BC856BWT1 Series, BC857BWT1 Series, BC858AWT1 Series Preferred Devices General Purpose Transistors http://onsemi.com PNP Silicon COLLECTOR 3 These transistors are designed for general purpose amplifier applications. They are housed in the SC-70/SOT-323 which is designed for low power surface mount applications. 1 BASE Features * Pb-Free Packages are Available 2 EMITTER MAXIMUM RATINGS (TA = 25C unless otherwise noted) Rating Symbol Value Unit BC856 BC857 BC858 VCEO -65 -45 -30 V BC856 BC857 BC858 VCBO -80 -50 -30 V VEBO -5.0 V IC -100 mAdc Characteristic Symbol Max Unit Total Device Dissipation FR- 5 Board, (Note 1) TA = 25C PD 150 mW RqJA 883 C/W TJ, Tstg -55 to +150 C Collector-Emitter Voltage Collector-Base Voltage Emitter-Base Voltage Collector Current - Continuous 3 SC-70/SOT-323 CASE 419 STYLE 3 1 2 MARKING DIAGRAM THERMAL CHARACTERISTICS Thermal Resistance, Junction-to-Ambient Junction and Storage Temperature Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected. 1. FR-5 = 1.0 x 0.75 x 0.062 in. xx M G G 1 xx = Specific Device Code M = Date Code* G = Pb-Free Package (Note: Microdot may be in either location) *Date Code orientation may vary depending upon manufacturing location. ORDERING INFORMATION See detailed ordering and shipping information in the package dimensions section on page 5 of this data sheet. Preferred devices are recommended choices for future use and best overall value. (c) Semiconductor Components Industries, LLC, 2005 October, 2005 - Rev. 1 1 Publication Order Number: BC856BWT1/D BC856BWT1 Series, BC857BWT1 Series, BC858AWT1 Series ELECTRICAL CHARACTERISTICS (TA = 25C unless otherwise noted) Characteristic Symbol Min Typ Max Unit OFF CHARACTERISTICS Collector -Emitter Breakdown Voltage (IC = -10 mA) BC856 Series BC857 Series BC858 Series V(BR)CEO -65 -45 -30 - - - - - - V Collector -Emitter Breakdown Voltage (IC = -10 mA, VEB = 0) BC856 Series BC857B Only BC858 Series V(BR)CES -80 -50 -30 - - - - - - V Collector -Base Breakdown Voltage (IC = -10 mA) BC856 Series BC857 Series BC858 Series V(BR)CBO -80 -50 -30 - - - - - - V Emitter -Base Breakdown Voltage (IE = -1.0 mA) BC856 Series BC857 Series BC858 Series V(BR)EBO -5.0 -5.0 -5.0 - - - - - - V ICBO - - - - -15 -4.0 nA mA hFE - - - 90 150 270 - - - - 125 220 420 180 290 520 250 475 800 - - - - -0.3 -0.65 - - -0.7 -0.9 - - -0.6 - - - -0.75 -0.82 fT 100 - - MHz Output Capacitance (VCB = -10 V, f = 1.0 MHz) Cob - - 4.5 pF Noise Figure (IC = -0.2 mA, VCE = -5.0 Vdc, RS = 2.0 kW, f = 1.0 kHz, BW = 200 Hz) NF - - 10 dB Collector Cutoff Current (VCB = -30 V) Collector Cutoff Current (VCB = -30 V, TA = 150C) ON CHARACTERISTICS DC Current Gain (IC = -10 mA, VCE = -5.0 V) (IC = -2.0 mA, VCE = -5.0 V) BC856A, BC585A BC856B, BC857B, BC858B BC857C BC856A, BC858A BC856B, BC857B, BC858B BC857C Collector -Emitter Saturation Voltage (IC = -10 mA, IB = -0.5 mA) (IC = -100 mA, IB = -5.0 mA) VCE(sat) Base -Emitter Saturation Voltage (IC = -10 mA, IB = -0.5 mA) (IC = -100 mA, IB = -5.0 mA) VBE(sat) Base -Emitter On Voltage (IC = -2.0 mA, VCE = -5.0 V) (IC = -10 mA, VCE = -5.0 V) VBE(on) V V V SMALL-SIGNAL CHARACTERISTICS Current -Gain - Bandwidth Product (IC = -10 mA, VCE = -5.0 Vdc, f = 100 MHz) http://onsemi.com 2 BC856BWT1 Series, BC857BWT1 Series, BC858AWT1 Series BC857/BC858 -1.0 1.5 TA = 25C -0.9 VCE = -10 V TA = 25C VBE(sat) @ IC/IB = 10 -0.8 V, VOLTAGE (VOLTS) hFE , NORMALIZED DC CURRENT GAIN 2.0 1.0 0.7 0.5 -0.7 VBE(on) @ VCE = -10 V -0.6 -0.5 -0.4 -0.3 -0.2 0.3 VCE(sat) @ IC/IB = 10 -0.1 0.2 -0.2 -0.5 -1.0 -2.0 -5.0 -10 -20 -50 IC, COLLECTOR CURRENT (mAdc) 0 -0.1 -0.2 -100 -200 1.0 -2.0 TA = 25C -1.6 -1.2 -0.8 IC = -10 mA IC = -50 mA IC = -200 mA IC = -100 mA IC = -20 mA -0.4 0 -0.02 -55C to +125C 1.2 1.6 2.0 2.4 2.8 -10 -20 -0.1 -1.0 IB, BASE CURRENT (mA) -0.2 10 Cib 7.0 TA = 25C 5.0 Cob 3.0 2.0 1.0 -0.4 -0.6 -1.0 -2.0 -4.0 -6.0 -10 -10 -1.0 IC, COLLECTOR CURRENT (mA) -100 Figure 4. Base-Emitter Temperature Coefficient f, T CURRENT-GAIN - BANDWIDTH PRODUCT (MHz) Figure 3. Collector Saturation Region C, CAPACITANCE (pF) -100 -50 Figure 2. "Saturation" and "On" Voltages VB , TEMPERATURE COEFFICIENT (mV/ C) VCE , COLLECTOR-EMITTER VOLTAGE (V) Figure 1. Normalized DC Current Gain -0.5 -1.0 -2.0 -5.0 -10 -20 IC, COLLECTOR CURRENT (mAdc) -20 -30 -40 400 300 200 150 VCE = -10 V TA = 25C 100 80 60 40 30 20 -0.5 -1.0 -2.0 -3.0 -5.0 -10 -20 -30 -50 VR, REVERSE VOLTAGE (VOLTS) IC, COLLECTOR CURRENT (mAdc) Figure 5. Capacitances Figure 6. Current-Gain - Bandwidth Product http://onsemi.com 3 BC856BWT1 Series, BC857BWT1 Series, BC858AWT1 Series BC856 TJ = 25C VCE = -5.0 V TA = 25C -0.8 V, VOLTAGE (VOLTS) hFE , DC CURRENT GAIN (NORMALIZED) -1.0 2.0 1.0 0.5 VBE(sat) @ IC/IB = 10 -0.6 VBE @ VCE = -5.0 V -0.4 -0.2 0.2 VCE(sat) @ IC/IB = 10 0 -0.2 -1.0 -2.0 -5.0 -10 -20 -50 -100 -200 IC, COLLECTOR CURRENT (mA) -0.1 -0.2 -0.5 -50 -100 -200 -5.0 -10 -20 -1.0 -2.0 IC, COLLECTOR CURRENT (mA) Figure 8. "On" Voltage -2.0 -1.6 -1.2 IC = -10 mA -20 mA -50 mA -100 mA -200 mA -0.8 -0.4 TJ = 25C 0 -0.02 -0.05 -0.1 -0.2 -0.5 -1.0 -2.0 IB, BASE CURRENT (mA) -5.0 -10 VB, TEMPERATURE COEFFICIENT (mV/ C) VCE , COLLECTOR-EMITTER VOLTAGE (VOLTS) Figure 7. DC Current Gain -20 -1.0 -1.4 -1.8 -2.6 -3.0 -0.2 f, T CURRENT-GAIN - BANDWIDTH PRODUCT C, CAPACITANCE (pF) TJ = 25C Cib 10 8.0 Cob 4.0 2.0 -0.1 -0.2 -0.5 -1.0 -2.0 -5.0 -10 -20 VR, REVERSE VOLTAGE (VOLTS) -0.5 -1.0 -50 -2.0 -5.0 -10 -20 IC, COLLECTOR CURRENT (mA) -100 -200 Figure 10. Base-Emitter Temperature Coefficient 40 6.0 -55C to 125C -2.2 Figure 9. Collector Saturation Region 20 qVB for VBE VCE = -5.0 V 500 200 100 50 20 -100 -1.0 -10 IC, COLLECTOR CURRENT (mA) -50 -100 Figure 11. Capacitance Figure 12. Current-Gain - Bandwidth Product http://onsemi.com 4 r(t), TRANSIENT THERMAL RESISTANCE (NORMALIZED) BC856BWT1 Series, BC857BWT1 Series, BC858AWT1 Series 1.0 0.7 0.5 D = 0.5 0.2 0.3 0.2 0.1 0.05 SINGLE PULSE 0.1 0.07 0.05 ZqJC(t) = r(t) RqJC RqJC = 83.3C/W MAX ZqJA(t) = r(t) RqJA RqJA = 200C/W MAX D CURVES APPLY FOR POWER PULSE TRAIN SHOWN READ TIME AT t1 TJ(pk) - TC = P(pk) RqJC(t) P(pk) SINGLE PULSE t1 t2 0.03 DUTY CYCLE, D = t1/t2 0.02 0.01 0.1 0.2 0.5 1.0 2.0 10 5.0 20 50 t, TIME (ms) 100 200 500 1.0k 2.0k 5.0k 10k Figure 13. Thermal Response The safe operating area curves indicate IC-VCE limits of the transistor that must be observed for reliable operation. Collector load lines for specific circuits must fall below the limits indicated by the applicable curve. The data of Figure 14 is based upon TJ(pk) = 150C; TC or TA is variable depending upon conditions. Pulse curves are valid for duty cycles to 10% provided TJ(pk) 150C. TJ(pk) may be calculated from the data in Figure 13. At high case or ambient temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by the secondary breakdown. -200 IC, COLLECTOR CURRENT (mA) 1s 3 ms -100 TA = 25C -50 TJ = 25C BC858 BC857 BC856 -10 -5.0 BONDING WIRE LIMIT THERMAL LIMIT SECOND BREAKDOWN LIMIT -2.0 -1.0 -5.0 -10 -30 -45 -65 -100 VCE, COLLECTOR-EMITTER VOLTAGE (V) Figure 14. Active Region Safe Operating Area ORDERING INFORMATION Device Marking BC856BWT1 BC856BWT1G 3G SC-70/SOT-323 (Pb-Free) 3,000 / Tape & Reel SC-70/SOT-323 (Pb-Free) 3,000 / Tape & Reel SC-70/SOT-323 3J BC858BWT1 BC858BWT1G 3,000 / Tape & Reel SC-70/SOT-323 BC858AWT1 BC858AWT1G SC-70/SOT-323 (Pb-Free) SC-70/SOT-323 3F BC857CWT1 BC857CWT1G Shipping SC-70/SOT-323 3B BC857BWT1 BC857BWT1G Package SC-70/SOT-323 (Pb-Free) 3,000 / Tape & Reel SC-70/SOT-323 3K SC-70/SOT-323 (Pb-Free) 3,000 / Tape & Reel For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. http://onsemi.com 5 BC856BWT1 Series, BC857BWT1 Series, BC858AWT1 Series PACKAGE DIMENSIONS SC-70 (SOT-323) CASE 419-04 ISSUE M NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. D e1 3 DIM A A1 A2 b c D E e e1 L HE E HE 1 2 b e 0.05 (0.002) c A2 A 0.30 0.10 1.80 1.15 1.20 2.00 MILLIMETERS NOM MAX 0.90 1.00 0.05 0.10 0.7 REF 0.35 0.40 0.18 0.25 2.10 2.20 1.24 1.35 1.30 1.40 0.65 BSC 0.425 REF 2.10 2.40 MIN 0.032 0.000 0.012 0.004 0.071 0.045 0.047 0.079 INCHES NOM 0.035 0.002 0.028 REF 0.014 0.007 0.083 0.049 0.051 0.026 BSC 0.017 REF 0.083 MAX 0.040 0.004 0.016 0.010 0.087 0.053 0.055 0.095 STYLE 3: PIN 1. BASE 2. EMITTER 3. COLLECTOR L A1 MIN 0.80 0.00 SOLDERING FOOTPRINT* 0.65 0.025 0.65 0.025 1.9 0.075 0.9 0.035 0.7 0.028 SCALE 10:1 mm inches *For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. PUBLICATION ORDERING INFORMATION LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor P.O. Box 61312, Phoenix, Arizona 85082-1312 USA Phone: 480-829-7710 or 800-344-3860 Toll Free USA/Canada Fax: 480-829-7709 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada ON Semiconductor Website: http://onsemi.com Order Literature: http://www.onsemi.com/litorder Japan: ON Semiconductor, Japan Customer Focus Center 2-9-1 Kamimeguro, Meguro-ku, Tokyo, Japan 153-0051 Phone: 81-3-5773-3850 http://onsemi.com 6 For additional information, please contact your local Sales Representative. BC856BWT1/D