September 2006 Rev 8 1/33
1
M24C16, M24C08
M24C04, M24C02, M24C01
16Kbit, 8Kbit, 4Kbit, 2Kbit and 1Kbit Serial I²C bus EEPROM
Feature summary
Two-wire I²C serial interface
Supports 400kHz protocol
Single supply voltage:
2.5 to 5.5V for M24Cxx-W
1.8 to 5.5V for M24Cxx-R
Write Control input
Byte and Page Write (up to 16 Bytes)
Random and Sequential Read modes
Self-timed programming cycle
Automatic address incrementi ng
Enhanced ESD/latch-up protection
More than 1 million Write cycles
More than 40-year data retention
Packages
ECOPACK® (RoHS compliant)
Table 1. Product list
Reference Part Number
M24C16 M24C16-W
M24C16-R
M24C08 M24C08-W
M24C08-R
M24C04 M24C04-W
M24C04-R
M24C02 M24C02-W
M24C02-R
M24C01 M24C01-W
M24C01-R
PDIP8 (BN)
SO8 (MN)
150 mil width
TSSOP8 (DW)
169 mil width
TSSOP8 (DS)
3x3mm² body size
UFDFPN8 (MB)
2x3mm² (MLP)
www.st.com
Contents M24C16, M24C08, M24C04, M24C02, M24C01
2/33
Contents
1 Summary description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2 Signal description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1 Serial Clock (SCL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Serial Data (SDA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Chip Enable (E0, E1, E2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3.1 Write Control (WC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4 Supply voltage (VCC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4.1 Operating supply v oltage VCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9
2.4.2 Power-up and device Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4.3 Power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3 Device operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.1 Start condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 Stop condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.3 Acknowledge Bit (ACK) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.4 Data input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.5 Memory addressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.6 Write operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.6.1 Byte Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.6.2 Page Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.6.3 Minimizing system delays by polling on ACK . . . . . . . . . . . . . . . . . . . . . 15
3.7 Read operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.7.1 Random Address Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.7.2 Current Address Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.7.3 Sequential Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.7.4 Acknowledge in Read mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4 Initial delivery state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5 Maximum rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
6 DC and AC parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
M24C16, M24C08, M24C04, M24C02, M24C01 Conte nts
3/33
7 Package mechanical . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
8 Part numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
9 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
List of tables M24C16, M24C08, M24C04, M24C02, M24C01
4/33
List of tables
Table 1. Product list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Table 2. Signal names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Table 3. Device select code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Table 4. Operating modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Table 5. Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 8
Table 6. Operating conditions (M24Cxx-W) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Table 7. Operating conditions (M24Cxx-R) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Table 8. DC characteristics (M24Cxx-W, Device Grade 6). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Table 9. DC characteristics (M24Cxx-W, Device Grade 3). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Table 10. DC characteristics (M24Cxx-R) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Table 11. AC measurement conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Table 12. Input parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Table 13. AC characteristics (M24Cxx-W) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Table 14. AC characteristics (M24Cxx-R). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Table 15. PDIP8 – 8 pin Plastic DIP, 0.25mm lead frame, package mechanica l da ta . . . . . . . . . . . . 25
Table 16. SO8 narrow – 8 lead Plastic Small Outline, 150 mils body width,
package mechanical data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Table 17. UFDFPN8 (MLP8) 8-lead Ultra thin Fine pitch Dual Flat Package No lead
2x3mm², data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 7
Table 18. TSSOP8 – 8 lead Thin Shrink Small Outline, package mechanical data . . . . . . . . . . . . . . 28
Table 19. TSSOP8 3x3mm² – 8 lead Thin Shrink Small Outline, 3x3mm² body size,
mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Table 20. Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Table 21. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
M24C16, M24C08, M24C04, M24C02, M24C0 1 List of figures
5/33
List of figures
Figure 1. Logic diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Figure 2. 8-pin package connections (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Figure 3. Device select code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Figure 4. Maximum RP value versus bus parasitic capacitance (C) for an I²C bus . . . . . . . . . . . . . . 9
Figure 5. I²C bus protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Figure 6. Write mode sequen ce s with WC = 1 (data write inhibited) . . . . . . . . . . . . . . . . . . . . . . . . . 13
Figure 7. Write mode sequen ce s with WC = 0 (data write enabled) . . . . . . . . . . . . . . . . . . . . . . . . . 14
Figure 8. Write cycle polling flowchart using ACK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Figure 9. Read mode sequences. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Figure 10. AC measurement I/O waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Figure 11. AC waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Figure 12. PDIP8 – 8 pin Plastic DIP, 0.25mm lead frame, package outline. . . . . . . . . . . . . . . . . . . . 25
Figure 13. SO8 narrow – 8 lead Plastic Small Outline, 150 mils body width, package outline . . . . . . 26
Figure 14. UFDFPN8 (MLP8) 8-lead Ultra thin Fine pitch Dual Flat Package No lead
2x3mm², outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Figure 15. TSSOP8 – 8 lead Thin Shrink Small Outline, package outline. . . . . . . . . . . . . . . . . . . . . . 28
Figure 16. TSSOP8 3x3mm² – 8 lead Thin Shrink Small Outline, 3x3mm² body size,
package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 9
Summary description M24C16, M24C08, M24C04, M24C02, M24C01
6/33
1 Summary description
These I²C-compatible electrically erasable programmable memory (EEPROM) devices are
organized as 2048/1024/512/256/128 x 8 (M24C16, M24C08, M24C04, M24C02 and
M24C01).
In order to meet environment al requirements, ST offers these devices in ECOPACK®
packages.
ECOPACK® packages are Lead-free and RoHS compliant.
ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com.
Figure 1. Logic diagram
I²C uses a two-wire serial interface, comprising a bi-directional data line and a clock line.
The devices carry a built-in 4-bit Device Type Identifier code (101 0) in accordance with the
I²C bus definition.
The device beha v es as a slave in the I²C protocol, with all memory operations synchronized
by the serial clock. Read and Write operations are initiated by a Star t condition, generated
by the bus master. The Start condition is followed by a Device Select Code and Read/Write
bit (RW) (as described in Table 3), terminated by an acknowledge bit.
When writing data to the memory, the device inserts an acknowle dge bit during the 9th bit
time, f ollowing the bus master’s 8-bit tr ansmission. When data is r ead by t he bu s master, the
bus master acknowledges the receipt of the data byte in the same way. Data transfers are
terminated by a Stop condition after an Ack for Write, and after a NoAck for Read.
Table 2. Signal names
E0, E1, E2 Chip Enable
SDA Serial Data
SCL Serial Clock
WC Write Control
VCC Supply Voltage
VSS Ground
AI02033
3
E0-E2 SDA
VCC
M24Cxx
WC
SCL
VSS
M24C16, M24C08, M24C04, M24C02, M24C01 Summary description
7/33
Figure 2. 8-pin package connections (top view)
1. NC = Not Connected
2. See Section 7: Package mechanical for package dimensions, and how to identify pin-1.
SDAVSS SCL
WC
VCC
/ E2
AI02034E
M24Cxx
1
2
3
4
8
7
6
5
/ E2/ E2/ E2NC / E1
/ E1/ E1/ NCNC / E0
/ E0/ NC/ NCNC /1Kb
/2Kb/4Kb/8Kb16Kb
Signal description M24C16, M24C08, M24C04, M24C02, M24C01
8/33
2 Signal description
2.1 Serial Clock (SCL)
This input signal is used to strobe all data in and out of the device . In applications where this
signal is used by slave devices to synchronize the bus to a slower clock, the bus master
must have an open drain output, and a pull-up resistor can be connected from Serial Clock
(SCL) to VCC. (Figure 4 indicates how the value of the pull-up resistor can be calculated). In
most applications, though, this method of synchronization is not employed, and so the pull-
up resistor is not n ecessary, provided that the bus master has a push-pull ( rather than open
drain) output.
2.2 Serial Data (SDA)
This bi-directional signal is used to transfer data in or out of the device. It is an open drain
output that may be wire-OR’ed with other open dr ain or ope n collector signa ls on the b u s . A
pull up resistor must be connected from Serial Data (SDA) to VCC. (Figure 4 indicates how
the value of the pull-up resistor can be calculated).
2.3 Chip Enable (E0, E1, E2)
These input signals are used to set the value that is to be looked for on the three least
significant bits (b3, b2, b1) of the 7-bit Device Select Code. These inputs must be tied to
VCC or VSS, to establish the Device Select Code as shown in Figure 3.
Figure 3. Device select code
2.3.1 Write Control (WC)
This input signal is useful for protecting the entire contents of the memory from inadvertent
write operations. Write operations are disabled to the entire memory array when Write
Control (WC) is driven High. When unconnected, the signal is internally read as VIL, and
Write ope ration s ar e allowed.
When Write Control (WC) is driven High, Device Select and Address b ytes are
acknowledged, Data bytes are not acknowledged.
Ai11650
VCC
M24Cxx
VSS
Ei
VCC
M24Cxx
VSS
Ei
M24C16, M24C08, M24C04, M24C02, M24C01 Sign al description
9/33
2.4 Supply voltage (VCC)
2.4.1 Operating supply voltage VCC
Prior to selecting the memory and issuing instructions to it, a valid and stable VCC voltage
within the specified [VCC(min) , VCC(max)] range must be applied (see Table 6 and Table 7).
In order to secure a stable DC supply voltage, it is recommended to decouple the VCC line
with a suitable capacitor (usually of the order of 10nF to 10 0nF) close to the VCC/VSS
package pins.
This v oltage m ust remain st ab le and v a lid until the end of the tr an smission of the instruction
and, for a Write instruction, until the complet ion of the internal write cycle (tW).
The VCC rise time must not vary faster than 1V/µs
2.4.2 Power-up and device Reset
In order to prevent ina dvertent Write operations during Power-u p, a Power On Reset (POR)
circuit is included. At Pow er-up (cont inuous rise of V CC), the device does not respond to an y
instruction until V CC has reached the Power On Reset threshold voltage (this threshold is
lower than the minim um VCC operating voltage defined in Table 6 and Table 7).
When VCC has passed the POR threshold, the device is reset and in Standby Power mode.
2.4.3 Power-down
At Power-down (where VCC decreases continuously), as so on as VCC drops from the
operating voltage range to below the Power On Reset threshold voltage, the device stops
responding to any instruction sent to it.
During Power- do wn, the device must be desele cted an d in the Standby P o w er mode (that is
there should be no internal Write cycle in pr ogres s) .
Figure 4. Maximum RP value versus bus parasitic capacitance (C) for an I²C bus
AI01665b
VCC
C
SDA
RP
MASTER
RP
SCL C
100
0
4
8
12
16
20
C (pF)
Maximum RP value (k)
10 1000
fc = 400kHz
fc = 100kHz
Signal description M24C16, M24C08, M24C04, M24C02, M24C01
10/33
Figure 5. I²C b us protocol
Table 3. Device select code
Device Type Identifier(1)
1. The most significant bit, b7, is sent first.
Chip Enable(2),(3)
2. E0, E1 and E2 are compared against the respective external pins on the memory device.
3. A10, A9 and A8 represent most significant bits of the address.
RW
b7 b6 b5 b4 b3 b2 b1 b0
M24C01 Select Code1010E2E1E0RW
M24C02 Select Code1010E2E1E0RW
M24C04 Select Code1010E2E1A8RW
M24C08 Select Code1010E2A9A8RW
M24C16 Select Code1010A10A9A8RW
SCL
SDA
SCL
SDA
SDA
START
Condition
SDA
Input SDA
Change
AI00792B
STOP
Condition
123 789
MSB ACK
START
Condition
SCL 123 789
MSB ACK
STOP
Condition
M24C16, M24C08, M24C04, M24C02, M24C01 Device operation
11/33
3 Device operation
The device supports the I²C protocol. This is summarized in Figure 5. An y device that sends
data on to the bus is defined to be a transmitter, and any device that reads the data to be a
receiver. The device that controls the data transfer is known as the bus master, and the
other as the slave device. A data transfer can only be initiated by the bus master, which will
also pro vid e th e serial clock for synchro nization . The M2 4Cxx device is always a slave in all
communication.
3.1 Start condition
Start is identified by a falling edge of Serial Data (SDA) while Serial Clock (SCL) is stab le in
the High state. A Start condition must precede any data transfer command. The device
continuously monitors (except during a Write cycle) Serial Data (SDA) and Serial Clock
(SCL) for a Start condition, and will not respond unless one is given.
3.2 Stop condition
Stop is identified by a rising edge of Serial Data (SDA) while Serial Clock (SCL) is stable
and driven High. A Stop condition terminates communication between the device and the
bus m aster . A Read command that is follow ed b y NoAc k can be f ollo wed b y a Stop cond ition
to f orc e the device into the Stand-b y mode . A St op conditio n at the end of a Write command
triggers the internal Write cycle.
3.3 Acknowledge Bit (ACK)
The acknowledge bit is used to indicate a successful byte transfer. The bus transmitter,
whether it be bus master or slav e device , releases Serial Data (SD A) after sending eight bits
of data. During the 9th clock pulse period, the receiver pulls Serial Data (SDA) Low to
acknowle dge the receipt of the eight da ta bits.
3.4 Data input
During data input, the device samples Serial Data (SDA) on the rising edge of Serial Clock
(SCL). F or correct de vice o peration, Serial Data (SDA) must be stab le during the rising edge
of Serial Clock (SCL), and the Serial Data (SD A) signal must change only when Serial Clock
(SCL) is driven Low.
Device opera ti on M24C16, M2 4C08, M24C04 , M2 4 C 0 2, M 24 C0 1
12/33
3.5 Memory addressing
To start communication between the bus master and the slave device, the bus master must
initiate a Start condition. Following this, the bus master sends the Device Select Code,
shown in Table 3 (on Serial Data (SDA), most significant bit first).
The Device Select Code consists of a 4-bit Device Type Identifier, and a 3-bit Chip Enable
“Address” (E2, E1, E0). To address the memory array, the 4-bit Device Type Identifier is
1010b.
Each device is given a unique 3- bit code on the Chip Enable (E0 , E1, E2) inp uts . Wh en the
Device Select Code is received, the device only responds if the Chip Enable Address is the
same as the value on the Chip Enable (E0, E1, E2) inputs. However, those devices with
larger memory capacities (the M24C1 6, M24C08 and M24C04) nee d more addr ess bits . E0
is not available f or use on devices that need to use address line A8; E1 is not av ailable for
devices that need to use address line A9, and E2 is not available for devices that need to
use address line A10 (see Figure 2 and Table 3 f or details). Using the E0, E1 and E2 in puts,
up to eight M2 4C02 (or M24C01), four M24C04, two M24C08 or one M24C16 devices can
be connected to one I²C bus. In each case, an d in the hybrid cases, this gives a total
memory capacity of 16 Kbits, 2 KBytes (except where M24C01 devices are used).
The 8th bit is the Read/Write bit (RW). This b it is set to 1 for Read and 0 for Write operations .
If a match occurs on the Device Select code, the corresponding device gives an
acknowledgment on Serial Data (SDA) during the 9th bit time. If the device does not match
the Device Select code, it deselects itself from the bus, and goes into Stand-by mode.
Table 4. Operating modes
Mode RW bit WC(1)
1. X = VIH or VIL.
Bytes Initial Sequence
Current Address Read 1 X 1 START, Device Select, RW = 1
Random Address Read 0X1START, Device Select, RW = 0, Address
1 X reSTART, Device Select, R W = 1
Sequential Read 1 X 1 Similar to Current or Random Address
Read
Byte Write 0 VIL 1 START, Device Select, RW = 0
Page Write 0 VIL 16 START, Device Select, RW = 0
M24C16, M24C08, M24C04, M24C02, M24C01 Device operation
13/33
Figure 6. Write mode sequences with WC = 1 (data write inhibited)
3.6 Write operations
F ollo wing a Start condition the b us master sends a Device Select Code with the Read/Write
bit (RW) reset to 0. Th e device acknowledges this, as shown in Figure 7, and waits for an
address byte. The device responds to the address byte with an acknowledge bit, and then
waits for th e da ta byte.
When the bus master generates a Stop condition immediately after the Ack bit (in the “10th
bit” time slot) , either at the end of a Byte Write or a Page Write, the internal Write cycle is
triggered. A Stop condition at any other time slot does not trigger the internal Write cycle.
During the internal Write cycle, Serial Data (SDA) and Serial Clock (SCL) are ignored, and
the device does not respond to any requests.
3.6.1 Byte Write
After the Device Select code and the address byte, the bus master sends one data byte. If
the addressed loc at i on is Write-protecte d, by Write Co ntr o l (WC ) being driven High (during
the period from the Start condition until the end of the address b yte), the device replies to
the data byte with NoAck, as shown in Figure 6, and the locati on is n ot modif ied. I f, instead,
the addressed location is not Write-protected, the device replies with Ack. The bus master
terminates the transfer by generating a Stop condition, as shown in Figure 7.
STOP
START
Byte Write DEV SEL BYTE ADDR DATA IN
WC
START
Page Write DEV SEL BYTE ADDR DATA IN 1 DATA IN 2
WC
DATA IN 3
AI02803C
Page Write
(cont'd)
WC (cont'd)
STOP
DATA IN N
ACK ACK NO ACK
R/W
ACK ACK NO ACK NO ACK
R/W
NO ACK NO ACK
Device opera ti on M24C16, M2 4C08, M24C04 , M2 4 C 0 2, M 24 C0 1
14/33
3.6.2 Page Write
The Page Write mode allows up to 16 bytes t o be written in a single Write cycle, provided
that they are all located in the same page in the memory: that is, the most significant
memory address bits are the same. If more bytes are sent than will fit up to the end of the
page, a condition known as ‘roll-over’ occurs. This should be avoided, as d ata starts to
become overwritten in an implementation dependent way.
The bus master sends from 1 to 16 bytes of data, each of which is acknowledged by the
device if Write Control (WC) is Low. If the addressed location is Write-protected, by Write
Control (WC) being driven High (during the period from the Start condition until the end of
the address byte), the device replies to the data bytes with NoAck, as shown in Figure 6,
and the locations are not modified. After each byte is transferred, the internal byte address
counter (the 4 least significan t address bits only) is incremented. The transfer is terminated
by the bus master generating a Stop condition.
Figure 7. Write mode sequences with WC = 0 (data write enabled)
STOP
START
BYTE WRITE DEV SEL BYTE ADDR DATA IN
WC
START
PAGE WRITE DEV SEL BYTE ADDR DATA IN 1 DATA IN 2
WC
DATA IN 3
AI02804B
PAGE WRITE
(cont'd)
WC (cont'd)
STOP
DATA IN N
ACK
R/W
ACK ACK
ACK ACK ACK ACK
R/W
ACKACK
M24C16, M24C08, M24C04, M24C02, M24C01 Device operation
15/33
Figure 8. Write cycle polling flowchart using ACK
3.6.3 Minimizing system delays by polling on ACK
During the internal Write cycle, the de vice d isconnect s itself fr om the b us , and writes a copy
of the data from its internal latches to the memory cells. The maximum Write time (tw) is
shown in Table 13 and Table 14, but the typical time is shorter . To make use of this, a polling
sequence can be used by the bus master.
The sequence, as shown in Figure 8, is :
Initial condition: a Write cycle is in progress.
Step 1: the bus master issues a Start condition followed by a Device Select Code (the
first byte of the new instruction).
Step 2: if the device is busy with the internal Write cycle, no Ack will be returned and
the bus master goes bac k to Step 1. If the device has terminated the internal Write
cycle, it re sp onds wit h an Ack, indicating that th e d evice is ready to re ce ive the second
part of the instruction (the first byte of this instruction having been sent during Step 1).
WRITE Cycle
in Progress
AI01847C
Next
Operation is
Addressing the
Memory
START Condition
DEVICE SELECT
with RW = 0
ACK
Returned
YES
NO
YESNO
ReSTART
STOP
DATA for the
WRITE Operation DEVICE SELECT
with RW = 1
Send Address
and Receive ACK
First byte of instruction
with RW = 0 already
decoded by the device
YESNO START
Condition
Continue the
WRITE Operation Continue the
Random READ Operation
Device opera ti on M24C16, M2 4C08, M24C04 , M2 4 C 0 2, M 24 C0 1
16/33
Figure 9. Read mode sequences
1. The seven most significant bits of the Device Select Code of a Random Read (in the 1st and 3rd bytes)
must be identical.
3.7 Read operations
Read opera tions are performed independently of the state of the Write Control (WC) signal.
The device has an internal address counter which is incremented each time a byte is read.
3.7.1 Random Address Read
A dummy Write is firs t performed to load the ad dress into this a ddress co unter ( as sho wn in
Figure 9) but without sending a Stop condition. Then, the bus master sends another Start
condition, and repeats the Device Select Code, with the Read /Write bit (RW) set to 1. The
device acknowledg es this, and out puts the contents of the addressed byte. The bus master
must not acknowledge the byte, and terminates the transfer with a Stop condition.
START
DEV SEL * BYTE ADDR
START
DEV SEL DATA OUT 1
AI01942
DATA OUT N
STOP
START
CURRENT
ADDRESS
READ DEV SEL DATA OUT
RANDOM
ADDRESS
READ
STOP
START
DEV SEL * DATA OUT
SEQUENTIAL
CURRENT
READ
STOP
DATA OUT N
START
DEV SEL * BYTE ADDR
SEQUENTIAL
RANDOM
READ
START
DEV SEL * DATA OUT 1
STOP
ACK
R/W
NO ACK
ACK
R/W
ACK ACK
R/W
ACK ACK ACK NO ACK
R/W
NO ACK
ACK ACK
R/W
ACK ACK
R/W
ACK NO ACK
M24C16, M24C08, M24C04, M24C02, M24C01 Device operation
17/33
3.7.2 Current Address Read
F or the Current Address Read operation, f ollowing a Start condition, the bus master only
sends a Device Select Code with the Read/Write bit (RW) set to 1. The device
acknowledges this, and outputs the byte addressed by the internal address counter. The
counter is then incremented. The bus master terminates the transfer with a Stop condition,
as shown in Figure 9, without acknowledging the byte.
3.7.3 Sequential Read
This operation can be used af ter a Cu rren t Address Read or a Random Addr ess Read. The
bus master does acknowledge the data byte output, and sends additional clock pulses so
that the device continues to output the next byte in sequence. To term inate the stream of
bytes, t he bus mast er must not ackno wledge the last byte, and must generate a Stop
condition, as shown in Figure 9.
The output data comes from consecutive addresses, with the internal address counter
automatically incremented after each byte output. After the last memory address, the
address counter ‘rolls-over’, and the device continues to output data from memory address
00h.
3.7.4 Acknowledge in Read mode
For all Read commands, the device waits, after each byte read, for an acknowledgment
during the 9th bit ti me. If the bus maste r does not drive Serial Data (SDA) Low during this
time, the device terminates the data transfer and switches to its Stand-by mode.
Initial del ivery state M24C16, M24C0 8, M24C04, M24C02, M24C01
18/33
4 Initial delivery state
The device is delivered with all bits in the memory array set to 1 (each byte contains FFh).
5 Maximum rating
Stressing the device outside the ratings listed in Table 5 may cause permanent damage to
the device. These are stress ratings only, and operation of the de vice at these, or any other
conditions outside those indicated in the Operating sections of this specification, is not
implied. Exposure to Absolute Maximum Rating conditions for extended periods ma y aff ect
device reliability. Refer also to the STMicroelectronics SURE Program and other relevant
quality documents.
1. TLEAD max must not be applied for more than 10s.
2. AEC-Q100-002 (compliant with JEDEC Std JESD22-A114A, C1=100pF, R1=1500, R2=500).
Table 5. Absolute maximum ratings
Symbol Parameter Min. Max. Unit
TAAmbient Operating Temperature –40 130 °C
TSTG Storage Temperature –65 150 °C
TLEAD Lead Temperature during Soldering see note (1)
1. Compliant with JEDEC Std J-STD-020C (for small body, Sn-Pb or Pb assembly), the ST ECOPACK®
7191395 specification, and the European directive on Restrictions on Hazardous Substances (RoHS)
2002/95/EU.
°C
PDIP-Specific Lead Temperature durin g Soldering 260(2)
2. TLEAD max must not be applied for more than 10s.
°C
VIO Input or Output range –0.50 6.5 V
VCC Supply Voltage –0.50 6.5 V
VESD Electrostatic Discharge Voltage (Human Body model)
(2) –4000 4000 V
M24C16, M24C08, M24C04, M24C02, M24C01 DC and AC parameters
19/33
6 DC and AC parameters
This section summarizes the operating and measurement conditions, and the DC and AC
characteristics of the device. The par ameters in the DC and AC Characteristic tables that
follow are derived from tests performed under the Measurement Conditions summarized in
the relevant tables. Designers should check that the operating conditions in their circuit
match the measurem ent conditions when relying on the quoted parameters.
Table 6. Operating conditions (M24Cxx-W)
Symbol Parameter Min. Max. Unit
VCC Supply Voltage 2.5 5.5 V
TA
Ambient Operating Temperature (Device
Grade 6) –40 85 °C
Ambient Operating Temperature (Device
Grade 3) –40 125 °C
Table 7. Operating conditions (M24Cxx-R)
Symbol Parameter Min. Max. Unit
VCC Supply Voltage 1.8 5.5 V
TAAmbient Operating Temperature –40 85 °C
Table 8. DC characteristics (M24Cxx-W, Device Grade 6)
Symbol Parameter Test Condition
(in addition to those in Table 6)Min. Max. Unit
ILI Input Leakage Current
(SCL, SDA, E0, E1,and E2) VIN = VSS or VCC, device in
Standby mode ± 2 µA
ILO Output Leakage Current VOUT = VSS or VCC, SDA in Hi-Z ± 2 µA
ICC Supply Current
VCC=5V, fc=400kHz
(rise/fall time < 30ns) 2mA
VCC =2.5V, fc=400kHz
(rise/fall time < 30ns) 1mA
ICC1 Stand-by Supply Current VIN = VSS or VCC,
f or 2.5V < VCC = < 5.5V A
VIL Input Low Voltage (1)
1. The voltage source driving only E0, E1 and E2 inputs must provide an impedance of less than 1k.
–0.45 0.3VCC V
VIH Input High Voltage (1) 0.7VCC VCC+1 V
VOL Output Low Voltage IOL = 2.1mA when VCC = 2.5V or
IOL = 3mA when VCC = 5.5V 0.4 V
DC and AC parameters M24C16, M24C08, M24C04, M24C02, M24C01
20/33
Table 9. DC characteristics (M24Cxx-W, Device Grade 3)
Symbol Parameter Test Condition
(in addition to those in Table 6)Min. Max. Unit
ILI Input Leakage Current
(SCL, SDA, E0, E1,and E2) VIN = VSS or VCC, device in
Standby mode ± 2 µA
ILO Output Leakage Current VOUT = VSS or VCC, SDA in Hi-Z ± 2 µA
ICC Supply Current
VCC=5V, fC=400kHz
(rise/fall time < 30ns) 3mA
VCC =2.5V, fC=400kHz
(rise/fall time < 30ns) 3mA
ICC1 Stand-by Supply Current VIN = VSS or VCC, VCC = 5 V 5 µA
VIN = VSS or VCC, VCC = 2.5 V 2 µA
VIL Input Low Voltage(1)
1. The voltage source driving only E0, E1 and E2 inputs must provide an impedance of less than 1k.
–0.45 0.3VCC V
VIH Input High Voltage(1) 0.7VCC VCC+1 V
VOL Output Low Voltage IOL = 2.1mA when VCC = 2.5V or
IOL = 3mA when VCC = 5.5V 0.4 V
Table 10. DC characteristics (M24Cxx-R)
Symbol Parameter Test Condition
(in addition to those in Table 7)Min. Max. Unit
ILI Input Leakage Current
(SCL, SD A, E0, E1,and E2) VIN = VSS or VCC, device in
Standby mode ± 2 µA
ILO Output Leakage Current VOUT = VSS or VCC, SDA in Hi-Z ± 2 µA
ICC Supply Current VCC =1.8V, fc=400kHz
(rise/fall time < 30ns) 0.8 mA
ICC1 Stand-by Supply Current VIN = VSS or VCC,
1.8V < VCC < 2.5V A
VIL Input Low Voltage (1)
1. The voltage source driving only E0, E1 and E2 inputs must provide an impedance of less than 1k.
2.5 V VCC –0.45 0.3 VCC V
1.8 V VCC < 2.5V 0.45 0.25V
CC V
VIH Input High Voltage (1) 0.7VCC VCC+1 V
VOL Output Low Voltage IOL = 0.7 mA, VCC = 1.8 V 0.2 V
M24C16, M24C08, M24C04, M24C02, M24C01 DC and AC parameters
21/33
Figure 10. AC measurement I/O waveform
Table 11. AC measurement conditions
Symbol Parameter Min. Max. Unit
CLLoad Capacitance 100 pF
Input Rise and Fall Times 50 ns
Input Levels 0.2VCC to 0.8VCC V
Input and Output Timing Reference Levels 0.3VCC to 0.7VCC V
Table 12. Input parameters
Symbol Parameter(1),(2)
1. TA = 25°C, f = 400kHz
2. Sampled only, not 100% tested.
Test Condition Min. Max. Unit
CIN Input Capacitance (SD A) 8 pF
CIN Input Capacitance (other pins) 6 pF
ZWCL WC Input Impedance VIN < 0.3 V 15 70 k
ZWCH WC Input Impedance VIN > 0.7VCC 500 k
tNS Pulse width ignored
(Input Filter on SCL and SDA) Single glitch 100 ns
AI00825B
0.8VCC
0.2VCC
0.7VCC
0.3VCC
Input and Output
Timing Reference Levels
Input Levels
DC and AC parameters M24C16, M24C08, M24C04, M24C02, M24C01
22/33
Table 13. AC characteristics (M24Cxx-W)
Test conditions specified in Table 6 and Table 11
Symbol Alt. Parameter Min. Max. Unit
fCfSCL Clock Frequency 400 kHz
tCHCL tHIGH Clock Pulse Width High 600 ns
tCLCH tLOW Clock Pulse Width Low 1300 ns
tDL1DL2(1)
1. Sampled only, not 100% tested.
tFSDA F all Time 20 300 ns
tDXCX tSU:DAT Data In Set Up Time 100 ns
tCLDX tHD:DAT Data In Hold Time 0 ns
tCLQX tDH Data Out Hold Time 200 ns
tCLQV(2)
2. To avoid spurious START and STOP conditions, a minimum delay is placed between SCL=1 and the
falling or rising edge of SDA.
tAA Clock Low to Next Data Valid (Access Time) 200 900 ns
tCHDX(3)
3. For a reSTART condition, or following a Write cycle.
tSU:STA Start Condition Set Up Time 600 ns
tDLCL tHD:STA Start Condition Hold Time 600 ns
tCHDH tSU:STO Stop Condition Set Up Time 600 ns
tDHDL tBUF Time between Stop Condition and Next Start
Condition 1300 ns
tW(4)
4. Previous devices bearing the process letter “L” in the package marking guarantee a maximum write time of
10ms. For more information about these devices and their device identification, please ask your ST Sales
Office for Process Change Notices PCN MPG/EE/0061 and 0062 (PCEE0061 and PCEE0062).
tWR Write Time 5 ms
M24C16, M24C08, M24C04, M24C02, M24C01 DC and AC parameters
23/33
Table 14. AC characteristics (M24Cxx-R)
Test conditions specifie d in Table 7 and Table 10
Symbol Alt. Parameter Min. Max. Unit
fCfSCL Clock Frequency 400 kHz
tCHCL tHIGH Clock Pulse Width High 600 n s
tCLCH tLOW Clock Pulse Width Low 1300 ns
tDL1DL2(1)
1. Sampled only, not 100% tested.
tFSDA Fall Time 20 300 ns
tDXCX tSU:DAT Data In Set Up Time 100 ns
tCLDX tHD:DAT Data In Hold Time 0 ns
tCLQX tDH Data Out Hold Time 200 ns
tCLQV(2)
2. To avoid spurious START and STOP conditions, a minimum delay is placed between SCL=1 and the
falling or rising edge of SDA.
tAA Clock Low to Next Data Valid (Access Time) 200 900 ns
tCHDX(3)
3. For a reSTART condition, or following a Write cycle.
tSU:STA Start Condition Set Up Time 600 ns
tDLCL tHD:STA Start Condition Hold Time 600 ns
tCHDH tSU:STO Stop Condition Set Up Time 600 ns
tDHDL tBUF Time between Stop Condition and Next Start
Condition 1300 ns
tWtWR Write Time 10 ms
DC and AC parameters M24C16, M24C08, M24C04, M24C02, M24C01
24/33
Figure 11. AC waveforms
SCL
SDA In
SCL
SDA Out
SCL
SDA In
tCHCL
tDLCL
tCHDX
START
Condition
tCLCH
tDXCXtCLDX
SDA
Input
SDA
Change tCHDH tDHDL
STOP
Condition
Data Valid
tCLQV tCLQX
tCHDH
STOP
Condition
tCHDX
START
Condition
Write Cycle
tW
AI00795C
START
Condition
M24C16, M24C08, M24C04, M24C02, M24C01 Package mechanical
25/33
7 Package mechanical
Figure 12. PDIP8 – 8 pin Plastic DIP, 0.25mm lead frame, package outline
1. Drawing is not to scale.
Table 15. PDIP8 – 8 pin Plastic DIP, 0.25mm lead frame, package mechanical data
Symbol millimeters inches
Typ. Min. Max. Typ. Min. Max.
A 5.33 0.210
A1 0.38 0.015
A2 3.30 2.92 4.95 0.130 0.115 0.195
b 0.46 0.36 0.56 0.018 0.014 0.022
b2 1.52 1.14 1.78 0.060 0.045 0.070
c 0.25 0.20 0.36 0.010 0.008 0.014
D 9.27 9.02 10.16 0.365 0.355 0.400
E 7.87 7.62 8.26 0.310 0.300 0.325
E1 6.35 6.10 7.11 0.250 0.240 0.280
e 2.54 0.100
eA 7.62 0.300
eB 10.92 0.430
L 3.30 2.92 3.81 0.130 0.115 0.150
PDIP-B
A2
A1
A
L
be
D
E1
8
1
c
eA
b2
eB
E
Package mecha n ic al M24C16, M2 4C08, M24C04 , M2 4 C 0 2, M 24C 0 1
26/33
Figure 13. SO8 narrow – 8 lead Plastic Small Outline, 150 mils body width, package
outline
1. Drawing is not to scale.
2. The ‘1’ that appears in the top view of the package shows the position of pin 1 and the ‘N’ indicates the total
number of pins.
Table 16. SO8 narrow – 8 lead Plastic Small Outline, 150 mils body width,
package mechanical data
Symbol millimeters inches
Typ Min Max Typ Min Max
A1.750.069
A1 0.10 0.25 0.004 0.010
A2 1.25 0.049
b 0.28 0.48 0.011 0.019
c 0.17 0.23 0.007 0.009
ccc 0.10 0.004
D 4.90 4.80 5.00 0.193 0.189 0.197
E 6.00 5.80 6.20 0.236 0.228 0.244
E1 3.90 3.80 4.00 0.154 0.150 0.157
e1.27– 0.050
h 0.25 0.50 0.010 0.020
k0°8°0°8°
L 0.40 1.27 0.016 0.050
L1 1.04 0.041
SO-A
E1
8
ccc
be
A
D
c
1E
h x 45˚
A2
k
0.25 mm
L
L1
A1
GAUGE PLANE
M24C16, M24C08, M24C04, M24C02, M24C01 Package mechanical
27/33
Figure 14. UFDFPN8 (MLP8) 8-lead Ultra thin Fine pitch Dual Flat Package No lead
2x3mm², outline
1. Drawing is not to scale.
2. The central pad (the area E2 by D2 in the above illustration) is pulled, internally, to VSS. It must not be
allowed to be connected to any other voltage or signal line on the PCB, for example during the soldering
process.
3. The circle in the top view of the package indicates the position of pin 1.
Table 17. UFDFPN8 (MLP8) 8-lead Ultra thin Fine pitch Dual Flat Package No lead
2x3mm², data
Symbol millimeters inches
Typ Min Max Typ Min Max
A 0.55 0.50 0.60 0.022 0.020 0.024
A1 0.02 0.00 0.05 0.001 0.000 0.002
b 0.25 0.20 0.30 0.010 0.008 0.012
D 2.00 1.90 2.10 0.079 0.075 0.083
D2 1.60 1.50 1.70 0.063 0.059 0.067
ddd 0.08 0.003
E 3.00 2.90 3.10 0.118 0.114 0.122
E2 0.20 0.10 0.30 0.008 0.004 0.012
e0.50– 0.020
L 0.45 0.40 0.50 0.018 0.016 0.020
L1 0.15 0.006
L3 0.30 0.012
D
E
UFDFPN-01
A
A1 ddd
L1
eb
D2
L
E2
L3
Package mecha n ic al M24C16, M2 4C08, M24C04 , M2 4 C 0 2, M 24C 0 1
28/33
Figure 15. TSSOP8 – 8 lead Thin Shrink Small Out line, package outline
1. Drawing is not to scale.
2. The circle in the top view of the package indicates the position of pin 1.
Table 18. TSSOP8 – 8 lead Thin Shrink Small Outline, package mechanical data
Symbol millimeters inches
Typ. Min. Max. Typ. Min. Max.
A 1.200 0.0472
A1 0.050 0.150 0.0020 0.0059
A2 1.000 0.800 1.050 0.0394 0.0315 0.0413
b 0.190 0.300 0.0075 0.0118
c 0.090 0.200 0.0035 0.0079
CP 0.100 0.0039
D 3.000 2.900 3.100 0.1181 0.1142 0.1220
e 0.650 0.0256
E 6.400 6.200 6.600 0.2520 0.2441 0.2598
E1 4.400 4.300 4.500 0.1732 0.1693 0.1772
L 0.600 0.450 0.750 0.0236 0.0177 0.0295
L1 1.000 0.0394
α
TSSOP8AM
1
8
CP
c
L
EE1
D
A2A
α
eb
4
5
A1
L1
M24C16, M24C08, M24C04, M24C02, M24C01 Package mechanical
29/33
Figure 16. TSSOP8 3x3mm² – 8 lead Thin Shrink Small Outlin e, 3x3mm² body size,
package outline
1. Drawing is not to scale.
2. The circle in the top view of the package indicates the position of pin 1.
Table 19. TSSOP8 3x3 mm² – 8 lead Thin Shrink Small Outline, 3x3mm² body size,
mechanical data
Symbol millimeters inches
Typ. Min. Max. Typ. Min. Max.
A 1.100 0.0433
A1 0.050 0.150 0.0020 0.0059
A2 0.850 0.750 0.950 0.0335 0.0295 0.0374
b 0.250 0.400 0.0098 0.0157
c 0.130 0.230 0.0051 0.0091
D 3.000 2.900 3.100 0.1181 0.1142 0.1220
E 4.900 4.650 5.150 0.1929 0.1831 0.2028
E1 3.000 2.900 3.100 0.1181 0.1142 0.1220
e 0.650 0.0256
CP 0.100 0.0039
L 0.550 0.400 0.700 0.0217 0.0157 0.0276
L1 0.950 0.0374
α
TSSOP8BM
1
8
CP
c
L
EE1
D
A2A
α
eb
4
5
A1
L1
Part numbering M24C16, M24C08, M24C04, M24C02, M24C01
30/33
8 Part numbering
F o r a list of available options (speed, pac kag e, etc.) or fo r fu rther information on an y aspect
of this device, please contact your nearest ST Sales Office.
The category of second Level Interconnect is marked on the package and on the inner bo x
label, in compliance with JEDEC Standar d JESD97. The maximum ratings related to
soldering conditions are also marked on the inner box label.
Table 20. Ordering information scheme
Example: M24C16 W DW 3 T P /W
Device Type
M24 = I2C serial access EEPROM
Device Function
16 = 16 Kbit (2048 x 8)
08 = 8 Kbit (1024 x 8)
04 = 4 Kbit (512 x 8)
02 = 2 Kbit (256 x 8)
01 = 1 Kbit (128 x 8)
Operating Voltage
W = VCC = 2.5 to 5.5V (400 kHz)
R = VCC = 1.8 to 5.5V (400 kHz)
Package
BN = PDIP8
MN = SO8 (150 mil width)
MB = UDFDFPN8 (MLP8)
DW = TSSOP8 (169 mil width)
DS = TSSOP8 (3x3mm² body size, MSOP8)(1)
1. Products sold in this package are Not Recommended for New Design.
Device Grade
6 = Industrial temperature range, –40 to 85 °C.
Device tested with standard test flow
3 = Device tested with High Reliability Certified Flow(2).
A u tomotive temperature range (–40 to 125 °C)
2. ST strongly recommends the use of the Automotive Grade devices for use in an automotive
environment. The High Reliability Certified Flow (HRCF) is described in the quality note
QNEE9801. Please ask your nearest ST sales office for a copy.
Option
T = Tape and Reel Packing
Plating Technology
blank = Standard SnPb plating
P or G = ECOPACK® (RoHS compliant)
Process(3)
3. Used only for Device Grade 3.
/W or /S = F6SP36%
M24C16, M24C08, M24C04, M24C02, M24C01 Revision history
31/33
9 Revision history
Table 21. Document revision history
Date Version Changes
10-Dec-1999 2.4 TSSOP8 Turned-Die package removed (p 2 and order information)
Lead temperature added for TSSOP8 in table 2
18-Apr-2000 2.5 Labelling change to Fig-2D , correction of values for ‘E’ and main caption for
Tab-13
05-May-2000 2.6 Extra labelling to Fig-2D
23-Nov-2000 3.0 SBGA package information removed to an annex document
-R range changed to being the -S range, and the new -R range added
19-Feb-2001 3.1
SBGA package information put back in this document
Lead Soldering Temperature in the Absolute Maximum Ratings table
amended
Write Cycle Polling Flow Chart usi ng ACK illustration updated
References to PSDIP changed to PDIP and Package Mechanical data
updated
Wording bro ught in to line with standard glossary
20-Apr-2001 3.2 Revision of DC and AC characteristics for the -S series
08-Oct-2001 3.3 Ball numbers added to the SBGA connections and package mechanical
illustrations
09-Nov-2001 3.4 Specification of Test Condition for Leakage Currents in the DC
Characteristics table improved
30-Jul-2002 3.5 Document reformatted using new template. SBGA5 package removed
TSSOP8 (3x3mm² body size) package (MSOP8) added. -L voltage range
added
04-Feb-2003 3.6 Document title spelt out more fully. “W”-marked devices with tw=5ms
added.
05-May-2003 3.7
-R voltage range upgraded to 400kHz working, and no longer preliminary
data.
5V voltage range at temperatur e range 3 (-xx3) no longer preliminary data.
-S voltage range removed. -Wxx3 voltage+temp ranged added as
preliminary data.
07-Oct-2003 4.0
Table of contents, and Pb-free options added. Minor wording changes in
Summary Description, Power-On Reset, Memory Addressing, Read
Operations. VIL(min) improved to
-0.45V. tW(max) value for -R voltage range corrected.
17-Mar-2004 5.0
MLP package added. Absolute Maximum Ratings for VIO(min) and
VCC(min) changed. Soldering temperature information clar ified for RoHS
compliant devices. Device grade information clarified. Process
identification letter “G” information added. 2.2-5.5V range is removed, and
4.5-5.5V range is now Not for New Design
Revision history M24C16, M24C08, M24C04, M24C02, M24C01
32/33
7-Oct-2005 6.0
Product List summary table added. AEC-Q100-002 compliance. Device
Grade inform ation clarified. Updated Device internal rese t section,
Figure 3, Figure 4, Table 14 and Table 20 Added Ecopack® information.
Updated tW=5ms for the M24Cxx-W.
17-Jan-2006 7.0
Pin numbers removed from silhouettes (see on pag e 1). Internal Device
Reset paragraph moved to below Section 2.4: Supply voltage (VCC).
Section 2.4: Sup ply voltage (VCC) added below Section 2: Signal
description. Test conditions for VOL updated in Table 8 and Table 9 SO8N
package specifications updated (see Table 16)
New definition of ICC1 over the whole VCC range (see Tables 8, 9 and 10).
19-Sep-2006 8
Document converted to new ST template.
SO8 and UFDFPN8 package specifications updated (see Section 7:
Package mechanical). Section 2.4: Supply voltage (VCC) clarified.
ILI value given with the device in Standby mode in Tables 8, 9 and 10.
Inf ormation given in Table 14: A C characteristics (M24Cxx-R) are no longer
preliminary data.
Table 21. Document revision history
Date Version Changes
M24C16, M24C08, M24C04, M24C02, M24C0 1
33/33
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.
All ST products are sold pursuant to ST’s terms and co nditions of sale.
Purchasers a re so lel y res ponsibl e fo r th e choic e, se lecti on an d use o f th e ST pr oduc ts and s ervi ces d escr ibed he rein , and ST as sumes no
liability whatsoever relating to the choice, selection or u se of the ST products and services descri bed herein.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document ref er s to an y t hi rd pa rt y p roduc t s or serv ic es it sh al l n ot be dee med a li ce nse gr an t by ST for t he use of su ch t hi rd party products
or services, or any intel lectual pro perty conta ined therei n or considere d as a warranty covering the use in any mann er whatsoev er of such
third party products or services or any intellec tual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTAB ILIT Y, FITNESS F OR A PARTI CULAR PURPOS E (AND THEIR EQUIVALE NTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warrant y granted by ST for the S T product or se rvice descr ibed herein a nd shall no t create or e xtend in any manner whatsoe ver, any
liability of ST.
ST and the ST lo go are trademarks or regist ered trademar ks of ST in vari ous countri es.
Information in this document supers edes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2006 STMicroelectronics - All rights reserved
STMicroele ctr on ic s gr ou p of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com