TLV226x, TLV226xA
Advanced LinCMOS RAIL-TO-RAIL
OPERATIONAL AMPLIFIERS
SLOS186A – FEBRUAR Y 1997 – REVISED JULY 1999
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
D
Output Swing Includes Both Supply Rails
D
Low Noise . . . 12 nV/Hz Typ at f = 1 kHz
D
Low Input Bias Current ...1 pA Typ
D
Fully Specified for Both Single-Supply and
Split-Supply Operation
D
Low Power . . . 500 µA Max
D
Common-Mode Input Voltage Range
Includes Negative Rail
D
Low Input Offset Voltage
950 µV Max at TA = 25°C (TLV226xA)
D
Wide Supply Voltage Range
2.7 V to 8 V
D
Macromodel Included
D
Available in Q-Temp Automotive
HighRel Automotive Applications
Configuration Control / Print Support
Qualification to Automotive Standards
description
The TLV2262 and TLV2264 are dual and quad low
voltage operational amplifiers from Texas Instru-
ments. Both devices exhibit rail-to-rail output
performance for increased dynamic range in
single or split supply applications. The TLV226x
family offers a compromise between the micro-
power TLV225x and the ac performance of the
TLC227x. It has low supply current for battery-
powered applications, while still having adequate
ac performance for applications that demand it.
This family is fully characterized at 3 V and 5 V and
is optimized for low-voltage applications. The
noise performance has been dramatically im-
proved over previous generations of CMOS
amplifiers. Figure 1 depicts the low level of noise
voltage for this CMOS amplifier, which has only
200 µA (typ) of supply current per amplifier.
The TLV226x, exhibiting high input impedance
and low noise, are excellent for small-signal
conditioning for high-impedance sources, such as
piezoelectric transducers. Because of the micro-
power dissipation levels combined with 3-V
operation, these devices work well in hand-held monitoring and remote-sensing applications. In addition, the
rail-to-rail output feature with single or split supplies makes this family a great choice when interfacing with
analog-to-digital converters (ADCs). For precision applications, the TLV226xA family is available and has a
maximum input offset voltage of 950 µV.
The TL V2262/4 also makes great upgrades to the TL V2332/4 in standard designs. They of fer increased output
dynamic range, lower noise voltage and lower input offset voltage. This enhanced feature set allows them to
be used in a wider range of applications. For applications that require higher output drive and wider input voltage
range, see the TLV2432 and TLV2442 devices. If your design requires single amplifiers, please see the
TL V221 1/21/31 family . These devices are single rail-to-rail operational amplifiers in the SOT -23 package. Their
small size and low power consumption, make them ideal for high density, battery-powered equipment.
Copyright 1999, Texas Instruments Incorporated
PRODUCTION DATA information is current as of publication date.
Products conform to specifications per the terms of Texas Instruments
standard warranty. Production processing does not necessarily include
testing of all parameters.
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
Advanced LinCMOS is a trademark of Texas Instruments Incorporated.
– High-Level Output Voltage – V
HIGH-LEVEL OUTPUT VOLTAGE
vs
HIGH-LEVEL OUTPUT CURRENT
ÁÁ
ÁÁ
VOH
| IOH | – High-Level Output Current – µA
Figure 1
2
1
0.5
00 500 1000
3
3.5
4
1500 2000
2.5
1.5
TA = –55°C
VDD = 3 V
TA = 85°C
TA = –40°C
TA = 125°C
TA = 25°C
On products compliant to MIL-PRF-38535, all parameters are tested
unless otherwise noted. On all other products, production
processing does not necessarily include testing of all parameters.
TLV226x, TLV226xA
Advanced LinCMOS RAIL-TO-RAIL
OPERATIONAL AMPLIFIERS
SLOS186A – FEBRUAR Y 1997 – REVISED JULY 1999
2POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TLV2262 AVAILABLE OPTIONS
PACKAGED DEVICES
TAVIOmax
AT 25°CSMALL
OUTLINE
(D)
CHIP
CARRIER
(FK)
CERAMIC
DIP
(JG)
PLASTIC
DIP
(P)
TSSOP
(PW)
CERAMIC
FLATPACK
(U)
0°C to 70°C2.5 mV TLV2262CD TLV2262CP TLV2262CPWLE
40
°
Cto85
°
C
950
µ
V TLV2262AID TLV2262AIP TLV2262AIPWLE
40°C
to
85°C
µ
2.5 mV TLV2262ID TLV2262IP
40
°
Cto125
°
C
950
µ
V TLV2262AQD
40°C
to
125°C
µ
2.5 mV TLV2262QD
–55°C to 125°C950 µV
2.5 mV
TLV2262AMFK
TLV2262MFK TLV2262AMJG
TLV2262MJG
TLV2262AMU
TLV2262MU
The D packages are available taped and reeled. Add R suffix to device type (e.g., TLV2262CDR).
The PW package is available only left-end taped and reeled.
§Chips are tested at 25°C.
TLV2264 A VAILABLE OPTIONS
PACKAGED DEVICES
TAVIOmax
AT 25°CSMALL
OUTLINE
(D)
CHIP
CARRIER
(FK)
CERAMIC
DIP
(J)
PLASTIC
DIP
(N)
TSSOP
(PW)
CERAMIC
FLATPACK
(W)
–40°C to 950 µV TLV2264AID TLV2264AIN TLV2264AIPWLE
85°C
µ
2.5 mV TLV2264ID TLV2264IN
–40°C to 950
µ
V TLV2264AQD
125°C
µ
2.5 mV TLV2264QD
–55°C to
125°C950 µV
2.5 mV
TLV2264AMFK
TLV2264MFK TLV2264AMJ
TLV2264MJ
TLV2264AMW
TLV2264MW
The D packages are available taped and reeled. Add R suffix to device type (e.g., TLV2262IDR).
The PW package is available only left-end taped and reeled.
§Chips are tested at 25°C.
TLV226x, TLV226xA
Advanced LinCMOS RAIL-TO-RAIL
OPERATIONAL AMPLIFIERS
SLOS186A – FEBRUAR Y 1997 – REVISED JULY 1999
3
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TLV2262C, TLV2262AC
TLV2262I, TL V2262AI
TLV2262Q, TL V2262AQ
D, P, OR PW PACKAGE
(TOP VIEW)
1
2
3
4
8
7
6
5
1OUT
1IN
1IN+
VDD/GND
VDD+
2OUT
2IN
2IN+
NC
VCC +
2OUT
2IN
2IN +
NC
1OUT
1IN
1IN +
VCC/GND
1
2
3
4
5
10
9
8
7
6
1
2
3
4
8
7
6
5
1OUT
1IN
1IN+
VDD/GND
VDD+
2OUT
2IN
2IN+
3 2 1 20 19
910111213
4
5
6
7
8
18
17
16
15
14
NC
2OUT
NC
2IN
NC
NC
1IN
NC
1IN+
NC
NC
1OUT
NC
2IN+
NC NC
NC
NC VDD+
VDD–
TLV2262M, TL V2262AM
FK PACKAGE
(TOP VIEW)
/GND
1
2
3
4
5
6
7
14
13
12
11
10
9
8
1OUT
1IN
1IN+
VDD+
2IN+
2IN
2OUT
4OUT
4IN
4IN+
VDD/GND
3IN+
3IN
3OUT
3212019
910111213
4
5
6
7
8
18
17
16
15
14
4IN+
NC
VCC/GND
NC
3IN+
1IN+
NC
VCC+
NC
2IN+
1IN –
1OUT
NC
3OUT
3IN – 4OUT
4IN –
2IN –
2OUT
NC
1
2
3
4
5
6
7
14
13
12
11
10
9
8
1OUT
1IN
1IN+
VDD+
2IN+
2IN
2OUT
4OUT
4IN
4IN+
VDD/GND
3IN+
3IN
3OUT
TLV2264I, TL V2264AI
TLV2264Q, TL V2264AQ
D, N, OR PW PACKAGE
(TOP VIEW)
TLV2264M, TL V2264AM
J OR W PACKAGE
(TOP VIEW)
TLV2264M, TL V2264AM
FK PACKAGE
(TOP VIEW)
TLV2662M, TL V2262AM
U PACKAGE
(TOP VIEW)
TLV2262M, TL V2262AM
JG PACKAGE
(TOP VIEW)
T
emp
l
ate
R
e
l
ease
D
ate:
7
11
94
TLV226x, TLV226xA
OPERATIONAL AMPLIFIERS
SLOS186A – FEBRUARY 1997 – REVISED JULY 1999
Advanced LinCMOSRAIL-TO-RAIL
4POST OFFICE BOX 655303 DALLAS, TEXAS 75265
equivalent schematic (each amplifier)
Q3 Q6 Q9 Q12 Q14 Q16
Q2 Q5 Q7 Q8 Q10 Q11
D1
Q17Q15Q13
Q4Q1
R5
C1
VDD+
IN+
IN
R3 R4 R1 R2
OUT
VDD/GND
R6
ACTUAL DEVICE COMPONENT COUNT
COMPONENT TLV2252 TLV2254
Transistors 38 76
Resistors 28 54
Diodes 9 18
Capacitors 3 6
Includes both amplifiers and all ESD, bias, and trim circuitry
TLV226x, TLV226xA
Advanced LinCMOS RAIL-TO-RAIL
OPERATIONAL AMPLIFIERS
SLOS186A – FEBRUAR Y 1997 – REVISED JULY 1999
5
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage, VDD (see Note 1) 8 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Differential input voltage, VID (see Note 2) ±VDD
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Input voltage range, VI (any input, see Note 1) VDD0.3 V to VDD+
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Input current, II (each input) ±5 mA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Output current, IO ±50 mA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Total current into VDD+ ±50 mA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Total current out of VDD ±50 mA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Duration of short-circuit current (at or below) 25°C (see Note 3) unlimited. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Continuous total power dissipation See Dissipation Rating Table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Operating free-air temperature range, TA: I suffix 40°C to 85°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Q suffix 40°C to 125°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
M suffix 55°C to 125°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Storage temperature range, Tstg –65°C to 150°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D, N, P, and PW packages 260°C. . . . . . .
FK, J, JG, U, AND W packages 300°C. .
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only , and
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not
implied. Exposure to absolute-maximum-rated conditions for extended periods may af fect device reliability.
NOTES: 1. All voltage values, except differential voltages, are with respect to VDD .
2. Differential voltages are at the noninverting input with respect to the inverting input. Excessive current flows when input is brought
below VDD – 0.3 V.
3. The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the maximum
dissipation rating is not exceeded.
DISSIPATION RATING TABLE
PACKAGE
T
25°CDERATING F ACTOR T
A
= 85°C T
A
= 125°C
PACKAGE
POWER RATING ABOVE TA = 25°C
A
POWER RATING
A
POWER RATING
D–8 725 mW 5.8 mW/°C377 mW 145 mW
D–14 950 mW 7.6 mW/°C 494 mW 190 mW
FK 1375 mW 11.0 mW/°C 715 mW 275 mW
J1375 mW 11.0 mW/°C 715 mW 275 mW
JG 1050 mW 8.4 mW/°C 210 mW
N1150 mW 9.2 mW/°C 598 mW
P1000 mW 8.0 mW/°C 520 mW 200 mW
PW–8 525 mW 4.2 mW/°C 273 mW 105 mW
PW–14 700 mW 5.6 mW/°C 364 mW
U700 mW 5.5 mW/°C 150 mW
W700 mW 5.5 mW/°C370 mW 150 mW
recommended operating conditions
I SUFFIX Q SUFFIX M SUFFIX
UNIT
MIN MAX MIN MAX MIN MAX
UNIT
Supply voltage, VDD±
(see Note 1)
2.7 8 2.7 8 2.7 8 V
Input voltage range, VIVDD VDD+1.3 VDD VDD+1.3 VDD VDD+1.3 V
Common-mode input voltage, VIC VDD VDD+1.3 VDD VDD+1.3 VDD VDD+1.3 V
Operating free-air temperature, TA–40 85 –40 125 –55 125 °C
NOTE 1: All voltage values, except differential voltages, are with respect to VDD .
TLV226x, TLV226xA
Advanced LinCMOS RAIL-TO-RAIL
OPERATIONAL AMPLIFIERS
SLOS186A – FEBRUAR Y 1997 – REVISED JULY 1999
6POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TLV2262I electrical characteristics at specified free-air temperature, VDD = 3 V (unless otherwise
noted)
PARAMETER
TEST CONDITIONS
TA
TLV2262I TLV2262AI
UNIT
PARAMETER
TEST
CONDITIONS
T
A
MIN TYP MAX MIN TYP MAX
UNIT
VIO
In
p
ut offset voltage
25°C 300 2500 300 950
µV
VIO
In ut
offset
voltage
Full range 3000 1500
µV
αVIO Temperature coefficient
of input offset voltage 25°C
to 85°C2 2 µV/°C
Input offset voltage
long-term drift
(see Note 4)
VDD± = ±1.5 V, VIC = 0,
VO = 0, RS = 50 25°C 0.003 0.003 µV/mo
IIO
In
p
ut offset current
25°C 0.5 0.5 p
A
IIO
In ut
offset
current
Full range 150 150
A
IIB
In
p
ut bias current
25°C 1 1 p
A
IIB
In ut
bias
current
Full range 150 150
A
VICR
Common-mode input
RS=50
|VIO |5mV
25°C0
to
2
0.3
to
2.2
0
to
2
0.3
to
2.2
V
VICR
voltage range
RS
=
50
,
|VIO
|
5
mV
Full range 0
to
1.7
0
to
1.7
V
IOH = –20 µA 25°C 2.99 2.99
High level out
p
ut
IOH = 100 µA
25°C 2.85 2.85
VOH
High
-
le
v
el
o
u
tp
u
t
voltage
IOH
= –
100
µA
Full range 2.825 2.825 V
voltage
IOH = 400 µA
25°C 2.7 2.7
IOH
= –
400
µA
Full range 2.65 2.65
VIC = 1.5 V, IOL = 50 µA 25°C 10 10
Low level out
p
ut
VIC =15V
IOL = 500 µA
25°C 100 100
VOL
Lo
w-
le
v
el
o
u
tp
u
t
voltage
VIC
=
1
.
5
V
,
IOL
=
500
µA
Full range 150 150 mV
voltage
VIC =15V
IOL =1
m
A
25°C 200 200
VIC
=
1
.
5
V
,
IOL
=
1
m
A
Full range 300 300
Large signal differential
V15V
RL50 k
25°C 60 100 60 100
AVD
L
arge-s
i
gna
l
diff
eren
ti
a
l
voltage am
p
lification
V
IC =
1
.
5
V
,
VO=1Vto2V
R
L =
50
k
Full range 30 30 V/mV
voltage
am lification
VO
=
1
V
to
2
V
RL = 1 M25°C 100 100
ri(d) Differential input
resistance 25°C 1012 1012
ri(c) Common-mode input
resistance 25°C 1012 1012
ci(c) Common-mode input
capacitance f = 10 kHz, P package 25°C 8 8 pF
zoClosed-loop output
impedance f = 100 kHz, AV = 10 25°C 270 270
CMRR
Common-mode VIC = 0 to 1.7 V, 25°C 65 75 65 77
dB
CMRR
rejection ratio
IC
VO = 1.5 V, RS = 50 Full range 60 60
dB
kSVR
Supply voltage rejection VDD = 2.7 V to 8 V, 25°C 80 95 80 100
dB
kSVR
ygj
ratio (VDD/VIO)
DD
VIC = VDD/2, No load Full range 80 80
dB
IDD
Su
pp
ly current
VO=15V
No load
25°C 400 500 400 500
µA
IDD
Su ly
current
VO
=
1
.
5
V
,
No
load
Full range 500 500
µA
Full range is – 40°C to 85°C.
Referenced to 1.5 V
NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at TA = 150°C extrapolated
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
TLV226x, TLV226xA
Advanced LinCMOS RAIL-TO-RAIL
OPERATIONAL AMPLIFIERS
SLOS186A – FEBRUAR Y 1997 – REVISED JULY 1999
7
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TLV2262I operating characteristics at specified free-air temperature, VDD = 3 V
PARAMETER
TEST CONDITIONS
TA
TLV2262I TLV2262AI
UNIT
PARAMETER
TEST
CONDITIONS
T
A
MIN TYP MAX MIN TYP MAX
UNIT
RL=50k
25°C0.35 0.55 0.35 0.55
SR Slew rate at unity gain
O =
.
.
,
p
R
L =
50
k
,Full
03
03
V/µs
range
0
.
3
0
.
3
V
Equivalent input noise f = 10 Hz 25°C 43 43
nV/Hz
V
n
q
voltage f = 1 kHz 25°C 12 12 n
V/H
z
VN(PP)
Peak-to-peak
equivalent in
p
ut
f = 0.1 Hz to 1 Hz 25°C 0.6 0.6
µV
V
N(PP)
equivalent
input
noise voltage f = 0.1 Hz to 10 Hz 25°C 1 1 µ
V
InEquivalent input noise
current 25°C 0.6 0.6 fA/Hz
THD+N
Total harmonic VO = 0.5 V to 2.5 V,
AV = 1
25
°
C
0.03% 0.03%
THD
+
N
distortion plus noise
=
,
RL = 50 kAV = 10
25°C
0.05% 0.05%
Gain-bandwidth f = 1 kHz, RL = 50 k
,
25
°
C
067
067
MHz
product
CL = 100 pF
L,
25°C
0
.
67
0
.
67
MH
z
BOM
Maximum
out
p
ut swing
V
= 1 V, A
V
= 1,
25
°
C
395
395
kHz
B
OM
output
-
swing
bandwidth
RL = 50 k,
V,
CL = 100 pF
25°C
395
395
kH
z
A
= –1
To 0 1%
56
56
t
Settling time
Step = 1 V to 2 V,
To
0
.
1%
25
°
C
5
.
6
5
.
6
µs
t
s
Settling
time
RL = 50 k,
To 0 01%
25°C
12 5
12 5
µ
s
CL = 100 pF
To
0
.
01%
12
.
5
12
.
5
φmPhase margin at
unity gain RL = 50 k
, CL = 100 pF
25°C 55°55°
Gain margin
L
25°C11 11 dB
Full range is – 40°C to 85°C.
Referenced to 1.5 V
TLV226x, TLV226xA
Advanced LinCMOS RAIL-TO-RAIL
OPERATIONAL AMPLIFIERS
SLOS186A – FEBRUAR Y 1997 – REVISED JULY 1999
8POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TLV2262I electrical characteristics at specified free-air temperature, VDD = 5 V (unless otherwise
noted)
PARAMETER
TEST CONDITIONS
TA
TLV2262I TLV2262AI
UNIT
PARAMETER
TEST
CONDITIONS
T
A
MIN TYP MAX MIN TYP MAX
UNIT
VIO
In
p
ut offset voltage
25°C 300 2500 300 950
µV
V
IO
Inp
u
t
offset
v
oltage
Full range 3000 1500 µ
V
αVIO
Temperature coefficient 25°C
2
2
µV/
°
C
αVIO of input offset voltage to 85°C
2
2
µ
V/°C
Input offset voltage
long-term drift
(see Note 4)
VDD± = ±2.5 V, VIC = 0,
VO = 0, RS = 50 25°C 0.003 0.003 µV/mo
IIO
In
p
ut offset current
25°C 0.5 0.5 p
A
I
IO
Inp
u
t
offset
c
u
rrent
Full range 150 150
pA
IIB
In
p
ut bias current
25°C 1 1 p
A
I
IB
Inp
u
t
bias
c
u
rrent
Full range 150 150
pA
0 0.3 0 0.3
25°Cto to to to
VICR
Common-mode input
|VIO |5mV
RS=50
4 4.2 4 4.2
V
V
ICR voltage range
|V
IO
|
5
mV
,
R
S =
50
0 0
V
Full range to to
g
3.5 3.5
IOH = –20 µA 25°C 4.99 4.99
IOH = 100 µA
25°C 4.85 4.94 4.85 4.94
VOH High-level output voltage
I
OH = –
100
µ
A
Full range 4.82 4.82 V
IOH = 400 µA
25°C 4.7 4.85 4.7 4.85
I
OH = –
400
µ
A
Full range 4.6 4.6
VIC = 2.5 V, IOL = 50 µA 25°C 0.01 0.01
VIC =25V
IOL = 500 µA
25°C 0.09 0.15 0.09 0.15
VOL Low-level output voltage
V
IC =
2
.
5
V
,
I
OL =
500
µ
A
Full range 0.15 0.15 V
VIC =25V
IOL =1
m
A
25°C 0.2 0.3 0.2 0.3
V
IC =
2
.
5
V
,
I
OL =
1
m
A
Full range 0.3 0.3
Large signal differential
V25V
RL50 k
25°C 80 170 80 170
AVD
L
arge-s
i
gna
l
diff
eren
ti
a
l
voltage am
p
lification
V
IC =
2
.
5
V
,
VO=1Vto4V
R
L =
50
k
Full range 55 55 V/mV
VD
voltage
am lification
VO
=
1
V
to
4
V
RL = 1 M25°C 550 550
ri(d) Differential input
resistance 25°C 1012 1012
ri(c) Common-mode input
resistance 25°C 1012 1012
ci(c) Common-mode input
capacitance f = 10 kHz, P package 25°C 8 8 pF
zoClosed-loop output
impedance f = 100 kHz, AV = 10 25°C 240 240
CMRR
Common-mode rejection VIC = 0 to 2.7 V, 25°C 70 83 70 83
dB
CMRR
j
ratio
IC
VO = 2.5 V, RS = 50 Full range 70 70
dB
kSVR
Supply voltage rejection VDD = 4.4 V to 8 V, 25°C 80 95 80 95
dB
k
SVR
ygj
ratio (VDD/VIO)
DD
VIC = VDD/2, No load Full range 80 80
dB
IDD
Su
pp
ly current
VO=25V
No load
25°C 400 500 400 500
µA
I
DD
S
u
ppl
y
c
u
rrent
V
O =
2
.
5
V
,
No
load
Full range 500 500 µ
A
Full range is – 40°C to 85°C.
Referenced to 2.5 V
NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at TA = 150°C extrapolated
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
TLV226x, TLV226xA
Advanced LinCMOS RAIL-TO-RAIL
OPERATIONAL AMPLIFIERS
SLOS186A – FEBRUAR Y 1997 – REVISED JULY 1999
9
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TLV2262I operating characteristics at specified free-air temperature, VDD = 5 V
PARAMETER
TEST CONDITIONS
TA
TLV2262I TLV2262AI
UNIT
PARAMETER
TEST
CONDITIONS
T
A
MIN TYP MAX MIN TYP MAX
UNIT
Slew rate at unity
RL=50k
25°C0.35 0.55 0.35 0.55
SR
Sle
w
rate
at
u
nit
y
gain
O =
.
.
,
p
R
L =
50
k
,Full
03
03
V/µs
gain
range
0
.
3
0
.
3
V
Equivalent input f = 10 Hz 25°C 40 40
nV/Hz
V
n
q
noise voltage f = 1 kHz 25°C 12 12 n
V/H
z
VN(PP)
Peak-to-peak
equivalent in
p
ut
f = 0.1 Hz to 1 Hz 25°C 0.7 0.7
µV
V
N(PP)
equivalent
input
noise voltage f = 0.1 Hz to 10 Hz 25°C 1.3 1.3 µ
V
InEquivalent input
noise current 25°C 0.6 0.6 fA/Hz
THD+N
Total harmonic
distortion
p
lus
VO = 0.5 V to 2.5 V,
AV = 1
25
°
C
0.017% 0.017%
THD
+
N
distortion
plus
noise
=
,
RL = 50 kAV = 10
25°C
0.03% 0.03%
Gain-bandwidth f = 50 kHz, RL = 50 k
,
25
°
C
071
071
MHz
product
CL = 100 pF
L,
25°C
0
.
71
0
.
71
MH
z
BOM
Maximum output- V
= 2 V, A
V
= 1,
25
°
C
185
185
kHz
B
OM swing bandwidth
RL = 50 k,
V,
CL = 100 pF
25°C
185
185
kH
z
A
= –1
To 0 1%
64
64
t
Settling time
Step = 0.5 V to 2.5 V,
To
0
.
1%
25
°
C
6
.
4
6
.
4
µs
t
s
Settling
time
RL = 50 k,
To 0 01%
25°C
14 1
14 1
µ
s
CL = 100 pF
To
0
.
01%
14
.
1
14
.
1
φmPhase margin at
unity gain RL = 50 k
, CL = 100 pF
25°C 56°56°
Gain margin
L
25°C11 11 dB
Full range is – 40°C to 85°C.
Referenced to 2.5 V
TLV226x, TLV226xA
Advanced LinCMOS RAIL-TO-RAIL
OPERATIONAL AMPLIFIERS
SLOS186A – FEBRUAR Y 1997 – REVISED JULY 1999
10 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TLV2264I electrical characteristics at specified free-air temperature, VDD = 3 V (unless otherwise
noted)
PARAMETER
TEST CONDITIONS
T
TLV2264I TLV2264AI
UNIT
PARAMETER
TEST
CONDITIONS
T
A
MIN TYP MAX MIN TYP MAX
UNIT
VIO
In
p
ut offset voltage
25°C 300 2500 300 950
µV
V
IO
Inp
u
t
offset
v
oltage
Full range 3000 1500 µ
V
αVIO
Temperature coefficient 25°C
2
2
µV/
°
C
αVIO of input offset voltage
V±15V
to 85°C
2
2
µ
V/°C
Input offset voltage
long-term drift
(see Note 4)
V
DD± = ±
1
.
5
V
,
VIC = 0,
VO = 0,
RS=50
25°C 0.003 0.003 µV/mo
IIO
In
p
ut offset current
RS=
50
25°C 0.5 0.5 p
A
I
IO
Inp
u
t
offset
c
u
rrent
Full range 150 150
pA
IIB
In
p
ut bias current
25°C 1 1 p
A
I
IB
Inp
u
t
bias
c
u
rrent
Full range 150 150
pA
0 0.3 0 0.3
25°Cto to to to
VICR
Common-mode input
RS=50
|VIO |5mV
2 2.2 2 2.2
V
V
ICR voltage range
R
S =
50
,
|V
IO
|
5
mV
0 0
V
Full range to to
g
1.7 1.7
IOH = –20 µA 25°C 2.99 2.99
High level output
IOH = 100 µA
25°C 2.85 2.85
VOH
Hi
g
h
-
l
eve
l
ou
t
pu
t
voltage
I
OH = –
100
µ
A
Full range 2.825 2.825 V
voltage
IOH = 400 µA
25°C 2.7 2.7
I
OH = –
400
µ
A
Full range 2.65 2.65
VIC = 1.5 V, IOL = 50 µA 25°C 10 10
VIC =15V
IOL = 500 µA
25°C 100 100
VOL Low-level output voltage
V
IC =
1
.
5
V
,
I
OL =
500
µ
A
Full range 150 150 mV
VIC =15V
IOL =1
m
A
25°C 200 200
V
IC =
1
.
5
V
,
I
OL =
1
m
A
Full range 300 300
Large signal differential
V15V
RL50 k
25°C 60 100 60 100
AVD
L
arge-s
i
gna
l
diff
eren
ti
a
l
voltage am
p
lification
VIC = 1.5 V,
VO=1 to2V
R
L =
50
k
Full range 30 30 V/mV
VD
voltage
am lification
VO
=
1
to
2
V
RL = 1 M25°C 100 100
ri(d) Differential input
resistance 25°C 1012 1012
ri(c) Common-mode input
resistance 25°C 1012 1012
ci(c) Common-mode input
capacitance f = 10 kHz, N package 25°C 8 8 pF
zoClosed-loop output
impedance f = 100 kHz, AV = 10 25°C 270 270
CMRR
Common-mode VIC = 0 to 1.7 V, 25°C 65 75 65 77
dB
CMRR
rejection ratio VO = 1.5 V, RS = 50 Full range 60 60
dB
kSVR
Supply voltage rejection VDD = 2.7 V to 8 V, 25°C 80 95 80 100
dB
kSVR
ratio (VDD/VIO)VIC = VDD/2, No load Full range 80 80
dB
IDD
Supply current
VO=15V
No load
25°C 0.8 1 0.8 1
mA
IDD
y
(four amplifiers)
VO
=
1
.
5
V
,
No
load
Full range 1 1
mA
Full range is – 40°C to 85°C.
Referenced to 1.5 V
NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at TA = 150°C extrapolated
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
TLV226x, TLV226xA
Advanced LinCMOS RAIL-TO-RAIL
OPERATIONAL AMPLIFIERS
SLOS186A – FEBRUAR Y 1997 – REVISED JULY 1999
11
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TLV2264I operating characteristics at specified free-air temperature, VDD = 3 V
PARAMETER
TEST CONDITIONS
T
TLV2264I TLV2264AI
UNIT
PARAMETER
TEST
CONDITIONS
T
A
MIN TYP MAX MIN TYP MAX
UNIT
25°C
035
055
035
055
Slew rate at unity
VO=07Vto17V
RL=50k
25°C
0
.
35
0
.
55
0
.
35
0
.
55
SR
Sle
w
rate
at
u
nit
y
gain
V
O =
0
.
7
V
to
1
.
7
V
,
CL= 100
p
F
R
L =
50
k
,Full
03
03
V/µs
gain
CL
=
100
F
range
0
.
3
0
.
3
V
Equivalent input f = 10 Hz 25°C 43 43
nV/Hz
V
n
q
noise voltage f = 1 kHz 25°C 12 12 n
V/H
z
VN(PP)
Peak-to-peak
equivalent in
p
ut
f = 0.1 Hz to 1 Hz 25°C 0.6 0.6
µV
V
N(PP)
equivalent
input
noise voltage f = 0.1 Hz to 10 Hz 25°C 1 1 µ
V
InEquivalent input
noise current 25°C 0.6 0.6 fA/Hz
THD+N
Total harmonic
distortion
p
lus
VO = 0.5 V to 2.5 V,
f=20kHz
AV = 1
25
°
C
0.03% 0.03%
THD
+
N
distortion
plus
noise
f
=
20
kHz
,
RL = 50 kAV = 10
25°C
0.05% 0.05%
Gain-bandwidth f = 1 kHz, RL = 50 k
,
25
°
C
067
067
MHz
product
,
CL = 100 pF
L,
25°C
0
.
67
0
.
67
MH
z
BOM
Maximum
out
p
ut swing
V
O(PP)
= 1 V, A
V
= 1,
25
°
C
395
395
kHz
B
OM
output
-
swing
bandwidth
O(PP) ,
RL = 50 k‡,
V,
CL = 100 pF
25°C
395
395
kH
z
A
V
= –1
,
To 0 1%
56
56
t
Settling time
AV
1,
Step = 1 V to 2 V,
To
0
.
1%
25
°
C
5
.
6
5
.
6
µs
t
s
Settling
time
,
RL = 50 k‡,
To 0 01%
25°C
12 5
12 5
µ
s
L
CL = 100 pF
To
0
.
01%
12
.
5
12
.
5
φmPhase margin at
unity gain RL = 50 k
, CL = 100 pF
25°C 55°55°
Gain margin
L,
L
25°C11 11 dB
Full range is – 40°C to 85°C.
Referenced to 1.5 V
TLV226x, TLV226xA
Advanced LinCMOS RAIL-TO-RAIL
OPERATIONAL AMPLIFIERS
SLOS186A – FEBRUAR Y 1997 – REVISED JULY 1999
12 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TLV2264I electrical characteristics at specified free-air temperature, VDD = 5 V (unless otherwise
noted)
PARAMETER
TEST CONDITIONS
TA
TLV2264I TLV2264AI
UNIT
PARAMETER
TEST
CONDITIONS
T
A
MIN TYP MAX MIN TYP MAX
UNIT
VIO
In
p
ut offset voltage
25°C 300 2500 300 950
µV
V
IO
Inp
u
t
offset
v
oltage
Full range 3000 1500 µ
V
αVIO
Temperature coefficient 25°C
2
2
µV/
°
C
αVIO of input offset voltage
V±25V
to 85°C
2
2
µ
V/°C
Input offset voltage
long-term drift
(see Note 4)
V
DD± = ±
2
.
5
V
,
VIC = 0,
VO = 0,
RS
=
50
25°C 0.003 0.003 µV/mo
IIO
In
p
ut offset current
RS
=
50
25°C 0.5 0.5 p
A
I
IO
Inp
u
t
offset
c
u
rrent
Full range 150 150
pA
IIB
In
p
ut bias current
25°C 1 1 p
A
I
IB
Inp
u
t
bias
c
u
rrent
Full range 150 150
pA
0 0.3 0 0.3
25°Cto to to to
VICR
Common-mode input
|VIO |5mV
RS=50
4 4.2 4 4.2
V
V
ICR voltage range
|V
IO
|
5
mV
,
R
S =
50
0 0
V
Full range to to
g
3.5 3.5
IOH = –20 µA 25°C 4.99 4.99
High level output
IOH = 100 µA
25°C 4.85 4.94 4.85 4.94
VOH
Hi
g
h
-
l
eve
l
ou
t
pu
t
voltage
I
OH = –
100
µ
A
Full range 4.82 4.82 V
voltage
IOH = 400 µA
25°C 4.7 4.85 4.7 4.85
I
OH = –
400
µ
A
Full range 4.6 4.6
VIC = 2.5 V, IOL = 50 µA 25°C 0.01 0.01
Low level output
VIC =25V
IOL = 500 µA
25°C 0.09 0.15 0.09 0.15
VOL
L
ow-
l
eve
l
ou
t
pu
t
voltage
V
IC =
2
.
5
V
,
I
OL =
500
µ
A
Full range 0.15 0.15 V
voltage
VIC =25V
IOL 1
m
A
25°C 0.2 0.3 0.2 0.3
V
IC =
2
.
5
V
,
I
OL =
1
m
A
Full range 0.3 0.3
Large signal differential
V25V
RL50 k
25°C 80 170 80 170
AVD
L
arge-s
i
gna
l
diff
eren
ti
a
l
voltage am
p
lification
V
IC =
2
.
5
V
,
VO=1Vto4V
R
L =
50
k
Full range 55 55 V/mV
VD
voltage
am lification
VO
=
1
V
to
4
V
RL = 1 M25°C 550 550
ri(d) Differential input
resistance 25°C 1012 1012
ri(c) Common-mode input
resistance 25°C 1012 1012
ci(c) Common-mode input
capacitance f = 10 kHz, N package 25°C 8 8 pF
zoClosed-loop output
impedance f = 100 kHz, AV = 10 25°C 240 240
CMRR
Common-mode rejection VIC = 0 to 2.7 V, VO = 2.5 V, 25°C 70 83 70 83
dB
CMRR
j
ratio
IC O
RS = 50 Full range 70 70
dB
kSVR
Supply voltage rejection VDD = 4.4 V to 8 V, 25°C 80 95 80 95
dB
k
SVR
ygj
ratio (VDD/VIO)
DD
VIC = VDD/2, No load Full range 80 80
dB
IDD
Supply current
VO=25V
No load
25°C 0.8 1 0.8 1
mA
IDD
y
(four amplifiers)
VO
=
2
.
5
V
,
No
load
Full range 1 1
mA
Full range is – 40°C to 85°C.
Referenced to 2.5 V
NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at TA = 150°C extrapolated
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
TLV226x, TLV226xA
Advanced LinCMOS RAIL-TO-RAIL
OPERATIONAL AMPLIFIERS
SLOS186A – FEBRUAR Y 1997 – REVISED JULY 1999
13
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TLV2264I operating characteristics at specified free-air temperature, VDD = 5 V
PARAMETER
TEST CONDITIONS
T
TLV2264I TLV2264AI
UNIT
PARAMETER
TEST
CONDITIONS
T
A
MIN TYP MAX MIN TYP MAX
UNIT
25°C
035
055
035
055
Slew rate at unity
RL=50k
25°C
0
.
35
0
.
55
0
.
35
0
.
55
SR
Sle
w
rate
at
u
nit
y
gain
O =
.
.
,
p
R
L =
50
k
,Full
03
03
V/µs
gain
range
0
.
3
0
.
3
V
Equivalent input f = 10 Hz 25°C 40 40
nV/Hz
V
n
q
noise voltage f = 1 kHz 25°C 12 12 n
V/H
z
VN(PP)
Peak-to-peak
equivalent in
p
ut
f = 0.1 Hz to 1 Hz 25°C 0.7 0.7
µV
V
N(PP)
equivalent
input
noise voltage f = 0.1 Hz to 10 Hz 25°C 1.3 1.3 µ
V
InEquivalent input
noise current 25°C 0.6 0.6 fA/Hz
THD+N
Total harmonic
distortion
p
lus
VO = 0.5 V to 2.5 V,
AV = 1
25
°
C
0.017% 0.017%
THD
+
N
distortion
plus
noise
=
,
RL = 50 kAV = 10
25°C
0.03% 0.03%
Gain-bandwidth f = 50 kHz, RL = 50 k
,
25
°
C
071
071
MHz
product
CL = 100 pF
L,
25°C
0
.
71
0
.
71
MH
z
BOM
Maximum output- V
= 2 V, A
V
= 1,
25
°
C
185
185
kHz
B
OM swing bandwidth
RL = 50 k,
V,
CL = 100 pF
25°C
185
185
kH
z
A
= –1
To 0 1%
64
64
t
Settling time
Step = 0.5 V to 2.5 V,
To
0
.
1%
25
°
C
6
.
4
6
.
4
µs
t
s
Settling
time
RL = 50 k,
To 0 01%
25°C
14 1
14 1
µ
s
CL = 100 pF
To
0
.
01%
14
.
1
14
.
1
φmPhase margin at
unity gain RL = 50 k
, CL = 100 pF
25°C 56°56°
Gain margin
L
25°C11 11 dB
Full range is – 40°C to 85°C.
Referenced to 2.5 V
TLV226x, TLV226xA
Advanced LinCMOS RAIL-TO-RAIL
OPERATIONAL AMPLIFIERS
SLOS186A – FEBRUAR Y 1997 – REVISED JULY 1999
14 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TLV2262Q and TLV2262M electrical characteristics at specified free-air temperature, VDD = 3 V
(unless otherwise noted)
PARAMETER TEST CONDITIONS T
A
TLV2262Q,
TLV2262M TLV2262AQ,
TLV2262AM UNIT
A
MIN TYP MAX MIN TYP MAX
VIO
In
p
ut offset voltage
25°C 300 2500 300 950
µV
VIO
In ut
offset
voltage
Full range 3000 1500
µV
αVIO
Temperature coefficient 25°C
2
2
µV/
°
C
αVIO of input offset voltage to 125°C
2
2
µ
V/°C
Input offset voltage
long-term drift
(see Note 4)
VDD± = ±1.5 V, VIC = 0,
VO = 0, RS = 50 25°C 0.003 0.003 µV/mo
IIO
In
p
ut offset current
25°C 0.5 0.5 p
A
IIO
In ut
offset
current
125°C 500 500
A
IIB
In
p
ut bias current
25°C 1 1 p
A
IIB
In ut
bias
current
125°C 500 500
A
0 0.3 0 0.3
25°Cto to to to
VICR
Common-mode input
RS=50
|VIO |5mV
2 2.2 2 2.2
V
VICR
voltage range
RS
=
50
,
|VIO
|
5
mV
0 0
V
Full range to to
1.7 1.7
IOH = –20 µA 25°C 2.99 2.99
High level out
p
ut
IOH = 100 µA
25°C 2.85 2.85
VOH
High
-
le
v
el
o
u
tp
u
t
voltage
IOH
= –
100
µA
Full range 2.82 2.82 V
voltage
IOH = 400 µA
25°C 2.7 2.7
IOH
= –
400
µA
Full range 2.55 2.55
VIC = 1.5 V, IOL = 50 µA 25°C 10 10
Low level out
p
ut
VIC =15V
IOL = 500 µA
25°C 100 150 100 150
VOL
Lo
w-
le
v
el
o
u
tp
u
t
voltage
VIC
=
1
.
5
V
,
IOL
=
500
µA
Full range 165 165 mV
voltage
VIC =15V
IOL =1
m
A
25°C 200 300 200 300
VIC
=
1
.
5
V
,
IOL
=
1
m
A
Full range 300 300
Large signal differential
V15V
RL50 k
25°C 60 100 60 100
AVD
L
arge-s
i
gna
l
diff
eren
ti
a
l
voltage am
p
lification
V
IC =
1
.
5
V
,
VO=1Vto2V
R
L =
50
k
Full range 25 25 V/mV
voltage
am lification
VO
=
1
V
to
2
V
RL = 1 M25°C 100 100
ri(d) Differential input
resistance 25°C 1012 1012
ri(c) Common-mode input
resistance 25°C 1012 1012
ci(c) Common-mode input
capacitance f = 10 kHz, P package 25°C 8 8 pF
zoClosed-loop output
impedance f = 100 kHz, AV = 10 25°C 270 270
CMRR
Common-mode VIC = 0 to 1.7 V, 25°C 65 75 65 77
dB
CMRR
rejection ratio
IC
VO = 1.5 V, RS = 50 Full range 60 60
dB
kSVR
Supply voltage rejection VDD = 2.7 V to 8 V, 25°C 80 95 80 100
dB
kSVR
ygj
ratio (VDD/VIO)
DD
VIC = VDD/2, No load Full range 80 80
dB
Full range is –40°C to 125°C for Q level part, –55°C to 125°C for M level part.
Referenced to 1.5 V
NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at TA = 150°C extrapolated
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
TLV226x, TLV226xA
Advanced LinCMOS RAIL-TO-RAIL
OPERATIONAL AMPLIFIERS
SLOS186A – FEBRUAR Y 1997 – REVISED JULY 1999
15
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TLV2262Q and TLV2262M electrical characteristics at specified free-air temperature, VDD = 3 V
(unless otherwise noted) (continued)
PARAMETER TEST CONDITIONS T
A
TLV2262Q,
TLV2262M TLV2262AQ,
TLV2262AM UNIT
A
MIN TYP MAX MIN TYP MAX
IDD
Su
pp
ly current
VO=15V
No load
25°C 400 500 400 500
µA
IDD
Su ly
current
VO
=
1
.
5
V
,
No
load
Full range 500 500
µA
Full range is –40°C to 125°C for Q level part, –55°C to 125°C for M level part.
TLV2262Q and TLV2262M operating characteristics at specified free-air temperature, VDD = 3 V
PARAMETER TEST CONDITIONS T
A
TLV2262Q,
TLV2262M TLV2262AQ,
TLV2262AM UNIT
A
MIN TYP MAX MIN TYP MAX
RL=50k
25°C0.35 0.55 0.35 0.55
SR Slew rate at unity gain
O =
.
.
,
p
R
L =
50
k
,Full
025
025
V/µs
range
0
.
25
0
.
25
V
Equivalent input noise f = 10 Hz 25°C 43 43
nV/Hz
V
n
q
voltage f = 1 kHz 25°C 12 12 n
V/H
z
VN(PP)
Peak-to-peak
equivalent in
p
ut noise
f = 0.1 Hz to 1 Hz 25°C 0.6 0.6
µV
V
N(PP)
equivalent
input
noise
voltage f = 0.1 Hz to 10 Hz 25°C 1 1 µ
V
InEquivalent input noise
current 25°C 0.6 0.6 fA/Hz
THD+N
Total harmonic VO = 0.5 V to 2.5 V,
AV = 1
25
°
C
0.03% 0.03%
THD
+
N
distortion plus noise
=
,
RL = 50 kAV = 10
25°C
0.05% 0.05%
Gain-bandwidth f = 1 kHz, RL = 50 k
,
25
°
C
067
067
MHz
product
CL = 100 pF
L,
25°C
0
.
67
0
.
67
MH
z
BOM
Maximum
out
p
ut swing
V
= 1 V, A
V
= 1,
25
°
C
395
395
kHz
B
OM
output
-
swing
bandwidth
RL = 50 k,
V,
CL = 100 pF
25°C
395
395
kH
z
A
= –1
To 0 1%
56
56
t
Settling time
Step = 1 V to 2 V,
To
0
.
1%
25
°
C
5
.
6
5
.
6
µs
t
s
Settling
time
RL = 50 k,
To 0 01%
25°C
12 5
12 5
µ
s
CL = 100 pF
To
0
.
01%
12
.
5
12
.
5
φmPhase margin at unity
gain RL = 50 k
, CL = 100 pF
25°C 55°55°
Gain margin
L
25°C11 11 dB
Full range is –40°C to 125°C for Q level part, –55°C to 125°C for M level part.
Referenced to 1.5 V
TLV226x, TLV226xA
Advanced LinCMOS RAIL-TO-RAIL
OPERATIONAL AMPLIFIERS
SLOS186A – FEBRUAR Y 1997 – REVISED JULY 1999
16 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TLV2262Q and TLV2262M electrical characteristics at specified free-air temperature, VDD = 5 V
(unless otherwise noted)
PARAMETER TEST CONDITIONS T
A
TLV2262Q,
TLV2262M TLV2262AQ,
TLV2262AM UNIT
A
MIN TYP MAX MIN TYP MAX
VIO
In
p
ut offset voltage
25°C 300 2500 300 950
µV
V
IO
Inp
u
t
offset
v
oltage
Full range 3000 1500 µ
V
αVIO
Temperature coefficient of 25°C
2
2
µV/
°
C
αVIO input offset voltage to 125°C
2
2
µ
V/°C
Input offset voltage
long-term drift (see Note 4) VDD± = ±2.5 V, VIC = 0,
VO = 0, RS = 50 25°C 0.003 0.003 µV/mo
IIO
In
p
ut offset current
25°C 0.5 0.5 p
A
I
IO
Inp
u
t
offset
c
u
rrent
125°C 500 500
pA
IIB
In
p
ut bias current
25°C 1 1 p
A
I
IB
Inp
u
t
bias
c
u
rrent
125°C 500 500
pA
0 0.3 0 0.3
25°Cto to to to
VICR
Common-mode input
|VIO |5mV
RS=50
4 4.2 4 4.2
V
V
ICR voltage range
|V
IO
|
5
mV
,
R
S =
50
0 0
V
Full range to to
g
3.5 3.5
IOH = –20 µA 25°C 4.99 4.99
IOH = 100 µA
25°C 4.85 4.94 4.85 4.94
VOH High-level output voltage
I
OH = –
100
µ
A
Full range 4.82 4.82 V
IOH = 400 µA
25°C 4.7 4.85 4.7 4.85
I
OH = –
400
µ
A
Full range 4.5 4.5
VIC = 2.5 V, IOL = 50 µA 25°C 0.01 0.01
VIC =25V
IOL = 500 µA
25°C 0.09 0.15 0.09 0.15
VOL Low-level output voltage
V
IC =
2
.
5
V
,
I
OL =
500
µ
A
Full range 0.15 0.15 V
VIC =25V
IOL =1
m
A
25°C 0.2 0.3 0.2 0.3
V
IC =
2
.
5
V
,
I
OL =
1
m
A
Full range 0.3 0.3
L i l diff ti l
V25V
RL50 k
25°C 80 170 80 170
AVD Large-signal differential
voltage am
p
lification
VIC = 2.5 V,
VO=1Vto4V
R
L =
50
k
Full range 50 50 V/mV
voltage
am lification
VO
=
1
V
to
4
V
RL = 1 M25°C 550 550
ri(d) Differential input resistance 25°C 1012 1012
ri(c) Common-mode input
resistance 25°C 1012 1012
ci(c) Common-mode input
capacitance f = 10 kHz, P package 25°C 8 8 pF
zoClosed-loop output
impedance f = 100 kHz, AV = 10 25°C 240 240
CMRR
Common-mode rejection VIC = 0 to 2.7 V, 25°C 70 83 70 83
dB
CMRR
j
ratio
IC
VO = 2.5 V, RS = 50 Full range 70 70
dB
kSVR
Supply voltage rejection VDD = 4.4 V to 8 V, 25°C 80 95 80 95
dB
k
SVR
ygj
ratio (VDD/VIO)
DD
VIC = VDD/2, No load Full range 80 80
dB
Full range is –40°C to 125°C for Q level part, –55°C to 125°C for M level part.
Referenced to 2.5 V
NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at TA = 150°C extrapolated
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
TLV226x, TLV226xA
Advanced LinCMOS RAIL-TO-RAIL
OPERATIONAL AMPLIFIERS
SLOS186A – FEBRUAR Y 1997 – REVISED JULY 1999
17
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TLV2262Q and TLV2262M electrical characteristics at specified free-air temperature, VDD = 5 V
(unless otherwise noted) (continued)
PARAMETER TEST CONDITIONS T
A
TLV2262Q,
TLV2262M TLV2262AQ,
TLV2262AM UNIT
A
MIN TYP MAX MIN TYP MAX
IDD
Su
pp
ly current
VO=25V
No load
25°C 400 500 400 500
µA
I
DD
S
u
ppl
y
c
u
rrent
V
O =
2
.
5
V
,
No
load
Full range 500 500 µ
A
Full range is –40°C to 125°C for Q level part, –55°C to 125°C for M level part.
TLV2262Q and TLV2262M operating characteristics at specified free-air temperature, VDD = 5 V
PARAMETER TEST CONDITIONS T
A
TLV2262Q,
TLV2262M TLV2262AQ,
TLV2262AM UNIT
A
MIN TYP MAX MIN TYP MAX
Slew rate at unity
R50k
25°C0.35 0.55 0.35 0.55
SR
Sle
w
rate
at
u
nit
y
gain
O =
.
.
,
p
RL = 50 k
Full
025
025
V/µs
gain
range
0
.
25
0
.
25
V
Equivalent input f = 10 Hz 25°C 40 40
nV/Hz
V
n
q
noise voltage f = 1 kHz 25°C 12 12 n
V/H
z
VN(PP)
Peak-to-peak
equivalent in
p
ut
f = 0.1 Hz to 1 Hz 25°C 0.7 0.7
µV
V
N(PP)
equivalent
input
noise voltage f = 0.1 Hz to 10 Hz 25°C 1.3 1.3 µ
V
InEquivalent input
noise current 25°C 0.6 0.6 fA/Hz
THD+N
Total harmonic
distortion
p
lus
VO = 0.5 V to 2.5 V,
AV = 1
25
°
C
0.017% 0.017%
THD
+
N
distortion
plus
noise
=
,
RL = 50 kAV = 10
25°C
0.03% 0.03%
Gain-bandwidth f = 50 kHz, RL = 50 k
,
25
°
C
071
071
MHz
product
CL = 100 pF
L,
25°C
0
.
71
0
.
71
MH
z
BOM
Maximum
out
p
ut swing
V
= 2 V, A
V
= 1,
25
°
C
185
185
kHz
B
OM
output
-
swing
bandwidth
RL = 50 k,
V,
CL = 100 pF
25°C
185
185
kH
z
A
= –1
To 0 1%
64
64
t
Settling time
Step = 0.5 V to 2.5 V,
To
0
.
1%
25
°
C
6
.
4
6
.
4
µs
t
s
Settling
time
RL = 50 k,
To 0 01%
25°C
14 1
14 1
µ
s
CL = 100 pF
To
0
.
01%
14
.
1
14
.
1
φmPhase margin at
unity gain RL = 50 k
, CL = 100 pF
25°C 56°56°
Gain margin
L
25°C11 11 dB
Full range is –40°C to 125°C for Q level part, –55°C to 125°C for M level part.
Referenced to 2.5 V
TLV226x, TLV226xA
Advanced LinCMOS RAIL-TO-RAIL
OPERATIONAL AMPLIFIERS
SLOS186A – FEBRUAR Y 1997 – REVISED JULY 1999
18 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TLV2264Q and TLV2264M electrical characteristics at specified free-air temperature, VDD = 3 V
(unless otherwise noted)
PARAMETER TEST CONDITIONS T
A
TLV2264Q,
TLV2264M TLV2264AQ,
TLV2264AM UNIT
A
MIN TYP MAX MIN TYP MAX
VIO
In
p
ut offset voltage
25°C 300 2500 300 950
µV
V
IO
Inp
u
t
offset
v
oltage
Full range 3000 1500 µ
V
αVIO
Temperature coefficient 25°C
2
2
µV/
°
C
αVIO of input offset voltage
V±15V
to 125°C
2
2
µ
V/°C
Input offset voltage
long-term drift
(see Note 4)
V
DD± = ±
1
.
5
V
,
VIC = 0,
VO = 0,
RS=50
25°C 0.003 0.003 µV/mo
IIO
In
p
ut offset current
RS
=
50
25°C 0.5 0.5 p
A
I
IO
Inp
u
t
offset
c
u
rrent
125°C 500 500
pA
IIB
In
p
ut bias current
25°C 1 1 p
A
I
IB
Inp
u
t
bias
c
u
rrent
125°C 500 500
pA
0 0.3 0 0.3
25°Cto to to to
VICR
Common-mode input
RS=50
|VIO |5mV
2 2.2 2 2.2
V
V
ICR voltage range
R
S =
50
,
|V
IO
|
5
mV
0 0
V
Full range to to
g
1.7 1.7
IOH = –20 µA 25°C 2.99 2.99
High level output
IOH = 100 µA
25°C 2.85 2.85
VOH
Hi
g
h
-
l
eve
l
ou
t
pu
t
voltage
I
OH = –
100
µ
A
Full range 2.82 2.82 V
voltage
IOH = 400 µA
25°C 2.7 2.7
I
OH = –
400
µ
A
Full range 2.6 2.6
VIC = 1.5 V, IOL = 50 µA 25°C 10 10
Low level output
VIC =15V
IOL = 500 µA
25°C 100 150 100 150
VOL
L
ow-
l
eve
l
ou
t
pu
t
voltage
V
IC =
1
.
5
V
,
I
OL =
500
µ
A
Full range 150 150 mV
voltage
VIC =15V
IOL =1
m
A
25°C 200 300 200 300
V
IC =
1
.
5
V
,
I
OL =
1
m
A
Full range 300 300
Large signal differential
V15V
RL50 k
25°C 60 100 60 100
AVD
L
arge-s
i
gna
l
diff
eren
ti
a
l
voltage am
p
lification
V
IC =
1
.
5
V
,
VO=1Vto2V
R
L =
50
k
Full range 25 25 V/mV
VD
voltage
am lification
VO
=
1
V
to
2
V
RL = 1 M25°C 100 100
ri(d) Differential input
resistance 25°C 1012 1012
ri(c) Common-mode input
resistance 25°C 1012 1012
ci(c) Common-mode input
capacitance f = 10 kHz, N package 25°C 8 8 pF
zoClosed-loop output
impedance f = 100 kHz, AV = 10 25°C 270 270
CMRR
Common-mode rejection VIC = 0 to 1.7 V, VO = 1.5 V, 25°C 65 75 65 77
dB
CMRR
j
ratio
IC O
RS = 50 Full range 60 60
dB
kSVR
Supply voltage rejection VDD = 2.7 V to 8 V, 25°C 80 95 80 100
dB
kSVR
ygj
ratio (VDD/VIO)VIC = VDD/2, No load Full range 80 80
dB
Full range is –40°C to 125°C for Q level part, –55°C to 125°C for M level part.
Referenced to 1.5 V
NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at TA = 150°C extrapolated
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
TLV226x, TLV226xA
Advanced LinCMOS RAIL-TO-RAIL
OPERATIONAL AMPLIFIERS
SLOS186A – FEBRUAR Y 1997 – REVISED JULY 1999
19
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TLV2264Q and TLV2264M electrical characteristics at specified free-air temperature, VDD = 3 V
(unless otherwise noted) (continued)
PARAMETER TEST CONDITIONS T
A
TLV2264Q,
TLV2264M TLV2264AQ,
TLV2264AM UNIT
A
MIN TYP MAX MIN TYP MAX
IDD
Supply current (four
VO=15V
No load
25°C 0.8 1 0.8 1
mA
IDD
y(
amplifiers)
VO
=
1
.
5
V
,
No
load
Full range 1 1
mA
Full range is –40°C to 125°C for Q level part, –55°C to 125°C for M level part.
TLV2264Q and TLV2264M operating characteristics at specified free-air temperature, VDD = 3 V
PARAMETER TEST CONDITIONS T
A
TLV2264Q,
TLV2264M TLV2264AQ,
TLV2264AM UNIT
A
MIN TYP MAX MIN TYP MAX
25°C
035
055
035
055
Slew rate at unity
VO=05Vto17V
RL=50k
25°C
0
.
35
0
.
55
0
.
35
0
.
55
SR
Sle
w
rate
at
u
nit
y
gain
V
O =
0
.
5
V
to
1
.
7
V
,
CL= 100
p
F
R
L =
50
k
,Full
025
025
V/µs
gain
CL
=
100
F
range
0
.
25
0
.
25
V
Equivalent input f = 10 Hz 25°C 43 43
nV/Hz
V
n
q
noise voltage f = 1 kHz 25°C 12 12 n
V/H
z
VN(PP)
Peak-to-peak
equivalent in
p
ut
f = 0.1 Hz to 1 Hz 25°C 0.6 0.6
µV
V
N(PP)
equivalent
input
noise voltage f = 0.1 Hz to 10 Hz 25°C 1 1 µ
V
InEquivalent input
noise current 25°C 0.6 0.6 fA/Hz
THD+N
Total harmonic
distortion
p
lus
VO = 0.5 V to 2.5 V,
f=20 kHz
AV = 1
25
°
C
0.03% 0.03%
THD
+
N
distortion
plus
noise
f
=
20
kHz
,
RL = 50 kAV = 10
25°C
0.05% 0.05%
Gain-bandwidth f = 1 kHz, RL = 50 k
,
25
°
C
067
067
MHz
product
,
CL = 100 pF
L,
25°C
0
.
67
0
.
67
MH
z
BOM
Maximum output- V
O(PP)
= 1 V, A
V
= 1,
25
°
C
395
395
kHz
B
OM swing bandwidth
O(PP) ,
RL = 50 k,
V,
CL = 100 pF
25°C
395
395
kH
z
A
V
= –1
,
To 0 1%
56
56
t
Settling time
AV
1,
Step = 1 V to 2 V,
To
0
.
1%
25
°
C
5
.
6
5
.
6
µs
t
s
Settling
time
,
RL = 50 k,
To 0 01%
25°C
12 5
12 5
µ
s
L
CL = 100 pF
To
0
.
01%
12
.
5
12
.
5
φmPhase margin at
unity gain RL = 50 k
, CL = 100 pF
25°C 55°55°
Gain margin
L,
L
25°C11 11 dB
Full range is –40°C to 125°C for Q level part, –55°C to 125°C for M level part.
Referenced to 1.5 V
TLV226x, TLV226xA
Advanced LinCMOS RAIL-TO-RAIL
OPERATIONAL AMPLIFIERS
SLOS186A – FEBRUAR Y 1997 – REVISED JULY 1999
20 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TLV2264Q and TLV2264M electrical characteristics at specified free-air temperature, VDD = 5 V
(unless otherwise noted)
PARAMETER TEST CONDITIONS T
A
TLV2264Q,
TLV2264M TLV2264AQ,
TLV2264AM UNIT
A
MIN TYP MAX MIN TYP MAX
VIO
In
p
ut offset voltage
25°C 300 2500 300 950
µV
V
IO
Inp
u
t
offset
v
oltage
Full range 3000 1500 µ
V
αVIO
Temperature coefficient of 25°C
2
2
µV/
°
C
αVIO input offset voltage
V±25V
to 125°C
2
2
µ
V/°C
Input offset voltage
long-term drift
(see Note 4)
V
DD± = ±
2
.
5
V
,
VIC = 0,
VO = 0,
RS
=
50
25°C 0.003 0.003 µV/mo
IIO
In
p
ut offset current
RS
=
50
25°C 0.5 0.5 p
A
I
IO
Inp
u
t
offset
c
u
rrent
125°C 500 500
pA
IIB
In
p
ut bias current
25°C 1 1 p
A
I
IB
Inp
u
t
bias
c
u
rrent
125°C 500 500
pA
0 0.3 0 0.3
25°Cto to to to
VICR
Common-mode input
|VIO |5mV
RS=50
4 4.2 4 4.2
V
V
ICR voltage range
|V
IO
|
5
mV
,
R
S =
50
0 0
V
Full range to to
g
3.5 3.5
IOH = –20 µA 25°C 4.99 4.99
IOH = 100 µA
25°C 4.85 4.94 4.85 4.94
VOH High-level output voltage
I
OH = –
100
µ
A
Full range 4.82 4.82 V
IOH = 400 µA
25°C 4.7 4.85 4.7 4.85
I
OH = –
400
µ
A
Full range 4.5 4.5
VIC = 2.5 V, IOL = 50 µA 25°C 0.01 0.01
VIC =25V
IOL = 500 µA
25°C 0.09 0.15 0.09 0.15
VOL Low-level output voltage
V
IC =
2
.
5
V
,
I
OL =
500
µ
A
Full range 0.15 0.15 V
VIC =25V
IOL 1
m
A
25°C 0.2 0.3 0.2 0.3
V
IC =
2
.
5
V
,
I
OL =
1
m
A
Full range 0.3 0.3
Large signal differential
V25V
RL50 k
25°C 80 170 80 170
AVD
L
arge-s
i
gna
l
diff
eren
ti
a
l
voltage am
p
lification
V
IC =
2
.
5
V
,
VO=1Vto4V
R
L =
50
k
Full range 50 50 V/mV
VD
voltage
am lification
VO
=
1
V
to
4
V
RL = 1 M25°C 550 550
ri(d) Differential input
resistance 25°C 1012 1012
ri(c) Common-mode input
resistance 25°C 1012 1012
ci(c) Common-mode input
capacitance f = 10 kHz, N package 25°C 8 8 pF
zoClosed-loop output
impedance f = 100 kHz, AV = 10 25°C 240 240
CMRR
Common-mode rejection VIC = 0 to 2.7 V, VO = 2.5 V, 25°C 70 83 70 83
dB
CMRR
j
ratio
IC O
RS = 50 Full range 70 70
dB
kSVR
Supply voltage rejection VDD = 4.4 V to 8 V, 25°C 80 95 80 95
dB
kSVR
ygj
ratio (VDD/VIO)VIC = VDD/2, No load Full range 80 80
dB
Full range is –40°C to 125°C for Q level part, –55°C to 125°C for M level part.
Referenced to 2.5 V
NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at TA = 150°C extrapolated
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
TLV226x, TLV226xA
Advanced LinCMOS RAIL-TO-RAIL
OPERATIONAL AMPLIFIERS
SLOS186A – FEBRUAR Y 1997 – REVISED JULY 1999
21
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TLV2264Q and TLV2264M electrical characteristics at specified free-air temperature, VDD = 5 V
(unless otherwise noted) (continued)
PARAMETER TEST CONDITIONS T
A
TLV2264Q,
TLV2264M TLV2264AQ,
TLV2264AM UNIT
A
MIN TYP MAX MIN TYP MAX
IDD
Supply current (four
VO=25V
No load
25°C 0.8 1 0.8 1
mA
IDD
y(
amplifiers)
VO
=
2
.
5
V
,
No
load
Full range 1 1
mA
Full range is –40°C to 125°C for Q level part, –55°C to 125°C for M level part.
TLV2264Q and TLV2264M operating characteristics at specified free-air temperature, VDD = 5 V
PARAMETER TEST CONDITIONS T
A
TLV2264Q,
TLV2264M TLV2264AQ,
TLV2264AM UNIT
A
MIN TYP MAX MIN TYP MAX
25°C
035
055
035
055
Slew rate at unity
RL=50k
25°C
0
.
35
0
.
55
0
.
35
0
.
55
SR
Sle
w
rate
at
u
nit
y
gain
O =
.
.
,
p
R
L =
50
k
,Full
025
025
V/µs
gain
range
0
.
25
0
.
25
V
Equivalent input f = 10 Hz 25°C 40 40
nV/Hz
V
n
q
noise voltage f = 1 kHz 25°C 12 12 n
V/H
z
VN(PP)
Peak-to-peak
equivalent in
p
ut
f = 0.1 Hz to 1 Hz 25°C 0.7 0.7
µV
V
N(PP)
equivalent
input
noise voltage f = 0.1 Hz to 10 Hz 25°C 1.3 1.3 µ
V
InEquivalent input
noise current 25°C 0.6 0.6 fA/Hz
THD+N
Total harmonic
distortion
p
lus
VO = 0.5 V to 2.5 V,
AV = 1
25
°
C
0.017% 0.017%
THD
+
N
distortion
plus
noise
=
,
RL = 50 kAV = 10
25°C
0.03% 0.03%
Gain-bandwidth f = 50 kHz, RL = 50 k
,
25
°
C
071
071
MHz
product
CL = 100 pF
L,
25°C
0
.
71
0
.
71
MH
z
BOM
Maximum
out
p
ut swing
V
= 2 V, A
V
= 1,
25
°
C
185
185
kHz
B
OM
output
-
swing
bandwidth
RL = 50 k,
V,
CL = 100 pF
25°C
185
185
kH
z
A
= –1
To 0 1%
64
64
t
Settling time
Step = 0.5 V to 2.5 V,
To
0
.
1%
25
°
C
6
.
4
6
.
4
µs
t
s
Settling
time
RL = 50 k,
To 0 01%
25°C
14 1
14 1
µ
s
CL = 100 pF
To
0
.
01%
14
.
1
14
.
1
φmPhase margin at
unity gain RL = 50 k
, CL = 100 pF
25°C 56°56°
Gain margin
L
25°C11 11 dB
Full range is –40°C to 125°C for Q level part, –55°C to 125°C for M level part.
Referenced to 2.5 V
TLV226x, TLV226xA
Advanced LinCMOS RAIL-TO-RAIL
OPERATIONAL AMPLIFIERS
SLOS186A – FEBRUAR Y 1997 – REVISED JULY 1999
22 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Table of Graphs
FIGURE
VIO
In
p
ut offset voltage
Distribution 2 – 5
V
IO
Inp
u
t
offset
v
oltage
vs Common-mode voltage 6, 7
αVIO Input offset voltage temperature coef ficient Distribution 8 – 11
IIB/IIO Input bias and input offset currents vs Free-air temperature 12
VI
In
p
ut voltage
vs Supply voltage 13
V
I
Inp
u
t
v
oltage
yg
vs Free-air temperature 14
VOH High-level output voltage vs High-level output current 15, 18
VOL Low-level output voltage vs Low-level output current 16, 17, 19
VO(PP) Maximum peak-to-peak output voltage vs Frequency 20
IOS
Short circuit out
p
ut current
vs Supply voltage 21
I
OS
Short
-
circ
u
it
o
u
tp
u
t
c
u
rrent
yg
vs Free-air temperature 22
VID Differential input voltage vs Output voltage 23, 24
AVD Differential voltage amplification vs Load resistance 25
AVD
Large signal differential voltage am
p
lification
vs Frequency 26, 27
A
VD
Large
-
signal
differential
v
oltage
amplification
qy
vs Free-air temperature
,
28, 29
zoOutput impedance vs Frequency 30, 31
CMRR
Common mode rejection ratio
vs Frequency 32
CMRR
Common
-
mode
rejection
ratio
qy
vs Free-air temperature 33
kSVR
Su
pp
ly voltage rejection ratio
vs Frequency 34, 35
k
SVR
S
u
ppl
y-v
oltage
rejection
ratio
qy
vs Free-air temperature
,
36, 37
IDD Supply current vs Free-air temperature 38, 39
SR
Slew rate
vs Load capacitance 40
SR
Sle
w
rate
vs Free-air temperature 41
VOInverting large-signal pulse response 42, 43
VOVoltage-follower large-signal pulse response 44, 45
VOInverting small-signal pulse response 46, 47
VOVoltage-follower small-signal pulse response 48, 49
VnEquivalent input noise voltage vs Frequency 50, 51
Input noise voltage Over a 10-second period 52
Integrated noise voltage vs Frequency 53
THD + N Total harmonic distortion plus noise vs Frequency 54
Gain bandwidth
p
roduct
vs Supply voltage 55
Gain
-
band
w
idth
prod
u
ct
yg
vs Free-air temperature 56
φ
Phase margin
vs Frequency 26, 27
φ
m
Phase
margin
qy
vs Load capacitance
,
57
Gain margin vs Load capacitance 58
B1Unity-gain bandwidth vs Load capacitance 59
Overestimation of phase margin vs Load capacitance 60
TLV226x, TLV226xA
Advanced LinCMOS RAIL-TO-RAIL
OPERATIONAL AMPLIFIERS
SLOS186A – FEBRUAR Y 1997 – REVISED JULY 1999
23
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 2
9
6
3
0
Precentage of Amplifiers – %
12
DISTRIBUTION OF TLV2262
INPUT OFFSET VOLTAGE
15
VIO – Input Offset Voltage – mV
1.6 0.8 0 0.8 1.6
841 Amplifiers From 2 W afer Lots
VDD± = ± 1.5 V
TA = 25°C
Figure 3
9
6
3
0
Precentage of Amplifiers – %
12
DISTRIBUTION OF TLV2262
INPUT OFFSET VOLTAGE
15
VIO – Input Offset Voltage – mV
1.6 0.8 0 0.8 1.6
841 Amplifiers From 2 W afer Lots
VDD± = ± 2.5 V
TA = 25°C
Figure 4
12
8
4
0
Percentage of Amplifiers – %
16
DISTRIBUTION OF TLV2264
INPUT OFFSET VOLTAGE
20
1.6 0.8 0 0.8 1.6
2272 Amplifiers From 2 Wafer Lots
VDD±= ±1.5 V
TA = 25°C
VIO – Input Offset Voltage – mV
Figure 5
12
8
4
0
Percentage of Amplifiers – %
16
DISTRIBUTION OF TLV2264
INPUT OFFSET VOLTAGE
20
1.6 0.8 0 0.8 1.6
2272 Amplifiers From 2 Wafer Lots
VDD±= ±2.5 V
TA = 25°C
VIO – Input Offset Voltage – mV
TLV226x, TLV226xA
Advanced LinCMOS RAIL-TO-RAIL
OPERATIONAL AMPLIFIERS
SLOS186A – FEBRUAR Y 1997 – REVISED JULY 1999
24 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 6
0
– Input Offset Voltage – mV
0.5
INPUT OFFSET VOLTAGE
vs
COMMON-MODE INPUT VOLTAGE
1
0.5
–1
–1 –0.5 0 0.5 1 1.5 2 2.5 3
VDD = 3 V
RS = 50
TA = 25°C
ÁÁ
ÁÁ
VIO
VIC – Common-Mode Input Voltage – V
Figure 7
0
– Input Offset Voltage – mV
0.5
INPUT OFFSET VOLTAGE
vs
COMMON-MODE INPUT VOLTAGE
1
0.5
–1
–1 0 512 43
VDD = 5 V
RS = 50
TA = 25°C
ÁÁ
ÁÁ
VIO
VIC – Common-Mode Input Voltage – V
Figure 8
DISTRIBUTION OF TLV2262 INPUT OFFSET
VOLTAGE TEMPERATURE COEFFICIENT
15
10
5
0
Percentage of Amplifiers – %
20
25
30
–5 –4 –3 –2 –1 0 1 2 3 4 5
128 Amplifiers From 2 Wafer Lots
VDD± = ±1.5 V
P Package
TA = 25°C to 85°C
αVIO – Temperature Coefficient µV/°C
Figure 9
DISTRIBUTION OF TLV2262 INPUT OFFSET
VOLTAGE TEMPERATURE COEFFICIENT
15
10
5
0
Percentage of Amplifiers – %
20
25
30
–5 –4 –3 –2 –1 0 1 2 3 4 5
128 Amplifiers From 2 Wafer Lots
VDD± = ±2.5 V
P Package
TA = 25°C to 85°C
αVIO – Temperature Coefficient µV/°C
For all curves where VDD = 5 V, all loads are referenced to 2.5 V. For all curves where VDD = 3 V, all loads are referenced to 1.5 V.
TLV226x, TLV226xA
Advanced LinCMOS RAIL-TO-RAIL
OPERATIONAL AMPLIFIERS
SLOS186A – FEBRUAR Y 1997 – REVISED JULY 1999
25
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 10
DISTRIBUTION OF TLV2264 INPUT OFFSET
VOLTAGE TEMPERATURE COEFFICIENT
Percentage of Amplifiers – %
10
5
30
0
20
15
25
35
–5 –4 –3 –2 –1 0 1 2 3 4 5
128 Amplifiers From
2 W afer Lots
VDD± = ±1.5 V
N Package
TA = 25°C to 125°C
αVIO – Temperature Coefficient
of Input Offset Voltage – µV/°C
Figure 11
DISTRIBUTION OF TLV2264 INPUT OFFSET
VOLTAGE TEMPERATURE COEFFICIENT
Percentage of Amplifiers – %
10
5
30
0
20
15
25
35
–5 –4 –3 –2 –1 0 1 2 3 4 5
128 Amplifiers From
2 W afer Lots
VDD± = ±2.5 V
N Package
TA = 25°C to 125°C
αVIO – Temperature Coefficient
of Input Offset Voltage – µV/°C
Figure 12
10
5
30
025 45 65 85
IIB and IIO – Input Bias and Input Offset Currents – pA
20
15
25
INPUT BIAS AND INPUT OFFSET CURRENTS
vs
FREE-AIR TEMPERATURE
35
105 125
IIB
IIO
VDD± = ±2.5 V
VIC = 0
VO = 0
RS = 50
TA – Free-Air Temperature – °C
ÁÁ
ÁÁ
IIB IIO
Figure 13
0
2
1 1.5 2 2.5
– Input Voltage – V
1
0.5
1.5
INPUT VOLTAGE
vs
SUPPLY VOLTAGE
2.5
3 3.5 4
0.5
–1
1.5
–2
2.5
RS = 50
TA = 25°C
| VIO | 5 mV
ÁÁ
ÁÁ
VI
|VDD±| – Supply Voltage – V
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TLV226x, TLV226xA
Advanced LinCMOS RAIL-TO-RAIL
OPERATIONAL AMPLIFIERS
SLOS186A – FEBRUAR Y 1997 – REVISED JULY 1999
26 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 14
2
1
0
– Input Voltage – V
3
4
INPUT VOLTAGE†‡
vs
FREE-AIR TEMPERATURE
5
–1
55 35 15 5 25 45 65 85
| VIO | 5 mV
VDD = 5 V
ÁÁ
VI
TA – Free-Air Temperature – °C105 125
Figure 15
– High-Level Output Voltage – V
HIGH-LEVEL OUTPUT VOLTAGE†‡
vs
HIGH-LEVEL OUTPUT CURRENT
ÁÁ
ÁÁ
ÁÁ
VOH
| IOH | – High-Level Output Current – µA
2
1
0.5
00 500 1000
3
3.5
4
1500 2000
2.5
1.5
TA = –55°C
VDD = 3 V
TA = 85°C
TA = –40°C
TA = 125°C
TA = 25°C
Figure 16
0.6
0.4
0.2
00123
– Low-Level Output Voltage – V
0.8
1
LOW-LEVEL OUTPUT VOLTAGE
vs
LOW-LEVEL OUTPUT CURRENT
1.2
45
ÁÁ
ÁÁ
VOL
IOL – Low-Level Output Current – mA
VDD = 3 V
TA = 25°C
VIC = 0
VIC = 0.75 V
VIC = 1.5 V
Figure 17
– Low-Level Output Voltage – V
LOW-LEVEL OUTPUT VOLTAGE†‡
vs
LOW-LEVEL OUTPUT CURRENT
ÁÁ
ÁÁ
ÁÁ
VOL
0.4
0.2
1.2
0012 3
0.8
0.6
1
1.4
45
TA = 85°C
TA = – 40°C
TA = 25°C
VDD = 3 V
VIC = 1.5 V
TA = – 55°C
TA = 125°C
IOL – Low-Level Output Current – mA
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
For all curves where VDD = 5 V, all loads are referenced to 2.5 V. For all curves where VDD = 3 V, all loads are referenced to 1.5 V.
TLV226x, TLV226xA
Advanced LinCMOS RAIL-TO-RAIL
OPERATIONAL AMPLIFIERS
SLOS186A – FEBRUAR Y 1997 – REVISED JULY 1999
27
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 18
– High-Level Output Voltage – V
HIGH-LEVEL OUTPUT VOLTAGE†‡
vs
HIGH-LEVEL OUTPUT CURRENT
ÁÁ
ÁÁ
VOH
| IOH | – High-Level Output Current – µA
3
2
1
00 500 1000
4
5
6
1500 2000 2500 3000
TA = 25°C
TA = 85°C
VDD = 5 V
TA = –40°C
TA = 125°C
TA = –55°C
Figure 19
0.6
0.4
0.2
001 2 3
– Low-Level Output Voltage – V
1
1.2
LOW-LEVEL OUTPUT VOLTAGE†‡
vs
LOW-LEVEL OUTPUT CURRENT
1.4
456
0.8
VDD = 5 V
VIC = 2.5 V
TA = –40°C
ÁÁ
ÁÁ
VOL
IOL – Low-Level Output Current – mA
TA = 85°C
TA = 25°C
TA = 125°CTA = –55°C
Figure 20
4
2
1
5
3
– Maximum Peak-to-Peak Output Voltage – V
f – Frequency – Hz
MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE
vs
FREQUENCY
0103104105106
ÁÁ
ÁÁ
ÁÁ
VO(PP)
RI = 10 k
TA = 25°C
VDD = 5 V
VDD = 3 V
Figure 21
6
2
0
2345
– Short-Circuit Output Current – mA
8
10
SHORT-CIRCUIT OUTPUT CURRENT
vs
SUPPLY VOLTAGE
12
678
4
–2
IOS
VDD – Supply Voltage – V
VID = –100 mV
VID = 100 mV
VIC = VDD/2
TA = 25°C
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
For all curves where VDD = 5 V, all loads are referenced to 2.5 V. For all curves where VDD = 3 V, all loads are referenced to 1.5 V.
TLV226x, TLV226xA
Advanced LinCMOS RAIL-TO-RAIL
OPERATIONAL AMPLIFIERS
SLOS186A – FEBRUAR Y 1997 – REVISED JULY 1999
28 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 22
– Short-Circuit Output Current – mA
SHORT-CIRCUIT OUTPUT CURRENT
vs
FREE-AIR TEMPERATURE
IOS
TA – Free-Air Temperature – °C
4
2
6
10
12
8
0
–4 50 25 0 25 50 75 100
–2
VO = 2.5 V
VDD = 5 V
VID = –100 mV
VID = 100 mV
75 125
Figure 23
0
800
0 0.5 1 1.5
– Differential Input Voltage –
400
200
600
DIFFERENTIAL INPUT VOLTAGE
vs
OUTPUT VOLTAGE
1000
2 2.5 3
200
400
600
800
1000
VDD = 3 V
RI = 50 k
VIC = 1.5 V
TA = 25°C
VID Vµ
VO – Output Voltage – V
Figure 24
0
800
01 3
– Differential Input Voltage –
400
200
600
DIFFERENTIAL INPUT VOLTAGE
vs
OUTPUT VOLTAGE
1000
245
200
400
600
800
1000
VID Vµ
VO – Output Voltage – V
VDD = 5 V
VIC = 2.5 V
RL = 50 k
TA = 25°C
Figure 25
DIFFERENTIAL VOLTAGE AMPLIFICATION
vs
LOAD RESISTANCE
RL – Load Resistance – k
– Differential Voltage Amplification – V/mV
ÁÁ
ÁÁ
AVD
100
10
1
1000
VDD = 3 V
VDD = 5 V
VO(PP) = 2 V
TA = 25°C
103104105106
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
For all curves where VDD = 5 V, all loads are referenced to 2.5 V. For all curves where VDD = 3 V, all loads are referenced to 1.5 V.
TLV226x, TLV226xA
Advanced LinCMOS RAIL-TO-RAIL
OPERATIONAL AMPLIFIERS
SLOS186A – FEBRUAR Y 1997 – REVISED JULY 1999
29
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
om – Phase Margin
φm
20
f – Frequency – Hz
80
60
40
0
–20
–40103104105106107
180°
135°
90°
45°
0°
–45°
–90°
LARGE-SIGNAL DIFFERENTIAL VOLTAGE
AMPLIFICATION AND PHASE MARGIN
vs
FREQUENCY
AVD – Large-Signal Differential
ÁÁ
ÁÁ
ÁÁ
AVD
Voltage Amplification – dB
Gain
Phase Margin
VDD = 5 V
CL= 100 pF
TA = 25°C
Figure 26
om – Phase Margin
φm
20
f – Frequency – Hz
LARGE-SIGNAL DIFFERENTIAL VOLTAGE
AMPLIFICATION AND PHASE MARGIN
vs
FREQUENCY
80
60
40
0
–20
–40103104105106107
180°
135°
90°
45°
0°
–45°
–90°
AVD – Large-Signal Differential
ÁÁ
ÁÁ
ÁÁ
AVD
Voltage Amplification – dB
Gain
Phase Margin
VDD = 3 V
CL = 100 pF
TA = 25°C
Figure 27
For all curves where VDD = 5 V, all loads are referenced to 2.5 V. For all curves where VDD = 3 V, all loads are referenced to 1.5 V.
TLV226x, TLV226xA
Advanced LinCMOS RAIL-TO-RAIL
OPERATIONAL AMPLIFIERS
SLOS186A – FEBRUAR Y 1997 – REVISED JULY 1999
30 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 28
10
100
LARGE-SIGNAL DIFFERENTIAL
VOLTAGE AMPLIFICATION†‡
vs
FREE-AIR TEMPERATURE
1000
50 25 0 25 50 75 100
TA – Free-Air Temperature – °C
– Large-Signal Differential Voltage
AVD Amplification – V/mV
RL = 1 M
RL = 50 k
RL = 10 k
VDD = 3 V
VIC = 1.5 V
VO = 0.5 V to 2.5 V
125–75
Figure 29
10
100
LARGE-SIGNAL DIFFERENTIAL
VOLTAGE AMPLIFICATION†‡
vs
FREE-AIR TEMPERATURE
1000
50 25 0 25 50 75 100
TA – Free-Air Temperature – °C
– Large-Signal Differential Voltage
AVD Amplification – V/mV
RL = 1 M
10000
125–75
RL = 50 k
RL = 10 k
VDD = 5 V
VIC = 2.5 V
VO = 1 V to 4 V
Figure 30
0.1
1
– Output Impedance –
f– Frequency – Hz
OUTPUT IMPEDANCE
vs
FREQUENCY
10
100
1000
102103104105
VDD = 3 V
TA = 25°C
AV = 100
AV = 10
AV = 1
zo
Figure 31
0.1
1
– Output Impedance –
f– Frequency – Hz
OUTPUT IMPEDANCE
vs
FREQUENCY
10
100
1000
102103104105
VDD = 5 V
TA = 25°C
AV = 100
AV = 10
AV = 1
zo
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
For all curves where VDD = 5 V, all loads are referenced to 2.5 V. For all curves where VDD = 3 V, all loads are referenced to 1.5 V.
TLV226x, TLV226xA
Advanced LinCMOS RAIL-TO-RAIL
OPERATIONAL AMPLIFIERS
SLOS186A – FEBRUAR Y 1997 – REVISED JULY 1999
31
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 32
80
40
20
0
100
60
CMRR – Common-Mode Rejection Ratio – dB
f – Frequency – Hz
COMMON-MODE REJECTION RATIO
vs
FREQUENCY
101102103104105106
VDD = 5 V
VIC = 2.5 V
VDD = 5 V
VIC = 1.5 V
TA = 25°C
Figure 33
80
78
74
72
70
88
76
CMMR – Common-Mode Rejection Ratio – dB
84
82
86
COMMON-MODE REJECTION RATIO†‡
vs
FREE-AIR TEMPERATURE
90
– 50 – 25 0 25 50 75 100
TA – Free-Air Temperature – °C125– 75
VDD = 5 V
VDD = 3 V
Figure 34
60
40
20
100
– Supply-Voltage Rejection Ratio – dB
80
f – Frequency – Hz
SUPPLY-VOLTAGE REJECTION RATIO
vs
FREQUENCY
0
–20
kSVR
kSVR+
101102103104105106
ÁÁ
ÁÁ
kSVR
VDD = 3 V
TA = 25°C
Figure 35
60
40
20
100
– Supply-Voltage Rejection Ratio – dB
80
f – Frequency – Hz
SUPPLY-VOLTAGE REJECTION RATIO
vs
FREQUENCY
0
–20
kSVR+
101102103104105106
ÁÁ
ÁÁ
ÁÁ
kSVR
kSVR
VDD = 5 V
TA = 25°C
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
For all curves where VDD = 5 V, all loads are referenced to 2.5 V. For all curves where VDD = 3 V, all loads are referenced to 1.5 V.
TLV226x, TLV226xA
Advanced LinCMOS RAIL-TO-RAIL
OPERATIONAL AMPLIFIERS
SLOS186A – FEBRUAR Y 1997 – REVISED JULY 1999
32 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 36
100
95
90
– Supply-Voltage Rejection Ratio – dB
105
110
50 25 0 25 50 75 100
ÁÁ
ÁÁ
kSVR
TA – Free-Air Temperature – °C
VDD = 2.7 V to 8 V
VIC = VO = VDD /2
125–75
TLV2262
SUPPLY-VOLTAGE REJECTION RATIO
vs
FREE-AIR TEMPERATURE
Figure 37
100
95
90
– Supply-Voltage Rejection Ratio – dB
105
110
50 25 0 25 50 75 100
ÁÁ
ÁÁ
ÁÁ
kSVR
TA – Free-Air Temperature – °C
VDD = 2.7 V to 8 V
VIC = VO = VDD /2
125–75
TLV2264
SUPPLY-VOLTAGE REJECTION RATIO
vs
FREE-AIR TEMPERATURE
Figure 38
400
300
200
500
600
50 25 0 25 50 75 100
– Supply Current – Aµ
ÁÁ
ÁÁ
IDD
TA – Free-Air Temperature – °C
VDD = 5 V
VO = 2.5 V
VDD = 3 V
VO = 1.5 V
125–75
TLV2262
SUPPLY CURRENT†‡
vs
FREE-AIR TEMPERATURE
Figure 39
800
600
400
1000
1200
50 25 0 25 50 75 100
– Supply Current – Aµ
ÁÁ
ÁÁ
ÁÁ
IDD
TA – Free-Air Temperature – °C
VDD = 5 V
VO = 2.5 V
VDD = 3 V
VO = 1.5 V
125–75
TLV2264
SUPPLY CURRENT†‡
vs
FREE-AIR TEMPERATURE
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
For all curves where VDD = 5 V, all loads are referenced to 2.5 V. For all curves where VDD = 3 V, all loads are referenced to 1.5 V.
TLV226x, TLV226xA
Advanced LinCMOS RAIL-TO-RAIL
OPERATIONAL AMPLIFIERS
SLOS186A – FEBRUAR Y 1997 – REVISED JULY 1999
33
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 40
0.8
0.4
0.2
0
1
0.6
SR – Slew Rate –
SLEW RATE
vs
LOAD CAPACITANCE
SR
SR+
VDD = 5 V
AV = –1
TA = 25°C
101102103104
CL – Load Capacitance – pF
sµ
V/
Figure 41
0.6
0.4
0.2
0
SR – Slew Rate –
0.8
1
SLEW RATE†‡
vs
FREE-AIR TEMPERATURE
1.2
50 25 0 25 50 75 100
SR
SR+
sµ
V/
TA – Free-Air Temperature – °C
VDD = 5 V
RL = 50 k
CL = 100 pF
AV = 1
125–75
Figure 42
1.5
1
0.5
0024681012
– Output Voltage – V
2
2.5
INVERTING LARGE-SIGNAL PULSE
RESPONSE
3
14 16 18 20
VO
t – Time – µs
AV = –1
TA = 25°C
VDD = 3 V
RL = 50 k
CL = 100 pF
Figure 43
2
1
0024681012
3
4
5
14 16 18 20
INVERTING LARGE-SIGNAL PULSE
RESPONSE
t – Time – µs
– Output Voltage – V
VO
AV = –1
TA = 25°C
VDD = 5 V
RL = 50 k
CL = 100 pF
For all curves where VDD = 5 V, all loads are referenced to 2.5 V. For all curves where VDD = 3 V, all loads are referenced to 1.5 V.
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TLV226x, TLV226xA
Advanced LinCMOS RAIL-TO-RAIL
OPERATIONAL AMPLIFIERS
SLOS186A – FEBRUAR Y 1997 – REVISED JULY 1999
34 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 44
1.5
1
0.5
0024681012
2
2.5
VOLTAGE-FOLLOWER LARGE-SIGNAL
PULSE RESPONSE
3
14 16 18 20
– Output Voltage – V
VO
t – Time – µs
AV = –1
TA = 25°C
VDD = 3 V
RL = 50 k
CL = 100 pF
Figure 45
2
1
0024681012
3
4
5
14 16 18 20
VOLTAGE-FOLLOWER LARGE-SIGNAL
PULSE RESPONSE
– Output Voltage – V
VO
t – Time – µs
VDD = 5 V
RL = 50 k
CL = 100 pF
AV = –1
TA = 25°C
Figure 46
0.7
0.65
0.9
0.60 2 4 6 8 10 12
0.8
0.75
0.85
INVERTING SMALL-SIGNAL
PULSE RESPONSE
0.95
14 16 18 20
VDD = 3 V
RL = 50 k
CL = 100 pF
– Output Voltage – V
VO
t – Time – µs
AV = – 1
TA = 25°C
Figure 47
2.5
2.45
2.40 2 4 6 8 10 12
VO – Output Voltage – V
2.55
2.6
INVERTING SMALL-SIGNAL
PULSE RESPONSE
2.65
14 16 18 20
VO
VDD = 5 V
RL = 50 k
CL = 100 pF
AV = –1
TA = 25°C
t – Time – µs
For all curves where VDD = 5 V, all loads are referenced to 2.5 V. For all curves where VDD = 3 V, all loads are referenced to 1.5 V.
TLV226x, TLV226xA
Advanced LinCMOS RAIL-TO-RAIL
OPERATIONAL AMPLIFIERS
SLOS186A – FEBRUAR Y 1997 – REVISED JULY 1999
35
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 48
0.8
0.75
0.7024681012
0.85
0.9
VOLTAGE-FOLLOWER SMALL-SIGNAL
PULSE RESPONSE
0.95
14 16 18 20
VDD = 3 V
RL = 50 k
CL = 100 pF
VO – Output Voltage – V
VO
t – Time – µs
AV = 1
TA = 25°C
Figure 49
2.5
2.45
2.40 2 4 6 8 10 12
2.55
2.6
VOLTAGE-FOLLOWER SMALL-SIGNAL
PULSE RESPONSE
2.65
14 16 18 20
VDD = 5 V
RL = 50 k
CL = 100 pF
AV = 1
TA = 25°C
VO – Output Voltage – V
VO
t – Time – µs
Figure 50
40
30
20
0
60
– Equivalent Input Noise Voltage –
50
f – Frequency – Hz
EQUIVALENT INPUT NOISE VOLTAGE
vs
FREQUENCY
10
101102103104
VDD = 3 V
RS = 20
TA = 25°C
VnnV/ Hz
Figure 51
40
30
20
0
60
– Equivalent Input Noise Voltage –
50
f – Frequency – Hz
EQUIVALENT INPUT NOISE VOLTAGE
vs
FREQUENCY
10
101102103104
VDD = 5 V
RS = 20
TA = 25°C
VnnV/ Hz
For all curves where VDD = 5 V, all loads are referenced to 2.5 V. For all curves where VDD = 3 V, all loads are referenced to 1.5 V.
TLV226x, TLV226xA
Advanced LinCMOS RAIL-TO-RAIL
OPERATIONAL AMPLIFIERS
SLOS186A – FEBRUAR Y 1997 – REVISED JULY 1999
36 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 52
0
0246
Input Noise Voltage – nV
250
750
t – Time – s
INPUT NOISE VOLTAGE OVER
A 10-SECOND PERIOD
1000
810
500
250
500
750
1000
VDD = 5 V
f = 0.1 Hz
to 10 Hz
TA = 25°C
Figure 53
0.1
Integrated Noise Voltage –
f – Frequency – Hz
INTEGRATED NOISE VOLTAGE
vs
FREQUENCY
1
10
100
110
1102103104105
Vµ
Calculated Using Ideal Pass-Band Filter
Lower Frequency = 1 Hz
TA = 25°C
Figure 54
THD + N – Total Harmonic Distortion Plus Noise – %
f – Frequency – Hz
TOTAL HARMONIC DISTORTION PLUS NOISE
vs
FREQUENCY
10–1
10–2
10–3
101102103104104
AV = 100
AV = 10
AV = 1
VDD = 5 V
RL = 50 k
TA = 25°C
Figure 55
Gain-Bandwidth Product – kHz
GAIN-BANDWIDTH PRODUCT
vs
SUPPLY VOLTAGE
VDD – Supply Voltage – V
820
780
740
700 0235
860
900
78
146
For all curves where VDD = 5 V, all loads are referenced to 2.5 V. For all curves where VDD = 3 V, all loads are referenced to 1.5 V.
TLV226x, TLV226xA
Advanced LinCMOS RAIL-TO-RAIL
OPERATIONAL AMPLIFIERS
SLOS186A – FEBRUAR Y 1997 – REVISED JULY 1999
37
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 56
Gain-Bandwidth Product – kHz
GAIN-BANDWIDTH PRODUCT†‡
vs
FREE-AIR TEMPERATURE
TA – Free-Air Temperature – °C
800
600
400
1000
1200
50 25 0 25 50 10075
VDD = 5 V
f = 10 kHz
CL = 100 pF
75 125
Figure 57
om – Phase Margin
PHASE MARGIN
vs
LOAD CAPACITANCE
10 102103104
CL – Load Capacitance – pF
m
φ
75°
60°
45°
30°
15°
0°
Rnull = 50
Rnull = 100
TA = 25°C
Rnull = 20
Rnull = 10
50 k
50 k
VDD/GND
VDD+ Rnull
CL
VI+
Rnull = 0
Figure 58
20
10
5
0
15
Gain Margin – dB
GAIN MARGIN
vs
LOAD CAPACITANCE
10 102103104
CL – Load Capacitance – pF
Rnull = 20
RL = 50 k
AV = 1
TA = 25°C
Rnull = 0
Rnull = 10
Rnull = 100
Rnull = 50
Figure 59
600
400
200
– Unity-Gain Bandwidth – kHz
800
UNITY-GAIN BANDWIDTH
vs
LOAD CAPACITANCE
1000
10 102103104
CL – Load Capacitance – pF
ÁÁ
ÁÁ
B1
TA = 25°C
For all curves where VDD = 5 V, all loads are referenced to 2.5 V. For all curves where VDD = 3 V, all loads are referenced to 1.5 V.
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TLV226x, TLV226xA
Advanced LinCMOS RAIL-TO-RAIL
OPERATIONAL AMPLIFIERS
SLOS186A – FEBRUAR Y 1997 – REVISED JULY 1999
38 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Overestimation of Phase Margin
OVERESTIMATION OF PHASE MARGIN
vs
LOAD CAPACITANCE
CL – Load Capacitance – pF
10°
8°
6°
4°
2°
010 102103104
Rnull = 100
Rnull = 50
Rnull = 20
12°
14°
Rnull = 10
TA = 25°C
See application information
Figure 60
TLV226x, TLV226xA
Advanced LinCMOS RAIL-TO-RAIL
OPERATIONAL AMPLIFIERS
SLOS186A – FEBRUAR Y 1997 – REVISED JULY 1999
39
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
APPLICATION INFORMATION
driving large capacitive loads
The TLV226x is designed to drive larger capacitive loads than most CMOS operational amplifiers. Figure 51
and Figure 52 illustrate its ability to drive loads greater than 400 pF while maintaining good gain and phase
margins (Rnull = 0).
A smaller series resistor (Rnull) at the output of the device (see Figure 61) improves the gain and phase margins
when driving large capacitive loads. Figure 51 and Figure 52 show the effects of adding series resistances of
10 , 20 , 50 , and 100 . The addition of this series resistor has two effects: the first is that it adds a zero
to the transfer function and the second is that it reduces the frequency of the pole associated with the output
load in the transfer function.
The zero introduced to the transfer function is equal to the series resistance times the load capacitance. To
calculate the improvement in phase margin, equation (1) can be used.
∆θm1
+
tan–1
ǒ
2×π×UGBW×Rnull ×CL
Ǔ
∆θm1
+
improvement in phase margin
UGBW
+
unity-gain bandwidth frequency
Rnull
+
output series resistance
CL
+
load capacitance
(1)
Where :
The unity-gain bandwidth (UGBW) frequency decreases as the capacitive load increases (see Figure 53). To
use equation 1, UGBW must be approximated from Figure 53.
Using equation 1 alone overestimates the improvement in phase margin as illustrated in Figure 59. The
overestimation is caused by the decrease in the frequency of the pole associated with the load, providing
additional phase shift and reducing the overall improvement in phase margin. The pole associated with the load
is reduced by the factor calculated in equation 2.
F
+
1
1
)
gm×Rnull
F
+
factor reducing frequency of pole
gm
+
small-signal output transconductance (typically 4.83 ×10–3 mhos)
Rnull
+
output series resistance
(2)
Where :
For the TL V226x, the pole associated with the load is typically 7 MHz with 100-pF load capacitance. This value
varies inversely with CL: at CL = 10 pF, use 70 MHz, at CL = 1000 pF, use 700 kHz, and so on.
Reducing the pole associated with the load introduces phase shift, thereby reducing phase margin. This results
in an error in the increase in phase margin expected by considering the zero alone (equation 1). Equation 3
approximates the reduction in phase margin due to the movement of the pole associated with the load. The
result of this equation can be subtracted from the result of the equation 1 to better approximate the improvement
in phase margin.
TLV226x, TLV226xA
Advanced LinCMOS RAIL-TO-RAIL
OPERATIONAL AMPLIFIERS
SLOS186A – FEBRUAR Y 1997 – REVISED JULY 1999
40 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
APPLICATION INFORMATION
driving large capacitive loads (continued)
∆θm2
+
tan–1
ȧ
ȱ
Ȳ
UGBW
ǒ
F×P2
Ǔȧ
ȳ
ȴ
tan–1
ǒ
UGBW
P2
Ǔ
∆θm2
+
reduction in phase margin
UGBW
+
unity-gain bandwidth frequency
F
+
factor from equation (2)
P2
+
unadjusted pole (70 MHz @ 10 pF, 7 MHz @100 pF, etc.)
(3)
Where :
Using these equations with Figure 60 and Figure 61 enables the designer to choose the appropriate output
series resistance to optimize the design of circuits driving large capacitive loads.
50 k
50 k
VDD/GND
VDD+
Rnull
CL
VI+
Figure 61. Series-Resistance Circuit
TLV226x, TLV226xA
Advanced LinCMOS RAIL-TO-RAIL
OPERATIONAL AMPLIFIERS
SLOS186A – FEBRUAR Y 1997 – REVISED JULY 1999
41
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
APPLICATION INFORMATION
macromodel information
Macromodel information provided was derived using Microsim
Parts
, the model generation software used
with Microsim
PSpice
. The Boyle macromodel (see Note 5) and subcircuit in Figure 62 are generated using
the TLV226x typical electrical and operating characteristics at TA = 25°C. Using this information, output
simulations of the following key parameters can be generated to a tolerance of 20% (in most cases):
D
Maximum positive output voltage swing
D
Maximum negative output voltage swing
D
Slew rate
D
Quiescent power dissipation
D
Input bias current
D
Open-loop voltage amplification
D
Unity-gain frequency
D
Common-mode rejection ratio
D
Phase margin
D
DC output resistance
D
AC output resistance
D
Short-circuit output current limit
NOTE 5: G. R. Boyle, B. M. Cohn, D. O. Pederson, and J. E. Solomon, “Macromodeling of Intergrated Circuit Operational Amplifiers,”
IEEE
Journal of Solid-State Circuits,
SC-9, 353 (1974).
OUT
+
+
+
+
+
+
+
+
+
.SUBCKT TLV226x 1 2 3 4 5
C1 11 12 5.5E–12
C2 6 7 20.00E–12
DC 5 53 DX
DE 54 5 DX
DLP 90 91 DX
DLN 92 90 DX
DP 43DX
EGND 99 0 POLY (2) (3,0) (4,0) 0 .5 .5
FB 7 99 POLY (5) VB VC VE VLP
+ VLN 0 8.84E6 –10E6 10E6 10E6 –10E6
GA 6 0 11 12 62.83E–6
GCM 0 6 10 99 12.34E–9
ISS 3 10 DC 11.05E–6
HLIM 90 0 VLIM 1K
J1 11 2 10 JX
J2 12 1 10 JX
R2 6 9 100.0E3
RD1 60 11 15.92E3
RD2 60 12 15.92E3
R01 8 5 135
R02 7 99 135
RP 3 4 15.87E3
RSS 10 99 18.18E6
VAD 60 4 –.5
VB 9 0 DC 0
VC 3 53 DC .615
VE 54 4 DC .615
VLIM 7 8 DC 0
VLP 91 0 DC 1
VLN 0 92 DC 5.1
.MODEL DX D (IS=800.0E–18)
.MODEL JX PJF (IS=500.0E–15 BETA=325E–6
+ VTO=–.08)
.ENDS
VCC+
RP
IN 2
IN+ 1
VCC
VAD
RD1
11
J1 J2
10
RSS ISS
3
12
RD2
60
VE
54 DE
DP
VC
DC
4
C1
53
R2 6
9
EGND
VB
FB
C2
GCM GA VLIM
8
5RO1
RO2
HLIM
90 DLP
91
DLN
92
VLNVLP
99
7
Figure 62. Boyle Macromodel and Subcircuit
PSpice
and
Parts
are trademarks of MicroSim Corporation.
TLV226x, TLV226xA
Advanced LinCMOS RAIL-TO-RAIL
OPERATIONAL AMPLIFIERS
SLOS186A – FEBRUAR Y 1997 – REVISED JULY 1999
42 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
MECHANICAL INFORMATION
D (R-PDSO-G**) PLASTIC SMALL-OUTLINE PACKAGE
14 PIN SHOWN
4040047/B 03/95
0.228 (5,80)
0.244 (6,20)
0.069 (1,75) MAX 0.010 (0,25)
0.004 (0,10)
1
14
0.014 (0,35)
0.020 (0,51)
A
0.157 (4,00)
0.150 (3,81)
7
8
0.044 (1,12)
0.016 (0,40)
Seating Plane
0.010 (0,25)
PINS **
0.008 (0,20) NOM
A MIN
A MAX
DIM
Gage Plane
0.189
(4,80)
(5,00)
0.197
8
(8,55)
(8,75)
0.337
14
0.344
(9,80)
16
0.394
(10,00)
0.386
0.004 (0,10)
M
0.010 (0,25)
0.050 (1,27)
0°–8°
NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion, not to exceed 0.006 (0,15).
D. Four center pins are connected to die mount pad.
E. Falls within JEDEC MS-012
TLV226x, TLV226xA
Advanced LinCMOS RAIL-TO-RAIL
OPERATIONAL AMPLIFIERS
SLOS186A – FEBRUAR Y 1997 – REVISED JULY 1999
43
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
MECHANICAL INFORMATION
FK (S-CQCC-N**) LEADLESS CERAMIC CHIP CARRIER
4040140/C 11/95
28 TERMINAL SHOWN
B
0.358
(9,09)
MAX
(11,63)
0.560
(14,22)
0.560
0.458
0.858
(21,8)
1.063
(27,0)
(14,22)
A
NO. OF
MINMAX
0.358
0.660
0.761
0.458
0.342
(8,69)
MIN
(11,23)
(16,26)
0.640
0.740
0.442
(9,09)
(11,63)
(16,76)
0.962
1.165
(23,83)
0.938
(28,99)
1.141
(24,43)
(29,59)
(19,32)(18,78)
**
20
28
52
44
68
84
0.020 (0,51)
TERMINALS
0.080 (2,03)
0.064 (1,63)
(7,80)
0.307
(10,31)
0.406
(12,58)
0.495
(12,58)
0.495
(21,6)
0.850
(26,6)
1.047
0.045 (1,14)
0.045 (1,14)
0.035 (0,89)
0.035 (0,89)
0.010 (0,25)
12
1314151618 17
11
10
8
9
7
5
432
0.020 (0,51)
0.010 (0,25)
6
12826 27
19
21
B SQ
A SQ 22
23
24
25
20
0.055 (1,40)
0.045 (1,14)
0.028 (0,71)
0.022 (0,54)
0.050 (1,27)
NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. This package can be hermetically sealed with a metal lid.
D. The terminals are gold plated.
E. Falls within JEDEC MS-004
TLV226x, TLV226xA
Advanced LinCMOS RAIL-TO-RAIL
OPERATIONAL AMPLIFIERS
SLOS186A – FEBRUAR Y 1997 – REVISED JULY 1999
44 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
MECHANICAL INFORMATION
J (R-GDIP-T**) CERAMIC DUAL-IN-LINE PACKAGE
4040083/B 04/95
14 PIN SHOWN
22
0.410
(10,41)
0.390
(28,00)
1.100
(9,91)
0.388
(9,65)
20181614
PINS **
0.310
(7,87)
0.290
0.755
(19,18)
(19,94)
0.785
(7,37)
0.310
(7,87)
(7,37)
0.290
(23,10)
0.910
0.300
(7,62)
(6,22)
0.245
A
0.300
(7,62)
(6,22)
0.245
0.290
(7,87)
0.310
0.785
(19,94)
(19,18)
0.755
(7,37)
A MIN
A MAX
B MAX
B MIN
0.245
(6,22)
(7,11)
0.280
C MIN
C MAX
DIM
0.245
(6,22)
(7,62)
0.300
0.975
(24,77)
(23,62)
0.930
0.290
(7,37)
(7,87)
0.310
Seating Plane
0.014 (0,36)
0.008 (0,20)
C
8
7
0.020 (0,51) MIN
B
0.070 (1,78)
0.100 (2,54)
0.065 (1,65)
0.045 (1,14)
14
1
0.015 (0,38)
0.023 (0,58)
0.200 (5,08) MAX
0.130 (3,30) MIN
0.100 (2,54) 0°–15°
NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. This package can be hermetically sealed with a ceramic lid using glass frit.
D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
E. Falls within MIL-STD-1835 GDIP1-T14, GDIP1-T16, GDIP1-T18, GDIP1-T20, and GDIP1-T22
TLV226x, TLV226xA
Advanced LinCMOS RAIL-TO-RAIL
OPERATIONAL AMPLIFIERS
SLOS186A – FEBRUAR Y 1997 – REVISED JULY 1999
45
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
MECHANICAL INFORMATION
JG (R-GDIP-T8) CERAMIC DUAL-IN-LINE PACKAGE
4040107/B 04/95
0.020 (0,51) MIN
0.200 (5,08) MAX
0.130 (3,30) MIN
14
58
0°–15°
0.008 (0,20)
0.310 (7,87)
0.290 (7,37)
0.245 (6,22)
0.280 (7,11)
Seating Plane
0.015 (0,38)
0.015 (0,38)
0.023 (0,58)
0.400 (10,20)
0.355 (9,00)
0.063 (1,60)
0.015 (0,38)
0.065 (1,65)
0.045 (1,14)
0.100 (2,54)
NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. This package can be hermetically sealed with a ceramic lid using glass frit.
D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only
E. Falls within MIL-STD-1835 GDIP1-T8
TLV226x, TLV226xA
Advanced LinCMOS RAIL-TO-RAIL
OPERATIONAL AMPLIFIERS
SLOS186A – FEBRUAR Y 1997 – REVISED JULY 1999
46 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
MECHANICAL INFORMATION
N (R-PDIP-T**) PLASTIC DUAL-IN-LINE PACKAGE
20
0.975
(24,77)
0.940
(23,88)
18
0.920
0.850
14
0.775
0.745
(19,69)
(18,92)
16
0.775
(19,69)
(18,92)
0.745
A MIN
DIM
A MAX
PINS **
0.310 (7,87)
0.290 (7,37)
(23.37)
(21.59)
Seating Plane
0.010 (0,25) NOM
14/18 PIN ONLY
4040049/C 08/95
9
8
0.070 (1,78) MAX
A
0.035 (0,89) MAX 0.020 (0,51) MIN
16
1
0.015 (0,38)
0.021 (0,53)
0.200 (5,08) MAX
0.125 (3,18) MIN
0.240 (6,10)
0.260 (6,60)
M
0.010 (0,25)
0.100 (2,54) 0°–15°
16 PIN SHOWN
NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Falls within JEDEC MS-001 (20 pin package is shorter then MS-001.)
TLV226x, TLV226xA
Advanced LinCMOS RAIL-TO-RAIL
OPERATIONAL AMPLIFIERS
SLOS186A – FEBRUAR Y 1997 – REVISED JULY 1999
47
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
MECHANICAL INFORMATION
P (R-PDIP-T8) PLASTIC DUAL-IN-LINE PACKAGE
4040082/B 03/95
0.310 (7,87)
0.290 (7,37)
0.010 (0,25) NOM
0.400 (10,60)
0.355 (9,02)
58
41
0.020 (0,51) MIN
0.070 (1,78) MAX
0.240 (6,10)
0.260 (6,60)
0.200 (5,08) MAX
0.125 (3,18) MIN
0.015 (0,38)
0.021 (0,53)
Seating Plane
M
0.010 (0,25)
0.100 (2,54) 0°–15°
NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Falls within JEDEC MS-001
TLV226x, TLV226xA
Advanced LinCMOS RAIL-TO-RAIL
OPERATIONAL AMPLIFIERS
SLOS186A – FEBRUAR Y 1997 – REVISED JULY 1999
48 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
MECHANICAL INFORMATION
PW (R-PDSO-G**) PLASTIC SMALL-OUTLINE PACKAGE
4040064/D 10/95
14 PIN SHOWN
Seating Plane
0,10 MIN
1,20 MAX
1
A
7
14
0,19
4,50
4,30
8
6,10
6,70
0,32
0,75
0,50
0,25
Gage Plane
0,15 NOM
0,65 M
0,13
0°–8°
0,10
PINS **
A MIN
A MAX
DIM
2,90
3,10
8
4,90
5,10
14
6,60
6,404,90
5,10
16
7,70
20
7,90
24
9,60
9,80
28
NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.
D. Falls within JEDEC MO-153
TLV226x, TLV226xA
Advanced LinCMOS RAIL-TO-RAIL
OPERATIONAL AMPLIFIERS
SLOS186A – FEBRUAR Y 1997 – REVISED JULY 1999
49
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
MECHANICAL INFORMATION
U (S-GDFP-F10) CERAMIC DUAL FLATPACK
4040179/B 03/95
1.000 (25,40)
0.080 (2,03)
0.250 (6,35)
0.250 (6,35)
0.019 (0,48)
0.025 (0,64)
0.300 (7,62)
0.045 (1,14)
0.006 (0,15)
0.050 (1,27)
0.015 (0,38)
0.005 (0,13)
0.026 (0,66)
0.004 (0,10)
0.246 (6,10)
0.750 (19,05)
110
56
0.250 (6,35)
0.350 (8,89)0.350 (8,89)
0.250 (6,35)
0.050 (1,27)
NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. This package can be hermetically sealed with a ceramic lid using glass frit.
D. Index point is provided on cap for terminal identification only.
E. Falls within MIL STD 1835 GDFP1-F10 and JEDEC MO-092AA
TLV226x, TLV226xA
Advanced LinCMOS RAIL-TO-RAIL
OPERATIONAL AMPLIFIERS
SLOS186A – FEBRUAR Y 1997 – REVISED JULY 1999
50 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
MECHANICAL INFORMATION
W (R-GDFP-F16) CERAMIC DUAL FLATPACK
0.235 (5,97)
0.355 (9,02) 0.355 (9,02)
0.235 (5,97)
98
161
0.745 (18,92)
0.245 (6,22)
0.004 (0,10)
0.026 (0,66)
0.015 (0,38)
0.015 (0,38)
0.045 (1,14)
0.371 (9,42)
0.006 (0,15)
0.045 (1,14)
Base and Seating Plane
0.025 (0,64)
0.019 (0,48)
0.440 (11,18)
0.285 (7,24)
0.085 (2,16)
1.025 (26,04)
4040180-3/B 03/95
0.275 (6,99)
0.305 (7,75)
0.050 (1,27)
NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. This package can be hermetically sealed with a ceramic lid using glass frit.
D. Index point is provided on cap for terminal identification only.
E. Falls within MIL-STD-1835 GDFP1-F16 and JEDEC MO-092AC
IMPORTANT NOTICE
Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue
any product or service without notice, and advise customers to obtain the latest version of relevant information
to verify, before placing orders, that information being relied on is current and complete. All products are sold
subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those
pertaining to warranty, patent infringement, and limitation of liability.
TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent
TI deems necessary to support this warranty . Specific testing of all parameters of each device is not necessarily
performed, except those mandated by government requirements.
CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF
DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL
APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER
CRITICAL APPLICA TIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO
BE FULLY AT THE CUSTOMER’S RISK.
In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards must be provided by the customer to minimize inherent or procedural hazards.
TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other
intellectual property right of TI covering or relating to any combination, machine, or process in which such
semiconductor products or services might be or are used. TI’s publication of information regarding any third
party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.
Copyright 1999, Texas Instruments Incorporated