SMD-00043 Rev D
Subject to Change Without Notice
Divider Mode: Application Notes
The UXC20P supports four division ratios controlled by two select lines which are compatible with
CMOS/LVTTL signaling levels. Table 1 lists the four states for the given logic levels on the SelA and
SelB select lines. For any of the four modes, circuitry which is not used is automatically powered
down to reduce power consumption.
Divider Outputs:
The equivalent circuit of the divider outputs is shown on the below. The outputs require a DC return
path capable of handling ~35 mA per side. If DC coupling is employed, the DC resistance of the
receiving circuits should be ~50 Ω (or less) to VCC to prevent excessive common mode voltage from
saturating the prescaler outputs. If AC coupling is used, the perfect embodiment is shown in figure 2.
The discrete R/L/C elements should be resonance free up to the maximum frequency of operation for
broadband applications.
The output amplitude can be adjusted over a 1.5:1 range by one of the two methods The Vadj pin
voltage can be set to VCC for maximum amplituded or VCC-1.3 V for an amplitude ~2/3 the max
swing. Voltages between these two values will produce a linear change in output swing. Alternatively,
users can use a 1k potentiometer or fixed resistor tied between Vadj and VCC. Resistor values
approaching 0 ohms will lead to the maximum swing, while values approaching 1k will lead to the
minimum output swing. Users who only need/want the maximum swing should simply tie Vadj to VCC.
Equivalent Circuit of Output Buffer Recommended Circuit for AC Coupled Outputs
Low Frequency Operation:
Low frequency operation is limited by external bypass capacitors and the slew rate of the input clock.
The next paragraph shows the calculations for the bypass capacitors. If DC coupled, the device
operates down to DC for square-wave inputs. Sine-wave inputs are limited to ~50 MHz due
to the 10 dBm max input power limitation.
The values of the coupling capacitors for the high-speed inputs and outputs (I/O’s) are determined
by the lowest frequency the IC will be operated at.
C>> 1
2•π•50Ω•flowest
For example to use the device below 30 kHz, coupling capacitors should be larger than 0.1uF.