IS41C85120A
IS41LV85120A ISSI
®
4
Integrated Silicon Solution, Inc. — 1-800-379-4774
Rev. B
04/22/05
Functional Description
The IS41C85120A and IS41LV85120A is a CMOS DRAM
optimized for high-speed bandwidth, low power applica-
tions. During READ or WRITE cycles, each bit is uniquely
addressed through the 19 address bits. The first ten
address bits (A0-A9) are entered as row address and
latter nine bits nine address bits (A0-A8) are entered as
column address. The row address is latched by the Row
Address Strobe (RAS). The column address is latched by
the Column Address Strobe (CAS). RAS is used to latch
the first nine bits and CAS is used the latter nine bits.
Memory Cycle
A memory cycle is initiated by bring RAS LOW and it is
terminated by returning both RAS and CAS HIGH. To
ensures proper device operation and data integrity any
memory cycle, once initiated, must not be ended or
aborted before the minimum tRAS time has expired. A new
cycle must not be initiated until the minimum precharge
time tRP, tCP has elapsed.
Read Cycle
A read cycle is initiated by the falling edge of CAS or OE,
whichever occurs last, while holding WE HIGH. The
column address must be held for a minimum time speci-
fied by tAR. Data Out becomes valid only when tRAC, tAA,
tCAC and tOEA are all satisfied. As a result, the access time
is dependent on the timing relationships between these
parameters.
Write Cycle
A write cycle is initiated by the falling edge of CAS and
WE, whichever occurs last. The input data must be valid
at or before the falling edge of CAS or WE, whichever
occurs last.
Refresh Cycle
To retain data, 1024 refresh cycles are required in each
16 ms period. There are two ways to refresh the memory.
1. By clocking each of the 1024 row addresses (A0
through A9) with RAS at least once every 16 ms. Any
read, write, read-modify-write or RAS-only cycle re-
freshes the addressed row.
2. Using a CAS-before-RAS refresh cycle. CAS-before-
RAS refresh is activated by the falling edge of RAS,
while holding CAS LOW. In CAS-before-RAS refresh
cycle, an internal 10-bit counter provides the row
addresses and the external address inputs are ig-
nored.
CAS-before-RAS is a refresh-only mode and no data
access or device selection is allowed. Thus, the output
remains in the High-Z state during the cycle.
Extended Data Out Page Mode
EDO page mode operation permits all 512 columns within
a selected row to be randomly accessed at a high data
rate.
In EDO page mode read cycle, the data-out is held to the
next CAS cycle’s falling edge, instead of the rising edge.
For this reason, the valid data output time in EDO page
mode is extended compared with the fast page mode. In
the fast page mode, the valid data output time becomes
shorter as the CAS cycle time becomes shorter. There-
fore, in EDO page mode, the timing margin in read cycle
is larger than that of the fast page mode even if the CAS
cycle time becomes shorter.
In EDO page mode, due to the extended data function, the
CAS cycle time can be shorter than in the fast page mode
if the timing margin is the same.
The EDO page mode allows both read and write opera-
tions during one RAS cycle, but the performance is
equivalent to that of the fast page mode in that case.
Power-On
After application of the VCC supply, an initial pause of
200 µs is required followed by a minimum of eight initial-
ization cycles (any combination of cycles containing a
RAS signal).
During power-on, it is recommended that RAS track with
VCC or be held at a valid VIH to avoid current surges.