High-Performance, Low-P ower
System on Chip with SDRAM and
Improved Digital Audio Interface
1
Copyright
Cirrus Logic, Inc. 2000
(All Rights Reserved)
P.O. Box 17847, Austin, Texas 78760
(512) 445 7222 FAX: (512) 445 7581
http://www.cirrus.com
OVERVIEW
FEATURES
BLOCK DIAGRAM
The Maverick EP7312 is designed for ultra-low-power
applicati ons such as PDAs, two-way pagers, smart cellul ar
phones or any hand-held device that features the added
capab ility o f digi tal aud io decom pression . The co re-logic
functionality of the device is built around an ARM720T
processor with 8 Kbytes of four-way set-associative uni-
fied cache and a write buffer. Incorporated into the
ARM720T is an enhanced memory management unit
(MMU) which allows for support of sophisticated operat-
ing systems li ke Mic rosoft® Windows CE.
The EP7312 also includes a 32-bit real-time clock and
comparator. (Continued on Page 3 )
ARM720T processor
ARM 7T D M I CP U
8 Kbytes of four-way set-as soci ative cac he
MMU with 64-entry TLB (translation look-aside buf fer)
Write Buffer
Thumb code support enabled
Dynamically programmable clock speeds of
18, 36 , 49, an d 74 MH z at 2. 5 V
MaverickKey IDs
32-bit unique SDMI ID
128-bit random ID
Ultra low power
Designed for application s that require long battery l ife
while using st andard AA/AAA batteries or rechargeable
cells
Typical power numbers
90 mW at 74 MH z in the O perating State
30 mW at 18 MHz in the Operating State
10 mW in the Idle S tate (clock to the CP U stopped,
everything else runn ing)
<1 mW in the Standby State (real-time clock “on,”
everything else stopped)
DS508PP1
SEP ‘00
32.768-KHZ
OSCILLATOR
PLL
INTERRUPT
CONTROLLER
POWER
MANAGEMENT SDRAM CNTRL
LCD
CONTROLLER
ARM7TDMI
CPU CORE
8-KBYTE
CACHE
MMU
TIMER
COUNTERS(2)
ARM720T
INTERNAL DATA BUS
3.6864 MHZ
32.768 KHZ
EINT[1 -3], F IQ ,
MEDCHG
BATOK, EXTPW R
PWRFL, BATCHG
UART2
IrDA
D[0-31]
NPOR, RUN,
RESET, WAKEUP EXPCLK, WORD, NCS[0-3],
EXPRD Y, WRIT E
MOE, MWE, SDCLK,
SDQM[0-1], SDRAS,
SDCAS
A[0-27],
DRA[0-14]
LCD DRIVE
LED AND
PHOTODIODE
ASYNC
INTERFACE 2
INTERNAL ADDRESS BUS
13
-
MHZ
INPUT
ON-CHIP
BOOT ROM
ASYNC
INTERFACE 1
ON-CHIP SRAM
48 KBYTES
CL-PS6700 INTF PB[0-1], NCS[4 -5]
EXPANSION CNTRL
UART1
EPB BRIDGE
EPB BUS
ICE-JTAG TEST AND
DEVELOPMENT
WRITE
BUFFER
STATE CONTROL
MEMORY CONTROLLER
LCD DMA
SSI1 (ADC)
PWM
ADCCLK, ADCIN,
ADCOU T, SMPCLK,
ADCCS
SSICLK, SS ITXFR,
SSITXDA, SSIRXDA,
SSIRSFR
DC TO DC
PORTS A, B, D (8-BIT)
PORT E (3-BI T)
KEYBD DRIVERS (0-7) GPIO
RTC
FLASHING LED DRIVE
CODEC
SSI2
DAI
EP7312
2 DS508PP1
EP7312
High-Performance System-on-Chip with SDRAM and Digital Audio Interface
FEATURES
(cont.)
Advanced audio decoder / decompression
capability
Allows for support of multiple audio decompression
algorithms
Supports MPEG 1, 2, and 2.5 layer 3 audio decoding,
including ISO compliant MPEG 1 and 2 layer 3 support
for all standard sample rates and bit rates
Supports bit streams with adaptive bit rates
Improved DAI (Digital Audio Interface) providing glue-
less interface to low-power DACs, ADCs, and CODECs
SDRAM controller
Supports four internal memory banks totaling 256 Mbits
in size
SDRAM memory interface is programmable from 4 to
32bits wide.
LCD controller
Interfaces directly to a single-scan panel monochrome
or color STN LCD
Panel width size is programmable from 32 to 1024 pixels
in 16-pixel increments
Video frame buffer size programmable up to
128kbytes
Bits per pixel of 1, 2, or 4 bits
Memory controller
Decodes up to 6 separate memory segments of up to
256 Mbytes each
Each segment can be configured as 8, 16, or 32 bits
wide and supports page-mode access
Programmable access time for conventional ROM /
SRAM / FLASH memory
Supports Removable FLASH card interface
Enables connection to removable FLASH card for addi-
tion of expansion FLASH memory modules
48 kbytes (0x9600) of on-chip SRAM for fast pro-
gram execution and / or as a frame buffer
Synchronous serial interface
ADC (SSI) Interface: Master mode only; SPI and
Microwire1-compatible (128kbits/s operation)
On-chip ROM; for manufacturing support
27-bits of general-purpose I/O
Three 8-bit and one 3-bit GPIO port
Supports scanning keyboard matrix
Two UARTs (16550 type)
Supports bit rates up to 115.2 kbits/s
Contains two 16-byte FIFOs for TX and RX
UART1 supports modem control signals
SIR (up to 115.2 kbits/s infrared encoder / decoder
IrDA (Infrared Data Association) SIR protocol encoder /
decoder
DC-to-DC converter interface (PWM)
Provides two 96kHz clock outputs with programmable
duty ratio (from 1-in-16 to 15-in-16) that can be used to
drive a DC to DC converter
Two timer counters
Available in 208-pin LQFP or 256-ball PBGA
packages
Evaluation kit available with BOM, schematics,
sample code, and design database
Support for up to two ultra-low-power CL-PS6700
PC Card controllers
Dedicated LED flasher pin from the RTC
Full JTAG boundary scan and Embedded ICE
support
Commercial and industrial operating temperature
range versions
The EP7312 is optimized for low power dissipation
and is fabricated on a fully static 0.25micron
CMOS process.
Contacting Cirrus Logic Support
For a complete listing of Direct Sales, Distributor, and Sales Representative contacts , visit the Cirrus Logic web site at:
http://www.cirrus.com/corporate/contacts/sales.cfm
Preliminary product information describes products which are in production, but f or which full characterization data is not yet available. Advance product infor-
mation describes products which are in development and subject to development changes. Cirrus Logic, Inc. has made best efforts to ensure that the information
contained in this document is accurate and reliable. However, the information is subject to change without notice and is provided “AS IS” without warranty of
any kind (express or implied). No responsibility is assumed by Cirrus Logic, Inc. for the use of this information, nor for infringements of patents or other rights
of third parties. This document is the property of Cirrus Logic, Inc. and implies no license under patents, copyrights, trademarks, or trade secrets. No part of
this publicati on may be copi ed, reproduced, stored in a retri eval system, or transmitted, i n any form or by any means (electronic, mechanical, photographic, or
otherwise) without the pri or wri t ten conse nt of Ci rrus L ogic, Inc. It ems from any Ci rrus Logi c websi t e or disk may be printed for use by the user. However, no
part of the printout or electronic files may be copied, reproduced, stored in a retrieval system, or transmitted, in any form or by any means (electronic, mechanical,
photographic, or otherwise) without the prior written consent of Cirrus Logic, Inc.Furthermore, no part of this publication may be used as a basis for manufacture
or sale of any items without the prior written consent of Cirrus Logic, Inc. The names of products of Cirrus Logic, Inc. or other vendors and suppliers appearing
in this document may be trademarks or service marks of their respective owners which may be registered in some jurisdictions. A list of Cirrus Logic, Inc. trade-
marks and service marks can be found at http://www.cirrus.com.
3DS508PP1
EP7312
High-Performance System-on-Chip with SDRAM and Digital Audio Interface
OVERVIEW
(cont.)
Power Management
The EP7312 i s designed for ultra-lo w-power operati on. Its
core operates at only 2.5 V, while its I/O has an operation
range of 2.5 V–3.3 V. The device has three basic power
states:
Operating — This state is the full performance state. All
the clocks and peripheral log ic are enable d.
Idle — This state is the same as the Operating State,
except the CPU clock is halted while waiting for an
event such as a key press.
Standby — This state is equivalent to the computer
being switched off (no display), and the main oscilla-
tor shut down. An event such as a key press can wake-
up the processor.
MaverickKey Unique ID
MaverickKey unique hardware programmed IDs are a
solution to the growing concern over secure web content
and commerce. With Internet security playing an impor-
tant role in the delivery of digital media such as books or
music, t radi tional softwa re met ho ds are quickly becoming
unreliable. The MaverickKey unique IDs provide OEMs
with a method of utilizing specific hardware IDs such as
those assi gned f or S DMI (Secure Digital Musi c I nit ia tive)
or any oth er aut hen ti cat ion mechanism.
Both a speci fic 32- bit I D as well as a 12 8-bi t random ID is
programmed into the EP7312 through the use of laser
probing technology. These IDs can then be used to match
secure copyri ghted content with t he ID of the target de vice
the EP7312 is powering, and then deliver the copyrighted
information over a secure connection. In addition, secure
transactions can benefit by also matching device IDs to
server IDs. MaverickKey IDs provide a level of hardware
security required for todays Internet appliances.
Memory Interfaces
There are two main external memory interfaces. The first
one is the ROM / SRAM / FLASH-style interface t hat has
programmable wait-stat e timings and includ es burst-mode
capabil ity, with eight ch ip sel ect s dec odi ng six 256 Mbyte
sections of addressable space. For maximum flexibility,
each bank can be specified to be 8-, 16-, or 32-bits wide.
This allows the use of 8-bit-wide boot ROM options to
minimiz e overall syst em c ost. The on-chip boo t ROM can
be used in product manufacturing to serially download sys-
tem code into system FLASH memory. To further mini-
mize system memory requirements and cost, the ARM
Thumbinstruction set is supported, providing for the use
of high-speed 32-bit operations in 16-bit op-codes and
yieldi ng in dust r y-leading co de d ensi ty.
The second is the programmable 4- or 32-bit-wide
SDRAM interface that allows direct connection of up to
four internal banks of SDRAM, totaling 256 Mbits. To
assure the lowest possible power consumption, the EP7312
supports self-refresh DRAMs, which are placed in a low-
power state by the device when it enters the low-power
St andb y State.
A DMA address generator is also provided that fetches
video display data for the LCD controller from main
SDRAM memory . The display frame buffer start address is
programmable. In addition, the built-in LCD controller can
utilize external or internal SRAM for memory, thus elimi-
nating the need f or S DRA Ms.
Digital Audio Capability
The EP7312 uses its powerful 32-bit RISC processing
engine to implement audio decompression algorithms in
software. The n ature of the on-b oard RISC processor and
the availability of efficient C-compilers and other software
development tools, ensures that a wide range of audio
decompression algorithms can easily be ported to and run
on the EP7312.
Serial Interfaces
The EP7312 includes two 16550-type UARTs for RS-232
serial communications, both of which have two 16-byte
FIFOs for receiving and transmitting data. The UARTs
support bi t rates up to 1 15. 2 kbits/ s. An IrDA SIR protocol
encoder / d ecoder can b e optionall y switched int o the RX /
TX signals to / from one of the UAR Ts to enable these sig-
nals to d rive an infrared communicat ion interface directly.
Improved Digital Audio Interface (DAI)
The EP7312 integrates an interface to enable a direct co n -
nection to many low cost, low power, high quality audio
converters. In particular, the DAI can directly interface
with the Crystal CS43L41 / 42 / 43 low-power audio
DACs and the Crystal CS53L32 low-power ADC. Some
of these devices featur e dig ita l bass and treble boost, dig i-
tal volume control and compressor - l i miter functions.
Packaging
The EP7312 is availabl e in a 208-pin LQFP package and a
256-ball PBGA package.
System Design
As shown in system bloc k diag ram, simply a dding desired
memory and peripherals to the highly integrated EP7312
completes a low-power system solution. All necessary
interface log ic is i ntegrat ed on-ch ip.
4DS508PP1
EP7312
High-Performance System-on-Chip with SDRAM and Digital Audio Interface
OVERVIEW
(cont.)
LCD
KEYBOARD
BATTERY
DC-TO-DC
CONVERTERS
ADC DIGITIZER
IR LED AND
PHOTODIODE
2× RS-232
TRANSCEIVERS
ADDITIONAL I/O
CL-PS6700
PC CARD
CONTROLLER
PC CARD
SOCKET
nCS[4]
PB0
EXPCLK
DD[0-3]
CL1
CL2
FRM
M
D[0-31]
A[0-27]
COL[0-7]
PA[0-7]
DC
INPUT
nMOE
WRITE
PB[0-7]
PD[0-7]
PE[0-2]
nPOR
nPWRFL
BATOK
nEXTPWR
nBATCHG
RUN
WAKEUP
nCS[0]
nCS[1]
DRIVE[0-1]
FB[0-1]
EP7312
ADCCLK
nADCCS
ADCOUT
ADCIN
SMPCLK
LEDDRV
PHDIN
RXD1/2
TXD1/2
DSR
CTS
DCD
CS[n]
WORD
nCS[2]
nCS[3]
×16
FLASH
×16
FLASH ×16
FLASH
EXTERN AL ME MOR Y-
MAPPED EXPANSION BUFFERS
BUFFERS
AND
LATCHES
×16
FLASH
POWER
SUPPLY UNIT
AND
COMPARATORS
CRYSTAL
CODEC/SSI2/
DAI
SSICLK
SSITXFR
SSITXDA
SSIRXDA
SSIRXFR
RTCIN
LEDFLSH
Figure 1. A Maximum EP7312 Based System
NOTE: A system can only use one of the following
peripheral interfaces at any given time:
SSI2, CODEC, or DAI.
CRYSTAL MOSCIN
×16
SDRAM
×16
SDRAM ×16
SDRAM
×16
SDRAM
SDCS[1]
SDQM[0-3]
SDCS[0]
SDQM[0-3]
SDRAS/
SDCAS
5DS508PP1
EP7312
High-Performance System-on-Chip with SDRAM and Digital Audio Interface
TABLE OF CONTE NTS
Power Managemen t .............................. .......................... ...... ....... ...... ....... ...... ....... ...... ....... . ....3
MaverickKe y™ Unique ID ............... .......................... ...... ...... ....... ...... ....... ...... ....... ..................3
Memory Interface s . ...... .......................... ....... ...... ....... ...... ...... ....... ...... .......................... .... ... .....3
Digital Audio Capability ............................................................................................................3
Serial Interfaces .......... ....... ...... ....... ...... ....... ...... ....... ...... ...... .......................... ....... ...... . ...... .....3
Improved Digital Audio Interface (DAI) .....................................................................................3
Packaging . ...... .......................... ....... ...... ....... ...... ....... ...... ...... .......................... ....... ..... . ....... .....3
System Desi gn ............ ....... ...... ....... ...... .......................... ...... ....... ...... ....... ...... ....... ...... ....... .....3
1. CONVENTIONS ........................................................................................................................6
1.1. Acronyms and Abbreviations ..............................................................................................6
1.2. Units of Measurement .......................................................................................................8
1.3. General Conventions ..........................................................................................................8
1.4. Pin Description Conventions ..............................................................................................8
2. ELECTRICAL SPECIFICATIONS .............................................................................................9
2.1. Absolute Maximum Ratings ................................................................................................9
2.2. Recommended Operating Conditions ................................................................................9
2.3. DC Characteristics .............................................................................................................9
2.4. AC Characteristics ............................................................................................................13
3. 208-PIN LQFP PACKAGE CHARACTERISTICS ..................................................................22
3.1. 208-Pin LQFP Pin Diagram ..............................................................................................22
3.2. 208-Pin LQFP Package Specifications ............................................................................23
3.3. 208-Pin LQFP Numeric Pin Listing ...................................................................................24
3.4. JTAG Boundary Scan Signal Ordering for 208-Pin LQFP ................................................27
4. 256-PIN PBGA PACKAGE CHARACTERISTICS ..................................................................29
4.1. 256-Pin PBGA Pin Diagram .............................................................................................29
4.2. EP7312 256-Ball PBGA (17 × 17 × 1.61-mm Body) Dimensions ....................................30
4.3. 256-Ball PBGA Ball Listing ...............................................................................................31
5. ORDERING INFORMATION ...................................................................................................34
6. INDEX ......................................................................................................................................35
LIST OF FIGU RES
Figure 1. A Maximum EP7312 Based System ...............................................................................4
Figure 2. Consecutive Memory Read Cycles with Minimum Wait States .....................................15
Figure 3. Sequential Page Mode Read Cycles with Minimum Wait States ..................................16
Figure 4. Consecutive Memory Write Cycles with Minimum Wait States .....................................17
Figure 5. SDRAM Read Cycles SDCAS Latency = 2 ...................................................................18
Figure 6. SDRAM Read Cycles SDCAS Latency = 3 ...................................................................19
Figure 7. SDRAM Write Cycles ....................................................................................................19
Figure 8. SDRAM Refresh Cycles ................................................................................................20
Figure 9. LCD Controller Timings .................................................................................................20
Figure 10. SSI1 Interface for AD7811/2 .......................................................................................21
Figure 11. SSI2 Interface Timings ................................................................................................21
Figure 12. 208-Pin LQFP (Low Profile Quad Flat Pack) Pin Diagram ..........................................22
Figure 13. 208-Pin LQFP Package Outline Drawing ....................................................................23
Figure 14. 256-Ball Plastic Ball Grid Array Diagram .....................................................................29
Figure 15. 256-Ball Pin Diagram ..................................................................................................29
Figure 16. 256-Ball PBGA Package Drawing ...............................................................................30
6DS508PP1
EP7312
High-Performance System-on-Chip with SDRAM and Digital Audio Interface
LIST OF TABLES
Table 1. Acronyms and Abbr eviations ........................................................................................... 7
Table 2. Unit of Measurement ........................................................................................................ 8
Table 3. Pin Description Conventions ............................................................................................ 8
Table 4. Absolute Maximum Ratings ............................................................................................. 9
Table 5. Recommended Operating Conditions .............................................................................. 9
Table 6. DC Characteristics ........................................................................................................... 9
Table 7. AC Timing Characteristics .............................................................................................. 13
Table 8. 208-Pin LQFP Numeric Pin Listing ................................................................................ 24
Table 9. JTAG Boundary Scan Signal Ordering for 208-Pin LQFP Package .............................. 27
Table 10. 256-Ball PBGA Ball Listing ...........................................................................................31
7DS508PP1
EP7312
High-Performance System-on-Chip with SDRAM and Digital Audio Interface
1. CONVENTIONS
This section presents acronyms, abbreviations,
units of measurement, and conventions used in this
data sheet.
1.1. Acronyms and Abbreviations
Table 1 lists abbreviations and acronyms used in
this data sheet.
Acronym/
Abbreviation Definition
A/D analog-to-digital
ADC analog-to-digital converter
CMOS complementary metal oxide semi-
conductor
CODEC coder / decoder
D/A digital-to-analog
DMA direc t-mem or y acc es s
EPB embedded peripheral bus
FCS frame check sequence
FIFO first in / first out
FIQ fast interrupt request
GPIO general purpose I/O
ICT in circuit test
IR infrared
IRQ standard interrupt request
Table 1. Acronyms and Abbreviations
IrDA Infrared Data Association
JTAG Joint Test Actio n Group
LCD liquid crystal display
LED light- emitti ng dio de
LQFP low profile quad flat pack
LSB least significant bit
MIPS millions of instructions per second
MMU memory management unit
MSB most significant bit
PBGA plastic ball gr id array
PCB printed circuit board
PDA personal digital assistant
PIA peripheral interface adapter
PLL phase locked loop
PSU power supply unit
p/u pull-up resistor
RISC reduced instruction set computer
RTC Real-Time Clock
SIR slow (9600–115.2 kbps) infrared
SRAM static random access memory
SSI synchronous serial interface
TAP test access port
TLB translation lookaside buffer
UART universal asynchronous receiver
Acronym/
Abbreviation Definition
Table 1. Acronyms and Abbreviations
(cont.)
8DS508PP1
EP7312
High-Performance System-on-Chip with SDRAM and Digital Audio Interface
1.2. Units of Measurement 1.3. General Conventions
Hexadecimal numbe rs are presented with all lett ers
in uppercase and a lowercase “h” appended or with
a 0x at the beginning. For example, 0x14 and
03CAh are hexadecimal numbers. Binary numbers
are enclosed in single q uotat ion marks when in text
(for example, ‘11’ designates a binary number).
Numbers not indicated by an “h”, 0x or quotation
marks are decimal.
Registers are referred to by acronym, with bits list-
ed in brackets separated by a hyphen (-) (for exam-
ple, CODR[0-7]), and are described in the EP7312
User’s Manual, The use of “tbd” indicates values
that are “to be determined,” “n/a” designates “not
available,” and “n/c” indicates a pin that is a “no
connect.”
1.4. Pin Description Conventions
Abbreviations used for signal directions are listed
in Table 3.
Symbol Unit of Measure
°Cdegree Celsius
fs sample frequency
Hz hertz (cycle per second)
kbits/s kilobits per second
kbyte kilobyte (1,024 bytes)
kHz kilohertz
kkilohm
Mbits/s megabits (1,048,576 bits) per second
Mbyte megabyte (1,048,576 bytes)
Mbyte/s megabytes per second
MHz megahertz (1,000 kilohertz)
µA microampere
µFmicrofarad
µWmicrowatt
µs microsecond (1,000 nanoseconds)
mA milliampere
mW milliwatt
ms millisecond (1,000 microseconds)
ns nanosecond
Vvolt
Wwatt
Table 2. Unit of Measurement
Abbreviation Direction
I Input
O Output
I/O Input or Output
Table 3. Pin Description Conventions
9DS508PP1
EP7312
High-Performance System-on-Chip with SDRAM and Digital Audio Interface
2. ELECTRICAL SPECIFICATIONS
2.1. Absolute Maximum Ratings
2.2. Recommended Operating Conditions
2.3. DC Characteristics
All characteristics are specified at VDD = 2.5 volts
and VSS = 0 volts over an operating temperature of
0°C to +70°C for al l frequencies of opera tion. The
current consumption figures relate to typical condi-
tions at 2.5 V, 18.432 MHz operation with the PLL
switched “on.”
DC Core, PLL, and RTC Supply Voltage 2.9 V
DC I/O Supply Voltage (Pad Ring) 3.6 V
DC Pad Input Current ±10 mA/pin; ±100 mA cumulative
Storage Temperature, No Power –40°C to +125°C
Table 4. Absolute Maximum Ratings
DC core, PLL, and RTC Supply Voltage 2.5 V ± 0.2 V
DC I/O Supply Voltage (Pad Ring) 2.3V - 3.6V
DC Input / Output Voltage O–I/O supply voltage
Operating Temperature Extended -20°C to +70°C; Commercial 0°C to
+70°C; Industrial -40°C to +85°C
Table 5. Recommended Operating Conditions
Symbol Parameter Min Typ Max Unit Conditions
VIH CMOS input high voltage 1. 7 VDD + 0.3 V VDD = 2.5 V
VIL CMOS input low voltage -0.3 0.8 V VDD = 2.5 V
VT+ Schmitt trigger positive going thresh-
old 1.6 (Typ) 2.0 V
VT- Schmitt trigger negative going
threshold 0.8 1.2 (Typ) V
Vhst Schmitt trigger hysteresis 0.1 0.4 V VIL to VIH
VOH CMOS output high voltage
Output drive 1
Output drive 2
VDD – 0.2
2.5
2.5
V
V
V
IOH = 0.1 mA
IOH = 4 mA
IOH = 12 mA
VOL CMOS output low voltage
Output drive 1
Output drive 2
0.3
0.5
0.5
V
V
V
IOL = –0.1 mA
IOL = –4 mA
IOL = –12 mA
IIN Input leakage current11.0 µA VIN = VDD or GND
IOZ Output three-state leakage current2 3 25 100 µA VOUT = VDD or GND
CIN Input capacitance 8 10.0 pF
Table 6. DC Characteristics
10DS508PP1
EP7312
High-Performance System-on-Chip with SDRAM and Digital Audio Interface
COUT Output capacit ance 8 10.0 pF
CI/O Transceiver capacitance 8 10.0 pF
IDDstartup Startup current consumption 15.0 µA Initial 100 ms from
power up, Cache dis-
abled, 32 kHz oscillator
not stable, POR signal
at VIL, all other I/O
static, VIH = VDD ±
0.1 V, VIL = GND ±
0.1 V
IDDstandby Standby current consumption
Core, Osc, RTC @2.5V
I/O @ 2.5V
Core, Osc, RTC @2.5V
I/O @ 3.3V
De-Rat-
ing
Curves
to be
added
De-Rat-
ing
Curves
to be
added
µ A Just 32 kHz osci ll ato r
running, Cache dis-
abled, all other I/O
static, VIH = VDD ±
0.1 V, VIL = GND ±
0.1 V
IDDidle Idle current consumption
At 13 MHz
Core, Osc, RTC @2.5V
I/O @ 2.5V
Core, Osc, RTC @2.5V
I/O @ 3.3V
At 18 MHz
Core, Osc, RTC @2.5V
I/O @ 2.5V
Core, Osc, RTC @2.5V
I/O @ 3.3V
At 36 MHz
Core, Osc, RTC @2.5V
I/O @ 2.5V
Core, Osc, RTC @2.5V
I/O @ 3.3
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
4.2
6.0
12.0
mA Both oscillators run-
ning, CPU static,
Cache disabled, LCD
refresh active, VIH =
VDD ± 0.1 V, VIL =
GND ± 0.1 V
Symbol Parameter Min Typ Max Unit Conditions
Table 6. DC Characteristics
(cont.)
11 DS508PP1
EP7312
High-Performance System-on-Chip with SDRAM and Digital Audio Interface
IDDoperatin Operating current consumption
At 13 MHz
Core, Osc, RTC @2.5V
I/O @ 2.5V
Core, Osc, RTC @2.5V
I/O @ 3.3V
At 18 MHz
Core, Osc, RTC @2.5V
I/O @ 2.5V
Core, Osc, RTC @2.5V
I/O @ 3.3V
At 36 MHz
Core, Osc, RTC @2.5V
I/O @ 2.5V
Core, Osc, RTC @2.5V
I/O @ 3.3V
At 49 MHz
Core, Osc, RTC @2.5V
I/O @ 2.5V
Core, Osc, RTC @2.5V
I/O @ 3.3V
At 74 MHz
Core, Osc, RTC @2.5V
I/O @ 2.5V
Core, Osc, RTC @2.5V
I/O @ 3.3V
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
14
30
40
50
68
mA All system active, run-
ning typical program,
cache disabled, and
LCD inactive
Symbol Parameter Min Typ Max Unit Conditions
Table 6. DC Characteristics
(cont.)
12DS508PP1
EP7312
High-Performance System-on-Chip with SDRAM and Digital Audio Interface
Notes: 1) All power dissipation values can be der ived from taking the particular IDD current and multiplying by
2.5 V.
2) The RTC of the EP7312 should be brought up at room temperature. This is required because the RTC
OSC will NOT function properly if it is brought up at –40°C. Once operational, it will continue to oper-
ate down to –20°C extended and 0°C commercial.
3) A typical design will provide 3.3 V to the I/O supply (i.e., V DDIO), and 2.5 V to the remaining logic. This
is to allow the I/O to be compatible with 3.3 V powered external logic (i.e., 3.3 V DRAMs).
4) Pull-up current = 50 µA typical at VDD = 3.3 v ol ts.
VDDstandby Standby supply voltage TBD V Minimum standby volt-
age for state retention
and RTC operation
only
1 The leakage v alu e g iv en as su mes that the pi n is co nfig ure d a s an input pin bu t i s n ot current ly be ing driven. An i npu t p in not
driven will have a maximum leakage of 1 µA. When the pin is driven, there will be no leakage.
2 Assumes buffer has no pull-up or pull-down resistors.
3 The leakage value given assumes that the pin is configured as an output pin but is not currently being driven. An output pin
not driven will have leakage between 25 µ A and 100 µA. When the pin is driven, there will be no leakage. Note that this
applies to all output pins and all I/O pins configured as outputs.
Symbol Parameter Min Typ Max Unit Conditions
Table 6. DC Characteristics
(cont.)
13 DS508PP1
EP7312
High-Performance System-on-Chip with SDRAM and Digital Audio Interface
2.4. AC Characteristics
All characteristics are specified at VDD = 2.3 to
2.7 volts and VSS = 0 volts over an operating tem-
perature of 0°C to +70°C. Those characteristics
marked with a # will be significantly different for
13 MHz mode because the EXPCLK is provided as
an input rather than generated internally. These
timings are es timated at pres ent. The timi ng values
are referenced to 1/2 VDD.
Symbol Parameter
13 MHz 18/36 MHz
UnitsMin Max Min Max
t1 Falling CS to data bus Hi-Z 0 35 0 25 ns
t2 Address change to valid write data 0 45 0 35 ns
t3 DATA in to falling EXPCLK setup time 0 # —18ns
t4 DATA in to falling EXPCLK hold time 10 # 0 ns
t5 EXPRDY to falling EXPCLK setup time 0 # 18 ns
t6 Falling EXPCLK to EXPRDY hold time 10 # 50 0 50 ns
t7 Rising nMWE to data invalid hold time 10 5 ns
t8 Sequential data valid to falling nMWE setup time –10 10 –10 10 ns
t9 Row address to falling nSDRAS setup time TBD - TBD - ns
t10 Falling nSDRAS to row address hold time TBD - TBD - ns
t11 Column address to falling nSDCAS setup time TBD - TBD - ns
t12 Falling nSDCAS to column address hold time TBD - TBD - ns
t13 Write data valid to falling nSDCAS setup time TBD - TBD - ns
t14 Write data valid from falling nSDCAS hold time TBD - TBD - ns
t15 LCD CL2 low tim e 80 3,475 80 3,475 ns
t16 LCD CL2 high time 80 3,475 80 3,475 ns
t17 LCD falling CL[2] to rising CL[1] delay 0 25 0 25 ns
t18 LCD falling CL[1] to rising CL[2] 80 3,475 80 3,475 ns
t19 LCD CL[1] high time 80 3,475 80 3,475 ns
t20 LCD falling CL[1] to falling CL[2] 200 6,950 200 6,950 ns
t21 LCD falling CL[1] to FRM toggle 300 10,425 300 10,425 ns
t22 LCD falling CL[1] to M toggle –10 20 –10 20 ns
t23 LCD rising CL[2] to display data change –10 20 –10 20 ns
t24 Falling EXPCLK to address valid 33 # 5 ns
Table 7. AC Timing Characte ristics
14DS508PP1
EP7312
High-Performance System-on-Chip with SDRAM and Digital Audio Interface
Notes: All SDRAM 36 MHz timings are for SDRAM operation. The values for 36 MHz include 1 wait state, and
the 18 MHz values have 0 wait states.
t25 Data valid to falling nMWE for non sequential
access only 5—5ns
t31 SSICLK period (slave mode) 0 512 0 512 kHz
t32 SSICLK high 925 1025 925 1025 ns
t33 SSICLK low 925 1025 925 1025 ns
t34 SSICLK rise / fall time 7 7 ns
t35 SSICLK rising to RX and / or TX frame sync 528 528 ns
t36 SSICLK rising edge to frame sync low 448 448 ns
t37 SSICLK rising edge to TX data valid 80 80 ns
t38 SSIRXDA data set-up time 30 30 ns
t39 SSIRXDA data hold time 40 40 ns
t40 SSITXFR and / or SSIRXFR period 750 750 ns
tnCSRD Negative strobe (nCS[0-5]) zero wait state read
access time TBD TBD TBD
tnCSWR Negative strobe (nCS[0-5]) zero wait state write
access time TBD TBD TBD
tEXBST Sequential expansion burst mode read access
time TBD TBD TBD
tRC SDRAM cycle time TBD - TBD - TBD
tRAC Access time from SDRAS TBD - TBD - TBD
tRP SDRAS precharge time TBD - TBD - TBD
tCAS SDCAS pulse width TBD - TBD - TBD
tCP SDCAS precharge in page mode TBD - TBD - TBD
tPC Page mode cycle time TBD - TBD - TBD
tCSR SDCAS set-up time for auto refresh TBD - TBD - TBD
tRAS SDRAS pulse width TBD - TBD - TBD
Symbol Parameter
13 MHz 18/36 MHz
UnitsMin Max Min Max
Table 7. AC Timing Characteristics
(cont.)
15 DS508PP1
EP7312
High-Performance System-on-Chip with SDRAM and Digital Audio Interface
tNCSRD
t3
tPCSRD t4 t3
tADRD t4
t5 t6
t1
Data inBus held Data in
EXPCLK
nCS[5:0]
nMOE
A[27:0]
WORD
D[31:0]
EXPRDY
Figure 2. Consecutive Memory Read Cycles with Minimum Wait States
Notes: 1) tnCSRD = 50 ns at 36.864 MHz
70 ns at 18.432 MHz
120 ns at 13.0 MHz
Maximum values for minimum wait states. This time can be extended by integer multiples of the
clock period (27 ns at 36 MHz, 54 ns at 18.432 MHz, and 77 ns at 13 MHz), by either driving
EXPRDY low and/or by programming a number of wait states. EXPRDY is sampled on the falling
edge of EXPCLK before the data transfer . If low at this point, the transfer is delayed by one clock
period where EXPRDY is sampled again. EXPCLK need not be referenced when driving
EXPRDY, but is shown for clarity.
2) Consecutive reads with sequential access enabled are identical except that the sequential
access wait state field is used to determine the number of wait states, and no idle cycles are
inserted between successive non-sequential ROM/expansion cycles. This improves perfor-
mance so the SQAEN bit should always be set where possible.
3) tnCSRD = tADRD = tPCSRD
4) When the EP7312 device implements consecutive reads(e.g., use of the LDM instruction),
regardless of th e state of the SQAEN bit, the signals nMOE and nCSx will always remain low
through the entire multi-read access. They will not toggle in-between each different address
access. In order to have these signals toggle, single access read instructions (e.g., LDR) must
be used.
16DS508PP1
EP7312
High-Performance System-on-Chip with SDRAM and Digital Audio Interface
Figure 3. Sequential Page Mode Read Cycles with Minimum W ait St ates
Notes: 1) tEXBST = 35 ns at 36.864 MHz
35 ns at 18.432 MHz
55 ns at 13.0 MHz
(Value for 36.864 MHz assumes 1 wait state.)
Maximum values for minimum wait st ates. This time can be extended by integer multiples of the
clock period (27 nsec at 36 MHz, 54 nsec at 18.432 MHz and 77 ns at 13 MHz), by either driving
EXPRDY low and/or by programming a number of wait states. EXPRDY is sampled on the falling
edge of EXPCLK before the data transfer . If low at this point, the transfer is delayed by one clock
period where EXPRDY is sampled again. EXPCLK need not be referenced when driving
EXPRDY, but is shown for clarity.
2) Consecutive reads with sequential access enabled are identical except that the sequential
access wait state field is used to determine the number of wait states, and no idle cycles are
inserted between successive non-sequential ROM/expansion cycles. This improves perfor-
mance so the SQAEN bit should always be set where possible.
tEXBST tEXBST
t3
tEXRD t4 t3 t4 t3 t4
t5 t6
t1
Data inBus held Data in Data in
048
EXPCLK
nCS[5:0]
nMOE
A[27:4]
A
[
3:0
]
WORD
D[31:0]
EXPRDY
17 DS508PP1
EP7312
High-Performance System-on-Chip with SDRAM and Digital Audio Interface
tnCSWR
tADWR
t5 t6
t2 t7 t2
Bus held Write data
Write data
eXPCLK
nCS[5:0]
nMWE
A[27:0]
WORD
D[31:0]
n
EXPRDY
t8
Figure 4. Consecutive Memory Write Cycles with Minimum Wait States
Notes: 1) tnCSWR = 35 nsec at 36.864 MHz
70 ns at 18.432 MHz
120 ns at 13.0 MHz
Maximum values for minimum wait states. This time can be extended by integer multiples of the
clock period (27 nsec at 36 MHz, 54 nsec at 18.432 MHz, and 77 nsec at 13 MHz), by either
driving EXPRDY low and/or by programming a number of wait states. EXPRDY is sampled on
the falling edge of EXPCLK before the data transfer. If low at this point, the transfer is delayed
by one clock period where EXPRDY is sampled again. EXPCLK need not be referenced when
driving EXPRDY, but is shown for clarity.
2) Consecutive reads with sequential access enabled are identical except that the sequential
access wai t state field is us ed to determine the n umber of wait states, an d no idle cycle s are
inserted between successive non-sequential ROM/expansion cycles. This improves perfor-
mance so the SQAEN bit should always be set where possible.
3) Zero wait states for sequential writes is not permitted for memory devices which use nMWE pin,
as this cannot be driven with valid timing under zero wait state conditions.
18DS508PP1
EP7312
High-Performance System-on-Chip with SDRAM and Digital Audio Interface
T1 T2 T3 T4 T5 T6 T7 T8 T9
CLK
nRAS /
nCAS / nWE NOP ACT NOP
T0
READ NOP NOP NOP NOP NOP NOP (ACT)
CKE
nCS 1 dev1 de v
DQM
DQ DI1
Bank sel
A10
(
p
rech sel)
addr
CAS lat 2
tRCD tRP
tRAS
tRC auto precharge
row col
row
bank bank
NOP
T10
DI2DI0 DI3
Figure 5. SDRAM Read Cycles SDCAS Latency = 2
Notes: 1. tRCD (delay time ACT to READ/WRITE command) = 30 ns or 2 cycles at 36 MHz.
2. tRP (PRE to ACT command period) = 30 ns or 2 cycles at 36 MHz.
3. tRAS (ACT to PRE command period) = 60 ns or 3 cycles at 36 MHz.
4. tRC (ACT to REF/ACT command period [operation]) = 90 ns or 4 cycles at 36 MHz.
5. For SDCAS latency 3, there will be an extra cycle between T4 and T5.
19 DS508PP1
EP7312
High-Performance System-on-Chip with SDRAM and Digital Audio Interface
T1 T2 T3 T4 T6 T7 T8 T9 T10
CLK
nRAS /
nCAS / nWE NOP ACT NOP
T0
READ NOP NOP NOP NOP NOP NOP (ACT)
CKE
nCS 1 dev1 de v
DQM
DQ DI0 DI1 DI2 DI3
Bank sel
A10
(prech sel)
addr
CAS lat 3
tRCD tRP
tRAS
tRC auto precharge
row col
row
bank bank
NOP
T5
NOP
T11
Figure 6. SDRAM Read Cycles SDCAS Latency = 3
T1 T2 T3 T4 T5 T6 T7
CLK
nRAS /
nCAS / nWE NOP ACT NOP
T0
WRITE NOP NOP NOP NOP NOP
CKE
nCS 1 dev1 de v
DQM
DQ
Bank sel
A10
(prech sel)
addr
tRCD tRP
tRAS
tRC
tDPL
DO0 DO1 DO2 DO3
(ACT)
row col
row
bank bank
auto precharge
Figure 7. SDRAM Write Cycles
Note: tDPL (data in to PRE command period command) = 10 ns or 1 cycle at 36 MHz.
20DS508PP1
EP7312
High-Performance System-on-Chip with SDRAM and Digital Audio Interface
T1 T2 T3 T4
CLK
nRAS /
nCAS / nWE NOP REF NOP
T0
NOP NOP (ACT)
CKE
nCS all
DQM
DQ
Bank sel
A10
(prech sel)
addr
tRP tRC1
auto precharge
Figure 8. SDRAM Refresh Cycles
Note: tRC1 (REF to REF/ACT command period [refresh]) = 90 ns or 4 cycles at 36 MHz.
t15t20 t16
t18
t19 t21
t17
t22
t23
CL[2]
CL[1]
FRM
M
DD[3:0]
Figure 9. LCD Controller Timings
Notes: 1) The figure shows the end of a line.
2) If FRM is high during the CL[1] pulse, this marks the first line in the display.
3) CL[2] low time is doubled during the CL[1] high pulse.
21 DS508PP1
EP7312
High-Performance System-on-Chip with SDRAM and Digital Audio Interface
16
2345 7 8910 14
13
12
11 15 22 23
DI5 DI4 DI3 DI2 DI1 DI0
DO1 DO0DO9 DO8
DI9 DI8 DI7 DI6
ADCCLK
nADCCS
ADCIN
ADCOUT
(SCL K )
(nRFS/TFS)
(Din)
(Dout)
Figure 10. SSI1 Interface for AD7811/2
SSICLK
SSI RX/TXFR
SSITXDA
SSIRXDA
t31 t33 t32
t35
t37
t38 t39
t40
t36
D7 D2 D1 D0
D7 D2 D1 D0
Figure 11. SSI2 Interface Timings
22DS508PP1
EP7312
High-Performance System-on-Chip with SDRAM and Digital Audio Interface
3. 208-PIN LQFP PACKAGE CHARACTERISTICS
3.1. 208-Pin LQFP Pin Diagram
160
159
158
157
53
54
55
56
57
58
59
60
61
62
63
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
106
107
108
109
110
112
113
114
115
116
117
118
119
120
121
64
65
67
68
69
70
71
72
73
74
75
66
98
99
100
101
102
103
104
122
124
125
126
127
128
129
130
105
131
132
133
134
156
155
154
153
152
151
150
149
148
147
146
145
144
143
140
139
138
137
136
141
142
135
161
162
163
164
165
166
167
168
169
170
171
172
173
174
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
201
202
203
204
205
206
207
208
200
175
176
177
178
179
123
111
EP7312
208-Pin LQFP
(Top View)
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
51
50
52
1
NEXTPWR
BATOK
NPOR
VSSOSC
VDDOSC
MOSCIN
MOSCOUT
NURESET
WAKEUP
A[6]
D[6]
A[5]
D[5]
VDDIO
VSSIO
A[4]
D[4]
A[3]
D[3]
NPWRFL
A[2]
D[2]
A[1]
A[0]
D[0]
VDDCORE
VSSIO
VDDIO
CL[2]
CL[1]
FRM
M
DD[2]
DD[1]
DD[0]
NSDCS[1]
SDQM[3]
SDQM[2]
VDDIO
VSSIO
SDCLK
NMWE/NSDWE
NMOE/NSDCAS
NCS[0]
NCS[1]
NCS[2]
NCS[3]
D[7]
A[7]
D[8]
A[8]
D[9]
D[10]
A[10]
VSSIO
VDDIO
A[11]
D[12]
A[12]
D[13]
A[13]\DRA[14]
D[14]
DD[3]
D[17]
D[15]
A[17]
/DRA[10]
NTRST
VSSIO
VDDIO
D[18]
A[18
/DRA[9]
D[19]
A[19]
/DRA[8]
D[20]
VSSIO
A[21]
/DRA[6]
D[22]
D[23]
A[23]
/DRA[4]
D[24]
VSSIO
VDDIO
A[24]
/DRA[3]
HALFWORD
A[14]/DRA[13]
NBATCHG
A[25]/DRA[2]
D[25]
D[27]
A[27]/DRA[0]
VSSIO
D[28]
D[29]
D[30]
D[31]
BUZ
COL[0]
COL[1]
TCLK
VDDIO
COL[2]
COL[3]
COL[4]
COL[5]
COL[6]
COL[7]
FB[0]
VSSIO
FB[1]
ADCOUT
ADCCLK
DRIVE[0]
VDDIO
PD[2]
VSSIO
VSSCORE
NADCCS
ADCIN
SSIRXDA
SSIRXFR
SSITXDA
SSITXFR
VSSIO
SSICLK
PD[0]/LEDFLSH
PD[1]
PD[3]
A[22]
/DRA[5]
PD[4]
VDDIO
PD[5]
PD[6]/SDQM[0]
DRIVE[1]
PD[7]/SDQM[1]
D[26]
A[15]
/DRA[12]
D[16]
A[16]
/DRA[11]
NCS[4]
VDDCORE
A[26]/DRA[1]
D[21]
TMS
A[20]
/DRA[7]
SMPCLK
D[11]
A[9]
D[1]
VSSCORE
NSDCS[0
]
SDCKE
VSSIO
VSSIO
VSSIO
VSSIO
EXPCLK
WORD
WRITE/NSDRAS
RUN/CLKEN
EXPRDY
PB[7]
PB[6]
PB[5]
PB[4]
PB[3]
PB[2]
PB[1]/PRDY[2]
VSSIO
TDI
VDDIO
TDO
PE[2]/CLKSEL
NEXTFIQ
PA[6]
PA[5]
PA[4]
PA[3]
PA[2]
PA[1]
PA[0]
LEDDRV
TXD[2]
PHDIN
CTS
RXD[2]
DCD
DSR
RTCOUT
RTCIN
VSSIO
PA[7]
VDDIO
VSSIO
NCS[5]
PB[0]/PRDY[1]
TXD[1]
RXD[1]
NTEST[1]
NTEST[0]
EINT[3]
NEINT[2]
NEINT[1]
PE[1]BOOTSEL[1]
PE[0]BOOTSEL[0]
N/C
VSSRTC
VDDRTC
Figure 12. 208-Pin LQFP (Low Profile Quad Flat Pack) Pin Diagram
Notes: 1. N/C should not be grounded but left as no connects.
2. Pin differences between the EP7212 and the EP7312 are bolded.
NMEDCHG/NBROM
23 DS508PP1
EP7312
High-Performance System-on-Chip with SDRAM and Digital Audio Interface
3.2. 208-Pin LQFP Package Specifications
Pin 1 Indicator
29.60 (1.165)
30.40 (1.197)
0.17 (0.007)
0.27 (0.011)
27.80 (1.094)
28.20 (1.110)
0.50
(0.0197)
BSC
29.60 (1.165)
30.40 (1.197)
27.80 (1.094)
28.20 (1.110)
1.35 (0.053)
1.45 (0.057)
0° MIN
7° MAX
0.09 (0.004)
0.20 (0.008)
1.40 (0.055)
0.45 (0.018)
0.75 (0.030)
0.05 (0.002)
1.00 (0.039) BSC
Pin 1
Pin 208
1.60 (0.063) 0.15 (0.006)
EP7312
208-Pin LQFP
Notes: 1) Dimensions are in millimeters (inches), and controlling dimension is millimeter.
2) Drawing above does not reflect exact package pin count.
3) Before beginning any new design with this device, please contact Cirrus Logic for the latest
package information.
4) For pin locat ion s, please see Figure 12. For pin descriptions see the
EP7312 Users Manual
.
Figure 13. 208-Pin LQFP Package Outline Drawing
24DS508PP1
EP7312
High-Performance System-on-Chip with SDRAM and Digital Audio Interface
3.3. 208-Pin LQFP Numeric Pin Listing
Pin
No. Signal Type Strength Reset
State
1nCS[5] Out 1 High
2 VDDIO Pad Pwr
3VSSIOPad Gnd
4 EXPCLK I/O 1
5 WORD Out 1 Low
6WRITE/
nSDRAS Out 1 Low
7 RUN/CLKEN O 1 Low
8 EXPRDY In 1
9 TXD[2] Out 1 High
10 RXD[2] In
11 TDI In with p/u*
12 VSSIO Pad Gnd
13 PB[7] I/O 1 Input
14 PB[6] I/O 1 Input
15 PB[5] I/O 1 Input
16 PB[4] I/O 1 Input
17 PB[3] I/O 1 Input
18 PB[2] I/O 1 Input
19 PB[1]/
PRDY2 I/O 1 Input
20 PB[0]/
PRDY1 I/O 1 Input
21 VDDIO Pad Pwr
22 TDO Out 1 Three
state
23 PA[7] I/O 1 Input
24 PA[6] I/O 1 Input
25 PA[5] I/O 1 Input
26 PA[4] I/O 1 Input
27 PA[3] I/O 1 Input
28 PA[2] I/O 1 Input
29 PA[1] I/O 1 Input
30 PA[0] I/O 1 Input
31 LEDDRV Out 1 Low
32 TXD[1] Out 1 High
33 VSSIO Pad Gnd 1 High
34 PHDIN In
35 CTS In
Table 8. 208-Pin LQFP Numeric Pin Listing
36 RXD[1] In
37 DCD In
38 DSR In
39 nTEST[1] In With p/u*
40 nTEST[0] In With p/u*
41 EINT[3] In
42 nEINT[2] In
43 nEINT[1] In
44 nEXTFIQ In
45 PE[2]/
CLKSEL I/O 1 Input
46 PE[1]/
BOOTSEL[1] I/O 1 Input
47 PE[0]/
BOOTSEL[0] I/O 1 Input
48 VSSRTC RTC Gnd
49 RTCOUT Out
50 RTCIN In
51 VDDRTC RTC power
52 N/C
53 PD[7]/
SDQM[1] I/O 1 Low
54 PD[6]/
SDQM[0] I/O 1 Low
55 PD[5] I/O 1 Low
56 PD[4] I/O 1 Low
57 VDDIO Pad Pwr
58 TMS In with p/u*
59 PD[3] I/O 1 Low
60 PD[2] I/O 1 Low
61 PD[1] I/O 1 Low
62 PD[0]/
LEDFLSH I/O 1 Low
63 SSICLK I/O 1 Input
64 VSSIO Pad Gnd
65 SSITXFR I/O 1 Low
66 SSITXDA Out 1 Low
67 SSIRXDA In
68 SSIRXFR I/O Input
69 ADCIN In
70 nADCCS Out 1 High
Pin
No. Signal Type Strength Reset
State
Table 8. 208-Pin LQFP Numeric Pin Listing
(cont.)
25 DS508PP1
EP7312
High-Performance System-on-Chip with SDRAM and Digital Audio Interface
71 VSSCORE Core Gnd
72 VDDCORE Core Pwr
73 VSSIO Pad Gnd
74 VDDIO Pad Pwr
75 DRIVE[1] I/O 2 High /
Low
76 DRIVE[0] I/O 2 High /
Low
77 ADCCLK Out 1 Low
78 ADCOUT Out 1 Low
79 SMPCLK Out 1 Low
80 FB[1] In
81 VSSIO Pad Gnd
82 FB[0] In
83 COL[7] Out 1 High
84 COL[6] Out 1 High
85 COL[5] Out 1 High
86 COL[4] Out 1 High
87 COL[3] Out 1 High
88 COL[2] Out 1 High
89 VDDIO Pad Pwr
90 TCLK In
91 COL[1] Out 1 High
92 COL[0] Out 1 High
93 BUZ Out 1 Low
94 D[31] I/O 1 Low
95 D[30] I/O 1 Low
96 D[29] I/O 1 Low
97 D[28] I/O 1 Low
98 VSSIO Pad Gnd
99 A[27]/DRA[0] Out 2 Low
100 D[27] I/O 1 Low
101 A[26]/DRA[1] Out 2 Low
102 D[26] I/O 1 Low
103 A[25]/DRA[2] Out 2 Low
104 D[25] I/O 1 Low
105 HALFWORD Out 1 Low
106 A[24]/DRA[3] Out 1 Low
107 VDDIO P ad Pwr
108 VSS IO Pad Gnd
Pin
No. Signal Type Strength Reset
State
Table 8. 208-Pin LQFP Numeric Pin Listing
(cont.)
109 D[24] I/O 1 Low
110 A[23]/DRA[4] Out 1 Low
111 D[23] I/O 1 Low
112 A[22]/DRA[5] Out 1 Low
113 D[22] I/O 1 Low
114 A[21]/DRA[6] Out 1 Low
115 D[21] I/O 1 Low
116 VSSIO Pad Gnd
117 A[20]/DRA[7] Out 1 Low
118 D[20] I/O 1 Low
119 A[19]/DRA[8] Out 1 Low
120 D[19] I/O 1 Low
121 A[18]/DRA[9] Out 1 Low
122 D[18] I/O 1 Low
123 VDDIO P ad Pwr
124 VSSIO Pad Gnd
125 nTRST In
126 A[17]/ DRA[10] Out 1 Low
127 D[17] I/O 1 Low
128 A[16]/ DRA[11] Out 1 Low
129 D[16] I/O 1 Low
130 A[15]/ DRA[12] Out 1 Low
131 D[15] I/O 1 Low
132 A[14]/ DRA[13] Out 1 Low
133 D[14] I/O 1 Low
134 A[13]/ DRA[14] Out 1 Low
135 D[13] I/O 1 Low
136 A[12] Out 1 Low
137 D[12] I/O 1 Low
138 A[11] Out 1 Low
139 VDDIO P ad Pwr
140 VSSIO Pad Gnd
141 D[11] I/O 1 Low
142 A[10] Out 1 Low
143 D[10] I/O 1 Low
144 A[9] Out 1 Low
145 D[9] I/O 1 Low
146 A[8] Out 1 Low
147 D[8] I/O 1 Low
148 A[7] Out 1 Low
Pin
No. Signal Type Strength Reset
State
Table 8. 208-Pin LQFP Numeric Pin Listing
(cont.)
26DS508PP1
EP7312
High-Performance System-on-Chip with SDRAM and Digital Audio Interface
149 VSS IO Pad Gnd
150 D[7] I/O 1 Low
151 nBATCHG In
152 nEXTPWR In
153 BATOK In
154 nPOR In Schmitt
155 nMEDCHG/
nBROM In
156 nURESET In Schmitt
157 VDDOSC Osc Pwr
158 MOSCIN Osc
159 MOSCOUT Osc
160 VSSOSC Osc Gnd
161 WAKEUP In Schmitt
162 nPWRFL In
163 A[6] Out 1 Low
164 D[6] I/O 1 Low
165 A[5] Out 1 Low
166 D[5] I/O 1 Low
167 VDDIO P ad Pwr
168 VSS IO Pad Gnd
169 A[4] Out 1 Low
170 D[4] I/O 1 Low
171 A[3] Out 2 Low
172 D[3] I/O 1 Low
173 A[2] Out 2 Low
174 VSS IO Pad Gnd
175 D[2] I/O 1 Low
176 A[1] Out 2 Low
177 D[1] I/O 1 Low
178 A[0] Out 2 Low
179 D[0] I/O 1 Low
180 VSS CORE Core Gnd
181 VDD CORE Core Pwr
182 VSS IO Pad Gnd
183 VDDIO P ad Pwr
184 CL[2] Out 1 Low
185 CL[1] Out 1 Low
186 FRM Out 1 Low
187 M Out 1 Low
Pin
No. Signal Type Strength Reset
State
Table 8. 208-Pin LQFP Numeric Pin Listing
(cont.)
188 DD[3] I/O 1 Low
189 DD[2] I/O 1 Low
190 VSSIO Pad Gnd
191 DD[1] I/O 1 Low
192 DD[0] I/O 1 Low
193 nSDCS[1] Out 1 H igh
194 nSDCS[0] Out 1 H igh
195 SDQM[3] I/O 2 Low
196 SDQM[2] I/O 2 Low
197 VDDIO P ad Pwr
198 VSSIO Pad Gnd
199 SDCKE I/O 2 Low
200 SDCLK I/O 2 Low
201 nMWE/nSDWE Out 1 High
202 nMOE/ nSD-
CAS Out 1 High
203 VSSIO Pad Gnd
204 nCS[0] Out 1 High
205 nCS[1] Out 1 High
206 nCS[2] Out 1 High
207 nCS[3] Out 1 High
208 nCS[4] Out 1 High
Note: ‘With p/u’ means with internal pull-up on the pin.
Pin
No. Signal Type Strength Reset
State
Table 8. 208-Pin LQFP Numeric Pin Listing
(cont.)
27 DS508PP1
EP7312
High-Performance System-on-Chip with SDRAM and Digital Audio Interface
3.4. JTAG Boundary Scan Signal Ordering
for 208-Pin LQFP
Pin No. Signal Type Position
1NCS[5]Out1
4 EXPCLK I/O 3
5WORDOut6
6WRITEOut8
7 RUN/CLKEN O 10
8 EXPRDY I 13
9 TXD2 Out 14
10 RXD2 In 16
13 PB[7] I/O 17
14 PB[6] I/O 20
15 PB[5] I/O 23
16 PB[4] I/O 26
17 PB[3] I/O 29
18 PB[2] I/O 32
19 PB[1]/PRDY2 I/O 35
20 PB[0]/PRDY1 I/O 38
23 PA[7] I/O 41
24 PA[6] I/O 44
25 PA[5] I/O 47
26 PA[4] I/O 50
27 PA[3] I/O 53
28 PA[2] I/O 56
29 PA[1] I/O 59
30 PA[0] I/O 62
31 LEDDRV Out 65
32 TXD1 Out 67
34 PHDIN In 69
35 CTS In 70
36 RXD1 In 71
37 DCD In 72
38 DSR In 73
39 NTEST1 In 74
40 NTEST0 In 75
41 EINT3 In 76
42 NEINT2 In 77
43 NEINT1 In 78
44 NEXTFIQ In 79
45 PE[2]/CLKSEL I/O 80
46 PE[1]/BOOTSEL1 I/O 83
47 PE[0]/BOOTSEL0 I/O 86
Table 9. JTAG Boundary Scan Signal Ordering for 208-
Pin LQFP Package
53 PD[7] I/O 89
54 PD[6] I/O 92
55 PD[5] I/O 95
56 PD[4] I/O 98
59 PD[3] I/O 101
60 PD[2] I/O 104
61 PD[1] I/O 107
62 PD[0]/LEDFLSH O 110
68 SSIRXFR I/O 122
69 ADCIN In 125
70 NADCCS Out 126
75 DRIVE1 I/O 128
76 DRIVE0 I/O 131
77 ADCCLK Out 134
78 ADCOUT Out 136
79 SMPCLK Out 138
80 FB1 In 140
82 FB0 In 141
83 COL7 Out 142
84 COL6 Out 144
85 COL5 Out 146
86 COL4 Out 148
87 COL3 Out 150
88 COL2 Out 152
91 COL1 Out 154
92 COL0 Out 156
93 BUZ Out 158
94 D[31] I/O 160
95 D[30] I/O 163
96 D[29] I/O 166
97 D[28] I/O 169
99 A[27]/DRA[0] Out 172
100 D[27] I/O 174
101 A[26]/DRA[1] Out 177
102 D[26] I/O 179
103 A[25]/DRA[2] Out 182
104 D[25] I/O 184
105 HALFWORD Out 187
106 A[24]/DRA[3] Out 189
109 D[24] I/O 191
110 A[23]/DRA[4] Out 194
111 D[23] I/O 196
112 A[22]/DRA[5] Out 199
113 D[22] I/O 201
Pin No. Signal Type Position
Table 9. JTAG Boundary Scan Signal Orderin g for 20 8-
Pin LQFP Package
(cont.)
28DS508PP1
EP7312
High-Performance System-on-Chip with SDRAM and Digital Audio Interface
Notes: 1) See
EP7312 Users’ Manual
for pin
naming / functionality.
2) For each pad, the JTAG connection
ordering is input, output, then enable
as applicable.
114 A[21]/DRA[6] Out 204
115 D[21] I/O 206
117 A[20]/DRA[7] Out 209
118 D[20] I/O 211
119 A[19]/DRA[8] Out 214
120 D[19] I/O 216
121 A[18]/DRA[9] Out 219
122 D[18] I/O 221
126 A[17]/DRA[10] Out 224
127 D[17] I/O 226
128 A[16]/DRA[11] Out 229
129 D[16] I/O 231
130 A[15]/DRA[12] Out 234
131 D[15] I/O 236
132 A[14] Out 239
133 D[14] I/O 241
134 A[13] Out 244
135 D[13] I/O 246
136 A[12] Out 249
137 D[12] I/O 251
138 A[11] Out 254
141 D[11] I/O 256
142 A[10] Out 259
143 D[10] I/O 261
144 A[9] Out 264
145 D[9] I/O 266
146 A[8] Out 269
147 D[8] I/O 271
148 A[7] Out 274
150 D[7] I/O 276
151 NBATCHG In 279
152 NEXTPWR In 280
153 BATOK In 281
154 NPOR In 282
155 NMEDCHG/BROM In 283
156 NURESET In 284
161 WAKEUP In 285
162 NPWRFL In 286
163 A[6] Out 287
164 D[6] I/O 289
165 A[5] Out 292
166 D[5] I/O 294
169 A[4] Out 297
170 D[4] I/O 299
Pin No. Signal Type Position
Table 9. JTAG Boundary Scan Signal Ordering for 208-
Pin LQFP Package
(cont.)
171 A[3] Out 302
172 D[3] I/O 304
173 A[2] Out 307
175 D[2] I/O 309
176 A[1] Out 312
177 D[1] I/O 314
178 A[0] Out 317
179 D[0] I/O 319
184 CL2 Out 322
185 CL1 Out 324
186 FRM Out 326
187 M Out 328
188 DD[3] I/O 330
189 DD[2] I/O 333
191 DD[1] I/O 336
192 DD[0] I/O 339
193 nSDRAS[1] Out 342
194 nSDRAS[0] Out 344
195 nSDCAS[3] I/O 346
196 nSDCAS[2] I/O 349
199 nSDCAS[1] I/O 352
200 nSDCAS[0] I/O 355
201 NMWE Out 358
202 NMOE Out 360
204 NCS[0] Out 362
205 NCS[1] Out 364
206 NCS[2] Out 366
207 NCS[3] Out 368
208 NCS[4] Out 370
Pin No. Signal Type Position
Table 9. JTAG Boundary Scan Signal Orderin g for 20 8-
Pin LQFP Package
(cont.)
29 DS508PP1
EP7312
High-Performance System-on-Chip with SDRAM and Digital Audio Interface
4. 256-PIN PBGA PACKAGE CHARACTERISTICS
4.1. 256-PIN PBGA PIN DIAGRAM
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
256-Ball PBGA
(Bottom View)
Note: For package sp ecifi ca tio ns , please see Figure 14.
Figure 13. 256-Ball Pin Diagram
30DS508PP1
EP7312
High-Performance System-on-Chip with SDRAM and Digital Audio Interface
4.2. EP7312 256-Ball PBGA (17 × 17 × 1.61-mm Body) Dimensions
TOP VIEW
17.00 (0.669)
15.00 (0.590)
SIDE VIEW
BOTTOM VIEW
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
1.00 (0.040)
Pin 1 Indicator
Pin 1 Corner
Pin 1 Corner
16 15 14 13 12 11 10 9 8 7 6 5 4 321
15.00 (0.590)
2 Layer
17.00 (0.669)
17.00 (0.669)
1.00 (0.040)
1.00 (0.040)
1.00 (0.040)
30° TYP
REF
REF
0.50
3 Places
0.85 (0.034)
±0.05 (.002)
0.40 (0.016)
±0.05 (.002)
0.36 (0.014)
17.00 (0.669)
R
D1
E1
D
E
±0.20 (.008)
±0.20 (.008)
±0.20 (.008)
±0.20 (.008)
±0.09 (0.004)
JEDEC #: MO-151
Ball Diameter: 0.50 mm ± 0.10 mm
Figure 14. 256-Ball PBGA Package Drawing
Notes: 1. For pin locations, please see Figure 13. For pin descriptions, See the
EP7312 Use r’s Manual .
2. Dimensions are in millimeters (inches), and controlling dimension is millimeter.
3. Before beginning any new EP7312 design, contact Cirrus Logic for the latest package information.
31 DS508PP1
EP7312
High-Performance System-on-Chip with SDRAM and Digital Audio Interface
4.3. 256-Ball PBGA Ball Listing
Ball
Location Name Type
A1 VDDIO P ad powe r
A2 nCS[4] O
A3 nCS[1] O
A4 SDCLK O
A5 nSDQM3 O
A6 DD[1] O
A7 M O
A8 VDDIO Pad power
A9 D[0] I/O
A10 D[2] I/O
A11 A[3] O
A12 VDDIO Pad power
A13 A[6] O
A14 MOSCOUT O
A15 VDDOSC Oscillator power
A16 VSSIO Pad ground
B1 nCS[5] O
B2 VDDIO P ad powe r
B3 nCS[3] O
B4 nMOE/nSDCAS O
B5 VDDIO Pad power
B6 nSDCS[1] O
B7 DD[2] O
B8 CL[1] O
B9 VDDCORE Core power
B10 D[1] I/O
B11 A[2] O
B12 A[4] O
B13 A[5] O
B14 WAKEUP I
B15 VDDIO Pad powe r
B16 nURESET I
C1 VDDIO Pad power
C2 EXPCLK I
C3 VSSIO Pad ground
C4 VDD IO P ad powe r
C5 VSSIO Pad ground
C6 VSSIO Pad ground
C7 VSSIO Pad ground
C8 VDD IO P ad powe r
C9 VSSIO Pad ground
C10 VSSIO Pad ground
C11 VSSIO Pad ground
Table 10. 256-Ball PBGA Ball Listing
C12 VDDIO Pad power
C13 VSSIO Pad ground
C14 VSSIO Pad ground
C15 nPOR I
C16 nEXTPWR I
D1 WRITE/nSDRAS O
D2 EXPRDY I
D3 VSSIO Pad ground
D4 VDDIO Pad power
D5 nCS[2] O
D6 nMWE/nSDWE O
D7 nSDCS[0] O
D8 CL[2] O
D9 VSSRTC Core ground
D10 D[4] I/O
D11 nPWRFL I
D12 MOSCIN I
D13 VDDIO Pad power
D14 VSSIO Pad ground
D15 D[7] I/O
D16 D[8] I/O
E1 RXD[2] I
E2 PB[7] I
E3 TDI I
E4 WO RD O
E5 VSSIO Pad ground
E6 nCS[0] O
E7 SDQM[2] O
E8 FRM O
E9 A[0] O
E10 D[5] I/O
E11 VSSOSC Oscillator
ground
E12 VSSIO Pad ground
E13 nMED-
CHG/nBROM I
E14 VDDIO Pa d power
E15 D[9] I/O
E16 D[10] I/O
F1 PB[5] I
F2 PB[3] I
F3 VSSIO Pad ground
F4 TXD[2] O
F5 RUN/CLKEN O
F6 VSSIO Pad ground
Ball
Location Name Type
Table 10. 256-Ball PBGA Ball Listing
(cont.)
32DS508PP1
EP7312
High-Performance System-on-Chip with SDRAM and Digital Audio Interface
F7 SDCKE O
F8 DD[3] O
F9 A[1] O
F10 D[6] I/O
F11 VSSRTC RTC ground
F12 BATOK I
F13 nBATCHG I
F14 VSSIO Pad ground
F15 D[11] I/O
F16 VDDIO Pad power
G1 PB[1]/PRDY[2] I
G2 VDDIO Pad power
G3 TDO O
G4 PB[4] I
G5 PB[6] I
G6 VSSRTC Core ground
G7 VSSRTC RTC ground
G8 DD[0] O
G9 D[3] I/O
G10 VSSRTC RTC ground
G11 A[7] O
G12 A[8] O
G13 A[9] O
G14 VSSIO Pad ground
G15 D[12] I/O
G16 D[13] I/O
H1 PA[7] I
H2 PA[5] I
H3 VSSIO Pad ground
H4 PA[4] I
H5 PA[6] I
H6 PB[0]/PRDY[1] I
H7 PB[2] I
H8 VSSRTC RTC ground
H9 VSSRTC RTC ground
H10 A[10] O
H11 A[11] O
H12 A[12] O
H13 A[13]/DRA[14] O
H14 VSSIO Pad ground
H15 D[14] I/O
H16 D[15] I/O
J1 PA[3] I
J2 PA[1] I
J3 VSSIO Pad ground
Ball
Location Name Type
Table 10. 256-Ball PBGA Ball Listing
(cont.)
J4 PA[2] I
J5 PA[0] I
J6 TXD[1] O
J7 CTS I
J8 VSSRTC RTC ground
J9 VSSRTC RTC ground
J10 A[17]/DRA[10] O
J11 A[16]/DRA[11] O
J12 A[15]/DRA[12] O
J13 A[14]/DRA[13] O
J14 nTRST I
J15 D[16] I/O
J16 D[17] I/O
K1 LEDDRV O
K2 PHDIN I
K3 VSSIO Pad ground
K4 DCD I
K5 nTEST[1] I
K6 EINT[3] I
K7 VSSRTC RTC ground
K8 ADCIN I
K9 COL[4] O
K10 TCLK I
K11 D[20] I/O
K12 D[19] I/O
K13 D[18] I/O
K14 VSSIO Pad ground
K15 VDDIO Pa d power
K16 VDDIO Pad power
L1 RXD[1] I
L2 DSR I
L3 VDDIO Pad power
L4 nEINT[1] I
L5 PE[2]/CLKSEL I
L6 VSSRTC RTC ground
L7 PD[0]/LEDFLSH I/O
L8 VSSRTC Core ground
L9 COL[6] O
L10 D[31] I/O
L11 VSSRTC R TC ground
L12 A[22]/DRA[5] O
L13 A[21]/DRA[6] O
L14 VSSIO Pad ground
L15 A[18]/DRA[9] O
L16 A[19]/DRA[8] O
Ball
Location Name Type
Table 10. 256-Ball PBGA Ball Listing
(cont.)
33 DS508PP1
EP7312
High-Performance System-on-Chip with SDRAM and Digital Audio Interface
M1 nTEST[0] I
M2 nEINT[2] I
M3 VDDIO Pad powe r
M4 PE[0]/BOOT-
SEL[0] I
M5 TMS I
M6 VDDIO Pad power
M7 SSITXFR I/O
M8 DRIVE[1] I/O
M9 FB[0] I
M10 COL[0] O
M11 D[27] I/O
M12 VSSIO Pad ground
M13 A[23]/DRA[4] O
M14 VDDI O Pad powe r
M15 A[20]/DRA[7] O
M16 D[21] I/O
N1 nEXTFIQ I
N2 PE[1]/BOOT-
SEL[1] I
N3 VSSIO Pad ground
N4 VDD IO P ad powe r
N5 PD[5] I/O
N6 PD[2] I/O
N7 SSIRXDA I/O
N8 ADCCLK O
N9 SMPCLK O
N10 COL[2] O
N11 D[29] I/O
N12 D[26] I/O
N13 HALFWORD O
N14 VSSIO Pad ground
N15 D[22] I/O
N16 D[23] I/O
P1 VSSRTC RTC ground
P2 RTCOUT O
P3 VSSIO Pad ground
P4 VSSIO Pad ground
P5 VDDIO P ad powe r
P6 VSSIO Pad ground
P7 VSSIO Pad ground
P8 VDDIO P ad powe r
P9 VSSIO Pad ground
P10 VDDIO Pad powe r
P11 VSSIO Pad ground
Ball
Location Name Type
Table 10. 256-Ball PBGA Ball Listing
(cont.)
P12 VSSIO Pad ground
P13 VDDIO Pa d power
P14 VSSIO Pad ground
P15 D[24] I/O
P16 VDDIO Pa d power
R1 RTCIN I/O
R2 VDDIO Pad power
R3 PD[4] I/O
R4 PD[1] I/O
R5 SSITXDA O
R6 nADCCS O
R7 VDDIO Pad power
R8 ADCOUT O
R9 COL[7] O
R10 COL[3] O
R11 COL[1] O
R12 D[30] I/O
R13 A[27]/DRA[0] O
R14 A[25]/DRA[2] O
R15 VDDIO Pad power
R16 A[24]/DRA[3] O
T1 VDDRTC RTC power
T2 PD[7]/SDQM[1] I/O
T3 PD[6]/SDQM[0] I/O
T4 PD[3] I/O
T5 SSICLK I/O
T6 SSIRXFR
T7 VDDCORE Cor e power
T8 DRIVE[0] I/O
T9 FB[1] I
T10 COL[5] O
T11 VDDIO Pad power
T12 BUZ O
T13 D[28] I/O
T14 A[26]/DRA[1] O
T15 D[25] I/O
T16 VSSIO Pad ground
Ball
Location Name Type
Table 10. 256-Ball PBGA Ball Listing
(cont.)
34DS508PP1
EP7312
High-Performance System-on-Chip with SDRAM and Digital Audio Interface
5. ORDERING INFORMATION
The order number for the device is:
EP7312 — CV — A
Product Line:
Embedded Processor
Part Number
Temperature Range:
C = Commerci al
Package Type:
V = Low Profile Quad Flat Pack
B = Plastic Ball Grid Array (17 mm x 17 mm)
Revision †
Note: Contact Cirrus Logic for up-to-date information on revisions. Go to the Cirrus Logic Internet site at
http://cirrus.com/corporate/contacts to find contact information for your local sales representative.
E = Extended Operating Version
I = Industri al Op er ati ng Ve rsi on
35 DS508PP1
EP7312
High-Performance System-on-Chip with SDRAM and Digital Audio Interface
6. INDEX
A
absolute maximum ratings 9
AC charac teris ti cs 13
C
clock speeds
list of 1
D
DC charactteristics 9
E
electric al spe ci fi ca tion s 9
J
JTAG bounda ry sca n
signal ordering 27
M
memory interfaces 3
Microwire 2
O
operating conditions
recommended 9
ordering information
how to order 34
P
package spec ifi ca tio ns
208-pin LQFP 23
256-ball PBGA 30
packaging 3
pin diagram 22
pin diagrams
208 LQFP 22
256-pin PBGA 29
pin listing
208-pin LQFP 24
power
usedes c ripti on of 1
power management 3
S
serial interface
Microwire compatible 2
SPI compatible 2
serial interfaces 3
system design 3
T
timing diagrams
consecutive memory read cycles with minimum
wait states 15
consecutive memory write cycles with minimum
wait states 17
SDRAM read cycles SDCAS latency=2 18
SDRAM read cycles SDCAS latency=3 19
SDRAM refresh cycles 20
SDRAM write cycles 19
sequential page mode read cycles with minimum
wait states 16
U
UART 12