©2001 Fairchild Semiconductor Corporation HUF76113SK8 Rev. B
HUF76113SK8
6.5A, 30V, 0.030 Ohm, N-Channel, Logic
Level UltraFET Power MOSFET
This N-Channel power MOSFET is
manufactured using the innovative
UltraFET™ process. This advanced
process technology achieves the
lowest possible on-resistance per silicon area, resulting in
outstanding performance. This device is capable of
withstanding high energy in the avalanche mode and the
diode exhibits very low reverse recovery time and stored
charge. It was designed for use in applications where power
efficiency is important, such as switching regulators, switching
converters, motor drivers, relay drivers, low-voltage bus
switches, and power management in portable and battery-
operated products.
Formerly developmental type TA76113.
Features
Logic Level Gate Drive
6.5A, 30V
Ultra Low On-Resistance, r
DS(ON)
= 0.030
Temperature Compensating PSPICE
®
Model
Temperature Compensating SABER™ Model
Thermal Impedance SPICE Model
Thermal Impedance SABER Model
Peak Current vs Pulse Width Curve
UIS Rating Curve
Related Literature
- TB334, “Guidelines for Soldering Surface Mount
Components to PC Boards”
Symbol
Packaging
JEDEC MS-012AA
Ordering Information
PART NUMBER PACKAGE BRAND
HUF76113SK8 MS-012AA 76113SK8
NOTE: When ordering, use the entire part number. Add the suffix T
to obtain the variant in tape and reel, e.g., HUF76113SK8T.
SOURCE(2)
DRAIN(8)
NC(1)
DRAIN(7)
DRAIN(6)
DRAIN(5)
SOURCE(3)
GATE(4)
BRANDING DASH
1
2
34
5
Data Sheet December 2001
©2001 Fairchild Semiconductor Corporation HUF76113SK8 Rev. B
Absolute Maximum Ratings
T
A
= 25
o
C, Unless Otherwise Specified
HUF76113SK8 UNITS
Drain to Source Voltage (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V
DSS
30 V
Drain to Gate Voltage (R
GS
= 20k
) (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V
DGR
30 V
Gate to Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V
GS
±
16 V
Drain Current
Continuous (T
A
= 25
o
C, V
GS
= 10V) (Figure 2) (Note 2). . . . . . . . . . . . . . . . . . . . . . . . . . I
D
Continuous (T
A
= 100
o
C, V
GS
= 5V) (Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I
D
Continuous (T
A
= 100
o
C, V
GS
= 4.5V) (Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I
D
Pulsed Drain Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .I
DM
6.5
2.0
2.0
Figure 4
A
A
A
Pulsed Avalanche Rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E
ASB
Figure 6
Power Dissipation (Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P
D
Derate Above 25
o
C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.5
20
W
mW/
o
C
Operating and Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T
J
, T
STG
-55 to 150
o
C
Maximum Temperature for Soldering
Leads at 0.063in (1.6mm) from Case for 10s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .T
L
Package Body for 10s, See Techbrief 334 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T
pkg
300
260
o
C
o
C
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
NOTES:
1. T
J
= 25
o
C to 125
o
C.
2. 50
o
C/W measured using FR-4 board with 0.76 in
2
footprint at 10 seconds.
3. 177
o
C/W measured using FR-4 board with 0.0115 in
2
footprint at 1000 seconds.
Electrical Specifications
T
A
= 25
o
C, Unless Otherwise Specified
PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITS
OFF STATE SPECIFICATIONS
Drain to Source Breakdown Voltage BV
DSS
I
D
= 250
µ
A, V
GS
= 0V (Figure 12) 30 - - V
Zero Gate Voltage Drain Current I
DSS
V
DS
= 25V, V
GS
= 0V - - 1
µ
A
V
DS
= 25V, V
GS
= 0V, T
A
= 150
o
C - - 250
µ
A
Gate to Source Leakage Current I
GSS
V
GS
=
±
16V - -
±
100 nA
ON STATE SPECIFICATIONS
Gate to Source Threshold Voltage V
GS(TH)
V
GS
= V
DS
, I
D
= 250
µ
A (Figure 11) 1 - 3 V
Drain to Source On Resistance r
DS(ON)
I
D
= 6.5A, V
GS
= 10V (Figures 9, 10) - 0.025 0.030
I
D
= 2.0A, V
GS
= 5V (Figure 9) - 0.031 0.038
I
D
= 2.0A, V
GS
= 4.5V (Figure 9) - 0.033 0.041
THERMAL SPECIFICATIONS
Thermal Resistance Junction to Ambient R
θ
JA
Pad Area = 0.76 in
2
(Note 2) - - 50
o
C/W
Pad Area = 0.054 in
2
(See TB337) - - 143
o
C/W
Pad Area = 0.0115 in
2
(See TB337) - - 177
o
C/W
SWITCHING SPECIFICATIONS
(V
GS
= 4.5V)
Turn-On Time t
ON
V
DD
= 15V, I
D
2.0A, R
L
= 7.5
,
V
GS
=
4.5V, R
GS
= 15
(Figure 15)
- - 100 ns
Turn-On Delay Time t
d(ON)
-16-ns
Rise Time t
r
-50-ns
Turn-Off Delay Time t
d(OFF)
-28-ns
Fall Time t
f
-34-ns
Turn-Off Time t
OFF
- - 91 ns
HUF76113SK8
©2001 Fairchild Semiconductor Corporation HUF76113SK8 Rev. B
SWITCHING SPECIFICATIONS
(V
GS
= 10V)
Turn-On Time t
ON
V
DD
= 15V, I
D
6.5A, R
L
= 2.31
,
V
GS
=
10V, R
GS
= 16
(Figure 16)
- - 59 ns
Turn-On Delay Time t
d(ON)
- 6.5 - ns
Rise Time t
r
-33-ns
Turn-Off Delay Time t
d(OFF)
-45-ns
Fall Time t
f
- 40 - ns
Turn-Off Time t
OFF
- - 126 ns
GATE CHARGE SPECIFICATIONS
Total Gate Charge Q
g(TOT)
V
GS
= 0V to 10V V
DD
= 15V, I
D
2.0A,
R
L
= 7.5
I
g(REF)
= 1.0mA
(Figures 14)
- 17.5 21 nC
Gate Charge at 5V Q
g(5)
V
GS
= 0V to 5V - 10 12 nC
Threshold Gate Charge Qg(TH) VGS = 0V to 1V - 0.65 0.78 nC
Gate to Source Gate Charge Qgs - 1.10 - nC
Gate to Drain “Miller” Charge Qgd - 5.40 - nC
CAPACITANCE SPECIFICATIONS
Input Capacitance CISS VDS = 25V, VGS = 0V, f = 1MHz
(Figure 13)
- 585 - pF
Output Capacitance COSS - 327 - pF
Reverse Transfer Capacitance CRSS -73-pF
Electrical Specifications TA = 25oC, Unless Otherwise Specified
PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITS
Source to Drain Diode Specifications
PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITS
Source to Drain Diode Voltage VSD ISD =6.5A - - 1.25 V
ISD = 2.0A 1.10 V
Reverse Recovery Time trr ISD = 2.0A, dISD/dt = 100A/µs--47ns
Reverse Recovered Charge QRR ISD = 2.0A, dISD/dt = 100A/µs--52nC
Typical Performance Curves
FIGURE 1. NORMALIZED POWER DISSIPATION vs AMBIENT
TEMPERATURE
FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs
AMBIENT TEMPERATURE
TA, AMBIENT TEMPERATURE (oC)
POWER DISSIPATION MULTIPLIER
0
0 25 50 75 100 150
0.2
0.4
0.6
0.8
1.0
1.2
125
4
0
25 50 75 100 125
ID, DRAIN CURRENT (A)
TA, AMBIENT TEMPERATURE (oC)
8
150
2
6
VGS = 4.5V, RθJA = 177oC/W
VGS = 10V, RθJA = 50oC/W
HUF76113SK8
©2001 Fairchild Semiconductor Corporation HUF76113SK8 Rev. B
FIGURE 3. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE
FIGURE 4. PEAK CURRENT CAPABILITY
FIGURE 5. FORWARD BIAS SAFE OPERATING AREA
NOTE: Refer to Fairchild Application Notes AN9321 and AN9322.
FIGURE 6. UNCLAMPED INDUCTIVE SWITCHING
CAPABILITY
Typical Performance Curves (Continued)
t, RECTANGULAR PULSE DURATION (s)
10-5 10-1 100
10
0.01
1
10-2
ZθJA, NORMALIZED
THERMAL IMPEDANCE
0.001
10-4 10-3
SINGLE PULSE
NOTES:
DUTY FACTOR: D = t1/t2
PEAK TJ = PDM x ZθJA x RθJA + T
A
PDM
t1
t2
101
DUTY CYCLE - DESCENDING ORDER
0.5
0.2
0.1
0.05
0.01
0.02
0.1
102103
RθJA = 50oC/W
TC = 25oC
I = I25 150 - TA
125
FOR TEMPERATURES
ABOVE 25oC DERATE PEAK
CURRENT AS FOLLOWS:
VGS = 10V
TRANSCONDUCTANCE
MAY LIMIT CURRENT
IN THIS REGION
IDM, PEAK CURRENT (A)
500
1
10-5 10-4 10-3 10-2 10-1 100103
t, PULSE WIDTH (s)
10
VGS = 5V
RθJA = 50oC/W
100
102
101
TJ = MAX RATED
TA = 25oC
100µs
10ms
1ms
VDSS(MAX) = 30V
LIMITED BY rDS(ON)
AREA MAY BE
OPERATION IN THIS
1001
VDS, DRAIN TO SOURCE VOLTAGE (V)
1
100
500
10
ID, DRAIN CURRENT (A)
10
1 10 100
100
1
IAS, AVALANCHE CURRENT (A)
tAV, TIME IN AVALANCHE (ms)
tAV = (L)(IAS)/(1.3*RATED BVDSS - VDD)
If R = 0
If R 0
tAV = (L/R)ln[(IAS*R)/(1.3*RATED BVDSS - VDD) +1]
STARTING TJ = 25oC
STARTING TJ = 150oC
0.1
10
0.01
HUF76113SK8
©2001 Fairchild Semiconductor Corporation HUF76113SK8 Rev. B
FIGURE 7. TRANSFER CHARACTERISTICS FIGURE 8. SATURATION CHARACTERISTICS
FIGURE 9. DRAIN TO SOURCE ON RESISTANCE vs GATE
VOLTAGE AND DRAIN CURRENT
FIGURE 10. NORMALIZED DRAIN TO SOURCE ON
RESISTANCE vs JUNCTION TEMPERATURE
FIGURE 11. NORMALIZED GATE THRESHOLD VOLTAGE vs
JUNCTION TEMPERATURE
FIGURE 12. NORMALIZED DRAIN TO SOURCE BREAKDOWN
VOLTAGE vs JUNCTION TEMPERATURE
Typical Performance Curves (Continued)
023451
0
10
20
25
ID, DRAIN CURRENT (A)
VGS, GATE TO SOURCE VOLTAGE (V)
150oC
-55oC25oC
PULSE DURATION = 80µs
DUTY CYCLE = 0.5% MAX
VDD = 15V
30
15
5
0
10
0123
20
ID, DRAIN CURRENT (A)
VDS, DRAIN TO SOURCE VOLTAGE (V)
30
5
15
4
ID, DRAIN CURRENT (A)
VDS, DRAIN TO SOURCE VOLTAGE (V)
PULSE DURATION = 80µs
TC = 25oC
25
VGS = 3V
VGS = 3.5V
VGS = 4V
VGS = 5V
VGS = 4.5V
VGS = 10V
DUTY CYCLE = 0.5% MAX
50
100
150
0
4
VGS, GATE TO SOURCE VOLTAGE (V)
06108
PULSE DURATION = 250µs
rDS(ON), DRAIN TO SOURCE
ON RESISTANCE (m)
2
ID = 0.5A
ID = 2A
ID = 6.5A DUTY CYCLE = 0.5% MAX
0.5
1.0
1.5
2.0
-80 -40 0 40 80 120
NORMALIZED DRAIN TO SOURCE
TJ, JUNCTION TEMPERATURE (oC)
ON RESISTANCE
160
PULSE DURATION = 80µs
VGS = 10V, ID = 6.5A
DUTY CYCLE = 0.5% MAX
-80 -40 0 40 80 120
0.6
0.7
0.8
1.0
1.2
NORMALIZED GATE
TJ, JUNCTION TEMPERATURE (oC)
THRESHOLD VOLTAGE
VGS = VDS, ID = 250µA
160
0.9
1.0
1.2
1.1
1.0
0.9
-80 -40 0 40 80 120
TJ, JUNCTION TEMPERATURE (oC)
NORMALIZED DRAIN TO SOURCE
BREAKDOWN VOLTAGE
ID = 250µA
160
HUF76113SK8
©2001 Fairchild Semiconductor Corporation HUF76113SK8 Rev. B
FIGURE 13. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE
NOTE: Refer to Fairchild Application Notes AN7254 and AN7260.
FIGURE 14. GATE CHARGE WAVEFORMS FOR CONSTANT
GATE CURRENT
FIGURE 15. SWITCHING TIME vs GATE RESISTANCE FIGURE 16. SWITCHING TIME vs GATE RESISTANCE
Test Circuits and Waveforms
FIGURE 17. UNCLAMPED ENERGY TEST CIRCUIT FIGURE 18. UNCLAMPED ENERGY WAVEFORM
Typical Performance Curves (Continued)
COSS
1200
800
0051525
C, CAPACITANCE (pF)
1000
VDS, DRAIN TO SOURCE VOLTAGE (V)
600
30
400
CISS
CRSS
10 20
200
VGS = 0V, f = 1MHz
CISS = CGS + CGD
CRSS = CGD
COSS = CDS + CGD
10
8
6
4
0
VGS , GATE TO SOURCE VOLTAGE (V)
VDD = 15V
2
15 200
Qg, GATE CHARGE (nC)
5
ID = 6.5A
ID = 2.0A
ID = 0.5A
WAVEFORMS IN
DESCENDING ORDER:
10
30
20 30 40 500
120
90
60
0
10
SWITCHING TIME (ns)
RGS, GATE TO SOURCE RESISTANCE ()
td(OFF)
td(ON)
tr
tf
VGS = 4.5V, VDD = 15V, ID = 2A, RL= 7.5
60
20 30 40 500
150
120
90
010
SWITCHING TIME (ns)
RGS, GATE TO SOURCE RESISTANCE ()
td(OFF)
td(ON)
tr
tf
VGS = 10V, VDD = 15V, ID = 6.5A, RL= 2.31
30
tP
VGS
0.01
L
IAS
+
-
VDS
VDD
RG
DUT
VARY tP TO OBTAIN
REQUIRED PEAK IAS
0V
VDD
VDS
BVDSS
tP
IAS
tAV
0
HUF76113SK8
©2001 Fairchild Semiconductor Corporation HUF76113SK8 Rev. B
Thermal Resistance vs. Mounting Pad Area
The maximum rated junction temperature, TJ(MAX), and the
thermal resistance of the heat dissipating path determines
the maximum allowable device power dissipation, PD(MAX),
in an application. Therefore the application’s ambient
temperature, TA (oC), and thermal resistance RθJA (oC/W)
must be reviewed to ensure that TJ(MAX) is never exceeded.
Equation 1 mathematically represents the relationship and
serves as the basis for establishing the rating of the part.
In using surface mount devices such as the SO-8 package,
the environment in which it is applied will have a significant
influence on the part’s current and maximum power
dissipation ratings. Precise determination of the PD(MAX) is
complex and influenced by many factors:
1. Mounting pad area onto which the device is attached and
whether there is copper on one side or both sides of the
board
2. The number of copper layers and the thickness of the
board
3. The use of external heat sinks
4. The use of thermal vias
5. Air flow and board orientation
6. For non steady state applications, the pulse width, the
duty cycle and the transient thermal response of the part,
the board and the environment they are in.
Fairchild provides thermal information to assist the
designer’s preliminary application evaluation. Figure 23
defines the RθJA for the device as a function of the top
copper (component side) area. This is for a horizontally
FIGURE 19. GATE CHARGE TEST CIRCUIT FIGURE 20. GATE CHARGE WAVEFORMS
FIGURE 21. SWITCHING TIME TEST CIRCUIT FIGURE 22. SWITCHING TIME WAVEFORMS
Test Circuits and Waveforms (Continued)
RL
VGS +
-
VDS
VDD
DUT
Ig(REF)
VDD
Qg(TH)
VGS = 1V
Qg(5)
VGS = 5V
Qg(TOT)
VGS = 10
VDS
VGS
Ig(REF)
0
0
VGS
RL
RGS
DUT
+
-
VDD
VDS
VGS
tON
td(ON)
tr
90%
10%
VDS 90%
10%
tf
td(OFF)
tOFF
90%
50%
50%
10% PULSE WIDTH
VGS
0
0
(EQ. 1)
PDMAX
TJMAX TA
()
ZθJA
----------------------------------------=
HUF76113SK8
©2001 Fairchild Semiconductor Corporation HUF76113SK8 Rev. B
positioned FR-4 board with 1oz copper after 1000 seconds
of steady state power with no air flow. This graph provides
the necessary information for calculation of the steady state
junction temperature or power dissipation. Pulse applications
can be evaluated using the Fairchild device Spice thermal
model or manually utilizing the normalized maximum
transient thermal impedance curve.
Displayed on the curve are the three RθJA values listed in
the Electrical Specifications table. The three points where
chosen to depict the compromise between the copper board
area, the thermal resistance and ultimately the power
dissipation, PD(MAX). Thermal resistances corresponding to
other component side copper areas can be obtained from
Figure 23 or by calculation using Equation 2. The area, in
square inches is the top copper area including the gate and
source pads.
RθJA (oC/W)
50
100
150
200
AREA, TOP COPPER AREA (in2)
0.01 0.1 1.0
RθJA = 79.3 - 21.8*ln(AREA)
143 oC/W - 0.054in2
177 oC/W - 0.0115in2
FIGURE 23. THERMAL RESISTANCE vs MOUNTING PAD ARE
A
0.001
250
(EQ. 2)
RθJA 79.3 21.8 Area()ln×=
HUF76113SK8
©2001 Fairchild Semiconductor Corporation HUF76113SK8 Rev. B
PSPICE Electrical Model
SUBCKT HUF76113SK8 2 1 3 ; REV 4 June 1998
CA 12 8 9.60-10
CB 15 14 9.95e-10
CIN 6 8 5.01e-10
DBODY 7 5 DBODYMOD
DBREAK 5 11 DBREAKMOD
DPLCAP 10 5 DPLCAPMOD
EBREAK 11 7 17 18 32.3
EDS 14 8 5 8 1
EGS 13 8 6 8 1
ESG 6 10 6 8 1
EVTHRES 6 21 19 8 1
EVTEMP 20 6 18 22 1
IT 8 17 1
LDRAIN 2 5 1.00e-9
LGATE 1 9 1.00e-9
LSOURCE 3 7 2.27e-10
MMED 16 6 8 8 MMEDMOD
MSTRO 16 6 8 8 MSTROMOD
MWEAK 16 21 8 8 MWEAKMOD
RBREAK 17 18 RBREAKMOD 1
RDRAIN 50 16 RDRAINMOD 2.01e-3
RGATE 9 20 2.94
RLDRAIN 2 5 10
RLGATE 1 9 10
RLSOURCE 3 7 2.27
RSLC1 5 51 RSLCMOD 1e-6
RSLC2 5 50 1e3
RSOURCE 8 7 RSOURCEMOD 17.50e-3
RVTHRES 22 8 RVTHRESMOD 1
RVTEMP 18 19 RVTEMPMOD 1
S1A 6 12 13 8 S1AMOD
S1B 13 12 13 8 S1BMOD
S2A 6 15 14 13 S2AMOD
S2B 13 15 14 13 S2BMOD
VBAT 22 19 DC 1
ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*180),2.5))}
.MODEL DBODYMOD D (IS = 9.35e-13 RS = 1.39e-2 TRS1 = 1.12e-6 TRS2 = 1.05e-6 CJO = 9.85e-10 TT = 2.82e-8 M = 0.42 )
.MODEL DBREAKMOD D (RS = 1.91e-1 TRS1 = 3.51e-3 TRS2 = 1.21e-6 )
.MODEL DPLCAPMOD D (CJO = 5.51e-10 IS = 1e-30 N = 10 M = 0.60 )
.MODEL MMEDMOD NMOS (VTO = 1.76 KP = 3.55 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 2.94)
.MODEL MSTROMOD NMOS (VTO = 2.08 KP = 37 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u)
.MODEL MWEAKMOD NMOS (VTO = 1.48 KP = 0.095 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 29.4 RS=0.1)
.MODEL RBREAKMOD RES (TC1 = 1.02e-3 TC2 = 1.10e-7)
.MODEL RDRAINMOD RES (TC1 = 4.05e-2 TC2 = 1.12e-4)
.MODEL RSLCMOD RES (TC1 = 9.92e-3 TC2 = -2.06e-5)
.MODEL RSOURCEMOD RES (TC1 = 0 TC2 = 0)
.MODEL RVTHRESMOD RES (TC1 = -1.87e-3 TC2 = -5.42e-6)
.MODEL RVTEMPMOD RES (TC1 = -1.12e-3 TC2 = 1.12e-6)
.MODEL S1AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -7.00 VOFF= -1.55)
.MODEL S1BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -1.55 VOFF= -7.00)
.MODEL S2AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = 0.00 VOFF= 1.05)
.MODEL S2BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = 1.05 VOFF= 0.00)
.ENDS
NOTE: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global
Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank Wheatley.
18
22
+-
6
8
+
-
5
51
+
-
19
8
+-
17
18
6
8
+
-
5
8+
-
RBREAK
RVTEMP
VBAT
RVTHRES
IT
17 18
19
22
12
13
15
S1A
S1B
S2A
S2B
CA CB
EGS EDS
14
8
13
8
14
13
MWEAK
EBREAK DBODY
RSOURCE
SOURCE
11
73
LSOURCE
RLSOURCE
CIN
RDRAIN
EVTHRES 16
21
8
MMED
MSTRO
DRAIN
2
LDRAIN
RLDRAIN
DBREAK
DPLCAP
ESLC
RSLC1
10
5
51
50
RSLC2
1
GATE RGATE
EVTEMP
9
ESG
LGATE
RLGATE
20
+
-
+
-
+
-
6
HUF76113SK8
©2001 Fairchild Semiconductor Corporation HUF76113SK8 Rev. B
SABER Electrical Model
nom temp=25 deg c HUF76113SK8 Ultrafet
REV 4 June 98
template huf76113sk8 n2,n1,n3
electrical n2,n1,n3
{
var i iscl
d..model dbodymod = (is=9.35e-13, cjo= 9.85e-10,tt=2.82e-8, m=0.42)
d..model dbreakmod = ()
d..model dplcapmod = (cjo=5.51e-10,is=1e-30,n=10,m=0.60)
m..model mmedmod = (type=_n,vto=1.76,kp=3.55,is=1e-30, tox=1)
m..model mstrongmod = (type=_n,vto=2.08,kp=37,is=1e-30, tox=1)
m..model mweakmod = (type=_n,vto=1.48,kp=0.095,is=1e-30, tox=1)
sw_vcsp..model s1amod = (ron=1e-5,roff=0.1,von=-7.00,voff=-1.55)
sw_vcsp..model s1bmod = (ron=1e-5,roff=0.1,von=-1.55,voff=-7.00)
sw_vcsp..model s2amod = (ron=1e-5,roff=0.1,von=0,voff=1.05)
sw_vcsp..model s2bmod = (ron=1e-5,roff=0.1,von=1.05,voff=0)
c.ca n12 n8 = 9.60e-10
c.cb n15 n14 = 9.95e-10
c.cin n6 n8 = 5.01e-10
d.dbody n7 n71 = model=dbodymod
d.dbreak n72 n11 = model=dbreakmod
d.dplcap n10 n5 = model=dplcapmod
i.it n8 n17 = 1
l.ldrain n2 n5 = 1e-9
l.lgate n1 n9 = 1e-9
l.lsource n3 n7 = 2.27e-10
m.mmed n16 n6 n8 n8 = model=mmedmod, l=1u, w=1u
m.mstrong n16 n6 n8 n8 = model=mstrongmod, l=1u, w=1u
m.mweak n16 n21 n8 n8 = model=mweakmod, l=1u, w=1u
res.rbreak n17 n18 = 1, tc1=1.02e-3,tc2=1.10e-7
res.rdbody n71 n5 =1.39e-2, tc1=1.12e-6, tc2=1.05e-6
res.rdbreak n72 n5 =1.91e-1, tc1=3.51e-3, tc2=1.21e-6
res.rdrain n50 n16 = 2.01e-3, tc1=4.05e-2,tc2=1.12e-4
res.rgate n9 n20 = 2.94
res.rldrain n2 n5 = 10
res.rlgate n1 n9 = 10
res.rlsource n3 n7 = 2.27
res.rslc1 n5 n51 = 1e-6, tc1=-9.92e-3,tc2=-2.06e-5
res.rslc2 n5 n50 = 1e3
res.rsource n8 n7 = 17.5e-3, tc1=0,tc2=0
res.rvtemp n18 n19 = 1, tc1=-1.12e-3,tc2=1.12e-6
res.rvthres n22 n8 = 1, tc1=-1.87e-3,tc2=-5.42e-6
spe.ebreak n11 n7 n17 n18 = 32.3
spe.eds n14 n8 n5 n8 = 1
spe.egs n13 n8 n6 n8 = 1
spe.esg n6 n10 n6 n8 = 1
spe.evtemp n20 n6 n18 n22 = 1
spe.evthres n6 n21 n19 n8 = 1
sw_vcsp.s1a n6 n12 n13 n8 = model=s1amod
sw_vcsp.s1b n13 n12 n13 n8 = model=s1bmod
sw_vcsp.s2a n6 n15 n14 n13 = model=s2amod
sw_vcsp.s2b n13 n15 n14 n13 = model=s2bmod
v.vbat n22 n19 = dc=1
equations {
i (n51->n50) +=iscl
iscl: v(n51,n50) = ((v(n5,n51)/(1e-9+abs(v(n5,n51))))*((abs(v(n5,n51)*1e6/180))** 2.5 ))
}
}
18
22
+-
6
8
+
-
19
8
+-
17
18
6
8
+
-
5
8+
-
RBREAK
RVTEMP
VBAT
RVTHRES
IT
17 18
19
22
12
13
15
S1A
S1B
S2A
S2B
CA CB
EGS EDS
14
8
13
8
14
13
MWEAK
EBREAK
DBODY
RSOURCE
SOURCE
11
73
LSOURCE
RLSOURCE
CIN
RDRAIN
EVTHRES 16
21
8
MMED
MSTRO
DRAIN
2
LDRAIN
RLDRAIN
DBREAK
DPLCAP
ISCL
RSLC1
10
5
51
50
RSLC2
1
GATE RGATE
EVTEMP
9
ESG
LGATE
RLGATE
20
+
-
+
-
+
-
6
RDBODY
RDBREAK
72
71
HUF76113SK8
©2001 Fairchild Semiconductor Corporation HUF76113SK8 Rev. B
SPICE Thermal Model (0.76 in2 footprint)
REV 3 June 1998
HUF76113SK8
CTHERM1 th 6 3.75e-4
CTHERM2 6 5 3.05e-3
CTHERM3 5 4 3.70e-2
CTHERM4 4 3 2.52e-2
CTHERM5 3 2 8.50e-2
CTHERM6 2 tl 7.95e-1
RTHERM1 th 6 3.95e-2
RTHERM2 6 5 2.50e-1
RTHERM3 5 4 4.00e-1
RTHERM4 4 3 6.35
RTHERM5 3 2 2.02e1
RTHERM6 2 tl 4.80e1
SABER Thermal Model (0.76 in2 footprint)
SABER thermal model HUF76113SK8
template thermal_model th tl
thermal_c th, tl
{
ctherm.ctherm1 th 6 = 3.75e-4
ctherm.ctherm2 6 5 = 3.05e-3
ctherm.ctherm3 5 4 = 3.70e-2
ctherm.ctherm4 4 3 = 2.52e-2
ctherm.ctherm5 3 2 = 8.50e-2
ctherm.ctherm6 2 tl = 7.95e-1
rtherm.rtherm1 th 6 = 3.95e-2
rtherm.rtherm2 6 5 = 2.50e-1
rtherm.rtherm3 5 4 = 4.00e-1
rtherm.rtherm4 4 3 = 6.35
rtherm.rtherm5 3 2 = 2.02e1
rtherm.rtherm6 2 tl = 4.80e1
}
RTHERM4
RTHERM6
RTHERM5
RTHERM3
RTHERM2
RTHERM1
CTHERM4
CTHERM6
CTHERM5
CTHERM3
CTHERM2
CTHERM1
tl
2
3
4
5
6
th JUNCTION
CASE
HUF76113SK8
DISCLAIMER
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER
NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD
DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT
OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT
RIGHTS, NOR THE RIGHTS OF OTHERS.
TRADEMARKS
The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is
not intended to be an exhaustive list of all such trademarks.
LIFE SUPPORT POLICY
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT
DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.
As used herein:
1. Life support devices or systems are devices or
systems which, (a) are intended for surgical implant into
the body, or (b) support or sustain life, or (c) whose
failure to perform when properly used in accordance
with instructions for use provided in the labeling, can be
reasonably expected to result in significant injury to the
user.
2. A critical component is any component of a life
support device or system whose failure to perform can
be reasonably expected to cause the failure of the life
support device or system, or to affect its safety or
effectiveness.
PRODUCT STATUS DEFINITIONS
Definition of Terms
Datasheet Identification Product Status Definition
Advance Information
Preliminary
No Identification Needed
Obsolete
This datasheet contains the design specifications for
product development. Specifications may change in
any manner without notice.
This datasheet contains preliminary data, and
supplementary data will be published at a later date.
Fairchild Semiconductor reserves the right to make
changes at any time without notice in order to improve
design.
This datasheet contains final specifications. Fairchild
Semiconductor reserves the right to make changes at
any time without notice in order to improve design.
This datasheet contains specifications on a product
that has been discontinued by Fairchild semiconductor.
The datasheet is printed for reference information only.
Formative or
In Design
First Production
Full Production
Not In Production
OPTOLOGIC™
OPTOPLANAR™
PACMAN™
POP™
Power247™
PowerTrench
QFET™
QS™
QT Optoelectronics™
Quiet Series™
SILENT SWITCHER
FAST
FASTr™
FRFET™
GlobalOptoisolator™
GTO™
HiSeC™
ISOPLANAR™
LittleFET™
MicroFET™
MicroPak™
MICROWIRE™
Rev. H4
ACEx™
Bottomless™
CoolFET™
CROSSVOLT
DenseTrench™
DOME™
EcoSPARK™
E2CMOSTM
EnSignaTM
FACT™
FACT Quiet Series™
SMART START™
STAR*POWER™
Stealth™
SuperSOT™-3
SuperSOT™-6
SuperSOT™-8
SyncFET™
TinyLogic™
TruTranslation™
UHC™
UltraFET
STAR*POWER is used under license
VCX™