Marvell. Moving Forward Faster
Doc. No. MV-S106081-02, Rev. D
July 8, 2010
Document Classification: Proprietary
Microsoft Use Only
Cover
88PG839
Ultra Low Power, 2MHz, 2A Output
Current Field Programmable
Hysteretic Step-Down Switching
Regulator
Datasheet
Document Conventions
Note: Provides related information or information of special importance.
Caution: Indicates potential damage to h ardware or software, or loss of data.
Warning: Indicates a risk of personal injury.
Document Status
Doc Status: 2.00 Technical Publication: 0.xx
For more information, visit our website at: www.marvell.com
Disclaimer
No part of th i s docu m en t ma y be reproduced or transm itted i n an y for m or by a ny means, electronic or mechani c a l, in cluding photocopying and recor d in g, for any purpose,
without the express written permissi on of Marvell. Marvell retains the right to make cha ng es to this document at any ti me , w itho ut not ice. Marve ll makes no warran ty of an y
kind, expre ssed or impl ied, wi th regar d to any informa tion con tai ned in thi s docum ent, inclu ding, but not li mited to , the i mplied wa rrantie s of merc hant ability or fitness for any
particular purpose. Further, Marvell does not warrant the accuracy or completeness of the information, text, graphics, or other items contained within this document.
Marvell products are not designed for use in life-support equipment or applications that would cause a life-threatening situation if any such products failed. Do not use
Marvell products in these types of equipment or applications.
With respect to the products described herein, the user or recipient, in the absence of appropriate U.S. government authorization, agrees:
1) Not to re-export or release any such information consisting of technology, software or source code controlled for national security reasons by the U.S. Export Control
Regulations (" EA R"), to a national of EAR Country Groups D:1 or E:2;
2) Not to export the direct product of such technology or such software, to EAR Country Groups D:1 or E:2, if such technology or software and direct products thereof are
controlled for national security reasons by the EAR; and,
3) In the case of technology controlled for national security reasons under the EAR where the direct product of the technology is a complete plant or component of a plant,
not to export to EAR Country Groups D:1 or E:2 the direct product of the plant or major component thereof, if such direct product is controlled for national security reasons
by the EAR, or is subject to controls under the U.S. Munitions List ("USML").
At all times her eund er, the reci pient o f any such info rmati on ag rees t hat the y sha ll be deem ed to h ave m anuall y sign ed this document in con nection with their receip t of an y
such information.
Copyright © 1999–2009. Marvell International Ltd. All rights reserved. Marvell, Moving Forward Faster, the Marvell logo, Alaska, AnyVoltage, DSP Switcher, Fastwriter,
Feroceon, Libertas, Link Street, PHYAdvantage, Prestera, TopDog, Virtual Cable Tester, Yukon, and ZJ are registered trademarks of Marvell o r its affiliates. CarrierSpan,
LinkCrypt, Powered by Marvell Green PFC, Qdeo, QuietVideo, Sheeva, TwinD, and VCT are trademarks of Marvell or its affiliates.
Patent(s) Pending—Products identified in this document may be covered by one or more Marvell patents and/or patent applications.
88PG839
Datasheet
Doc. No. MV-S106081-02 Rev. D Copyright © 2010 Marvell
Page 2 Document Classification: Proprietary July 8, 2010, 2.00
88PG839
Ultra Low Power, 2MHz, 2A Output Current Field
Programmable Hysteretic Step-Down Switching
Regulator
Copyright © 2010 Marvell Doc. No. MV-S106081-02 Rev. D
July 8, 2010, 2.00 Document Classification: Proprietary Page 3
PRODUCT OVERVIEW
The Marvell® 88PG839 is a high performance, hysteretic
step-down switching regulator that utilizes a proprietary,
internally compensated Pulse Width Modulation (PWM)
control to regulate the output voltage. The regulator
offers fast transient response time and requires no
external compensation. The device operates from an
input voltage range of 2.7V to 5.5V and delivers up to 2A
DC output current. The switching frequency is typicall y
2MHz, allowing the use of low profile surface mounted
inductors and low value ceramic capacitors.
The step-down regulator includes programmable ability
to easily set the ou tput voltage with external resistors.
The output voltage range is 0.64V to 3.63V. The output
voltage can be changed On-the-Fly (OTF) from a
nominal value by a percentage through connecting the
OTF pin to a high level, making it id eal for portable
applications. The adjustment percentage is user
programmable from -20% to +10% by a resistor
connected between PSET pin and ground.
The 88PG839 can be externally set to Pulse Frequency
Modulation (PFM) or Pulse Width Modulation (PWM)
mode via the PFM pin. The quiescent current in PFM
mode is less than 32µA. The regulator can achieve 95%
efficiency under loaded conditions.
Features
Input voltage range 2.7V to 5.5V
Output voltage range 0.64V to 3.63V
Hysteretic step-down regulator
32µA (typical) quiescent current
3mm x 4mm DFN-12 package
2MHz switching frequency
Small and low-profile inductor s
Stable with low-ESR ceramic output capacitor
-20% to +10% On-the-Fly output voltage adjustment
Internal compensation
Up to 95% efficiency
2A DC output current
72 output voltage selections using AnyVoltageTM
Technology
Built-in under/over voltage lockout
Thermal shutdown protection
Soft start to minimize the in-rush current
Applications
Portable computing
Personal Digital Assistant (PDA)
Cell phones
Ultra-Mobile PC (UMPC)
Figure 1: Typical Application Circuit
Caution! This is a very high frequency device, and proper PCB layout is required. Refer to
Section 6, Applications Information, on page 47 for further information.
R2
PFM
SHDN /SDI
R3
R4
1M
SVIN VIN
PG
C2*
22uF/6.3V
VSET
C1
10uF/6.3V
C3
0.1uF/10V
R1
10
L1*
1.0uH
OTF
EN
SGND
4SHDN/SDI 10
PG 8
EN
3
SVIN 9
PGND
13
SFB
5
PFM
2OTF
1
SW
6PVIN 7
VSET 11
PSET 12
U1 88PG839
PSET
SW
VIN
VOUT
IC
PVIN PGND
Yes No
Example placement
for input c apacit or s
All i nput c apac i tors
(Cin) must place
close to the IC!!!!
IC
PVIN PGND
Cin Cin
PVIN
Trace PGND
Trace
PVIN
Trace PGND
Trace
Hi di/dt trace *
See S ec ti on 6 , Applic at i ons
Information for the inductor
and output capac i t anc e
recommendations .
88PG839
Datasheet
Doc. No. MV-S106081-02 Rev. D Copyright © 2010 Marvell
Page 4 Document Classification: Proprietary July 8, 2010, 2.00
THIS PAGE INTENTIONALLY LEFT BLANK
Table of Contents
Copyright © 2010 Marvell Doc. No. MV-S106081-02 Rev. D
July 8, 2010, 2.00 Document Classification: Proprietary Page 5
Table of Contents
Product Overview.......................................................................................................................................3
Table of Contents .......................................................................................................................................5
List of Figures.............................................................................................................................................7
List of Tables ..............................................................................................................................................9
1 Signal Description.......................................................................................................................11
1.1 Pin Configuration.............................................................................................................................................11
1.2 Pin Description................................................................................................................................................12
2 Electrical Specifications .............................................................................................................15
2.1 Absolute Maximum Ratings ............................................................................................................................15
2.2 Recommended Operating Conditions.............................................................................................................16
2.3 Electrical Characteristics.................................................................................................................................17
2.4 Switching Step-down Regulator........ ... ...................... ....................... ...................... ... .....................................18
3 Functional Description................................................................................................................21
3.1 Overview .........................................................................................................................................................21
3.2 Soft Start.........................................................................................................................................................22
3.3 Output Voltage Setting....................................................................................................................................22
3.3.1 Serial Programmability of Swit ching Regulator (SDI) .................... ...................................................22
3.3.2 Logic Programmability......................................................................................................................24
3.3.3 Programmability—AnyVoltage® Technology....................................................................................24
3.4 Enable and Shutdown.....................................................................................................................................25
3.5 PFM and PWM Mode Selection......................................................................................................................25
3.6 Under Voltage Lockout (UVLO) ........... ... ...................... ....................... ...................... .....................................25
3.7 Over Voltage Protection (OVP).......................................................................................................................26
3.8 Thermal Shutdown..........................................................................................................................................26
3.9 Power Good (PG)............................................................................................................................................27
4 Functional Characteristics .........................................................................................................29
4.1 Startup Waveforms .......... ... ............................................................................................................................29
4.2 Short-Circuit Waveform ..................................................................................................................................31
4.3 Switching Waveforms..................... ....................... .......................................... ................................................32
4.4 Load Transient Waveforms.............................................................................................................................34
5 Typical Characteristics ...............................................................................................................37
5.1 Efficiency.........................................................................................................................................................37
88PG839
Datasheet
Doc. No. MV-S106081-02 Rev. D Copyright © 2010 Marvell
Page 6 Document Classification: Proprietary July 8, 2010, 2.00
5.2 Load Regulation..............................................................................................................................................39
5.3 Dropout Voltage......................................... .. ... .................... ... .........................................................................39
5.4 RDS (ON) Resistance.....................................................................................................................................40
5.5 IC Case and Inductor Temperature.................................................................................................................41
5.6 Input Voltage...................................................................................................................................................42
5.7 Temperature ...............................................................................................................................................44
6 Applications Information ........ ... .... ... ... ................ ... .... ... ... ... .... ... ... ... ... .... ... ... ... .... ......................47
6.1 Inductor and Output capacitance recommendations.......................................................................................47
6.2 PC Board Layout Conciderati ons and Guidelines...........................................................................................47
6.2.1 PC Board Layout Examples..............................................................................................................50
6.3 Bill of Materials ........ ...................... .................................................................................................................52
7 Mechanical Drawings..................................................................................................................53
7.1 Mechanical Drawings......................................................................................................................................53
7.2 Typical Pad Layout Dimensions......................................................................................................................54
7.2.1 Recommended Solder Pad Layout...................................................................................................54
8 Part Order Numbering/Package Marking ..................................................................................55
8.1 Part Order Numbering Scheme.......................................................................................................................55
8.2 Part Ordering Options...... .......................................... .......................................... ...........................................55
8.3 Package Marking ............. ... ... .........................................................................................................................56
A Revision History ..........................................................................................................................57
List of Figures
Copyright © 2010 Marvell Doc. No. MV-S106081-02 Rev. D
July 8, 2010, 2.00 Document Classification: Proprietary Page 7
List of Figures
Product Overview.......................................................................................................................................3
Figure 1: Typical Application Circuit ...................................................................................................................3
1 Signal Description ........................................................................................................................... 11
Figure 2: DFN-12 Pin Configuration (Top View)..............................................................................................11
2 Electrical Specifications ................................................................................................................. 15
3 Functional Description.................................................................................................................... 21
Figure 3: Block Diagram ..................................................................................................................................21
Figure 4: Serial Programmability ......................................................................................................................22
Figure 5: UVLO and OVP Waveforms .............................................................................................................26
Figure 6: Power Good Operating Waveform....................................................................................................27
4 Functional Characteristics.............................................................................................................. 29
Figure 7: Startup Using Enable Pin..................................................................................................................29
Figure 8: Turn Off Using Enable Pin........... ...................... ...................... ... ....................... ............ ...................29
Figure 9: Startup Using Shutdown Pin.............................................................................................................29
Figure 10: Turn Off Using Shutdown Pin............................ ... ...................... ....................... ...............................29
Figure 11: Soft Start ..........................................................................................................................................30
Figure 12: Hot Plug............................................................................................................................................30
Figure 13: UVLO and OVP Thresholds .............................................................................................................30
Figure 14: Step-Down Short Circuit...................................................................................................................31
Figure 15: DCM Mode........................................................................................................................................32
Figure 16: PWM Mode.......................................................................................................................................32
Figure 17: PWM Output Ripple Voltage.............................................................................................................33
Figure 18: Slow Load Rise Time........................................................................................................................34
Figure 19: Slow Load Fall Time.........................................................................................................................34
Figure 20: Fast Load Rise Time.........................................................................................................................34
Figure 21: Fast Load Fall Time..........................................................................................................................34
Figure 22: Load Transient Response .................................................................................................................35
5 Typical Characteristics ................................................................................................................... 37
Figure 23: Efficiency vs. Output Current (PFM = High)......................................................................................37
Figure 24: Efficiency vs. Output Current in Log Scale (PFM = High).................................................................37
Figure 25: Efficiency vs. Output Current (PFM = Low) ......................................................................................38
Figure 26: Efficiency vs. Output Current in Log Scale (PFM = Low)..................................................................38
Figure 27: Output Voltage vs. Output Current ...................................................................................................39
Figure 28: Step-dow n Regulator Dropout ..........................................................................................................39
Figure 29: Resistance vs. Input Voltage ............................................................................................................40
Figure 30: Resistance vs. Temperature.............................................................................................................40
88PG839
Datasheet
Doc. No. MV-S106081-02 Rev. D Copyright © 2010 Marvell
Page 8 Document Classification: Proprietary July 8, 2010, 2.00
Figure 31: Input Current vs. Output Current ......................................................................................................41
Figure 32: IC Case Temperature vs. Output Current.........................................................................................41
Figure 33: Inductor Temperature vs. Output Current.........................................................................................41
Figure 34: Supply Current vs. Input Voltage...... ....................... .. ....................... ... ...................... ... ....................42
Figure 35: Shutdown Supply Current vs. Input Voltage.....................................................................................42
Figure 36: Shutdown Enabl e Threshold vs. Input Voltage.................................................................................42
Figure 37: Output Voltage vs. Input Voltage......................................................................................................43
Figure 38: Efficiency vs. Input Voltage...............................................................................................................43
Figure 39: Load Regulation vs. Input Voltage....................................................................................................43
Figure 40: Average Output Current Limit vs. Input Voltage...............................................................................43
Figure 41: Frequency vs. Input Voltage.............................................................................................................43
Figure 42: Supply Current vs. Temperature......................................... ... ...................... ... ..................................44
Figure 43: UVLO Threshold vs. Temperature....................................................................................................44
Figure 44: OVP Threshold vs. Temperature......................................................................................................44
Figure 45: Shutdown Enable Threshold vs. Temperature .................................................................................44
Figure 46: Shutdown Supply Current vs. Temperature......................................................................................45
Figure 47: Output Voltage vs. Temperature.......................................................................................................45
Figure 48: Efficiency vs. Temperature ...............................................................................................................45
Figure 49: Load Regulation vs. Temperature ....................................................................................................45
Figure 50: Line Regulation vs. Temperature......................................................................................................45
Figure 51: Average Output Current Limit vs. Temperature................................................................................46
Figure 52: Frequency vs. Temperature..............................................................................................................46
6 Applications Information ............. ... .... ... ................ ... ... .... ... ... ... .... ... ... ... ... .... ... ... ... ......................... 47
Figure 53: PCB Board Schematic......................................................................................................................49
Figure 54: Top Silk Screen, Top Traces, Vias, and Copper (Not to scale)........................................................50
Figure 55: Bottom Silk Screen , Top Traces, Vias, and Copper (Not to scale)...................................................51
7 Mechanical Drawings ...................................................................................................................... 53
Figure 56: 3mm x 4mm 12-Lead DFN Mechanical Drawing..............................................................................53
Figure 57: 3mm x 4mm DFN-12 Land Pattern (mm)..........................................................................................54
8 Part Order Numbering/Package Marking....................................................................................... 55
Figure 58: Sample Part Number........................................................................................................................55
Figure 59: Package Marking and Pin 1 Location ...............................................................................................56
A Revision History ...............................................................................................................................57
List of Tables
Copyright © 2010 Marvell Doc. No. MV-S106081-02 Rev. D
July 8, 2010, 2.00 Document Classification: Proprietary Page 9
List of Tables
1 Signal Description ............................................................................................................................11
Table 1: Pin Types..........................................................................................................................................12
Table 2: Pin Description..................................................................................................................................12
2 Electrical Specifications ..................................................................................................................15
Table 3: Absolute Maximum Ratings..............................................................................................................15
Table 4: Recommended Operating Conditions...............................................................................................16
Table 5: Electrical Characteristics ..................................................................................................................17
Table 6: Switching Step-down Regulator ........................................................................................................18
3 Functional Description.....................................................................................................................21
Table 7: Default Value of Data Field...............................................................................................................23
Table 8: Voltage and Percentage Set.............................................................................................................23
Table 9: VSET and PSET Logic Programming...............................................................................................24
Table 10: VSET and PSET Programming Table for 5% Resistors...................................................................25
4 Functional Characteristics...............................................................................................................29
5 Typical Characteristics ....................................................................................................................37
6 Applications Information ............. ... .... ... ................ ... ... .... ... ... ... .... ... ... ... ... .... ... ... ... ..........................47
Table 11: Capacitance Recommendations.......................................................................................................47
Table 12: BOM ..................................................................................................................................................52
Table 13: BOM for Microsoft Application ..........................................................................................................52
7 Mechanical Drawings .......................................................................................................................53
8 Part Order Numbering/Package Marking........................................................................................55
Table 14: Part Order Options............................................................................................................................55
A Revision History ...............................................................................................................................57
Table 15: Revision History................................................................................................................................57
88PG839
Datasheet
Doc. No. MV-S106081-02 Rev. D Copyright © 2010 Marvell
Page 10 Document Classification: Proprietary July 8, 2010, 2.00
THIS PAGE INTENTIONALLY LEFT BLANK
Signal Description
Pin Configuration
Copyright © 2010 Marvell Doc. No. MV-S106081-02 Rev. D
July 8, 2010, 2.00 Document Classification: Proprietary Page 11
1Signal Description
1.1 Pin Configuration
Figure 2: DFN-12 Pin Configuration (Top View)
9
PG
8
SVIN
7PVIN
10 SHDN/SDI
11 VSET
12 PSET
OTF
PFM
EN
SGND
SFB
SW
5
6
13 PGND
1
2
3
4
88PG839
Datasheet
Doc. No. MV-S106081-02 Rev. D Copyright © 2010 Marvell
Page 12 Document Classification: Proprietary July 8, 2010, 2.00
1.2 Pin Description
Table 1: Pin Types
Pin Type Description
I Input
OOutput
S Supply
NC Not Connected
GND Ground
Table 2: Pin Description
Pin # Pin Name Pin Type Pin Function
1 OTF I On-the-Fly
Logic input for dynamic output voltage change:
Logic high sets the output voltage that is determined from the VSET and
PSET resistors.
Logic low sets the output volt age that is determin ed from the VSET resistor
only.
Do not float this pin.
2 PFM I Pulse Frequency Modulation
Logic input to set the operation mode. Connect PFM to SVIN to select PFM
mode under light load conditions and connect PFM to SGND to select
forced PWM mode in light load condition. See Section 6, Applications
Information for the inductor and output capacitance recommendati ons
when operating and PFM and PWM mode.
Do not float this pin.
3 EN I Enable
Logic high enables the switching step-down regulator.
In shutdown, the switch node for the step-down regulator is high
impedance. Logic low disables the step-down swit ching regulator. The low
signal has to be at least 20µs to disable the switching regulator. (See
Table 5, Electrical Characteristics, on page 17 for detailed logic high and
logic low specifications)
SHDN/SDI must be kept low to enable EN function
Do not float this pin.
4 SGND GND Signal Ground
This pin must be connected to PGND and make a star connection to
system ground.
5 SFB I Switching Regulator Output Voltage Sense Feedback
Senses the output voltage of the switching regul ator.
Connect to the outpu t capacitor of the switching regulator.
Signal Description
Pin Description
Copyright © 2010 Marvell Doc. No. MV-S106081-02 Rev. D
July 8, 2010, 2.00 Document Classification: Proprietary Page 13
6 SW O Switch Node
Internally connected to the drains of the high side and low side MOSFETs.
Connect to the externa l inductor.
7 PVIN S Switching Regulator Power Input
Power input voltage. Internally connect ed to the source of the high side
MOSFET. Connect a ceramic input capacitor be tween PV IN and PGND
and place it as close as possible to PVIN and PGND pins. See
Section 6, Applications Information for example.
The voltage between SVIN and PVIN should equal to 50mV or less.
8 PG O Switching Regulator Power Good Output
It is an open-drain output.
Connect a 100kΩ pull-up res istor from t his pin t o VOUT or a logic rai l t hat is
equal to or less than SVIN.
The PG is held low when the output voltage is outside its regulation band
and goes high after the output voltage is within regulation.
In shutdown, the PG will be actively on.
9 SVIN S Signal Input Voltage
Input voltage to the internal circuitry. See Table 5, Electrical
Characteristics, on page 17 for input voltage range.
Connect a decoupling capacitor between SVIN an SGND an d posit ion
it as close as possible to the IC. See Sect ion 6, Applications Information
for example.
The voltage between SVIN and PVIN should equal to 50mV or less.
10 SHDN/SDI I Shutdown / Serial Data Input
Logic high disables the switching step-down regulator. In shutdown, the
switch node for the step-down re gulator is high impedance. Logic high
enables the step-down switching regulator.
EN must be kept high to enable the shutdown function.
Input data into this pin is used to program the output voltage (see
Section 3.3.1, Serial Programmability of Switching Regulator (SDI),
on page 22).
To program the output voltage using serial interface, the part must be in
PWM mode (see Section 3.5).
Do not share this pin with other serial interface pins.
Do not float this pin.
11 VSET I Switching Regulator Voltage Set
To set the nominal output voltage values:
Connect VSET to SVIN or GND in conjunction with PSET connected to
SVIN or GND to set four nominal output voltages.
Connect a resistor from VSET to GND to set eigh t nominal output volt ages.
See Tabl e 9, VSET and PSET Logic Programming, on page 24 for resistor
values and Output Vol tage Settings.
The total cap acitance across t his pin and SGND must be 25pF or less. Use
resistor values with a 5% to lerance or better. OTF pin must be kept low to
maintain nominal output voltag es.
Do not float this pin.
Table 2: Pin Description (Continued)
Pin # Pin Name Pin Type Pin Function
88PG839
Datasheet
Doc. No. MV-S106081-02 Rev. D Copyright © 2010 Marvell
Page 14 Document Classification: Proprietary July 8, 2010, 2.00
12 PSET I Switching Regulator Percent Set
To set the margining percentage set to output voltage:
Set the nominal outp ut voltage in conjunction with VSET as described
above.
Connect an external resistor to ground to se t the percent age change of t he
output voltage. See Table 9, VSET and PSET Logic Programming, on
page 24 for resistor values and Output Voltage Settings.
The total cap acitance across t his pin and SGND must be 25pF or less. Use
resistor values with a 5% tolerance or better.
Do not float this pin.
13 PGND GND Power Ground
It must be connected to the negative terminals of the input and output
capacitors.
Table 2: Pin Description (Continued)
Pin # Pin Name Pin Type Pin Function
Electri ca l Specific at io ns
Absolute Maximum Ratings
Copyright © 2010 Marvell Doc. No. MV-S106081-02 Rev. D
July 8, 2010, 2.00 Document Classification: Proprietary Page 15
2Electrical Specifications
2.1 Absolute Maximum Ratings
Table 3: Absolute Maximum Ratings1
Note: S tresses above those listed in Absolute Maximum Ratings may cause permanent device failure. Functionality at
or above these limits is not implied. Exposure to absolute maximum ratings for extended periods may affect device
reliability.
Parameter Range Units
VPVIN to PGND -0.3 to 6.0 V
VPVIN to VSVIN -0.3 to 0.3 V
PGND to SGND -0.3 to 0.3 V
VSW to PGND2-0.3 to (VPVIN + 0.3) V
VSFB to SGND -0.3 to (VSVIN + 0.3) V
VVSET, VPSET to SGND -0.3 to (VSVIN + 0.3) V
VPFM, VOTF
,VEN
, VSHDN/SDI, VPG
to SGND -0.3 to (VSVIN + 0.3) V
Operating Ambient Temperature Range3 -40 to 85 °C
Maximum Junction Temperature 150 °C
Storage Temperature Range -65 to +150 °C
1. Exceeding the absolute maximum rating may damage the device.
2. Capable of -1.0V for less than 50ns and 7V for less than 200ns.
3. Specifications over the -40°C to 85°C operating temperature ranges are assured by design, characterization, and
correlation with statistical process controls.
88PG839
Datasheet
Doc. No. MV-S106081-02 Rev. D Copyright © 2010 Marvell
Page 16 Document Classification: Proprietary July 8, 2010, 2.00
2.2 Recommended Operating Conditions
Table 4: Recommended Operating Conditions1
1. This device is not guaranteed to function outside the specified operating range.
Symbol Parameter Min Typ Max Units
VSVIN Signal Input Voltage 2.7 5.5 V
VPVIN Power Input Voltage 2.7 5.5 V
θJA Package Thermal Resistance2
2. Simulated on a 3”x4.5” 4-Layer JEDEC PCB with 2 thermal vias.
66.2 °C/W
θJC 43.8 °C/W
TJMAX Maximum Operational Junction
Temperature 125 °C
Electri ca l Specific at io ns
Electrical Characteristics
Copyright © 2010 Marvell Doc. No. MV-S106081-02 Rev. D
July 8, 2010, 2.00 Document Classification: Proprietary Page 17
2.3 Electrical Characteristics
Table 5: Electrical Characteristics
The following applies unless otherwise noted (re fer to schematic shown in Figure 1): VSVIN = VPVIN = VEN = 3.3V,
VPSET = VSHDN/SDI = SGND = PGND, VBUCK = 1.5V, TA = 25C. Bold V a lues indicate 0°C TA 85°C. Specifications
over temperature are assured by design, characterization, and correlation with statistical process controls.
Symbol Parameter Conditions Min Typ Max Units
VSVIN Signal Inpu t Voltage VSVIN = VPVIN 2.7 5.5 V
VPVIN Power Input Voltage VSVIN = VPVIN 2.7 5.5 V
IQ_PFM Total Quiescent Current
(PFM Mode) No load
VPFM = VSVIN = VPVIN
32 50 µA
IQ_PWM Total Quiescent Current
(PWM Mode) No load
VPFM = VSGND
69mA
ISHDN Shutdown Supply Current VSHDN/SDI = VSVIN = VPVIN,
VEN = 0V 10 µA
VUVLO Under Voltage Lockout High Threshold, VSVIN increasing 2.600 2.700 V
Low Threshold, VSVIN decreasing 2.400 2.500 V
VOVP Over Voltage Protection High Threshold, VSVIN increasing 5.780 5.975 V
Low Threshold, VSVIN decreasing 5.500 5.670
TOTS Over-Temperature Thermal
Shutdown High Threshold, TJ increasing
(Disable regulator) 150 °C
Low Threshold, TJ decreasing
(Enable regulator) 110 °C
VIH EN, SHDN/SDI, OTF, and
PFM Input Voltage Threshold Logic High 2V
VIL EN, SHDN/SDI, OTF, and
PFM Input Voltage Threshold Logic Low 0.4 V
IEN Enable Inp ut Curr en t VEN = VSVIN = VPVIN 10 µA
VEN = 0V -10 µA
IOTF OTF Input Current VOTF = VSVIN = VPVIN 10 µA
VOTF = 0V -10 µA
IPFM PFM Input Current VPFM = VSVIN = VPVIN 10 µA
VPFM = 0V -10 µA
88PG839
Datasheet
Doc. No. MV-S106081-02 Rev. D Copyright © 2010 Marvell
Page 18 Document Classification: Proprietary July 8, 2010, 2.00
2.4 Switching Step-down Regulator
Table 6: Switching Step-down Regulator
The following applies unless otherwise noted (re fer to schematic shown in Figure 1): VSVIN = VPVIN = VEN = 3.3V,
VPSET = VSHDN/SDI = SGND = PGND, VBUCK = 1.5V, TA = 25C. Bold V a lues indicate 0°C TA 85°C. Specifications
over temperature are assured by design, characterization, and correlation with statistical process controls.
Symbol Parameter Conditions Min Typ Max Units
VOUT Output Voltage
(PWM Mode) VOTF = VSVIN, RVSET = 1 8k ,
RPSET = 100k, PWM mode,
ILOAD = 0 – 1.2A
1.025 V
Over Temperature1-2 +2.5 %
Over Temperature2-4 +4 %
VOTF = SGND, RVSET = 100k,
PWM mode, ILOAD = 0 – 1.2A 1.8 V
VOTF = SGND,
VVSET = VSVIN,
VPSET = SGND,
PWM mode, ILOAD = 0 – 1.2A
V
Over Temperature -4 +4 %
VOUT Output Voltage
(PFM Mode) VOTF = VSVIN, RVSET = 1 8k ,
RPSET = 100k, PFM mode,
ILOAD = 10mA
1.025 V
Over Temperature -7 +7 %
VOTF = SGND, RVSET = 100k,
PFM mode, ILOAD = 10mA 1.8 V
VOTF = SGND,
VVSET = VSVIN,
VPSET = SGND,
PFM mode, ILOAD = 10mA
V
Over Temperature -7 +7 %
PSET Percentage Set VOTF = VSVIN RPSET = 0 -20 %
VOTF = VSVIN RPSET = 11k -10 %
VOTF = VSVIN RPSET = 18k -7.5 %
VOTF = VSVIN RPSET = 30k -5.0 %
VOTF = VSVIN RPSET = 51k -2.5 %
VOTF = VSVIN RPSET = 100k 2.5 %
VOTF = VSVIN RPSET = 160k 5.0 %
VOTF = VSVIN RPSET = 270k 7.5 %
VOTF = VSVIN RPSET = 470k 10 %
Electri ca l Specific at io ns
Switching Step-down Regulator
Copyright © 2010 Marvell Doc. No. MV-S106081-02 Rev. D
July 8, 2010, 2.00 Document Classification: Proprietary Page 19
VLNREG Output Voltage
Line Regulation VSVIN = VPVIN = 3.0V to 5.0V,
ILOAD = 1A -0.8 %
VLDREG Output Voltage
Load Regulation VSVIN = VPVIN = 5.0V,
ILOAD = 500mA to 2A 0.9 %
RDSON_HS High Side Switch On
Resistance VSVIN = VPVIN = 5V 84 140 196 mΩ
102 170 238 mΩ
RDSON_LS Low Side Switch On
Resistance VSVIN = VPVIN = 5V 60 100 140 mΩ
69 115 161 mΩ
ILIM Peak Switch
Current Limit 2.2 33.9 A
ILSW_HS High Side Swit ch Leakage
Current VSHDN/SDI = VSVIN = VPVIN,
VSW = VSVIN = VPVIN
10 µA
ILSW_LS Low Side Switch Leakage
Current VSHDN/SDI = VSVIN = VPVIN,
VSW = PGND 10 µA
fsw Switching Frequency PWM mode 1.4 2 2.6 MHz
DMAX Maximum Duty Cycle 100 %
THICCUP Hiccup Mode Time Interval 2 ms
tDEGLITCH Deglitch 25 µs
IFB FB Leakage Current VEN = 0V, VPVIN = VFB =
VSHDN/SDI = VSVIN = VPVIN
110 µA
IFB FB Leakage Current VEN = VFB = VSVIN = VPVIN,
VVSET = < 1.8V, VOTF =
VSHDN/SDI = SGND
A
IFB FB Leakage Current VEN = VFB = VSVIN = VPVIN,
VVSET = > 1.5V, VOTF =
VSHDN/SDI = SGND
A
VPGTH Power Good (PG) Threshold
Voltage VOUT ×
90% V
VPGL Maximum PG Output Low
Voltage ISINK = 2mA, VEN = VSVIN 0.4 V
tDELAY PG Delay Time 1.2 ms
IPG PG Leakage Current VEN = 0V 1µA
1. This rating is for the 88PG839-A1-NAE2C000-T181 / 88PG839-A1-NAE2C000TT181 (Tape and Reel) part number only.
Table 6: Switching Step-down Regulator (Continued)
The following applies unless otherwise noted (re fer to schematic shown in Figure 1): VSVIN = VPVIN = VEN = 3.3V,
VPSET = VSHDN/SDI = SGND = PGND, VBUCK = 1.5V, TA = 25C. Bold V a lues indicate 0°C TA 85°C. Specifications
over temperature are assured by design, characterization, and correlation with statistical process controls.
Symbol Parameter Conditions Min Typ Max Units
88PG839
Datasheet
Doc. No. MV-S106081-02 Rev. D Copyright © 2010 Marvell
Page 20 Document Classification: Proprietary July 8, 2010, 2.00
THIS PAGE INTENTIONALLY LEFT BLANK
2. The rating is for the 88PG839-A1-NAE2C000 / 88PG839-A1-NAE2C000-T (Tape and Reel) part number only.
Functional Description
Overview
Copyright © 2010 Marvell Doc. No. MV-S106081-02 Rev. D
July 8, 2010, 2.00 Document Classification: Proprietary Page 21
3Functional Description
3.1 Overview
The 88PG839 step-down switching regulator uses a proprietary Pulse Width Modulation (PWM)
control scheme to regulate the output voltage. If Pulse Frequency Modulation (PFM) pin is set high,
the regulator changes automatically from PWM to PFM mode under light load conditions. If PFM pin
is set low , the regulator is in forced PWM mode. This control scheme offers a number of advantages,
which include fast transient response time, small output ripple, and no external compensation
required. When PVIN drops down close or below the target output voltage, the regulator is capable
of operating in drop out mode by turning on the upper switch continuously (100% ON mode).
Figure 3: Block Diagram
Note(*): All input capacitors must be placed close to the IC.
RESISTOR
SENSING
CIRCUITRY
PWM CONTROL
SW
SFB
PSETVSET
L1
C2
R3R2
PGND
RESISTOR
NETWORK
SHDN/SDI
PG
V
OUT
V
PG
R4
FAULT
BAND-GAP
VOLTAGE
REFERENCE
EN
ON
SGND
THERMAL
SHUTDOWN
UNDER/
OVER-
VOLTAGE
LOCKOUT
INTERNAL
CIRCUITRY
POWER SU PP LY
C1 *
PVIN
SVIN
CURRENT
SENSE
OFF
-
+
OTF
OSCILLA T OR &
SWITCHING
FREQUENCY
CALIBRATION
-
+
ERROR
AMPLIFIER
PFM
PFM
C3*
ON
PWM
OFF
POWER
GOOD
R1
V
OUT
V
IN
88PG839
Datasheet
Doc. No. MV-S106081-02 Rev. D Copyright © 2010 Marvell
Page 22 Document Classification: Proprietary July 8, 2010, 2.00
3.2 Soft Start
Soft start is used in "Hot-Plug" applications to reduce the inrush current during startup of the
switching regulator. The 88PG839 controls the rise time of the output voltage. The output ramp rate
is between 0.5V/ms to 3V/ms dependin g on the output voltage setting and the internal clock
frequency. However, the output ramp is independent of output capacitance and load current.
3.3 Output Voltage Setting
3.3.1 Serial Programmability of Switching Regulator (SDI)
The output voltage of the step-down switching regu lator can be programmed by using serial data
(shown in Figure 4) into the Serial Data Input (SDI) pin in PWM mode by connecting PFM pin in low
state or high state with heavy load. The serial interface is disabled when the PFM pin connects to
low state at a light load.
Figure 4: Serial Programmability
Caution: Do not share the SHDN/SDI pin with other serial interface pins.
BIT2
"1"
Pulse "0"
pulse "0"
pulse "0"
pulse "0"
pulse "1"
pulse
"0"
Pulse
"1"
Pulse
"1"
Pulse "1"
Pulse
DATA FIELD
D7 D6 D5 D4 D3 D2 D1 D0
The period of a pulse is 1 μs ±20ns
V
HIGH
> V
IH
V
Low
< V
IL
V
HIGH
V
LOW
For " 1" pulse, the hi gh is 0.8μs ±15ns and the low
period i s 0.2μs ±15ns
For "0" pulse, the high is 0.2μs ±15ns and the l ow
period i s 0.8μs ±15ns
V
LOW
V
HIGH
The write operation:
1) Each write sequence needs 18 pulses to complete.
2) During a non-write operation, the input needs to be at V
LOW
(<V
IL
).
3) In between two successive write operations, the PWM input needs to be at
V
LOW
(<V
IL
) for a minimum of 10μs.
1
st
Write
sequence 2
nd
Write
sequence
Low for at least 10 μs
WRITE MODE
"1" pulse
"0" pulse
BIT7 BIT6 BIT5 BIT4 BIT3 BIT1 BIT0
Register
Address
Chip
Select
Start Stop
Functional Description
Output Voltage Setting
Copyright © 2010 Marvell Doc. No. MV-S106081-02 Rev. D
July 8, 2010, 2.00 Document Classification: Proprietary Page 23
The first 4 bits (MSB-bits) of the data field are used to select th e output voltage where the second 4
bits (LSB-bits) of the data field are used to trim the output voltage (percent of output voltage). The
default value for the data field is as follows:
On power up, the output voltage is set according to VPSET and VVSET. The output voltage can then
be field programmed by setting bit 3 and bit 7 to “1”. The output voltage and percent set are selected
according to Table 8. For PSET voltage options, OTF pin has to connect to logic high.
All combinations of the VSET (Table 10) can be used with all combinations of the PSET (Table 10) to
provide maximum flexibility in output voltage selection (Table 10).
Table 7: Default Value of Data Field
Data Field
Description Voltage Set Percent Set
Bits 76543210
Default Value 00000000
Table 8: Voltage and Percentage Set
Data Field VOUT (V) Data Field Percent Set
Bits 7654 3210
Value 0 0 0 0 Default power up
value 0 0 0 0 Default power up value
1000 0.8 1000 -10%
1 0 0 1 1.0 1 0 0 1 -7.5%
1 0 1 0 1.2 1 0 1 0 -5.0%
1 0 1 1 1.5 1 0 1 1 -2.5%
1 1 0 0 1.8 1 1 0 0 +2.5%
1 1 0 1 2.5 1 1 0 1 +5.0%
1 1 1 0 3.0 1 1 1 0 +7.5%
1 1 1 1 3.3 1 1 1 1 +10%
88PG839
Datasheet
Doc. No. MV-S106081-02 Rev. D Copyright © 2010 Marvell
Page 24 Document Classification: Proprietary July 8, 2010, 2.00
3.3.2 Logic Programmability
The output voltage of the step-down switching regulator can be programmed for the standard output
voltages by connecting the VSET and PSET pins to “0” (SGND) and/or “1” (SVIN). This is useful for
standard output voltages, and eliminates the use of an external resistor to set the output voltage.
The OTF pin provides an additional feature to reduce the output voltage by -20%.
3.3.3 Programmability—AnyVoltage® Technology
The output voltage is programmable using VSET and PSET resistors between 11kΩ and 470kΩ
(Table 10). The VSET and PSET resistors are read once during startup after the output voltage is
powered on. To configure the output to a different volt age, power has to recycle or the device has to
turn OFF and back ON using the EN or SHDN/SDI pin.
Using a VSET resistor value greater than 619kΩ or less than 7.68kΩ disables the step-down
switching regulator and sets the SW pin to high impedance. When the PSET pin is not used, it must
be connected to ground. The VSET and PSET pins are sensitive to excessive leakage currents and
stray capacitance. The output voltage can be programmed to the lower output voltage if there is
contamination, especially for a RVSET and RPSET of 470kΩ or higher values. The parasitic resistance
on these nodes must be greater than 3MΩ, and the stray capacitance must be less than 25pF.
After the output voltage is on, it can be changed on-the-fly (OTF) from 0% to a percentage between
-20% and +10% when the OTF pin connection is high (Table 10). The percentage value is
determined by the PSET resistor.
Table 9: VSET and PSET Logic Programming
VVSET VPSET VOUT (V)
OTF = 0 (SGND) OT F = 1 (SVIN)
SGND SGND 1.0 0.8
SGND SVIN 1.5 1.2
SVIN SGND 1.8 1.44
SVIN SVIN 2.5 2.0
11kΩ RVSET 470kΩSGND VOUT1VOUT (1-20%)
SGND or SVIN 11kΩ RPSET 470kΩHigh Impedance
1. See Table 10.
Functional Description
Enable and Shutdown
Copyright © 2010 Marvell Doc. No. MV-S106081-02 Rev. D
July 8, 2010, 2.00 Document Classification: Proprietary Page 25
3.4 Enable and Shutdown
To simplify the interface to different control logic, both Enable (EN) and Shutdown (SHDN/SDI) pins
are available for controlling the 88PG839. If a positive logic is selected, the EN pin is used and the
SHDN/SDI pin is pulled below VIL. Voltage above VIH at the EN pin enables the regulator, while
voltage below VIL disables the regulator . If a negative logic is desired, the SHDN/SDI pin is used and
the EN pin is pulled above VIH. Voltage above VIH at the SHDN/SDI pin shuts down the regulator,
while voltage below VIL powers on the regulator.
3.5 PFM and PWM Mode Selection
When PFM pin is connected to low state, the regulator is in the forced PWM mode, where the
regulator runs at a constant frequency. The quiescent current of the f orced PWM mode increases to
IQ_PWM. When PFM pin is connected to a high state, the regulator runs in PFM mode, wher e the
switching frequency decreases when the load current reduces, thus improving the light load
efficiency.
3.6 Under Voltage Lockout (UVLO)
This feature ensures that both internal MOSFETs have adequate voltage levels to operate properly.
When the input voltage is below UVLO low thresho ld both MOSFETs are off until the input rises
above the UVLO high threshold. The switching node (SW) is in high Z state when the input voltage is
less than UVLO high threshold.
Table 10: VSET and PSET Programming Table for 5% Resistors
Percent Set (%)
OTF=0
(SGND) OTF = 1 (SVIN)
0Ω11k 18k 30k 51k 100k 160k 270k 470k
0% -20% -10% -7.50% -5.00% -2.50% 2.50% 5.00% 7.50% 10%
Vo lt ag e Se t (V )
11k 0.8 0.64 0.72 0.74 0.76 0.78 0.82 0.84 0.86 0.88
18k 1.0 0.8 0.9 0.925 0.95 0.975 1.025 1.05 1.075 1.1
30k 1.2 0.96 1.08 1.11 1.14 1.17 1.23 1.26 1.29 1.32
51k 1.5 1.2 1.35 1.388 1.425 1.463 1.538 1.575 1.613 1.65
100k 1.8 1.44 1.62 1.665 1.71 1.755 1.845 1.89 1.935 1.98
160k 2.5 2.0 2.25 2.313 2.375 2.438 2.563 2.625 2.688 2.75
270k 3.0 2.4 2.7 2.775 2.85 2.925 3.075 3.15 3.225 3.3
470k 3.3 2.64 2.97 3.053 3.135 3.218 3.383 3.465 3.548 3.63
88PG839
Datasheet
Doc. No. MV-S106081-02 Rev. D Copyright © 2010 Marvell
Page 26 Document Classification: Proprietary July 8, 2010, 2.00
3.7 Over Voltage Protection (OVP)
An over voltage comparator guards against line transient overshoots, as well as other serious
conditions that may damage the IC. When the input voltage is above OVP high threshold the output
turns off and the switching node (SW) is high Z. The device will remain at this state until the input
voltage comes back below OVP low threshold .
3.8 Thermal Shutdown
When the junction temperature exceeds OTS high threshold, the thermal shutdown circuitry disables
the 88PG839. The device is enable d when the junction temperature is decreased to OTS low
threshold.
Figure 5: UVLO and OVP Waveforms
V
OVP_HTH
V
UVLO-HTH
V
UVLO-LTH
V
OVP-LTH
Output
Disable
Output
Enable
VIN
Functional Description
Power Good (PG)
Copyright © 2010 Marvell Doc. No. MV-S106081-02 Rev. D
July 8, 2010, 2.00 Document Classification: Proprietary Page 27
3.9 Power Good (PG)
The PG is an active-high, open-drain output. The output is held low when the output voltage of the
step-down regulator is below the threshold. When the output voltage is above the threshold, the
power good pin goes high after 1.2ms delay time (tDELAY). The threshold voltage is 0.9% × VOUT
(typical). In shutdown, PG will be actively on.
Figure 6: Power Good Operating Waveform
0V
t
DELAY
t
DEGLITCH
< t
DEGLITCH
RPG_PULLUP × IPG
VPGL
V
PG
V
PG_TH
88PG839
Datasheet
Doc. No. MV-S106081-02 Rev. D Copyright © 2010 Marvell
Page 28 Document Classification: Proprietary July 8, 2010, 2.00
THIS PAGE INTENTIONALLY LEFT BLANK
Functional Characteristics
S tar tup Waveform s
Copyright © 2010 Marvell Doc. No. MV-S106081-02 Rev. D
July 8, 2010, 2.00 Document Classification: Proprietary Page 29
4Functional Characteristics
4.1 Startup Waveforms
.
.
VEN
VBUCK
Figure 7: Startup Using Enable
Pin
5V/DIV
1V/DIV
VEN
VBUCK
Figure 8: Turn Off Using Enable
Pin
5V/DIV
1V/DIV
1ms/DIV 1ms/DIV
VIN = 5V ILOAD(BUCK) = 50VIN = 5V ILOAD(BUCK) = 50
VOUT(BUCK) = 1.5V VOUT(BUCK) = 1.5V
VSHDN
VBUCK
Figure 9: Startup Using Shutdown
Pin
5V/DIV
1V/DIV
VSHDN
VBUCK
Figure 10: Turn Off Using Shutdown
Pin
5V/DIV
1V/DIV
1ms/DIV 1ms/DIV
VIN = 5V ILOAD(BUCK) = 50VIN = 5V ILOAD(BUCK) = 50
VOUT(BUCK) = 1.5V VOUT(BUCK) = 1.5V
88PG839
Datasheet
Doc. No. MV-S106081-02 Rev. D Copyright © 2010 Marvell
Page 30 Document Classification: Proprietary July 8, 2010, 2.00
.
.
VIN
VBUCK
VPG
Figure 11: Soft Start
5V/DIV
1V/DIV
5V/DIV
VIN
VBUCK
VPG
Figure 12: Hot Plug
5V/DIV
1V/DIV
5V/DIV
10ms/DIV 10ms/DIV
VIN = 5V ILOAD(BUCK) = 50VIN = 5V ILOAD(BUCK) = 50
VOUT(BUCK) = 1.5V VOUT(BUCK) = 1.5V
VIN
VBUCK
Figure 13: UVLO and OVP Thresholds
2V/DIV
2V/DIV
500ms/DIV
VIN = 0V to 6V VUVLO(HTH) = 2.61V VOVP(HTH) = 5.67V
VOUT(BUCK) = 1.5V VUVLO(LTH) = 2.52V VOVP(LTH) = 5.56V
ILOAD(BUCK) = 50
Functional Characteristics
Short-Circuit Waveform
Copyright © 2010 Marvell Doc. No. MV-S106081-02 Rev. D
July 8, 2010, 2.00 Document Classification: Proprietary Page 31
4.2 Short-Circuit Waveform
VSW
IIND
Figure 14: Step-Down Short Circuit
2V/DIV
5A/DIV
2ms/DIV
VIN = 5V VOUT(BUCK) = GND
88PG839
Datasheet
Doc. No. MV-S106081-02 Rev. D Copyright © 2010 Marvell
Page 32 Document Classification: Proprietary July 8, 2010, 2.00
4.3 Switching Waveforms
NOTE: For repeatabili ty of measuring output ripple (VOUT(P-P)) for the BUCK regulator, the standard test
procedure limit s the scope bandwidth to 20MHz and uses a coax cable with very short leads
terminated into 50. The coax leads must be routed away from the switching node as much as
possible.
.
VSW
IIND
VBUCK
Figure 15: DCM Mode
5V/DIV
1A/DIV
10mV/DIV
1µs/DIV
VIN = 5V ILOAD(BUCK) = 20mA + 50
VOUT(BUCK) = 1.5V IIND(PK) = 518mA
VOUT(P-P) = 8.2mV Frequency = 288kHz
VSW
IIND
VBUCK
VIN
Figure 16: PWM Mode
5V/DIV
1A/DIV
10mV/DIV
100mV/DIV
500ns/DIV
CIN = 10µF VIN(P-P) = 72.9mV IIND(P-P) = 690.6mA
VIN = 5V ILOAD(BUCK) = 2A + 50IIND(PK) = 2.45A
VOUT(BUCK) = 1.5V VOUT(P-P) = 12.0mV Frequency = 2.13MHz
Functional Characteristics
Switching Waveforms
Copyright © 2010 Marvell Doc. No. MV-S106081-02 Rev. D
July 8, 2010, 2.00 Document Classification: Proprietary Page 33
.
VBUCK
Figure 17: PWM Output Ripple
Voltage
10mV/DIV
100ms/DIV
VIN = 5V ILOAD(BUCK) = 1A + 50
VOUT(BUCK) = 1.5V VOUT(P-P) = 7.6mV
88PG839
Datasheet
Doc. No. MV-S106081-02 Rev. D Copyright © 2010 Marvell
Page 34 Document Classification: Proprietary July 8, 2010, 2.00
4.4 Load Transient Waveforms
.
.
VSW
VBUCK
ILOAD
IIND
Figure 18: Slow Load Rise Time
5V/DIV
100mV/DIV
1A/DIV
VSW
VBUCK
ILOAD
IIND
Figure 19: Slow Load Fall Time
5V/DIV
100mV/DIV
1A/DIV
5µs/DIV 5µs/DIV
VIN = 5V COUT = 10µF VIN = 5V COUT = 10µF
VOUT(BUCK) = 1.5V tRISE = 0.2A/µs VOUT(BUCK) = 1.5V tFALL = 0.2A/µs
ILOAD(BUCK) = 500mA to 2A ILOAD(BUCK) = 2A to 500mA
VSW
VBUCK
ILOAD
IIND
Figure 20: Fast Load Rise Time
5V/DIV
100mV/DIV
1A/DIV
VSW
VBUCK
ILOAD
IIND
Figure 21: Fast Load Fall Time
5V/DIV
100mV/DIV
1A/DIV
2µs/DIV 2µs/DIV
VIN = 5V COUT = 10µF VIN = 5V COUT = 10µF
VOUT(BUCK) = 1.5V tRISE = 10A/µs VOUT(BUCK) = 1.5V tFALL = 4 8A / µ s
ILOAD(BUCK) = 500mA to 2A ILOAD(BUCK) = 2A to 500mA
Functional Characteristics
Load Transient Waveforms
Copyright © 2010 Marvell Doc. No. MV-S106081-02 Rev. D
July 8, 2010, 2.00 Document Classification: Proprietary Page 35
.
VBUCK
ILOAD
Figure 22: Load Transient Response
100mV/DIV
1A/DIV
20µs/DIV
VIN = 5V COUT = 10µF
VOUT(BUCK) = 1.5V tRISE = 10A/µs, tFALL = 48A/µs
IOUT(BUCK) = 500mA to 2A
88PG839
Datasheet
Doc. No. MV-S106081-02 Rev. D Copyright © 2010 Marvell
Page 36 Document Classification: Proprietary July 8, 2010, 2.00
THIS PAGE INTENTIONALLY LEFT BLANK
Typi ca l Chara ct eris tics
Efficiency
Copyright © 2010 Marvell Doc. No. MV-S106081-02 Rev. D
July 8, 2010, 2.00 Document Classification: Proprietary Page 37
5Typical Characteristics
5.1 Efficiency
Figure 23: Efficiency vs. Output Current (PFM = High)
Figure 24: Efficiency vs. Output Current in Log Scale (PFM = High)
Efficiency vs. Output Current
Vin = 5.0V
0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%
00.511.52
Output Current (A)
Efficiency (%)
3.3V
3.0V
2.5V
1.8V
1.5V
1.2V
1.0V
0.8V
Efficie ncy vs. Outpu t Curr ent
Vin = 5.0V
0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%
1E-06 1E-05 0.0001 0.001 0.01 0.1 1 10
Output Current (A)
Efficiency (% )
3.3V
3.0V
2.5V
1.8V
1.5V
1.2V
1.0V
0.8V
Efficiency vs. Output Current
Vin = 3.3V
0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%
1E-06 1E-05 0.0001 0.001 0.01 0.1 1 10
O utput Current (A)
Efficienc y ( %)
2.5V
1.8V
1.5V
1.2V
1.0V
0.8V
88PG839
Datasheet
Doc. No. MV-S106081-02 Rev. D Copyright © 2010 Marvell
Page 38 Document Classification: Proprietary July 8, 2010, 2.00
Figure 25: Efficiency vs. Output Current (PFM = Low)
Figure 26: Efficiency vs. Output Current in Log Scale (PFM = Low)
Efficie ncy vs. Out put Cu r r ent
Vin = 5.0V
0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%
00.511.52
Ou tput C urrent (A)
Efficiency (%)
3.3V
3.0V
2.5V
1.8V
1.5V
1.2V
1.0V
0.8V
Efficiency vs. Output Current
Vin = 3.3V
0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%
00.511.52
Ou tput Cu rrent (A)
Efficiency (%)
2.5V
1.8V
1.5V
1.2V
1.0V
0.8V
Eff ic ienc y vs. O utput Cur r ent
Vin = 5. 0 V
0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%
1E-06 1E-05 0.0001 0.001 0.01 0.1 1 10
Output Current (A)
Efficiency (%)
3.3V
3.0V
2.5V
1.8V
1.5V
1.2V
1.0V
0.8V
Efficien cy vs. Output Current
Vin = 3.3V
0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%
1E-06 1E-05 0.0001 0.001 0.01 0.1 1 10
Output Current (A)
Effic ienc y ( %)
2.5V
1.8V
1.5V
1.2V
1.0V
0.8V
Typi ca l Chara ct eris tics
Load Regula tion
Copyright © 2010 Marvell Doc. No. MV-S106081-02 Rev. D
July 8, 2010, 2.00 Document Classification: Proprietary Page 39
5.2 Load Regulation
5.3 Dropout Voltage
Figure 27: Output Voltage vs. Output Current
O utpu t Voltage vs. Output Cur r ent
Vout = 1.5V
1.47
1.49
1.50
1.52
1.53
00.511.52
O utpu t Cu rrent (A)
Output Voltage (V)
3.3V
5V
Figure 28: Step-down Regulator Dropout
Buck Dropout vs. Load Current
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Load Current(A)
Buck Dropout (V)
125C
105C
85C
65C
45C
25C
0C
-20C
-40C
88PG839
Datasheet
Doc. No. MV-S106081-02 Rev. D Copyright © 2010 Marvell
Page 40 Document Classification: Proprietary July 8, 2010, 2.00
5.4 RDS (ON) Resistance
Figure 29: Resistance vs. Input Voltage
Figure 30: Resistance vs. Temperature
TOP FET
Resist a nce vs. Input Vol t age
0.00
0.05
0.10
0.15
0.20
0.25
2.7 3 3.3 3.6 3.9 4.2 4.5 4.8 5.1 5.4
Input Volta ge (V)
Resi stan c e ()
TA = 25° C
BOTTOM FET
Resistance vs. Input Voltage
0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16
2.7 3.0 3.3 3.6 3.9 4.2 4.5 4.8 5.1 5.4
Input Voltage(V)
Resistance (
)
TA = 25ºC
TOP FET
Resist anc e vs. Temper ature
0.00
0.05
0.10
0.15
0.20
0.25
0.30
-40-200 20406080
Temperature (°C)
Resi stan ce ()
Vin = 2.7V
Vin = 3.6V
Vin = 5.1V
Bottom FET
Resistance vs. Temperature
0.00
0.05
0.10
0.15
0.20
-40-200 20406080
Temperature (ºC)
R e si sta nce (
)
Vin = 2.7V
Vin = 3.6V
Vin = 5.1V
Typi ca l Chara ct eris tics
IC Case and Inductor Temperature
Copyright © 2010 Marvell Doc. No. MV-S106081-02 Rev. D
July 8, 2010, 2.00 Document Classification: Proprietary Page 41
5.5 IC Case and Inductor Temperature
The following data was taken using a 0.88 square inch PCB 1 oz. copper and L = 1μH. Actual results
depend upon the size of the PCB proximity to other heat emitting components.
Figure 31: Input Current vs. Output Current
Figure 32: IC Case Temperature vs. Output Current
Figure 33: Inductor Temperature vs. Output Current
Input Current vs. Output Current
Vin = 5V, TA = 25°C
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
00.511.52
Output Current (A)
Input Current (A)
3.3V
3.0V
2.5V
1.8V
1.5V
1.2V
1.0V
0.8V
Input Current v s. Output Current
Vin = 3. 3V, TA = 25°C
0.0
0.5
1.0
1.5
2.0
2.5
00.511.52
Ou tput Current (A)
Input Current (A)
3.3V
3.0V
2.5V
1.8V
1.5V
1.2V
1.0V
0.8V
IC Case Temprature vs. Output Current
V in = 5V, TA = 25 °C
20
30
40
50
60
70
80
90
00.511.52
O ut put Curr ent (A)
Temprature (°C)
3.3V
3.0V
2.5V
1.8V
1.5V
1.2V
1.0V
0.8V
IC Case Temprature v s. Output Current
Vin = 3.3V, T A = 25°C
20
30
40
50
60
70
80
90
100
110
0 0.5 1 1.5 2
Out put Curren t (A)
Temprature (°C
)
3.3V
3.0V
2.5V
1.8V
1.5V
1.2V
1.0V
0.8V
Inductor Temprature v s. Output Current
Vin = 5V, TA = 25° C
20
25
30
35
40
45
50
55
60
65
70
0 0.5 1 1.5 2
Output Current (A)
TempratureC)
3.3V
3.0V
2.5V
1.8V
1.5V
1.2V
1.0V
0.8V
Inductor Temprat ure vs . O ut put Current
Vi n = 3.3V, TA = 25°C
20
30
40
50
60
70
80
00.511.52
Output Current (A)
Temprature (°C)
3.3V
3.0V
2.5V
1.8V
1.5V
1.2V
1.0V
0.8V
88PG839
Datasheet
Doc. No. MV-S106081-02 Rev. D Copyright © 2010 Marvell
Page 42 Document Classification: Proprietary July 8, 2010, 2.00
5.6 Input Voltage
.
.
Figure 34: Supply Current vs. Input Voltage Figure 35: Shutdown Supply Current vs.
Input Voltage
ILOAD(BUCK) = No Load; VOUT(BUCK) = 1.5V ILOAD(BUCK) = No Load; VEN= 0V; VSHDN = VIN
Supply Current vs. Input Volt age
PFM Mode
20
25
30
35
40
2.5 3.0 3.5 4.0 4.5 5.0 5.5
Input Voltage (V)
Current (μA)
Sh utdown S upp ly Cur r ent vs. Inp ut Voltage
0.0
0.2
0.4
0.6
0.8
1.0
2.5 3.0 3.5 4.0 4.5 5.0 5.5
Input Voltage (V)
Current (μA)
Figure 36: Shutdown Enable Threshold vs.
Input Voltage
Shu t d own Thr eshold vs. Input Volt a ge
0.5
1.0
1.5
2.0
2.5 3.0 3.5 4.0 4.5 5.0 5.5
Input Voltage (V)
Threshold (V)
UTH-Disable
LTH-Enable
ILOAD(BUCK) = 10mA; VOUT(BUCK) = 1.5V
Typi ca l Chara ct eris tics
Input Voltage
Copyright © 2010 Marvell Doc. No. MV-S106081-02 Rev. D
July 8, 2010, 2.00 Document Classification: Proprietary Page 43
. .
Figure 37: Output Voltage vs. Input Voltage Figure 38: Efficiency vs. Input Voltage
ILOAD(BUCK) = 500mA ILOAD(BUCK) = 1A; VOUT(BUCK) = 1.5V
Figure 39: Load Regulation vs. Input Voltage Figure 40: Average Output Current Limit vs.
Input Voltage
ILOAD(BUCK) = 500mA-2A; VOUT (BUCK) = 1.5V VOUT (BUCK) = 1.5V
Figure 41: Frequency vs. Input Voltage
ILOAD(BUCK) = 1A; VOUT(BUCK) = 1.5V
O ut put Voltage vs. I nput Voltage
1.485
1.500
1.515
1.530
1.545
1.560
2.5 3.0 3.5 4.0 4.5 5.0 5.5
Input Voltage (V)
Voltage ( V)
Efficienc y vs. Input Voltage
80%
85%
90%
95%
100%
2.5 3.0 3.5 4.0 4.5 5.0 5.5
Input Voltage (V)
Efficiency
Load Regulation vs. Input Voltage
0.60%
0.80%
1.00%
1.20%
1.40%
2.5 3.0 3.5 4.0 4.5 5.0 5.5
Input Voltage (V)
Load Regulation
Av er a ge O u t put Cur r ent Limit vs. Input Voltage
0
1
2
3
4
2.5 3.0 3.5 4.0 4.5 5.0 5.5
Input Voltage (V)
Current ( A)
Frequency vs. Input Voltage
0
1
2
3
4
2.53.03.54.04.55.05.5
Input Voltage (V)
Frequency (MHz
)
88PG839
Datasheet
Doc. No. MV-S106081-02 Rev. D Copyright © 2010 Marvell
Page 44 Document Classification: Proprietary July 8, 2010, 2.00
5.7 Temperature
Figure 42: Supply Current vs. Temperature Figure 43: UVLO Threshold vs. Temperature
VIN = 3.6V; ILOAD(BUCK) = No Load ILOAD(BUCK) = 10mA
Figure 44: OVP Threshold vs. Temperature Figure 45: Shutdown Enable Threshold vs.
Temperature
ILOAD(BUCK) = 10mA VIN = 3.6V; ILOAD(BUCK) = 10mA;VOUT (BUCK) = 1.5V;
VEN = VIN
Supply Current vs. Temperature
PFM Mode
20
25
30
35
40
-40-200 20406080
Temperature (°C)
Current (μA)
UVLO T hreshold vs. Temperatur e
2.4
2.5
2.6
2.7
2.8
-40 -20 0 20 40 60 80
Temperature (°C)
Thre shol d (V)
UTH
LTH
O VP Thr eshold vs. Temperature
5.4
5.5
5.6
5.7
5.8
-40 -20 0 20 40 60 80
Temperature (°C)
Threshold (V)
OVP HIGH
OVP LO W
Shu tdown E n able Thr eshold vs. Temperat u r e
0.5
1.0
1.5
2.0
-40-200 20406080
Temperature (°C)
Voltage (V)
UTH - Disable
LTH - Enable
Typi ca l Chara ct eris tics
Temperature
Copyright © 2010 Marvell Doc. No. MV-S106081-02 Rev. D
July 8, 2010, 2.00 Document Classification: Proprietary Page 45
. .
Figure 46: Shutdown Supply Current vs. Temperature
VIN = 3.6V; ILOAD(BUCK) = No Load; VEN= 0V; VSHDN = VIN
Shutdo wn S upply Cur r ent vs.Temperatur e
0
1
2
3
4
-40-200 20406080
Temperature (°C)
Current (μA)
Figure 47: Output Voltage vs. Temperature Figure 48: Efficiency vs. Temperature
VIN = 3.6V; ILOAD(BUCK) = 500mA VIN = 3.6V; VOUT(BUCK) = 1.5V; ILOAD(BUCK) = 1A
Figure 49: Load Regulation vs. Temperature Figure 50: Line Regulation vs. Temperature
VIN = 5V; ILOAD(BUCK) = 500mA-2A; VIN = 3V-5V; ILOAD(BUCK) = 1A;
VOUT(BUCK) = 1.5V VOUT(BUCK) = 1.5V
O utput Voltage vs. T emperatur e
1.470
1.485
1.500
1.515
1.530
-40-200 20406080
Temperature (°C)
Voltage (V)
Ef ficienc y vs. T emperat ur e
80%
85%
90%
95%
100%
-40-200 20406080
Temperature (°C)
Efficiency
Load Regulation vs. Temperat ur e
0.0%
0.4%
0.8%
1.2%
1.6%
-40-20020406080
Temperature (°C)
Load Regulation
Line Regulation vs. Temperat ur e
-1.2%
-1.0%
-0.8%
-0.6%
-0.4%
-40-20020406080
Temperature (°C)
Line Regulation
88PG839
Datasheet
Doc. No. MV-S106081-02 Rev. D Copyright © 2010 Marvell
Page 46 Document Classification: Proprietary July 8, 2010, 2.00
.
Figure 51: Average Output Current Limit vs.
Temperature Figure 52: Frequency vs. Temperature
VIN = 3.6V; VOUT(BUCK) = 1.5V VIN = 3. 6V; VOUT(BUCK) = 1.5V; ILOAD(BUCK) = 1A
Average Output Cur r ent Limit vs. Temperat ur e
0
1
2
3
4
-40-200 20406080
T e mperature (°C)
Current (A)
Frequency vs. Temperature
0
1
2
3
4
-40 -20 0 20 40 60 80
Temperature (°C)
Frequency (MHz
)
Applications Information
Inductor and Output capacitance recommendations
Copyright © 2010 Marvell Doc. No. MV-S106081-02 Rev. D
July 8, 2010, 2.00 Document Classification: Proprietary Page 47
6Applications Information
6.1 Inductor and Output capacitance recommendations
When operating in PFM mode (PFM pi n = SVIN), i t is recommende d to use inductor values
operating at the specified output voltage range in Table 11. The recommended output capacitance
is 22μF. Additional output capacitance can be used but the LC product do not exceed
5 × (1.3μH) × (28.6μF).
When operating in PWM mode (PFM pin = SGND), it is recommended to use inductor values L >
1.0μH -30% for output voltage range and LC product do not exceed 5 × (1.3μH) × (28.6μF).
6.2 PC Board Layout Conciderations and Guidelines
The PC board layout is very critical in any switching converter. An improper layout can contribute to
system instability, excessive Electromagnetic Interference (EMI), and high switching loss. Follow
these basic guidelines for good PC layout:
1. Do not lay out the inductor first. The input capacitor placem ent is the most critical for
proper operation. The AC current circulating through the input capacitor and loop 1 (LP1) are
square wave with rise and fall times of 8ns and slew rates as high as 300A/μs (see Figure 53).
At these fast slew rates, stray PCB inductance can generate a voltage spike as high as 3V per
inch of PCB trace, VIND = L × di/dt. Therefore, the Ceramic input capacitor must be place
as close as possible to the PVIN and PGND pins with as short and wide trace as
possible. Also, the PVIN and PGND traces must be placed on the top layer . This will isolate the
fast AC currents from interfering with the analog grou nd plane.
2. Keep loop 2 (LP2) as small as possible and connect the (-) terminal of the output capacitor as
close to the (-) terminal of the input capacitor. A back-to-back placing of bypass capacitors, as
shown in Figure 53, is recommended for best results.
3. This is a 2-layer board with 1 ground plane and 1 routing laye r.
4. Copy the routing layer in Figure 54 on page 50 as much as possible and place it on the top
layer. The ground plane in Figure 55 on page 51 can be pla c ed on any other layer. Use the
recommend BOM in Section 6.3, Bill of Materials, on page 52. Contact the factory if
substitutions are made.
5. Review the recommended solder pad layout and notes in Figure 57 on page 54. Make sure that
you place a dot on the top silk screen to indicate the location of pin 1, see Figure 54. Ensure
Table 11: Capacitance Recommenda tions
VOUT Range L Values
0.64V =< Vout =< 1.32V L = 1.0μH +/-30%
1.20V =< Vout =< 1.96V L = 1.8μH +/-30%
2.00V =< Vout =< 3.33V L = 2.2μH +/-30%
Caution: To avoid noise and abnormal operating behavior, follow
these layout recommendations
88PG839
Datasheet
Doc. No. MV-S106081-02 Rev. D Copyright © 2010 Marvell
Page 48 Document Classification: Proprietary July 8, 2010, 2.00
that the dot is outside the package outline. This way you can visually inspect the package
orienta ti o n after assembly.
6. Do not replace the Ceramic input capacitor with any other type of capacitor. Any type of
capacitor can be placed in parallel with the input capacitor as long as the Ceramic input
capacitor is placed next to the IC.
7. Use either X7R or X5R type ceramic capacitors.
8. Any type of capacitor can be placed in parallel with the output capacitor.
9. Low-ESR capacitors like the POSCAP from Sanyo can replace the Ceramic output capacitors
as long as the capacitor value is the same or greater. Note that the Ceramic capacitors provide
the lowest noise and smallest foot print solution.
10. Use planes for the ground, input and outputs power to maintain good voltage filtering and to
keep power losses low.
11. If there is not enough space for a power plane for the input supply, then the input supply trace
must be at least 3/8 inch wide.
12. If there is not enough space for a power plane for the output supplies, then place the output as
close to the load as possible with a trace of at least 3/8 inch wide.
Applications Information
PC Board Layout Conciderations and Guid el ines
Copyright © 2010 Marvell Doc. No. MV-S106081-02 Rev. D
July 8, 2010, 2.00 Document Classification: Proprietary Page 49
13. The device has two internal grounds, analog (SGND) and power (PGND). The analog ground
ties to all the noise sensitive signals (VSET, and SVIN) while the power ground ties to the higher
current power paths. Noise on an analog ground can cause problems with the IC's internal
control and bias signa ls. For this reason, separate analog and power ground traces are
recommended. The signal ground is connected to the power ground at one point, which is th e
(-) terminal of the output capacitor.
14. Keep the switching node (SW) away from the SFB pin and all sensitive signal nodes, minimizing
capacitive coupling effects. If the SFB trace must cross the SW node, cross it at a right angle.
15. Try not to route analog or digital lines in close proximity to the power supply, especially the SW
node. If this can’t be avoided, shield these lines with a power plane placed between the SW
node and the signal lines.
16. The type of solder paste recommended for QFN packages is “No clean”, due to the difficulty of
cleaning flux residues from beneath the QFN package.
Figure 53: PCB Board Schematic
R2
PFM
SHDN /TDI
R3
R4
1M
SVIN VIN
PG
C2
22uF/6.3V
VSET
C1
10uF/6.3V
C3
0.1uF/10V
R1
10
L1
1.0uH
OTF
EN
SGND
4SHDN/SDI 10
PG 8
EN
3
SVIN 9
PGND
13
SFB
5
PFM
2OTF
1
SW
6PVIN 7
VSET 11
PSET 12
U1 88PG839
PSET
SW
VIN
VOUT
I Cin
LP1
I Cout
LP2
LP1
LP2
Hi di/dt trace
88PG839
Datasheet
Doc. No. MV-S106081-02 Rev. D Copyright © 2010 Marvell
Page 50 Document Classification: Proprietary July 8, 2010, 2.00
6.2.1 PC Board Layout Examples
Actual board size = 580 mil x 540 mil
Total copper layers = 2 (Top and Bottom)
All the components are on the top layer
Figure 54: Top Silk Screen, Top Traces, Vias, and Copper (Not to scale)
IC
PVIN PGND
Yes No
Example placement
for input capacitors
All i nput capacitors
( Cin) m ust pl ac e
cl ose to t he I C! ! ! !
IC
PVIN PGND
Cin Cin
PVIN
Trace PG ND
Trace
PVIN
Trace PGND
Trace
Applications Information
PC Board Layout Conciderations and Guid el ines
Copyright © 2010 Marvell Doc. No. MV-S106081-02 Rev. D
July 8, 2010, 2.00 Document Classification: Proprietary Page 51
.
Figure 55: Bottom Silk Screen, Top Traces, Vias, and Copper (Not to scale)
88PG839
Datasheet
Doc. No. MV-S106081-02 Rev. D Copyright © 2010 Marvell
Page 52 Document Classification: Proprietary July 8, 2010, 2.00
6.3 Bill of Materials
Table 12: BOM
Item Qty Ref Manufacturer Part
Number Manufacturer Description
1 1 U1 88PG839 Marvell Ultra Low Power, 2MHz, 2A Output Current
Field Progr ammable Hysteretic Step-Down
Switching Regulator
2 1 C1 GRM219R60J106KE19D Murata CAP CER 10μF 6.3V X5R 10% 0805
3 1 C2 GRM21BR60J226ME39L Murata CAP CER 22μF 6.3V X5R 20% 0805
4 1 C3 C1005X5R1A104K TDK Corporation CAP CER .10μF 10V X5R 10% 0402
5 1 L1 1071AS-1R0N TOKO DE28 15C Series, 1.0μH, 2.10A, 40mΩ,
H=1.5mm, L=3.0mm, W=3.2mm
6 1 R1 ERJ-2RKF10R0X Panasonic ECG RES 10.0Ω 1/16W 1% 0402 SMD
71R2 See Table 10, VSET and PSET Programming
Table for 5% Resistors, on p age 25, 1/16W 1%
0402 SMD
81R3 See Table 10, VSET and PSET Programming
Table for 5% Resistors, on p age 25, 1/16W 1%
0402 SMD
9 1 R4 CRCW04021M00FKTD Vishay/Dale RES 1.00MΩ 1/16W 1% 0402 SMD
Table 13: BOM for Microsoft Application
Item Qty Ref Manufacturer Part
Number Manufacturer Description
1 1 U1 88PG839 Marvell Ultra Low Power, 2MHz, 2A Output Current
Field Progr ammable Hysteretic Step-Down
Switching Regulator
2 1 C1 GRM219R60J106KE19D Murata CAP CER 10μF 6.3V X5R 10% 0805
3 3 C2 GRM21BR60J226ME39L Murata CAP CER 22μF 6.3V X5R 20% 0805
4 1 C3 C1005X5R1A104K TDK Corporation CAP CER .10μF 10V X5R 10% 0402
5 1 L1 VLCF4028T-3R3N1R6-2 TDK Corporation VLCF Series, 3.3μH, 2.31A, 48mΩ,
H=2.8mm, L=4.0mm, W=4.0mm
6 1 R1 ERJ-2RKF10R0X Panasonic ECG RES 10.0Ω 1/16W 1% 0402 SMD
71R2 See Table 10 on page 25, 1/16W 1% 0402
SMD
81R3 See Table 10 on page 25, 1/16W 1% 0402
SMD
9 1 R4 CRCW04021M00FKTD Vishay/Dale RES 1.00MΩ 1/16W 1% 0402 SMD
Mechanical Drawings
Mechanical Drawings
Copyright © 2010 Marvell Doc. No. MV-S106081-02 Rev. D
July 8, 2010, 2.00 Document Classification: Proprietary Page 53
7Mechanical Drawings
7.1 Mechanical Drawings
Figure 56: 3mm x 4mm 12-Lead DFN Mechanical Drawing
Notes:
All dimensions in mm.
See Section 8, Part Order Numbering/Package Marking, on page 55 for package marking and pin 1
location.
88PG839
Datasheet
Doc. No. MV-S106081-02 Rev. D Copyright © 2010 Marvell
Page 54 Document Classification: Proprietary July 8, 2010, 2.00
7.2 Typical Pad Layout Dimensions
7.2.1 Recommended Solder Pad Layout
Figure 57: 3mm x 4mm DFN-12 Land Pattern (mm)
4.00
2.20
1.60
3.50
0.55
3.30
0.075
0.83
0.56
0.50 0.67
Package
Outline
3x 4 DFN-12
Land P at tern ( m m )
1.75
0.23
D F N Lead w i th
N on-S ol der M ask D efined T ermi nal
Pad SM
0.23 mm
0.50 mm
0.051 mm
0.27 mm
Pad Pad
0.168 mm
SM
1
Note
•Top view
The “1” indicates pin 1
Drawing not to scale
Oversize solder mask (SM) by 4 mils over pad size (2 mil annular ring)
0.168mm solder mask between pads
Tolerance ±0.05mm
Part Order Numbering/Package Mark ing
Part Order Numbering Scheme
Copyright © 2010 Marvell Doc. No. MV-S106081-02 Rev. D
July 8, 2010, 2.00 Document Classification: Proprietary Page 55
8Part Order Numbering/Package Marking
8.1 Part Order Numbering Scheme
Figure 58 shows the part order numbering scheme. Refer to a Marvell Field App lication Engineer
(FAE) or sales representative for further information when ordering parts.
8.2 Part Ordering Options
The standard ordering part numbers for the respective solutions are the following:
Figure 58: Sample Part Number
–xx–NAE2C000–xxxx
Part number
Package code
Environmental code
1 = RoHS 6/6
2 = Green
Temperature code
C = Commercial
I = Industrial
Custom code (optional)
88PG839
Custom code
Custom code
Custom code
Table 14: Part Order Options1
Package Type Part Order Number
12-pin DFN, 3mm x 4mm 88PG839-A1-NAE2C000-T181
12-pin DFN, 3mm x 4mm 88PG839-A1-NAE2C000TT181 (Tape and Reel)
12-pin DFN, 3mm x 4mm 88PG839-A1-NAE2C000
12-pin DFN, 3mm x 4mm 88PG839-A1-NAE2C000-T (Tape and Reel)
1. Please review Table 6, Switching S tep-down Regulator , on page 18 PWM Mode output voltage over temperature ratings
for part order number differences.
88PG839
Datasheet
Doc. No. MV-S106081-02 Rev. D Copyright © 2010 Marvell
Page 56 Document Classification: Proprietary July 8, 2010, 2.00
8.3 Package Marking
Figure 59 shows a sample package marking and pin 1 location.
Figure 59: Package Marking and Pin 1 Location
*Note: The power code (either “00” or “01”) is determined by the part order number used.
Power code “00” = Part Order Number 88PG839-A1-NAE2000-T181
Power code “01” = Part Order Number 88PG839-A1-NAE2000
0xXXP
YWW$$
Marvell “M” and partial part number
Date code and lot traceability code
Y = last digit of year
WW = work week
$$ = lot traceability code
The above example is not drawn to scale. Location of markings are approximate.
Pin 1
Power code, custom code, assembly house code
0x = power code (either “00” or “01”)*
XX = custom code
P = assembly house code
Copyright © 2010 Marvell Doc. No. MV-S106081-02 Rev. D
July 8, 2010, 2.00 Document Classification: Proprietary Page 57
ARevision History
Table 15: Revision History
Document Type Document Revision
Release Re v. D
Electrical Characteristics: Table 6: Changed PG Leakage Current values.
Applications: Bill of Materials edits.
Marvell. Moving Forward Faster
Marvell Semiconductor, Inc.
5488 Marvell Lane
Santa Clara, CA 95054, USA
Tel: 1.408.222.2500
Fax: 1.408.752.9028
www.marvell.com
Back Cover