LM6171
www.ti.com
SNOS745C –MAY 1998–REVISED MARCH 2013
APPLICATION INFORMATION
LM6171 PERFORMANCE DISCUSSION
The LM6171 is a high speed, unity-gain stable voltage feedback amplifier. It consumes only 2.5 mA supply
current while providing a gain-bandwidth product of 100 MHz and a slew rate of 3600V/μs. It also has other great
features such as low differential gain and phase and high output current. The LM6171 is a good choice in high
speed circuits.
The LM6171 is a true voltage feedback amplifier. Unlike current feedback amplifiers (CFAs) with a low inverting
input impedance and a high non-inverting input impedance, both inputs of voltage feedback amplifiers (VFAs)
have high impedance nodes. The low impedance inverting input in CFAs will couple with feedback capacitor and
cause oscillation. As a result, CFAs cannot be used in traditional op amp circuits such as photodiode amplifiers,
I-to-V converters and integrators.
LM6171 CIRCUIT OPERATION
The class AB input stage in LM6171 is fully symmetrical and has a similar slewing characteristic to the current
feedback amplifiers. In LM6171 Figure 56, Q1 through Q4 form the equivalent of the current feedback input
buffer, REthe equivalent of the feedback resistor, and stage A buffers the inverting input. The triple-buffered
output stage isolates the gain stage from the load to provide low output impedance.
LM6171 SLEW RATE CHARACTERISTIC
The slew rate of LM6171 is determined by the current available to charge and discharge an internal high
impedance node capacitor. The current is the differential input voltage divided by the total degeneration resistor
RE. Therefore, the slew rate is proportional to the input voltage level, and the higher slew rates are achievable in
the lower gain configurations.
When a very fast large signal pulse is applied to the input of an amplifier, some overshoot or undershoot occurs.
By placing an external series resistor such as 1 kΩto the input of LM6171, the bandwidth is reduced to help
lower the overshoot.
LAYOUT CONSIDERATION
Printed Circuit Boards and High Speed Op Amps
There are many things to consider when designing PC boards for high speed op amps. Without proper caution, it
is very easy and frustrating to have excessive ringing, oscillation and other degraded AC performance in high
speed circuits. As a rule, the signal traces should be short and wide to provide low inductance and low
impedance paths. Any unused board space needs to be grounded to reduce stray signal pickup. Critical
components should also be grounded at a common point to eliminate voltage drop. Sockets add capacitance to
the board and can affect frequency performance. It is better to solder the amplifier directly into the PC board
without using any socket.
Using Probes
Active (FET) probes are ideal for taking high frequency measurements because they have wide bandwidth, high
input impedance and low input capacitance. However, the probe ground leads provide a long ground loop that
will produce errors in measurement. Instead, the probes can be grounded directly by removing the ground leads
and probe jackets and using scope probe jacks.
Components Selection And Feedback Resistor
It is important in high speed applications to keep all component leads short because wires are inductive at high
frequency. For discrete components, choose carbon composition-type resistors and mica-type capacitors.
Surface mount components are preferred over discrete components for minimum inductive effect.
Large values of feedback resistors can couple with parasitic capacitance and cause undesirable effects such as
ringing or oscillation in high speed amplifiers. For LM6171, a feedback resistor of 510Ωgives optimal
performance.
Copyright © 1998–2013, Texas Instruments Incorporated Submit Documentation Feedback 17
Product Folder Links: LM6171