2013-08-161
BFP410
1
2
3
4
Low Noise Silicon Bipolar RF Transistor
Low current device suitable e.g. for handhelds
For high frequency oscillators e.g. DRO for LNB
For ISM band applications like
Automatic Meter Reading, Sensors etc.
Transit frequency fT = 25 GHz
Pb-free (RoHS compliant) and halogen-free package
with visible leads
Qualification report according to AEC-Q101 available
ESD (Electrostatic discharge) sensitive device, observe handling precaution!
Type Marking Pin Configuration Package
BFP410 AKs 1=B 2=E 3=C 4=E - - SOT343
Maximum Ratings at T
A
= 25 °C, unless otherwise specified
Parameter Symbol Value Unit
Collector-emitter voltage
TA = 25 °C
T
A
= -55 °C
VCEO
4.5
4.1
V
Collector-emitter voltage VCES 13
Collector-base voltage VCBO 13
Emitter-base voltage VEBO 1.5
Collector current IC40 mA
Base current IB6
Total power dissipation1)
TS 100 °C
Ptot 150 mW
Junction temperature TJ150 °C
Storage temperature TSt
g
-55 ... 150
1TS is measured on the emitter lead at the soldering point to the pcb
2013-08-162
BFP410
Thermal Resistance
Parameter Symbol Value Unit
Junction - soldering point1) RthJS 335 K/W
Electrical Characteristics at TA = 25 °C, unless otherwise specified
Parameter Symbol Values Unit
min. typ. max.
DC Characteristics
Collector-emitter breakdown voltage
IC = 1 mA, IB = 0
V(BR)CEO 4.5 5 - V
Collector-emitter cutoff current
VCE = 2 V, VBE = 0
VCE = 5 V, VBE = 0 , TA = 85 °C
(verified by random sampling)
ICES
-
-
1
2
30
50
nA
Collector-base cutoff current
VCB = 2 V, IE = 0
ICBO - 1 30
Emitter-base cutoff current
VEB = 0.5 V, IC = 0
IEBO - 0.001 0.6 µA
DC current gain
IC = 13 mA, VCE = 2 V, pulse measured
hFE 60 95 130 -
1For the definition of RthJS please refer to Application Note AN077 (Thermal Resistance Calculation)
2013-08-163
BFP410
Electrical Characteristics at T
A
= 25 °C, unless otherwise specified
Parameter Symbol Values Unit
min. typ. max.
AC Characteristics (verified by random sampling)
Transition frequency
IC = 20 mA, VCE = 2 V, f = 2 GHz
fT18 25 - GHz
Collector-base capacitance
VCB = 2 V, f = 1 MHz, VBE = 0 ,
emitter grounded
Ccb - 0.09 0.17 pF
Collector emitter capacitance
VCE = 2 V, f = 1 MHz, VBE = 0 ,
base grounded
Cce - 0.35 -
Emitter-base capacitance
VEB = 0.5 V, f = 1 MHz, VCB = 0 ,
collector grounded
Ceb - 0.45 -
Minimum noise figure
IC = 2 mA, VCE = 2 V, f = 2 GHz, ZS = ZSopt
NFmin - 1.2 - dB
Power gain, maximum stable1)
IC = 20 mA, VCE = 2 V, ZS = ZSopt,
ZL = ZLopt , f = 2 GHz
Gms - 21.5 - dB
Insertion power gain
VCE = 2 V, IC = 20 mA, f = 2 GHz,
ZS = ZL = 50
|S21|2- 18.5 -
Third order intercept point at output2)
VCE = 2 V, IC = 20 mA, f = 2 GHz,
ZS = ZL = 50
IP3 - 23.5 - dBm
1dB compression point at output
IC = 20 mA, VCE = 2 V, ZS = ZL = 50 ,
f = 2 GHz
P-1dB - 10.5 -
1Gms = |S21 / S12|
2IP3 value depends on termination of all intermodulation frequency components.
Termination used for this measurement is 50 from 0.1 MHz to 6 GHz
2013-08-164
BFP410
Total power dissipation Ptot = ƒ(TS)
0 20 40 60 80 100 120 °C 160
TS
0
20
40
60
80
100
120
140
mW
180
Ptot
Collector-base capacitance Ccb= ƒ(VCB)
f = 1MHz
0 0.5 1 1.5 2 2.5 3 V4
VCB
0
0.05
0.1
0.15
0.2
pF
0.3
CCB
Transition frequency fT = ƒ(IC)
f = 2 GHz
VCE = parameter in V
0 4 8 12 16 20 24 mA 32
IC
2
4
6
8
10
12
14
16
18
20
22
GHz
26
fT
3 to 4V
2V
1V
0.5V
Power gain Gma, Gms, |S21|2 = ƒ (f)
VCE = 2 V, IC = 13 mA
0 2 4 6 GHz 10
f
0
5
10
15
20
25
30
35
dB
45
G
Gms
Gma
|S21|²
2013-08-165
BFP410
Power gain Gma, Gms = ƒ (IC)
VCE = 2V
f = parameter in GHz
0 4 8 12 16 20 24 28 mA 36
IC
0
4
8
12
16
20
24
28
32
dB
40
G
0.15GHz
0.45GHz
0.9GHz
1.5GHz
1.9GHz
2.4GHz
3.5GHz
5.5GHz
10GHz
Power gain Gma, Gms = ƒ (VCE)
IC = 13 mA
f = parameter in GHz
01234V6
VCE
0
4
8
12
16
20
24
28
32
dB
40
G
0.15GHz
0.45GHz
0.9GHz
1.5GHz
1.9GHz
2.4GHz
3.5GHz
5.5GHz
10GHz
Noise figure F = ƒ(IC)
VCE = 2 V, ZS = ZSopt
0 4 8 12 16 20 24 mA 30
IC
0
0.5
1
1.5
2
2.5
3
3.5
dB
4.5
Fmin
f= 10.0 GHz
f= 5.5 GHz
f= 2.4 GHz
f= 1.8 GHz
f= 0.9 GHz
f= 0.45 GHz
Noise figure F = ƒ(IC)
VCE = 2 V, f = 2 GHz
0 4 8 12 16 mA 24
IC
0
0.5
1
1.5
2
2.5
3
dB
4
F
ZS=50Ohm
ZS=ZSopt
2013-08-166
BFP410
Collector current IC = ƒ(VBE)
VCE =2 V
0.2 0.4 0.6 0.8 V1.2
VBE
-4
10
-3
10
-2
10
-1
10
0
10
1
10
2
10
mA
IC
Collector current IC = ƒ(VCE)
Parameter IB
0 1 2 3 V5
VCE
0
5
10
15
mA
25
IC
20µA
90µA
160µA
DC current gain hFE = ƒ(IC)
VCE = 2 V
10 -1 10 0 10 1 10 2
mA
IC
0
10
1
10
2
10
3
10
hFE
2013-08-167
BFP410
Package SOT343
2013-08-168
BFP410
Edition 2009-11-16
Published by
Infineon Technologies AG
81726 Munich, Germany
2009 Infineon Technologies AG
All Rights Reserved.
Legal Disclaimer
The information given in this document shall in no event be regarded as a guarantee
of conditions or characteristics. With respect to any examples or hints given herein,
any typical values stated herein and/or any information regarding the application of
the device, Infineon Technologies hereby disclaims any and all warranties and
liabilities of any kind, including without limitation, warranties of non-infringement of
intellectual property rights of any third party.
Information
For further information on technology, delivery terms and conditions and prices,
please contact the nearest Infineon Technologies Office (<www.infineon.com>).
Warnings
Due to technical requirements, components may contain dangerous substances.
For information on the types in question, please contact the nearest Infineon
Technologies Office.
Infineon Technologies components may be used in life-support devices or systems
only with the express written approval of Infineon Technologies, if a failure of such
components can reasonably be expected to cause the failure of that life-support
device or system or to affect the safety or effectiveness of that device or system.
Life support devices or systems are intended to be implanted in the human body or
to support and/or maintain and sustain and/or protect human life. If they fail, it is
reasonable to assume that the health of the user or other persons may be
endangered.