATURE VCC SUPPLY CURRENT vs. SUPPLY VOLTAGE 0 0 10 20 CAPACITIVE LOAD (pF) 30 40 0 10 20 30 40 CAPACITIVE LOAD (pF) _______________________________________________________________________________________ 5 MAX3013 Typical Operating Characteristics (continued) (Data rate = 100Mbps, VCC = 3.3V, VL = 1.8V, TA = +25C, unless otherwise noted.) Typical Operating Characteristics (continued) (Data rate = 100Mbps, VCC = 3.3V, VL = 1.8V, TA = +25C, unless otherwise noted.) 0.6 0.4 tFALL 0.2 PROPAGATION DELAY vs. CAPACITIVE LOAD ON I/O VL MAX3013 toc11 5 4 PROPAGATION DELAY (ns) PROPAGATION DELAY (ns) tRISE 0.8 5 MAX3013 toc10 1.0 PROPAGATION DELAY vs. CAPACITIVE LOAD ON I/O VCC tPLH 3 2 1 10 15 tPLH 2 tPHL DRIVING I/O VCC 0 5 3 DRIVING I/O VL 0 20 0 0 10 20 30 40 0 5 10 15 20 CAPACITIVE LOAD (pF) CAPACITIVE LOAD (pF) CAPACITIVE LOAD (pF) TYPICAL I/O VCC DRIVING tEN-VCC vs. TEMPERATURE (CIOVCC = 15pF) tEN-VL vs. TEMPERATURE (CIOVL = 15pF) 180 170 MAX3013 toc15 80 tEN-VL (ns) 190 tEN-VCC (ns) I/O VCC 1V/div 100 MAX3013 toc14 200 MAX3013 toc13 0 4 1 tPHL DRIVING I/O VCC MAX3013 toc12 RISE/FALL TIME vs. CAPACITIVE LOAD ON I/O VL RISE/FALL TIME (ns) MAX3013 +1.2V to +3.6V, 0.1A, 100Mbps, 8-Channel Level Translators 60 40 I/O VL 1V/div 20 160 0 150 4ns/div -40 -15 10 35 TEMPERATURE (C) 6 60 85 -40 -15 10 35 TEMPERATURE (C) _______________________________________________________________________________________ 60 85 +1.2V to +3.6V, 0.1A, 100Mbps, 8-Channel Level Translators PIN BUMP NAME FUNCTION TSSOP QFN UCSP 1 18 B1 I/O VL1 Input/Output 1, Referenced to VL 2 19 A1 I/O VL2 Input/Output 2, Referenced to VL 3 20 B2 I/O VL3 Input/Output 3, Referenced to VL 4 1 A2 I/O VL4 Input/Output 4, Referenced to VL 5 2 A3 VL VL Input Voltage, +1.2V VL (VCC - 0.4V). Bypass VL to GND with a 0.1F capacitor. 6 3 A4 EN Enable Input. If EN is pulled low, all inputs/outputs are in tristate. Drive EN high (VL) for normal operation. 7 4 B3 I/O VL5 Input/Output 5, Referenced to VL 8 5 A5 I/O VL6 Input/Output 6, Referenced to VL 9 6 B4 I/O VL7 Input/Output 7, Referenced to VL 10 7 B5 I/O VL8 Input/Output 7, Referenced to VL 11 8 C5 I/O VCC8 Input/Output 8, Referenced to VCC 12 9 C4 I/O VCC7 Input/Output 7, Referenced to VCC 13 10 D5 I/O VCC6 Input/Output 6, Referenced to VCC 14 11 C3 I/O VCC5 Input/Output 5, Referenced to VCC 15 12 D4 GND Ground 16 13 D3 VCC VCC Input Voltage, +1.65V VCC +3.6V. Bypass VCC to GND with a 0.1F capacitor. 17 14 D2 I/O VCC4 Input/Output 4, Referenced to VCC 18 15 C2 I/O VCC3 Input/Output 3, Referenced to VCC 19 16 D1 I/O VCC2 Input/Output 2, Referenced to VCC 20 17 C1 I/O VCC1 Input/Output 1, Referenced to VCC _______________________________________________________________________________________ 7 MAX3013 Pin Description +1.2V to +3.6V, 0.1A, 100Mbps, 8-Channel Level Translators MAX3013 Test Circuits/Timing Diagrams VL VCC MAX3013 EN I/O VCC I/O VL CIOVCC SOURCE tRISE/FALL 3ns I/O VL 90% 50% 10% I/OVL-VCC I/O VCC I/OVL-VCC 90% 50% 10% tFVCC tRVCC Figure 1. Driving I/O VL Test Circuit and Timing 8 _______________________________________________________________________________________ +1.2V to +3.6V, 0.1A, 100Mbps, 8-Channel Level Translators VL VCC MAX3013 EN I/O VCC I/O VL CIOVL SOURCE tRISE/FALL 3ns I/O VCC 90% 50% 10% I/OVCC-VL I/O VL I/OVCC-VL 90% 50% 10% tFVL tRVL Figure 2. Driving I/O VCC Test Circuit and Timing _______________________________________________________________________________________ 9 MAX3013 Test Circuits/Timing Diagrams (continued) +1.2V to +3.6V, 0.1A, 100Mbps, 8-Channel Level Translators MAX3013 Test Circuits/Timing Diagrams (continued) VL EN SOURCE t'EN-VCC EN MAX3013 0V VL I/O VL 0V I/O VCC I/O VL VCC CIOVCC VL VCC/2 I/O VCC 0V VL EN SOURCE t"EN-VCC 0V EN MAX3013 VL I/O VL I/O VL 0V I/O VCC VCC CIOVCC I/O VCC VCC/2 0V tEN-VCC IS WHICHEVER IS LARGER BETWEEN t'EN-VCC AND t"EN-VCC. Figure 3. Propagation Delay from I/O VL to I/O VCC after EN VL EN SOURCE EN t'EN-VL MAX3013 0V VCC I/O VCC 0V I/O VCC I/O VL VL VCC CIOVL VL/2 I/O VL 0V VL EN SOURCE EN t"EN-VL MAX3013 0V VCC I/O VCC I/O VCC I/O VL 0V VL CIOVL I/O VL VL/2 0V tEN-VCC IS WHICHEVER IS LARGER BETWEEN t'EN-VCC AND t"EN-VCC. Figure 4. Propagation Delay from I/O VCC to I/O VL after EN 10 ______________________________________________________________________________________ +1.2V to +3.6V, 0.1A, 100Mbps, 8-Channel Level Translators The MAX3013 logic-level translator provides the level shifting necessary to allow 100Mbps data transfer in a multivoltage system. Externally applied voltages, VCC and VL, set the logic levels on either side of the device. Logic signals present on the V L side of the device appear as a higher voltage logic signal on the VCC side of the device, and vice-versa. The MAX3013 bidirectional level translator allows data translation in either direction (VL VCC) on any single data line. The MAX3013 accepts VL from +1.2V to (VCC - 0.4V) and operate with VCC from +1.65V to +3.6V, making it ideal for data transfer between low-voltage ASICs/PLDs and higher voltage systems. The MAX3013 features an input enable mode (EN) that reduces VCC and VL supply currents to 0.1A, when in tristate mode. This device operates at a guaranteed data rate of 100Mbps for VL > +1.8V. MAX3013 Detailed Description VCC VL P ONE-SHOT OVCC 4k IVL N ONE-SHOT 150 TYPICAL DRIVING ONE-CHANNEL ON VL SIDE VL VCC Level Translation For proper operation, ensure that +1.65V VCC +3.6V, +1.2V VL (VCC - 0.4V). During power-up sequencing, VL VCC does not damage the device. During powersupply sequencing, when VCC is floating and VL is powering up, up to 40mA current can be sourced to each load on the VL side, yet the device does not latch up. The maximum data rate depends heavily on the load capacitance (see the Typical Operating Characteristics, Rise/Fall Times), output impedance of the driver, and the operating voltage range (see the Timing Characteristics). P ONE-SHOT OVL 150 IVCC N ONE-SHOT 4k Input Driver Requirements The MAX3013 architecture is based on a one-shot accelerator output stage (see Figure 5). Accelerator output stages are always in tristate mode except when there is a transition on any of the translators on the input side, either I/O VL or I/O VCC. Then, a short pulse is generated during which the accelerator output stages become active and charge/discharge the capacitances at the I/Os. Due to its bidirectional nature, both input stages become active during the one-shot pulse. This can lead to some current feeding into the external source that is driving the translator. However, this behavior helps to speed up the transition on the driven side. For proper operation, the external driver must meet the following conditions: <25 output impedance and >20mA output current. Figure 6 shows a graph of Typical Input Current vs. Input Voltage. TYPICAL DRIVING ONE-CHANNEL ON VCC SIDE Figure 5. MAX3013 Simplified Diagram (1 I/O line) Output Load Requirements The MAX3013 I/O was designed to drive CMOS inputs. Do not load the I/O lines with a resistive load less than 25k. Also, do not place an RC circuit at the input of the MAX3013 to slow down the edges. If a slower data rate is required, please see the MAX3000E/MAX3001E logic-level translator. For I2C level translation, please refer to the MAX3372E- MAX3379E/MAX3390E-MAX3393E data sheet. ______________________________________________________________________________________ 11 MAX3013 +1.2V to +3.6V, 0.1A, 100Mbps, 8-Channel Level Translators Typical Operating Circuit IIN +3.3V +1.8V 0.1F 0.1F VTH_IN /RIN* VCC VL +1.8V SYSTEM CONTROLLER 0V VIN VTH_IN VS -(VS - VTH_IN)/RIN* EN +3.3V SYSTEM MAX3013 BIT 0 I/O VL1 I/O VCC1 BIT 0 BIT 1 I/O VL2 I/O VCC2 BIT 1 BIT 2 I/O VL3 I/O VCC3 BIT 2 BIT 3 I/O VL4 I/O VCC4 BIT 3 BIT 4 I/O VL5 I/O VCC5 BIT 4 BIT 5 I/O VL6 I/O VCC6 BIT 5 Enable Input (EN) BIT 6 I/O VL7 I/O VCC7 BIT 6 The MAX3013 features an EN input. Pull EN low to set the MAX3013 I/O on both sides in tristate output mode. Drive EN to logic high (VL) for normal operation. BIT 7 I/O VL8 I/O VCC8 BIT 7 WHERE VS = VCC OR VL. *RIN = 4k WHEN DRIVING VL SIDE. RIN = 150 WHEN DRIVING VCC SIDE. Figure 6. Typical IIN vs. VIN GND Applications Information Power-Supply Decoupling To reduce ripple and the chance of introducing data errors, bypass V L and V CC to ground with a 0.1F ceramic capacitor. Place the bypass capacitors as close to the power-supply input pins as possible. 8-Bit Bus Translation The MAX3013 level-shifts the data present on the I/O line between +1.2V to +3.6V, making it ideal for level translation between a low-voltage ASIC and a higher voltage system. The Typical Operating Circuit shows the MAX3013 bidirectional translator in an 8-bit bus level translation from a 1.8V system to a 3.3V system and vice versa. Unidirectional vs. Bidirectional Level Translator The MAX3013 bidirectional translator can operate as a unidirectional device to translate signals without inversion. This device provides the smallest solution (UCSP package) for unidirectional level translation without inversion. 12 ______________________________________________________________________________________ +1.2V to +3.6V, 0.1A, 100Mbps, 8-Channel Level Translators I/O VL3 I/O VL2 I/O VL1 I/O VCC1 I/O VCC2 20 19 18 17 16 TOP VIEW MAX3013 2 3 4 5 I/O VCC2 I/O VCC4 VCC GND I/O VCC6 I/O VCC1 I/O VCC3 I/O VCC5 I/O VCC7 I/O VCC8 I/O VL1 I/O VL3 I/O VL5 I/O VL7 I/O VL8 I/O VL2 I/O VL4 VL EN I/O VL6 D I/O VL4 1 15 I/O VCC3 VL 2 14 I/O VCC4 EN 3 13 VCC I/O VL5 4 I/O VL6 5 MAX3013 **EXPOSED PADDLE 1 12 GND 11 I/O VCC5 C B 10 I/O VCC6 9 I/O VCC7 8 7 I/O VL8 I/O VCC8 I/O VL7 6 A 20 UCSP (BOTTOM VIEW) 5mm x 5mm QFN Chip Information TRANSISTOR COUNT: 1447 PROCESS: BiCMOS ______________________________________________________________________________________ 13 MAX3013 Pin Configurations (continued) Package Information (The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.maxim-ic.com/packages.) TSSOP4.40mm.EPS MAX3013 +1.2V to +3.6V, 0.1A, 100Mbps, 8-Channel Level Translators 14 ______________________________________________________________________________________ +1.2V to +3.6V, 0.1A, 100Mbps, 8-Channel Level Translators 5x4 UCSP.EPS PACKAGE OUTLINE, 5x4 UCSP 21-0095 I 1 1 ______________________________________________________________________________________ 15 MAX3013 Package Information (continued) (The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.maxim-ic.com/packages.) Package Information (continued) (The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.maxim-ic.com/packages.) 32L QFN.EPS MAX3013 +1.2V to +3.6V, 0.1A, 100Mbps, 8-Channel Level Translators 16 ______________________________________________________________________________________ +1.2V to +3.6V, 0.1A, 100Mbps, 8-Channel Level Translators Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time. Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________ 17 (c) 2004 Maxim Integrated Products Printed USA is a registered trademark of Maxim Integrated Products, Inc. MAX3013 Package Information (continued) (The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.maxim-ic.com/packages.)