Standard Power MOSFETs File Number 1570 IRF330, IRF331, IRF332, IRF333 Power MOS Field-Effect Transistors N-Channel Enhancement-Mode Power Field-Effect Transistors 4.5A and 5.5A, 350V-400V ros(on) = 1.0Q and 1.50 Features: SOA is power-dissipation limited Nanosecond switching speeds Linear transfer characteristics High input impedance Majority carrier device The IRF330, IRF331, IRF332 and IRF333 are n-channel enhancement-mode silicon-gate power field- effect transistors designed for applications such as switch- ing regulators, switching converters, motor drivers, relay drivers, and drivers for high-power bipolar switching tran- sistors requiring high speed and low gate-drive power. These types can be operated directly from integrated circuits. The IRF-types are supplied in the JEDEC TO-204AA steel package. Absolute Maximum Ratings N-CHANNEL ENHANCEMENT MODE $s 92CS-33741 TERMINAL DIAGRAM TERMINAL DESIGNATION ORAIN SOURCE (FLANGE ) GATE 92Cs- 37801 JEDEC TO-204AA Parameter IRF330 IRF331 IRF 332 IRF333 Units Vps. Drain - Source Voltage @ 400 350 400 350 v | Vcr Drain - Gate Voltage (Rgg = 20Kn) 400 350 400 350 Vv ip @Tc = 25C Continuous Drain Current 5.5 5.5 45 4.5 A Ip @ Tc = 100C Continuous Drain Current 3.5 3.5 3.0 3.0 A pm Pulsed Drain Current @ 22 22 18 18 A i Gate - Source Voltage 20 Vv [ Pp @ Tc = 25C Max. Power Dissipation 75 (See Fig. 14) w Linear Derating Factor 0.6 (See Fig. 14) weer itm Inductive Current, Clamped (See Fig. 15 and 16)L = 100uH A 22 | 22 l 18 I 18 7 7 Ro SE a tange 8510 150 c Lead Temperature 300 {0.063 in. (1.6mm) from case for 10s} C 3-99Standard Power MOSFETs IRF330, IRF331, IRF332, IRF333 Electrical Characteristics @Tc = 25C (Unless Otherwise Specified) 3-100 Parameter Type Min. Typ. | Max. Units Test Conditions BVpss Drain - Source Breakdown Voltage IRF33C .- IRF332 400 - - v Veg = OV IRF331 1 IRF333 350 - _ v Ip = 250na VGsith) Gate Threshold Voltage ALL 2.0 - | 40 v Vps = Vos. 'p = 25004 | GSith) ps = Vas. 'b ess Gate-Source Leakage Forward ALL - = 100 nA Vgg = 20V 'gsg _ Gate-Source Leakage Reverse ALL = [-100 nA Vag = -20V Ipss Zero Gate Vaitage Drain Current ALL = = 250 uA Vpg = Max. Rating, Ves = OV = [1000] 4A Vpg = Max. Rating x 0.8, Vgg = OV, Te = 125C IDton) _ON-State Drain Current @ 1RF330 | gg a _ A (RF331 Vn >| xR, Veg = 10 DS? 'pions * Rasion} max.: Yas = 10V IRF332 AS A IRF333, . ~ ~ Rpsion) Static Drain-Source On-State IRF 330 _ 08 1.0 a Resistance IRF331 * . v 10Vv.1 3.0A F332} Of ao las | of os Snes (RF333 . . Sts Forward Transconductance ) ALL 30 | 40] S13) Vos? 'pion) * Fosion) max. 'p = 3-04 Ciss Input Capacitance ALL = 700 = pF Vgg = OV. Vpg = 25. f = 1.0 MHz Coss _ Output Capacitance ALL - 150 - pF See Fig. 10 Crs Reverse Transfer Capacitance ALL - 40 - pF taton) Turn-On Delay Time ALL = ~ 30 ns Vop = 175V. Ip = 3.0A, Z, = 152 t Rise Time ALL = = 36 ns See Fig. 17 tdioff) _ Turn-Off Delay Time ALL = = 55 ns {MOSFET switching times are essentially tf Fall Time TALL _ _ 35 ns independent of operating temperature.) a, Total Gate Charge Ves = 10N, Ip = 7.08, Vog = 0.8 Max. Rating. 9 _ GS Oo os {Gate-Source Plus Gate-Drain} ALL 18 30 nc See Fig. 18 for test circuit. (Gate charge is essentially Q ; Gate-Source Charge ALL a 1t 17 nc independent of operating temperature.) Ogg Gate-Drain (Miller) Charge ALL - 7.0 W nc Lp Internal Drain Inductance ALL _ 5.0 - nH Measured between Modified MOSFET the contact screw on symbol showing the header that is closer to internal device source and gate pins inductances. and center of die. D ls Internal Source Inductance ALL - 12.5] - oH Measured from the Lo source pin, 6 mm (0.25 in.) from header G and source bonding ts pad. $s Thermal Resistance RinJC _ Junction-to-Case ALL - | 1.67 | ecw Rincs Case-to-Sink ALL = Q1 _ ecw Mounting surface flat, smooth, and greased. RingA _Junction-to-Ambient ALL = = 30 oC sw Free Air Operation Source-Drain Diode Ratings and Characteristics Ig Continuous Source Current (RF330 . _ 5.5 A Modified MOSFET symbol (Body Diode) iRF331 . showing the integral TRES32 reverse P-N junction rectifier. D masa {| | ~ | *> | 4 ism Puise Source Current tRF330 _ _ (Body Diode) @ 1RF331 22 A 6 IRF332 S IRF333 8 ] 4 Vap Diode Forward Voltage @ 1Re330 | a = 25C. Ie = = 1RF331 168 v Te = 25C. Ig = 5.54. Vgg = OV R332 | _ _ = 25C ee - iRE333 15 v Tc = 25C, Ig = 4.5A, Vgg = OV ter Reverse Recovery Time ALL - 600 = ns Ty = 150C, Ip = 5.5A, digp/dt = 100A/us Onn Reverse Recovered Charge ALL = 4.0 = ze Ty = 150C, tp = &.5A, dip/dt = 100A/us ton Forward Turn-on Time ALL Intrinsic turn-on time is negligible. Turn-on speed is substantially controlled by Lg + Lp. OTy = 25C to 150C. @Pulse Test: Pulse width < 300ys, Duty Cycle < 2%. Repetitive Rating: Pulse width limited by max. junction temperature. See Transient Thermal Impedance Curve (Fig. 5).Standard Power MOSFETs IRF330, IRF331, IRF332, IRF333 80 us PULSE Vos > 'Dtan) * Boston) max. Ip, DRAIN CURRENT (AMPERES) Ip, DRAIN CURRENT (AMPERES) 0 50 100 150 200 250 300 9 1 2 3 4 5 6 ? Vps. ORAIN-TO-SOURCE VOLTAGE {VOLTS} Vos, GATE-TO-SOUACE VOLTAGE {VOLTS} Fig. t Typical Output Characteristics Fig. 2 Typical Transfer Characteristics iS LIMITED Ip, DRAIN CURRENT (AMPERES) |g. GRAIN CURRENT (AMPERES) Ty = 150C MAX, = 167C, o.1 0 2 4 8 8 10 102 5 Ww 20 so 100 200 500 Vps, ORAIN-TO-SOURCE VOLTAGE (VOLTS) Vpg, ORAIN-TO-SOURCE VOLTAGE (VOLTS) Fig. 3 Typical Saturation Characteristics Fig. 4 Maximum Safe Operating Area . 5 z 3 g = Hee 10 ws => Ee os Se ge to a2 02 2 F a3 2 = o1 Z2 2 2 1 eye 0:05 SINGLE 1. ouTy FactoR.o= th. 2z TH IMPEL er ERMAL IMPEDANCE) 2. PER UNIT BASE = Rihyg 1.67 DEG. CW. S 002 3 3. Tym -Te = Pow Zehuctt. = 001 wh 2 5 wh 2 5 3 2 5 we 2 5 wl 2 5 40 (2 5 10 ty, SQUARE WAVE PULSE DURATION (SECONDS) Fig. 5 Maximum Effective Transient Thermal Impedance, Junction-to-Case Vs. Pulse Duration 3-101Standard Power MOSFETs IRF330, IRF331, IRF332, IRF333 3-102 W Sts, TRANSCONDUCTANCE (SIEMENS) Vos > !o(on) * Bosfon) max. BDus Ip, DRAIN CURRENT (AMPERES) w Fig. 6 Typical Transconductance Vs. Drain Current OVpss, ORAIN-TO-SOURCE BREAKDOWN VOLTAGE (NORMALIZED) C, CAPACITANCE {pF} 1a5 V5 S a 2 my a 0.85 075 -40 0 40 80 120 Ty, JUNCTION TEMPERATURE (SC) Fig. 8 Breakdown Voltage Vs. Temperature 2000 Vas= 21 \ 1609 Cisg = Cop + Cog, Cas SHORTED Cres = Coy Cos Cog Com Cant Ty bys 1200 = Cfg* Co ~ q 10 20 30 40 Vps. DRAIN-TO-SOURCE VOLTAGE {VOLTS} 160 Fig. 10 Typical Capacitance Vs. Drain-to-Source Voltage Ipp. REVERSE ORAIN CURRENT (AMPERES} Ty= 1500C Ty= 2800: 1 2 3 4 Vp, SOURCE-TO-DRAIN VOLTAGE (VOLTS) Fig. 7 Typical Source-Drain Diode Forward Voltage Roston). QRAIN-TO-SOURCE ON RESISTANCE (NORMALIZED) ~40 Q 40 80 120 Ty, JUNCTION TEMPERATURE (C) Fig. 9 Normalized On-Resistance Vs. Temperature Vg. GATE-TO-SOURCE VOLTAGE VOLTS) Vpg = 80V Vps = 200V I ! = 3200 IpzTA FOR TEST CIRCUIT SEE FIGURE 18 8 16 24 32 40 Qy. TOTAL GATE CHARGE {nC} Fig. 11 Typical Gate Charge Vs. Gate-to-Source VoltagePRE Veg = 10 ANeg=20v] 7 es ington), DRAIN-TO-SOURCE ON RESISTANCE (OHMS) Aips(on) MEASURED WITH CURRENT PULSE OF 2.0 us DURATION. INITIAL Ty 259C. (HEATING EFFECT OF 2.0 us PULSE 1S MINIMAL) L L L 10 5 20 25 Ip. ORAIN CURRENT (AMPERES) Fig. 12 Typical On-Resistance Vs. Drain Current 30 70 60 Pp, POWER DISSIPATION (WATTS) 20 40 Standard Power MOSFETs IRF330, IRF331, IRF332, IRF333 {p, DRAIN CURRENT (AMPERES) 50 75 100 Tr, CASE TEMPERATURE (9C} Fig. 13 Maximum Drain Current Vs. Case Temperature 125 150 60 Tc, CASE TEMPERATURE (C) a 100 120 40 Fig. 14 Power Vs. Temperature Derating Curve VARY ty TO OBTAIN REQUIRED PEAK |, Ves 720V ety 4 Fig. 15 Clamped Inductive Test Circuit & Ve = 0.758; ve c OSS 0.05 = Vike 10 SCOPE Fig. 17 ~ Switching Time Test Circuit Vos = 058Vos5 N N \ & Fig. 16 Ciamped inductive Waveforms o Vos {ISOLATED SUPPLY) CURRENT REGULATOR SAME TYPE wv BATTERY 9 CUARENT SHUNT Fig. 18 Gate Charge Test Circuit CURRENT SHUNT 3-103