This is information on a product in full production.
February 2015 DocID14733 Rev 13 1/117
STM8S207xx STM8S208xx
Performance line, 24 MHz STM8S 8-bit MCU, up to 128 KB Flash,
integrated EEPROM, 10-bit ADC, timers, 2 UARTs, SPI, I²C, CAN
Datasheet - production data
Features
Core
–Max f
CPU: up to 24 MHz, 0 wait states @
fCPU 16 MHz
Advanced STM8 core with Harvard
architecture and 3-stage pipeline
Extended instruction set
Max 20 MIPS @ 24 MHz
Memories
Program: up to 128 Kbytes Flash; data
retention 20 years at 55 °C after 10 kcycles
–Data: up to 2 Kbytes true data EEPROM;
endurance 300 kcycles
RAM: up to 6 Kbytes
Clock, reset and supply management
2.95 to 5.5 V operating voltage
Low power crystal resonator oscillator
External clock input
Internal, user-trimmable 16 MHz RC
Internal low power 128 kHz RC
Clock security system with clock monitor
Wait, active-halt, & halt low power modes
Peripheral clocks switched off individually
Permanently active, low consumption
power-on and power-down reset
Interrupt management
Nested interrupt controller with 32
interrupts
Up to 37 external interrupts on 6 vectors
Timers
2x 16-bit general purpose timers, with 2+3
CAPCOM channels (IC, OC or PWM)
Advanced control timer: 16-bit, 4 CAPCOM
channels, 3 complementary outputs, dead-
time insertion and flexible synchronization
8-bit basic timer with 8- bit presca ler
Auto wakeup timer
Window watchdog, independent watchdog
Communications interfaces
High speed 1 Mbit/s active beCAN 2.0B
UART with clock output for synchron ous
operation - LIN master mode
UART with LIN 2.1 compliant, master/slave
modes and automatic resynchronization
SPI interface up to 10 Mbit/s
–I
2C interface up to 400 Kbit/s
10-bit ADC with up to 16 channels
I/Os
Up to 68 I/Os on an 80-pin package
including 18 high sink outputs
Highly robust I/O design, immune against
current injection
Development support
Single wire interface module (SWIM) and
debug module (DM)
96-bit unique ID key for each device
Table 1. Device summary
Reference Part number
STM8S207xx
STM8S207MB, STM8S207M8, STM8S207RB,
STM8S207R8, STM8S207R6, STM8S207CB,
STM8S207C8, STM8S207C6, STM8S207SB,
STM8S207S8, STM8S207S6, STM8S 207K8,
STM8S207K6
STM8S208xx
STM8S208MB, STM8S208RB, STM8S208R8,
STM8S208R6, STM8S208CB, STM8S208C8,
STM8S208C6, STM8S208SB, STM8S208S8,
STM8S208S6
LQFP80 LQFP64
LQFP32
LQFP44
LQFP64
LQFP48
7 x 7 mm 10 x 10mm 7 x 7 mm
14 x 14 mm 14 x 14 mm 10 x 10 mm
www.st.com
Contents STM8S207xx STM8S208xx
2/117 DocID14733 Rev 13
Contents
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4 Product overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.1 Central processing unit STM8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.2 Single wire interface module (SWIM) and debug module (DM) . . . . . . . . 14
4.3 Interrupt controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.4 Flash program and data EEPROM memory . . . . . . . . . . . . . . . . . . . . . . . 14
4.5 Clock controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.6 Power management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.7 Watchdog timers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.8 Auto wakeup counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.9 Beeper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.10 TIM1 - 16-bit advanced control timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.11 TIM2, TIM3 - 16-bit general purpose timers . . . . . . . . . . . . . . . . . . . . . . . 18
4.12 TIM4 - 8-bit basic timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.13 Analog-to-digital converter (ADC2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.14 Communication interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.14.1 UART1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.14.2 UART3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.14.3 SPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.14.4 I2C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.14.5 beCAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5 Pinouts and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.1 Package pinouts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.2 Alternate function remapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
6 Memory and register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
6.1 Memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
DocID14733 Rev 13 3/117
STM8S207xx STM8S208xx Contents
4
6.2 Register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
7 Interrupt vector mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
8 Option bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
9 Unique ID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
10 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
10.1 Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
10.1.1 Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
10.1.2 Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
10.1.3 Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
10.1.4 Typical current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
10.1.5 Pin loading conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
10.1.6 Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
10.1.7 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
10.2 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
10.3 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
10.3.1 VCAP external capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
10.3.2 Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
10.3.3 External clock sources and timing characteristics . . . . . . . . . . . . . . . . . 65
10.3.4 Internal clock sources and timing characteristics . . . . . . . . . . . . . . . . . 67
10.3.5 Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
10.3.6 I/O port pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
10.3.7 Reset pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
10.3.8 SPI serial peripheral interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
10.3.9 I2C interface characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
10.3.10 10-bit ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
10.3.11 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
11 Package characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
11.1 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
11.1.1 LQFP80 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
11.1.2 LQFP64 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
11.1.3 LQFP48 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
11.1.4 LQFP44 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
Contents STM8S207xx STM8S208xx
4/117 DocID14733 Rev 13
11.1.5 LQFP32 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
11.2 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
11.2.1 Reference document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
11.2.2 Selecting the product temperature range . . . . . . . . . . . . . . . . . . . . . . 109
12 STM8 development tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
12.1 Emulation and in-circuit debugging tools . . . . . . . . . . . . . . . . . . . . . . . . .110
12.2 Software tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .111
12.2.1 STM8 toolset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
12.2.2 C and assembly toolchains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
12.3 Programming tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .111
13 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
14 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
DocID14733 Rev 13 5/117
STM8S207xx STM8S208xx List of tables
6
List of tables
Table 1. Device summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Table 2. STM8S20xxx performance line features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Table 3. Peripheral clock gating bit assignments in CLK_PCKENR1/2 registers. . . . . . . . . . . . . . . 16
Table 4. TIM timer features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Table 5. Legend/abbreviations for pinout table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Table 6. Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Table 7. Flash, Data EEPROM and RAM boundary addresses. . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Table 8. I/O port hardware register map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Table 9. General hardware register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Table 10. CPU/SWIM/debug module/interrupt controller registers. . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Table 11. Interrupt mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Table 12. Option bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Table 13. Option byte description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Table 14. Unique ID registers (96 bits). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Table 15. Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Table 16. Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Table 17. Thermal characte ris t ics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Table 18. General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Table 19. Operating conditions at power-up/power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Table 20. Total current consumption with code execution in run mode at VDD = 5 V. . . . . . . . . . . . . 58
Table 21. Total current consumption with code execution in run mode at VDD = 3.3 V . . . . . . . . . . . 59
Table 22. Total current consumption in wait mode at VDD = 5 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Table 23. Total current consumption in wait mode at VDD = 3.3 V. . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Table 24. Total current consumption in active halt mode at VDD = 5 V, TA -40 to 85° C . . . . . . . . . . 61
Table 25. Total current consumption in active halt mode at VDD = 3.3 V . . . . . . . . . . . . . . . . . . . . . . 61
Table 26. Total current consumption in halt mode at VDD = 5 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Table 27. Total current consumption in halt mode at VDD = 3.3 V . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Table 28. Wakeup times. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Table 29. Total current consumption and timing in forced reset state . . . . . . . . . . . . . . . . . . . . . . . . 63
Table 30. Peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Table 31. HSE user external clock charact er i stics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Table 32. HSE oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Table 33. HSI oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Table 34. L SI oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Table 35. RAM and hardware registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Table 36. Flash program memory/data EEPROM memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Table 37. I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Table 38. Output driving current (standard ports). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Table 39. Output driving current (true open drain ports). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Table 40. Output driving current (high sink ports). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Table 41. NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Table 42. SPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Table 43. I2C characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Table 44. ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Table 45. ADC ac cu ra cy with R AIN < 10 k, VDDA = 5 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Table 46. ADC ac cu ra cy with R AIN < 10 kRAIN, VDDA = 3.3 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Table 47. EMS data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Table 48. EMI data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
List of tables STM8S207xx STM8S208xx
6/117 DocID14733 Rev 13
Table 49. ESD ab so lut e ma xim u m ra tings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Table 50. Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Table 51. LQFP80 - 80-pin, 14 x 14 mm low-profile quad flat package mechanical
data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Table 52. LQFP64 - 64-pin, 14 x 14 mm low-profile quad flat package mechanical
data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Table 53. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package mechanical
data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
Table 54. LQFP48 - 48-pin, 7x 7 mm low-profile quad flat package mechanical . . . . . . . . . . . . . . . . 99
Table 55. LQFP44 - 44-pin, 10 x 10 mm low-profile quad flat package mechanical
data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
Table 56. LQFP32 - 32-pin, 7 x 7 mm low-profile quad flat package mechanical
data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
Table 57. T he rm a l chara c te ris tics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
Table 58. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
DocID14733 Rev 13 7/117
STM8S207xx STM8S208xx List of figures
8
List of figures
Figure 1. STM8S20xxx block diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Figure 2. Flash memory organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Figure 3. LQFP 80-pin pinout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Figure 4. LQFP 64-pin pinout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Figure 5. LQFP 48-pin pinout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Figure 6. LQFP 44-pin pinout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Figure 7. LQFP 32-pin pinout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Figure 8. Memory map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Figure 9. Supply current measurement conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Figure 10. Pin loading conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Figure 11. Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Figure 12. fCPUmax versus VDD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57
Figure 13. External capacitor CEXT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Figure 14. Typ. IDD(RUN) vs VDD, HSI RC osc, fCPU = 16 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Figure 15. Typ. IDD(WFI) vs VDD, HSI RC osc, fCPU = 16 MHz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Figure 16. HSE external clock source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Figure 17. HSE oscillator circuit diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Figure 18. Typical HSI frequency variation vs VDD at 4 temperatures. . . . . . . . . . . . . . . . . . . . . . . . . 67
Figure 19. Typical LSI frequency variation vs VDD @ 25 °C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Figure 20. Typical VIL and VIH vs VDD @ 4 temperatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Figure 21. Typical pull-up resistance vs VDD @ 4 temperatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Figure 22. Typical pull-up current vs VDD @ 4 temperatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Figure 23. Typ. VOL @ VDD = 5 V (standard ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Figure 24. Typ. VOL @ VDD = 3.3 V (standard ports). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Figure 25. Typ. VOL @ VDD = 5 V (true open drain ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Figure 26. Typ. VOL @ VDD = 3.3 V (true open drain ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Figure 27. Typ. VOL @ VDD = 5 V (high sink ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Figure 28. Typ. VOL @ VDD = 3.3 V (high sink ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Figure 29. Typ. VDD - VOH @ VDD = 5 V (standard ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Figure 30. Typ. VDD - VOH @ VDD = 3.3 V (standard ports). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Figure 31. Typ. VDD - VOH @ VDD = 5 V (high sink ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Figure 32. Typ. VDD - VOH @ VDD = 3.3 V (high sink ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Figure 33. Typical NRST VIL and VIH vs VDD @ 4 temperatures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Figure 34. Typical NRST pull-up resistance vs VDD @ 4 temperatures. . . . . . . . . . . . . . . . . . . . . . . . 79
Figure 35. Typical NRST pull-up current vs VDD @ 4 temperatures . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Figure 36. Recommended reset pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Figure 37. SPI timing diagram - slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Figure 38. SPI timing diagram - slave mode and CPHA = 1(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Figure 39. SPI timing diagram - master mode(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Figure 40. Typical application with I2C bus and timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Figure 41. ADC accuracy characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Figure 42. Typical application with ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Figure 43. LQFP80 - 80-pin, 14 x 14 mm low-profile quad flat package outline . . . . . . . . . . . . . . . . . 92
Figure 44. LQFP80 reco mmended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Figure 45. LQFP80 mar kin g example (package top view). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Figure 46. LQFP64 - 64-pin 14 mm x 14 mm low-profile quad flat package outline . . . . . . . . . . . . . . 95
Figure 47. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package outline . . . . . . . . . . . . . . . . . 96
Figure 48. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat recommended footprint . . . . . . . . . . . 97
List of figures STM8S207xx STM8S208xx
8/117 DocID14733 Rev 13
Figure 49. LQFP64 mar kin g example (package top view). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
Figure 50. LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package outline . . . . . . . . . . . . . . . . . . . 99
Figure 51. LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat recommended footprint . . . . . . . . . . . . 100
Figure 52. LQFP48 mar kin g example (package top view). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
Figure 53. LQFP44 - 44-pin, 10 x 10 mm low-profile quad flat package outline . . . . . . . . . . . . . . . . 102
Figure 54. LQFP44 - 44-pin, 10 x 10 mm low-profile quad flat recommended footprint . . . . . . . . . . 104
Figure 55. LQFP44 mar kin g example (package top view). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
Figure 56. LQFP32 - 32-pin, 7 x 7 mm low-profile quad flat package outline . . . . . . . . . . . . . . . . . . 105
Figure 57. LQFP32 - 32-pin, 7 x 7 mm low-profile quad flat recommended footprint . . . . . . . . . . . . 106
Figure 58. LQFP32 mar kin g example (package top view). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
Figure 59. STM8S207xx/208xx performance line ordering information scheme(1) . . . . . . . . . . . . . . 112
DocID14733 Rev 13 9/117
STM8S207xx STM8S208xx Introduction
116
1 Introduction
This datasheet contains the descr ipt ion of the STM8S20xxx features, pinout, electrical
characteristics, mechanical data and ordering information.
For complete information on the STM8S microcontroller memory, registers and
peripherals, please refer to the STM8S microcontroller family reference manual
(RM0016).
For information on programming, erasing and protection of the internal Flash memory
please refer to the STM8 S Flash programming manual (PM0051).
For information on the debug and SWIM (single wire interface module) refer to the
STM8 SWIM communication protocol and debug module user manual (UM0470).
For information on the STM8 cor e, please refer to the STM8 CPU programming ma nual
(PM0044).
Description STM8S207xx STM8S208xx
10/117 DocID14733 Rev 13
2 Description
The STM8S20xxx performance line 8-bit microcontrollers offe r from 32 to 128 Kbytes Flash
program memory. They are referred to as high-density devices in the STM8S
microcontroller family reference manual.
All STM8S20xxx devices provide the following benefits: reduced system cost, performance
robustness, short development cycles, and product longevity.
The system cost is reduced thanks to an integrated true data EEPROM for up to 300 k
write/erase cycles and a high system integration level with internal clock oscillators,
watchdog, and brown-out reset.
Device performance is ensure d by 20 MIPS at 24 MHz CPU clock frequ ency and e nhanced
characteristics which include robust I/O, independent watchdogs (with a sepa rate clock
source), and a clock security system.
Short development cycles are guaranteed due to application scalability across a common
family product architecture with compatible pinout, memory map and modular peripherals.
Full documentation is offered with a wide choice of development tools.
Product longevity is ensured in the STM8S family thanks to their advanced core which is
made in a state-of-the art te ch no log y fo r applic atio n s w ith 2. 95 V to 5.5 V oper atin g supp ly.
DocID14733 Rev 13 11/117
STM8S207xx STM8S208xx Description
116
Table 2. STM8S20xxx performance line features
Device
Pin count
Max. number of GPIOs
(I/O)
Ext. interrupt pins
Timer CAPCOM channels
Timer complementary outputs
A/D converter channels
High sink I/Os
High density Flash program memory
(bytes)
Data EEPROM
(bytes
RAM (bytes)
beCAN interface
STM8S207MB
STM8S207M8
STM8S207RB
STM8S207R8
STM8S207R6
STM8S207CB
STM8S207C8
STM8S207C6
STM8S207SB
STM8S207S8
STM8S207S6
STM8S207K8
STM8S207K6
80
80
64
64
64
48
48
48
44
44
44
32
32
68
68
52
52
52
38
38
38
34
34
34
25
25
37
37
36
36
36
35
35
35
31
31
31
23
23
9
9
9
9
9
9
9
9
8
8
8
8
8
3
3
3
3
3
3
3
3
3
3
3
3
3
16
16
16
16
16
10
10
10
9
9
9
7
7
18
18
16
16
16
16
16
16
15
15
15
12
12
128 K
64 K
128 K
64 K
32 K
128 K
64 K
32 K
128 K
64 K
32 K
64 K
32 K
2048
2048
2048
1536
1024
2048
1536
1024
1536
1536
1024
1024
1024
6 K
6 K
6 K
6 K
6 K
6 K
6 K
6 K
6 K
6 K
6 K
6 K
6 K
No
STM8S208MB
STM8S208RB
STM8S208R8
STM8S208R6
STM8S208CB
STM8S208C8
STM8S208C6
STM8S208SB
STM8S208S8
STM8S208S6
80
64
64
64
48
48
48
44
44
44
68
52
52
52
38
38
38
34
34
34
37
37
37
37
35
35
35
31
31
31
9
9
9
9
9
9
9
8
8
8
3
3
3
3
3
3
3
3
3
3
16
16
16
16
10
10
10
9
9
9
18
16
16
16
16
16
16
15
15
15
128 K
128 K
64 K
32 K
128 K
64 K
32 K
128 K
64 K
32 K
2048
2048
2048
2048
2048
2048
2048
1536
1536
1536
6 K
6 K
6 K
6 K
6 K
6 K
6 K
6 K
6 K
6 K
Yes
Block diagram STM8S207xx STM8S208xx
12/117 DocID14733 Rev 13
3 Block diagram
Figure 1. STM8S20xxx block dia gram
1. Legend:
ADC: Analog-to-digital converter
beCAN: Controller area network
BOR: Brownout reset
I²C: Inter-integrated circuit multimaster interface
Independent WDG: Independent watchdog
POR/PDR: Power on reset / power down reset
SPI: Serial peripheral interface
SWIM: Single wire interface module
UART: Universal asynchronous receiver transmitter
Window WDG: Window watchdog
XTAL 1-24 MHz
RC int. 16 MHz
RC int. 128 kHz
STM8 core
Debug/SWIM
I2C
SPI
UART1
UART3
AW U timer
Reset block
Reset
Clock controller
Detector
Clock to peripherals and core
10 Mbit/s
LIN master
16 channels
Address and data bus
Window WDG
Up to 128 Kbytes
Up to 2 Kbytes
Up to 6 Kbytes
Boot ROM
ADC2
beCAN
Reset
400 Kbit/s
1 Mbit/s
Master/slave
Single wire
autosynchro
debug interf.
SPI emul.
high density program
Flash
data EE PROM
RAM
16-bit general purpose
16-bit advanced contr ol
timer (TIM1)
timers (TIM2, TIM3)
8-bit basic timer
(TIM4)
Beeper
1/2/4 kHz
beep
Independent WDG
4 CAPCOM
channels
Up to
5 CAPCOM
channels
Up to
+ 3 complementary
outputs
POR/PDR
BOR
DocID14733 Rev 13 13/117
STM8S207xx STM8S208xx Product overview
116
4 Product overview
The following section intends to give an overview of the basic features of the STM8S20xxx
functional modules and peripherals.
For more detailed information please refer to the corresponding family refere nce manual
(RM0016).
4.1 Central processing unit STM8
The 8-bit STM8 core is designed for code ef ficiency and performance.
It contains 6 internal registers which are directly addressable in each execution context, 20
addressing modes including indexed indirect and relative addressing an d 80 instructions.
Architecture and registers
Harvard arch ite ctu re
3-stage pipeline
32-bit wide program memory bus - single cycle fetching for most instructions
X and Y 16-bit index registers - enablin g indexed addressing modes with or without
offset and read-modify-write type data manipulations
8-bit accumulator
24-bit progra m counter - 16-Mbyte linear memo ry space
16-bit stack pointer - access to a 64 K-level stack
8-bit condition code register - 7 condition flags for the result of the last instruction
Addressing
20 addressing modes
Indexed indirect addressing mode for look-up tables located anywhere in the address
space
Stack pointer relative addressing mode for local variables and parameter passing
Instruction set
80 instructions with 2-byte average instruction size
Standard data movement and logic/arithmetic functions
8-bit by 8-bit multiplication
16-bit by 8-bit and 16-bit by 16-bit division
Bit manipulation
Data transfer between stack and accumulator (push/pop) with direct stack access
Data transfer using the X and Y registers or direct mem ory-to-memory transfers
Product overview STM8S207xx STM8S208xx
14/117 DocID14733 Rev 13
4.2 Single wire interface module (SWIM) and debug module (DM)
The single wire interface module and debug module permits non-intrusive, real-time in-
circuit debugging and fast memory programming.
SWIM
Single wire interface module for direct access to the debug module and memory
programming. The interface can be activated in all device operation modes. The maximum
data transmission speed is 145 bytes/ms.
Debug module
The non-intrusive debu gging module features a performance close to a full-featured
emulator. Beside memory and peripherals, also CPU operation can be monitored in real-
time by means of shadow registers.
R/W to RAM and peripheral registers in real-time
R/W access to all resources by stalling the CPU
Breakpoints on all pr ogram-memory instructions (software breakpoints)
Two advanced breakpoints, 23 predefined configurations
4.3 Interrupt controller
Nested interrupts with three software priority levels
32 interrupt vectors with hardware priority
Up to 37 external interrupts on six vectors including TLI
Trap and reset interrupts
4.4 Flash program and data EEPROM memory
Up to 128 Kbytes of high density Flash program single voltage Flash memory
Up to 2K bytes true data EEPROM
Read while write: Writing in data memory possible while executing code in program
memory.
User option byte area
Write protection (WP)
Write protection of Flash program memory and data EEPROM is provided to avoid
unintentional overwriting of memory that could result from a user sof tware malfunction.
There are two levels of write protection. The first level is known as MASS (memory access
security system). MASS is always enabled and protects the main Flash program memory,
data EEPROM and option bytes.
To perform in-application programming (IAP), this write protection can be removed by
writing a MASS key sequence in a control register. This allows the application to write to
data EEPROM, modify the contents of main program memory or the device option bytes.
A second level of write prot ect ion , ca n be enabled to further protect a specific area of
memory known as UBC (u se r boot co de ). Refe r to Figure 2.
DocID14733 Rev 13 15/117
STM8S207xx STM8S208xx Product overview
116
The size of the UBC is programmable th rough the UBC option byte (Table 13.), in
increments of 1 page ( 512 bytes) by programming the UBC option byte in ICP mode.
This divides the program memory into two areas:
Main program memory: Up to 128 Kbytes minus UBC
User-specific boot code (UBC): Configurable up to 128 Kbytes
The UBC area remains write-protected during in-application programming. This means that
the MASS keys do not unlock the UBC area. It protects the memor y u sed to store the boot
program, specific code libraries, reset and interrupt vectors, the reset routine and usually
the IAP and communication routines.
Figure 2. Flash memory organization
Read-out protection (ROP)
The read-out protection blocks reading and writing the Flash program memory and data
EEPROM memory in ICP mode (and debug mode). Once the read-out protection is
activated, any attempt to toggle its status triggers a global erase of the program and data
memory. Even if no protection can be considered as tot ally unbreakable, the feature
provides a very high level of protection for a general purpose microcontroller.
Programmable area fro m 1 Kb yte
Data
UBC area
Program memory area
Data memory area (2 Kbytes)
(2 first pages) up to 128 Kbytes
EEPROM
Remains write protected during IAP
memory
128 Kbytes
Flash
Up to
Write access possible for IAP
program
memory
(1 page steps)
Option bytes
Product overview STM8S207xx STM8S208xx
16/117 DocID14733 Rev 13
4.5 Clock controller
The clock controller distributes the system clock (fMASTER) coming from different oscillators
to the core and the peripherals. It also manages clock gating for low power modes and
ensures clock robustness.
Features
Clock prescaler: To get the best compromise between speed and current
consumption the clock frequency to the CPU an d peripherals can be adjusted by a
programmable prescaler.
Safe clock switching: Clock sources can be changed safely on the fly in run mode
through a configuration register. The clock signal is not switched until the new clock
source is ready. The design guarantees glitch-free switching.
Clock management: To reduce power consumption, the clock controller can stop the
clock to the core, individual peripherals or memory.
Master clock sources: Four different clock sources can be used to drive the master
clock:
1-24 MHz high-speed external crystal (HSE)
Up to 24 MHz high-speed user-external clock (HSE user-ext)
16 MHz high-speed internal RC oscillator (HSI)
128 kHz low-speed internal RC (LSI)
S tartup clock: After reset, the microcontroller restarts by default with an internal 2
MHz clock (HSI/8). The prescaler ratio and clock source can be cha ng e d by th e
application program as soon as the code execution starts .
Clock security system (CSS): This feature can be enab led by software. If an HSE
clock failure occurs, the internal RC (16 MHz/8) is automatically selected by the CSS
and an interrupt can op tionally be generated.
Configurable main clock output (CCO): This outputs an external clock for use by the
application.
Table 3. Peripheral clock gating bit assignments in CLK_PCKENR1/2 registers
Bit Peripheral
clock Bit Peripheral
clock Bit Peripheral
clock Bit Peripheral
clock
PCKEN17 TIM1 PCKEN13 UART3 PCKEN27 beCAN PCKEN23 ADC
PCKEN16 TIM3 PCKEN12 UART1 PCKEN26 Reserved PCKEN22 AWU
PCKEN15 TIM2 PCKEN11 SPI PCKEN25 Reserved PCKEN21 Reserved
PCKEN14 TIM4 PCKEN10 I2C PCKEN24 Reserved PCKEN20 Reserved
DocID14733 Rev 13 17/117
STM8S207xx STM8S208xx Product overview
116
4.6 Power management
For efficient power management, the application can be put in one of four different low-
power modes. You can configu re each mode to obt ain the best compromi se between lowest
power consumption, fastest start-up time and available wakeup sources.
Wait mode: In this mode, the CPU is stopped, but peripherals are kept running. The
wakeup is performed by an internal or external inter rupt or reset.
Active halt mode with regulator on: In this mod e, the CPU and peripheral clocks are
stopped. An internal wakeup is generated at programmable inter vals by the auto wake
up unit (AWU). The main voltage r egulator is kept powered on, so cur rent consumption
is higher than in active halt mode with regulator off, but the wakeup time is faster.
Wakeup is triggered by the internal AWU interrupt, external interrupt or reset.
Active halt mode with regulator off: This mode is the same as active halt with
regulator on, ex cept that the main volt age regula tor is powered off, so the wake up time
is slower.
Halt mode: In this mode the microcontroller uses the least power. The CPU and
peripheral clocks are stopped, the main voltage regulator is powered off. Wakeup is
triggered by external event or reset.
4.7 Watchdog timers
The watchdog system is based on two independent timers providing maximum security to
the application s.
Activation of the watchdog timers is controlled by option bytes or by software. Once
activated, the watchdogs cannot be disabled by the user program without performing a
reset.
Window watchdog timer
The window watchdog is used to detect the occurrence of a software fault, usually
generated by external interferences or by unexpected logical conditions, which cause the
application program to abandon its normal sequence.
The window function can be used to trim the watchdog behavior to match the application
perfectly.
The application soft ware must refresh the counter before time-o ut and during a limited time
window.
A reset is generated in two situations:
1. Timeout: At 16 MHz CPU clock the time-out period can be adjusted between 75 µs up
to 64 ms.
2. Refresh out of window: The downcounter is refreshed before its value is lower than the
one stored in the window register.
Product overview STM8S207xx STM8S208xx
18/117 DocID14733 Rev 13
Independent watchdog timer
The independent watchdog periph eral can be used to resolve processor malfunctions due to
hardware or software failures.
It is clocked by the 128 kHz LSI internal RC clock source, and th us stays active even in case
of a CPU clock failure
The IWDG time base spans from 60 µs to 1 s.
4.8 Auto wakeup counter
Used for auto wakeup from active halt mode
Clock source: Internal 128 kHz internal low frequency RC oscillator or external clock
LSI clock can be internally co nnected to TIM3 input capture channel 1 for calibration
4.9 Beeper
The beeper function outputs a signal on the BEEP pin for sound generation. The signal is in
the range of 1, 2 or 4 kHz.
4.10 TIM1 - 16-bit advanced control timer
This is a high-end timer designed for a wide range of control applications. With its
complementary outputs, dead-time control and center-aligned PWM capability, the field of
applications is extended to motor control, lighting and half-bridge driver
16-bit up, down and up/down autoreload counter with 16-bit prescaler
Four independent captur e/compare channels (CAPCOM) configurable as input
capture, output compa re, PWM gen eration ( ed ge and cente r a ligne d mode ) a nd single
pulse mode output
Synchronization module to control the timer with external signals
Break input to force the timer outputs into a defined state
Three complementary outputs with adjustable dead time
Encoder mode
Interrupt sources: 3 x input capture/output compare, 1 x overflow/update, 1 x break
4.11 TIM2, TIM3 - 16-bit general purpose timers
16-bit autore load (AR) up-counter
15-bit prescaler adjustable to fixed power of 2 ratios 1…32768
Timers with 3 or 2 individually configurable capture/compare channels
PWM mode
Interrupt sources: 2 or 3 x input capture/output compare, 1 x overflow/update
DocID14733 Rev 13 19/117
STM8S207xx STM8S208xx Product overview
116
4.12 TIM4 - 8-bit basic timer
8-bit autoreload, adjustable prescaler ratio to any power of 2 from 1 to 128
Clock source: CPU clock
Interrupt source: 1 x overflow/update
4.13 Analog-to-digital converter (ADC2)
STM8S20xxx performance line products contain a 10-bit successive approximation A/D
converter (ADC2) with up to 16 multiplexed input channels and the following main features:
Input voltage range: 0 to VDDA
Dedicated voltage reference (VREF) pins available on 80 and 64-pin devices
Conversion time: 14 clock cycles
Single and continuous modes
External trigger input
Trigger from TIM1 TRGO
End of conversion (EOC) interrupt
4.14 Communication interfaces
The following communication interfaces are implemented:
UART1: Full feature UART, SPI emulation, LIN2.1 master capability, Smartcard mode,
IrDA mode, single wire mode.
UART3: Full feature UART, LIN2.1 master/slave capability
SPI: Full and half-duplex, 10 Mbit/s
I²C: Up to 400 Kbit/s
beCAN (rev. 2.0A,B) - 3 Tx mailboxes - up to 1 Mbit/s
Table 4. TIM timer features
Timer Counter
size
(bits) Prescaler Counting
mode CAPCOM
channels Complem.
outputs Ext.
trigger
Timer
synchr-
onization/
chaining
TIM1 16 Any integer from 1 to 65536 Up/down 4 3 Yes
No
TIM2 16 Any power of 2 from 1 to 32768 Up 3 0 No
TIM3 16 Any power of 2 from 1 to 32768 Up 2 0 No
TIM4 8 Any power of 2 from 1 to 128 Up 0 0 No
Product overview STM8S207xx STM8S208xx
20/117 DocID14733 Rev 13
4.14.1 UART1
Main features
One Mbit/s full duplex SCI
SPI emulation
High precision baud rate generator
Smartcard em u lat ion
IrDA SIR encoder deco d er
LIN master mode
Single wire half duplex mode
Asynchronous communication (UART mode)
Full duplex communication - NRZ standard format (mark/space )
Programmable transmit and receive baud rates up to 1 Mbit/s (fCPU/1 6) an d ca p able of
following any standard baud rate regardless of the input frequency
Separate enable bits for tr ansmitter and receiver
Two receiver wakeup modes:
Address bit (MSB)
Idle line (interrupt)
Transmission error detection with interrupt generation
Parity control
Synchronous communication
Full duplex synchronous transfers
SPI master operation
8-bit data communication
Maximum speed: 1 Mbit/s at 16 MHz (fCPU/16)
LIN master mode
Emission: Generates 13-bit sync break frame
Reception: Detects 11-bit break frame
4.14.2 UART3
Main features
1 Mbit/s full duplex SCI
LIN master capable
High precision baud rate generator
DocID14733 Rev 13 21/117
STM8S207xx STM8S208xx Product overview
116
Asynchronous communication (UART mode)
Full duplex communication - NRZ standard format (mark/space )
Programmable transmit and receive baud rates up to 1 Mbit/s (fCPU/1 6) an d ca p able of
following any standard baud rate regardless of the input frequency
Separate enable bits for tr ansmitter and receiver
Two receiver wakeup modes:
Address bit (MSB)
Idle line (interrupt)
Transmission error detection with interrupt generation
Parity control
LIN master capability
Emission: Generates 13-bit sync break frame
Reception: Detects 11-bit break frame
LIN slave mode
Autonomous header handling - one single interrupt per valid message header
Automatic baud rate synchronization - maximum tolerated initial clock deviation ±15%
Sync delimiter checking
11-bit LIN sync break detection - break detection always active
Parity check on the LIN identifier field
LIN error management
Hot plugging support
4.14.3 SPI
Maximum speed: 1 0 Mbit/s (fMASTER/2) both for master and slave
Full duplex synchronous transfers
Simplex synchronous transfers on two lines with a possible bidirectional data line
Master or slave operation - selectable by hardware or software
CRC calculation
1 byte Tx and Rx buffer
Slave/master selection input pin
Product overview STM8S207xx STM8S208xx
22/117 DocID14733 Rev 13
4.14.4 I2C
I2C master features:
Clock generation
Start and stop generation
I2C slave features:
Programmable I2C address detection
Stop bit detection
Generation and detection of 7-bit/10-bit addressing and general call
Supports different communication speeds:
Standard speed (up to 100 kHz)
Fast speed (up to 400 kHz)
4.14.5 beCAN
The beCAN controller (basic en hanced CAN), inter faces the CAN netwo rk and support s the
CAN protocol version 2.0A and B. It has been designed to manage a high number of
incoming messages efficiently with a minimum CPU load.
For safety-critical applications the beCAN controller provides all hardware functions to
support the CAN time triggered communication option (TTCAN).
The maximum transmission speed is 1 Mbit.
Transmission
Three transmit mailboxes
Configurable transmit priority by identifier or order request
Time stamp on SOF transmission
Reception
8-, 11- and 29-bit ID
One receive FIFO (3 messages deep)
Software-efficient mailbox mapping at a unique address space
FMI (filter match index) stored with message
Configurab le FIF O ove r ru n
Time stamp on SOF reception
Six filter banks, 2 x 32 bytes (scalable to 4 x 16-bit) each, enabling various masking
configurations, such as 12 filters for 29-bit ID or 48 filters for 11-bit ID
Filtering modes:
Mask mode permitting ID range filtering
ID list mode
Time triggered communication option
Disable automatic retransmission mode
16-bit free running timer
Configurable timer resolution
Time stamp sent in last two data by tes
DocID14733 Rev 13 23/117
STM8S207xx STM8S208xx Pinouts and pin description
116
5 Pinouts and pin description
5.1 Package pinouts
Figure 3. LQ FP 80 -p i n pi n ou t
1. (HS) high sink capability.
2. (T) True open drain (P-buffer and prote ct i on diode to VDD not implemented).
3. [ ] alternate fun ction remap ping opt ion (If t he sa me altern ate f uncti on is shown twice, it in dicates an e xclusive choice no t a
duplication of the function).
4. CAN_RX and CAN_TX is available on STM8S208xx devices only.
PD4 (HS)/TIM2_CH1 [BEEP]
2
1
3
4
5
6
7
8
10
9
12
14
16
18
20
11
15
13
17
19
25
26
28
27
30
32
34
36
38
29
33
31
35
37
39
57
58
56
55
54
53
52
51
49
50
47
45
43
41
48
44
46
42
60
59
61
62
63
64
66
68
65
67
69
70
71
72
74
73
75
76
77
78
79
80
PI4
PI3
PI2
PI1
PC4 (HS)/TIM1_CH4
PC3 (HS)/TIM1_CH3
PC2 (HS)/TIM1_CH2
PC1 (HS)/TIM1_CH1
PG6
PG5
PI5
PI0
PG4
PG3
PG2
PC7 (HS)/SPI_MISO
VSSIO_2
VDDIO_1
[TIM3_CH1] TIM2_CH3/PA3
UART1_RX/ (HS) PA4
UART1_TX/ (HS) PA5
AIN12/PF4
VSSIO_1
VSS
VCAP
VDD
UART1_CK/ (HS) PA6
(HS) PH0
(HS) PH1
PH2
PH3
AIN15/PF7
AIN14/PF6
AIN13/PF5
NRST
OSCIN/PA1
OSCOUT/PA2
[I2C_SDA] AIN5/PB5
[I2C_SCL] AIN4/PB4
[TIM1_CH2N] AIN1/PB1
[TIM1_CH1N] AIN0/PB0
AIN8/PE7
VREF-
AIN10/PF0
AIN7/PB7
AIN6/PB6
TIM1_ETR/PH4
TIM1_CH3N/PH5
TIM1_CH2N/PH6
40
AIN9/PE6
21
22
24
23
AIN11/PF3
VREF+
VDDA
VSSA
PD0 (HS)/TIM3_CH2 [TIM1_BKIN] [CLK_CCO]
PE2 (T]/I 2C_SDA
PE3/TIM1_BKIN
PE4
PG7
PD7/TLI
PD6/UART3_RX
PD5/UART3_TX
PI7
PI6
PD2 (HS)/TIM3_CH1 [TIM2_CH3]
PD1 (HS)/SWIM
PC5 (HS)/SPI_SCK
PC6 (HS)/SPI_MOSI
PG0/CAN_TX
PG1/CAN_RX
PE0 (HS)/CLK_CCO
PD3 (HS)/TIM2_CH2 [ADC_ETR]
[TIM1_ETR] AIN3/PB3
[TIM1_CH3N] AIN2/PB2
PC0/ADC_ETR
PE5/SPI_NSS
TIM1_CH1N/PH7
VDDIO_2
PE1(T)/I2C_SCL
Pinouts and pin description STM8S207xx STM8S208xx
24/117 DocID14733 Rev 13
Figure 4. LQ FP 64 -p i n pi n ou t
1. (HS) high sink capability.
2. (T) True open drain (P-buffer and prote ct i on diode to VDD not implemented).
3. [ ] alternate fun ction remap ping opt ion (If t he sa me altern ate f uncti on is shown twice, it in dicates an e xclusive choice no t a
duplication of the function).
4. CAN_RX and CAN_TX is available on STM8S208xx devices only.
VREF-
AIN10/PF0
AIN7/PB7
AIN6/PB6
[I2C_SDA] AIN5/PB5
[I2C_SCL] AIN4/PB4
[TIM1_ETR] AIN3/PB3
[TIM1_CH3N] AIN2/PB2
[TIM1_CH2N] AIN1/PB1
[TIM1_CH1N] AIN0/PB0
AIN8/PE7
AIN9/PE6
AIN11/PF3
VREF+
VDDA
VSSA
64636261605958575655545352515049
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
1718192021222324 2930313225262728
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
VSS
VCAP
VDD
VDDIO_1
[TIM3_CH1] TIM2_CH3/PA3
UART1_RX/ (HS) PA4
UART1_TX/ (HS) PA5
UART1_CK/ (HS) PA6
AIN15/PF7
AIN14/PF6
AIN13/PF5
AIN12/PF4
NRST
OSCIN/PA1
OSCOUT/PA2
VSSIO_1 PG1/CAN_RX
PG0/CAN_TX
PC7 (HS)/SPI_MISO
PC6 (HS)/SPI_MOSI
VDDIO_2
VSSIO_2
PC5 (HS)/SPI_SCK
PC4 (HS)/TIM1_CH4
PC3 (HS)/TIM1_CH3
PC2 (HS)/TIM1_CH2
PC1 (HS)/TIM1_CH1
PE5/SPI_NSS
PI0
PG4
PG3
PG2
PD3 (HS)/TIM2_CH2[ADC_ETR]
PD2 (HS)/T IM 3 _ CH1[ T IM 2_ CH3 ]
PD1 (HS)/SWIM
PD0 (HS)/T IM 3 _ CH2 [TI M 1_B K IN] [CLK _ CCO]
PE0 (HS)/CLK_CCO
PE1 (T)/I2C_SCL
PE2 (T)/I2C_SDA
PE3/TIM1_BKIN
PE4
PG7
PG6
PG5
PD7/TLI
PD6/UART3_RX
PD5/UART3_TX
PD4 (HS)/TIM2_CH1 [BE EP ]
DocID14733 Rev 13 25/117
STM8S207xx STM8S208xx Pinouts and pin description
116
Figure 5. LQ FP 48 -p i n pi n ou t
1. (HS) high sink capability.
2. (T) True open drain (P-buffer and prote ct i on diode to VDD not implemented).
3. [ ] alternate fun ction remap ping opt ion (If t he sa me altern ate f uncti on is shown twice, it in dicates an e xclusive choice no t a
duplication of the function).
4. CAN_RX and CAN_TX is available on STM8S208xx devices only.
4443424140393837
36
35
34
33
32
31
30
29
28
27
26
25
24
23
12
13141516171819202122
1
2
3
4
5
6
7
8
9
10
11
48474645
UART1_CK/(HS) PA6
AIN8/PE7
PC1 (HS)/TIM1_CH1
PE5/SPI_NSS
PG1/CAN_RX
AIN9/PE6
PD3 (HS)/TIM2_CH2 [ADC_ETR]
PD2 (HS)/TIM3_CH1 [TIM2_CH3]
PE0 (HS)/CLK_CCO
PE1 (T)/I2C_SCL
PE2 (T)/I2C_SDA
PE3/TIM1_BKIN
PD7/TLI
PD6/UART3_RX
PD5/UART3_TX
PD4 (HS)/TIM2_CH1 [BEEP]
PD1 (HS)/SWIM
PD0 (HS)/TIM3_CH2 [TIM1_BKIN] [CLK_CCO]
VSSIO_2
PC5 (HS)/SPI_SCK
PC4 (HS)/TIM1_CH4
PC3 (HS)/TIM1_CH3
PC2 (HS)/TIM1_CH2
PG0/CAN_TX
PC7 (HS)/SPI_MISO
PC6 (HS)/SPI_MOSI
VDDIO_2
AIN7/PB7
AIN6/PB6
[I2C_SDA] AIN5/PB5
[I2C_SCL] AIN4/PB4
[TIM1_ETR/AIN3/PB3
[TIM1_CH3N] AIN2/PB2
[TIM1_CH2N] AIN1/PB1
[TIM1_CH1N] AIN0/PB0
VDDA
VSSA
VSS
VCAP
VDD
VDDIO_1
[TIM3_CH1] TIM2_CH3/PA3
UART1_RX/(HS) PA4
UART1_TX/(HS) PA5
NRST
OSCIN/PA1
OSCOUT/PA2
VSSIO_1
Pinouts and pin description STM8S207xx STM8S208xx
26/117 DocID14733 Rev 13
Figure 6. LQ FP 44 -p i n pi n ou t
1. (HS) high sink capability.
2. (T) True open drain (P-buffer and prote ct i on diode to VDD not implemented).
3. [ ] alternate fun ction remap ping opt ion (If t he sa me altern ate f uncti on is shown twice, it in dicates an e xclusive choice no t a
duplication of the function).
4. CAN_RX and CAN_TX is available on STM8S208xx devices only.
AIN6/PB6
[I2C_SDA] AIN5/PB5
[I2C_SCL] AIN4/PB4
[TIM1_ETR] AIN3/PB3
[TIM1_CH3N] AIN2/PB2
[TIM1_CH2N] AIN1/PB1
(TIM1_CH1N] AIN0/PB0
AIN9/PE6
VDDA
VSSA
AIN7/PB7
4443424140393837363534
33
32
31
30
29
28
27
26
25
24
23
1213141516171819202122
1
2
3
4
5
6
7
8
9
10
11
VSS
VCAP
VDD
VDDIO_1
UART1_RX
UART1_TX/
UART1_CK
NRST
OSCIN/PA1
OSCOUT/PA2
VSSIO_1 VDDIO_2
VSSIO_2
PC5 (HS)/SPI_SCK
PC3 (HS)/TIM1_CH3
PC2 (HS)/TIM1_CH2
PC1 (HS)/TIM1_CH1
PE5/SPI_NSS
PG1/CAN_RX
PG0/CAN_TX
PC7 (HS)/SPI_MISO
PC6 (HS)/SPI_MOSI
PD3 (HS)/TIM2_CH2 [ADC_ETR]
PD2 (HS)/TIM3_CH1 [TIM2_CH3]
PD1 (HS)/SWIM
PE1 (T)/I2C_SCL
PE2 (T)/I2C_SDA
PD7/TLI [TIM1_CH4]
PD6/UART3_RX
PD5/UART3_TX
PD4 (HS)/TIM2_CH1[BEEP]
PE0 (HS)/CLK_CCO
PD0 (HS)/TIM3_CH2 [TIM1_BKIN] [CLK_CCO]
DocID14733 Rev 13 27/117
STM8S207xx STM8S208xx Pinouts and pin description
116
Figure 7. LQ FP 32 -p i n pinout
1. (HS) high sink capability.
2. [ ] alternate fun ction remap ping opt ion (If t he sa me altern ate f uncti on is shown twice, it in dicates an e xclusive choice no t a
duplication of the function).
[I2C_SCL] AI N4 /P B4
[TIM1_ETR] AI N3 /P B3
[TIM1_CH3N] AIN2/PB2
[TIM1_CH2N] AIN1/PB1
[TIM1_CH1N] AIN0/PB0
VDDA
VSSA
[I2C_SDA] AI N5 /P B5
3231302928272625
24
23
22
21
20
19
18
17
9 10111213141516
1
2
3
4
5
6
7
8
VCAP
VDD
VDDIO
AIN12/PF4
NRST
OSCIN/PA1
OSCOUT/PA2
VSS PC3 (HS)/TIM1_CH3
PC2 (HS)/TIM1_CH2
PC1 (HS)/TIM1_CH1
PE5/SPI_NSS
PC7 (HS)/SPI_MISO
PC6 (HS)/SPI_MOSI
PC5 (HS)/SPI_SCK
PC4 (HS)/TIM1_CH4
PD3 (HS)/TIM2_CH2 [ADC_ETR]
PD2 (HS)/TIM3_CH1[TIM2_CH3]
PD1 (HS)/SWIM
PD0 (HS)/TIM3_CH2 [TIM1_BKIN] [CLK _CCO]
PD7/TLI
PD6/UART3_RX
PD5/UART3_TX
PD4 (HS)/TIM2_CH1 [BEEP]
Pinouts and pin description STM8S207xx STM8S208xx
28/117 DocID14733 Rev 13
Table 5. Legend/abbreviations for pinout table
Type I= Input, O = Output, S = Power supp ly
Level Input CM = CMOS
Output HS = High sink
Output speed O1 = Slow (up to 2 MHz)
O2 = Fast (up to 10 MHz)
O3 = Fast/slow programmability with slow as default state after reset
O4 = Fast/slow programmability with fast as default state after reset
Port and control
configuration Input float = floating, wpu = weak pull-up
Output T = True open drain, OD = Open drain, PP = Push pull
Reset state Bold X (pin state after internal reset release)
Unless otherwise specified, the pin state is the same during the reset phase and
after the internal reset release.
Table 6. Pin description
Pin number
Pin name
Type
Input Output
Main function
(after reset)
Default
alternate
function
Alternate
function
after remap
[option bit]
LQFP80
LQFP64
LQFP48
LQFP44
LQFP32
floating
wpu
Ext. interrupt
High sink
Speed
OD
PP
11111NRST I/O XReset
2 2 2 2 2 PA1/OSCIN I/O XXO1XXPort A1 Resonator/
crystal in
3 3 3 3 3 PA2/OSCOUT I/O XXX O1XXPort A2 Resonator/
crystal out
4444-V
SSIO_1 S I/O ground
55554V
SS S Digital ground
6 6 6 6 5 VCAP S 1.8 V regulator capacitor
77776V
DD S Digital power supply
88887V
DDIO_1 S I/O power supply
9 9 9 - - PA3/TIM2_CH3 I/O XXX O1XXPort A3 Timer 2 -
channel3 TIM3_CH1
[AFR1]
10 10 10 9 - PA4/UART1_RX
(1) I/O XXXHSO3XXPort A4 UART1
receive
11 11 11 10 - PA5/UART1_TX I/O XXXHSO3XXPort A5 UART1
transmit
DocID14733 Rev 13 29/117
STM8S207xx STM8S208xx Pinouts and pin description
116
12 12 12 11 - PA6/UART1_CK I/O XXXHSO3XXPort A6 UART1
synchronous
clock
13----PH0 I/OXXHSO3XXPort H0
14----PH1 I/OXXHSO3XXPort H1
15----PH2 I/OXXO1XXPort H2
16----PH3 I/OXXO1XXPort H3
17 13 - - - PF7/AIN15 I/O XXO1XXPort F7 Analog
input 15
18 14 - - - PF6/AIN14 I/O XXO1XXPort F6 Analog
input 14
19 15 - - - PF5/AIN13 I/O XXO1XXPort F5 Analog
input 13
20 16 - - 8 PF4/AIN12 I/O XXO1XXPort F4 Analog
input 12
21 17 - - - PF3/AIN11 I/O XXO1XXPort F3 Analog
input 11
22 18 - - - VREF+ SADC positive reference
voltage
23 19 13 12 9 VDDA S Analog power supply
24 20 14 13 10 VSSA S Analog ground
25 21 - - - VREF- SADC negative reference
voltage
26 22 - - - PF0/AIN10 I/O XXO1XXPort F0 Analog
input 10
27 23 15 14 - PB7/AIN7 I/O XXX O1XXPort B7 Analog
input 7
28 24 16 15 - PB6/AIN6 I/O XXX O1XXPort B6 Analog
input 6
29 25 17 16 11 PB5/AIN5 I/O XXX O1XXPort B5 Analog
input 5 I2C_SDA
[AFR6]
30 26 18 17 12 PB4/AIN4 I/O XXX O1XXPort B4 Analog
input 4 I2C_SCL
[AFR6]
Table 6. Pin description (continued)
Pin number
Pin name
Type
Input Output
Main function
(after reset)
Default
alternate
function
Alternate
function
after remap
[option bit]
LQFP80
LQFP64
LQFP48
LQFP44
LQFP32
floating
wpu
Ext. interrupt
High sink
Speed
OD
PP
Pinouts and pin description STM8S207xx STM8S208xx
30/117 DocID14733 Rev 13
31 27 19 18 13 PB3/AIN3 I/O XXX O1XXPort B3 Analog
input 3 TIM1_ETR
[AFR5]
32 28 20 19 14 PB2/AIN2 I/O XXX O1XXPort B2 Analog
input 2
TIM1_
CH3N
[AFR5]
33 29 21 20 15 PB1/AIN1 I/O XXX O1XXPort B1 Analog
input 1
TIM1_
CH2N
[AFR5]
34 30 22 21 16 PB0/AIN0 I/O XXX O1XXPort B0 Analog
input 0
TIM1_
CH1N
[AFR5]
35 - - - - PH4/TIM1_ETR I/O XXO1XXPort H4 Timer 1 -
trigger input
36 - - - - PH5/ TIM1_CH3N I/O XXO1XXPort H5 Timer 1 -
inverted
channel 3
37 - - - - PH6/ TIM1_CH2N I/O XXO1XXPort H6 Timer 1 -
inverted
channel 2
38 - - - - PH7/ TIM1_CH1N I/O XXO1XXPort H7 Timer 1 -
inverted
channel 2
39 31 23 - - PE7/AIN8 I/O XXX O1XXPort E7 Analog input 8
40 32 24 22 - PE6/AIN9 I/O XXX O1XXPort E6 Analog input 9
41 33 25 23 17 PE5/SPI_NSS I/O XXX O1XXPort E5 SPI
master/slave
select
42 - - - - PC0/ADC_ETR I/O XXX O1XXPort C0 ADC trigger
input
43 34 26 24 18 PC1/TIM1_CH1 I/O XXXHSO3XXPort C1 Timer 1 -
channel 1
44 35 27 25 19 PC2/TIM1_CH2 I/O XXXHSO3XXPort C2 Timer 1-
channel 2
45 36 28 26 20 PC3/TIM1_CH3 I/O XXXHSO3XXPort C3 Timer 1 -
channel 3
Table 6. Pin description (continued)
Pin number
Pin name
Type
Input Output
Main function
(after reset)
Default
alternate
function
Alternate
function
after remap
[option bit]
LQFP80
LQFP64
LQFP48
LQFP44
LQFP32
floating
wpu
Ext. interrupt
High sink
Speed
OD
PP
DocID14733 Rev 13 31/117
STM8S207xx STM8S208xx Pinouts and pin description
116
46 37 29 - 21 PC4/TIM1_CH4 I/O XXXHSO3XXPort C4 Ti mer 1 -
channel 4
47 38 30 27 22 PC5/SPI_SCK I/O XXXHSO3XXPort C5 SPI clock
48 39 31 28 - VSSIO_2 S I/O ground
49 40 32 29 - VDDIO_2 S I/O power supply
50 41 33 30 23 PC6/SPI_MOSI I/O XXXHSO3XXPort C6 SPI master
out/
slave in
51 42 34 31 24 PC7/SPI_MISO I/O XXXHSO3XXPort C7 SPI master in/
slave out
52 43 35 32 - PG0/CAN_TX(2) I/O XXO1XXPort G0 beCAN
transmit
53 44 36 33 - PG1/CAN_RX(2) I/O XXO1XXPort G1 beCAN
receive
54 45 - - - PG2 I/O XXO1XXPort G2
55 46 - - - PG3 I/O XXO1XXPort G3
56 47 - - - PG4 I/O XXO1XXPort G4
57 48 - - - PI0 I/O XXO1XXPort I0
58----PI1 I/OXXO1XXPort I1
59----PI2 I/OXXO1XXPort I2
60----PI3 I/OXXO1XXPort I3
61----PI4 I/OXXO1XXPort I4
62----PI5 I/OXXO1XXPort I5
63 49 - - - PG5 I/O XXO1XXPort G5
64 50 - - - PG6 I/O XXO1XXPort G6
65 51 - - - PG7 I/O XXO1XXPort G7
66 52 - - - PE4 I/O XXX O1XXPort E4
67 53 37 - - PE3/TIM1_BKIN I/O XXX O1XXPort E3 Timer 1 -
break input
68 54 38 34 - PE2/I2C_SDA I/O XXO1T
(3) Port E2 I2C data
Table 6. Pin description (continued)
Pin number
Pin name
Type
Input Output
Main function
(after reset)
Default
alternate
function
Alternate
function
after remap
[option bit]
LQFP80
LQFP64
LQFP48
LQFP44
LQFP32
floating
wpu
Ext. interrupt
High sink
Speed
OD
PP
Pinouts and pin description STM8S207xx STM8S208xx
32/117 DocID14733 Rev 13
5.2 Alternate function remapping
As shown in the rightmost column of the pin description t ab le, so me alternate functions can
be remapped at different I/O ports by programming one of eight AFR (alternate function
69 55 39 35 - PE1/I2C_SCL I/O XXO1T
(3) Port E1 I2C clock
70 56 40 36 - PE0/CLK_CCO I/O XXXHSO3XXPort E0 Configurable
clock output
71----PI6 I/OXXO1XXPort I6
72----PI7 I/OXXO1XXPort I7
73 57 41 37 25 PD0/TIM3_CH2 I/O XXXHSO3XXPort D0 Timer 3 -
channel 2
TIM1_BKIN
[AFR3]/
CLK_CCO
[AFR2]
74 58 42 38 26 PD1/SWIM(4) I/O X XXHSO4XXPort D1 SWIM data
interface
75 59 43 39 27 PD2/TIM3_CH1 I/O XXXHSO3XXPort D2 Timer 3 -
channel 1 TIM2_CH3
[AFR1]
76 60 44 40 28 PD3/TIM2_CH2 I/O XXXHSO3XXPort D3 Timer 2 -
channel 2 ADC_ETR
[AFR0]
77 61 45 41 29 PD4/TIM2_CH1/B
EEP I/O XXXHSO3XXPort D4 Timer 2 -
channel 1 BEEP output
[AFR7]
78 62 46 42 30 PD5/ UART3_TX I/O XXX O1XXPort D5 UART3 data
transmit
79 63 47 43 31 PD6/
UART3_RX(1) I/O XXX O1XXPort D6 UART3 data
receive
80 64 48 44 32 PD7/TLI I/O XXX O1XXPort D7 Top level
interrupt TIM1_CH4
[AFR4](5)
1. The default state of UART1_RX and UART3_RX pins is controlled by the ROM bootloader . These pins are pulled up as part
of the bootloader activation process and returned to the floating state before a return from the bootloader.
2. The beCAN interface is available on STM8S208xx devices only
3. In the open-drain output column, ‘T’ defines a true open-drain I/O (P-buffer, weak pull-up, and protection diode to VDD are
not implemented).
4. The PD1 pin is in input pull-up during the reset phase and after the internal reset release.
5. Available in 44-pin package only. On other packages, the AFR4 bit is reserved and must be kept at 0.
Table 6. Pin description (continued)
Pin number
Pin name
Type
Input Output
Main function
(after reset)
Default
alternate
function
Alternate
function
after remap
[option bit]
LQFP80
LQFP64
LQFP48
LQFP44
LQFP32
floating
wpu
Ext. interrupt
High sink
Speed
OD
PP
DocID14733 Rev 13 33/117
STM8S207xx STM8S208xx Pinouts and pin description
116
remap) option bits. Refer to Section 8: Option bytes on page 47. When the remapping
option is active, the default alternate function is no longer available.
To use an alternate function, the corr esponding peripheral must be enabled in the peripheral
registers.
Alternate function remapping does not effect GPIO capabilities of the I/O ports (see the
GPIO section of the family reference manual, RM0016 ).
Memory and register map STM8S207xx STM8S208xx
34/117 DocID14733 Rev 13
6 Memory and register map
6.1 Memory map
Figure 8. Memory map
GPIO and peripheral registers
0x00 0000
Reserved
Flash program memory
(64 to 128 Kbytes)
32 interrupt vectors
0x00 4000
0x00 47FF
RAM
0x00 17FF
(up to 6 Kbytes)
1024 bytes stack
Up to 2 Kbytes data EEPROM
0x00 4800
0x00 487F Option bytes
0x00 5000
0x00 57FF
0x00 5800
0x00 7FFF
0x00 8000
0x02 7FFF
(see Table 8 and Table 9)
0x00 1800
0x00 3FFF
0x00 4900
0x00 4FFF
2 Kbytes boot ROM
0x00 6000
0x00 67FF
0x00 6800
0x00 7EFF
0x00 8080
0x00 807F
CPU/SWIM/debug/ITC
(see Table 10)
registers
0x00 7F00
0x00 5FFF
Reserved
Reserved
Reserved
DocID14733 Rev 13 35/117
STM8S207xx STM8S208xx Memory and register map
116
Table 7 lists the boundary addresses for each memory size. The top of the stack is at the
RAM end address in each case.
6.2 Register map
Table 7. Flash, Data EEPROM and RAM boundary addresses
Memory area Size (bytes) Start address End address
Flash progra m m emory
128 K 0x00 8000 0x02 7FFF
64 K 0x00 8000 0x01 7FFF
32 K 0x00 8000 0x00 FFFF
RAM
6 K 0x00 0000 0x00 17FF
4 K 0x00 0000 0x00 1000
2 K 0x00 0000 0x00 07FF
Data EEPROM
2048 0x00 4000 0x00 47FF
1536 0x00 4000 0x00 45FF
1024 0x00 4000 0x00 43FF
Table 8. I/O port hardware register map
Address Block Register label Register name Reset
status
0x00 5000
Port A
PA_ODR Port A data output latch register 0x00
0x00 5001 PA_IDR Port A input pin value register 0x00
0x00 5002 PA_DDR Port A data direction register 0x00
0x00 5003 PA_CR1 Port A control register 1 0x00
0x00 5004 PA_CR2 Port A control register 2 0x00
0x00 5005
Port B
PB_ODR Port B data output latch register 0x00
0x00 5006 PB_IDR Port B input pin value register 0x00
0x00 5007 PB_DDR Port B data direction register 0x00
0x00 5008 PB_CR1 Port B control register 1 0x00
0x00 5009 PB_CR2 Port B control register 2 0x00
0x00 500A
Port C
PC_ODR Port C data output latch register 0x00
0x00 500B PB_IDR Port C input pin value register 0x00
0x00 500C PC_DDR Port C data direction register 0x00
0x00 500D PC_CR1 Port C control register 1 0x00
0x00 500E PC_CR2 Port C control register 2 0x00
Memory and register map STM8S207xx STM8S208xx
36/117 DocID14733 Rev 13
0x00 500F
Port D
PD_ODR Port D data output latch register 0x00
0x00 5010 PD_ IDR Port D input pin value register 0x00
0x00 5011 PD_DDR Port D data direction register 0x00
0x00 5012 PD_CR1 Port D control register 1 0x02
0x00 5013 PD_CR2 Port D control register 2 0x00
0x00 5014
Port E
PE_ODR Port E data output latch register 0x00
0x00 5015 PE_IDR Port E input pin value register 0x00
0x00 5016 PE_DDR Port E data direction register 0x00
0x00 5017 PE_CR1 Port E control register 1 0x00
0x00 5018 PE_CR2 Port E control register 2 0x00
0x00 5019
Port F
PF_ODR Port F data output latch register 0x00
0x00 501A PF_IDR Port F input pin value register 0x00
0x00 501B PF_DDR Port F data directi on register 0x00
0x00 501C PF_CR1 Port F control register 1 0x00
0x00 501D PF_CR2 Port F control register 2 0x00
0x00 501E
Port G
PG_ODR Port G data output latch register 0x00
0x00 501F PG_IDR Port G input pin value register 0x00
0x00 5020 PG_DDR Port G data direction register 0x00
0x00 5021 PG_CR1 Port G control register 1 0x00
0x00 5022 PG_CR2 Port G control register 2 0x00
0x00 5023
Port H
PH_ODR Port H data output latch register 0x00
0x00 5024 PH_ IDR Port H input pin value register 0x00
0x00 5025 PH_DDR Port H data direction register 0x00
0x00 5026 PH_CR1 Port H control register 1 0x00
0x00 5027 PH_CR2 Port H control register 2 0x00
0x00 5028
Port I
PI_ODR Port I data output latch register 0x00
0x00 5029 PI_IDR Port I input pin value register 0x00
0x00 502A PI_DDR Port I data direction register 0x00
0x00 502B PI_CR1 Port I control register 1 0x00
0x00 502C PI_CR2 Port I control register 2 0x00
Table 8. I/O port hardware register map (continued)
Address Block Register label Register name Reset
status
DocID14733 Rev 13 37/117
STM8S207xx STM8S208xx Memory and register map
116
Ta bl e 9. General hardware register map
Address Bloc k Register label Register name Reset
status
0x00 5050 to
0x00 5059 Reserved area (10 bytes)
0x00 505A
Flash
FLASH_CR1 Flash control register 1 0x00
0x00 505B FLASH_CR2 Flash control register 2 0x00
0x00 505C FLASH_NCR2 Flash complementary control register 2 0xFF
0x00 505D FLASH _FPR Flash protection register 0x00
0x00 505E FLASH _NFPR Flash complementary protection register 0xFF
0x00 505F FLASH _IAPSR Flash in-application programming status
register 0x00
0x00 5060 to
0x00 5061 Reserved area (2 bytes)
0x00 5062 Flash FLASH _PUKR Flash Program memory unprotection
register 0x00
0x00 5063 Reserved area (1 byt e)
0x00 5064 Flash FLASH _DUKR Data EEPROM unprotection register 0x00
0x00 5065 to
0x00 509F Reserved area (59 bytes)
0x00 50A0 ITC EXTI_CR1 External interrupt control register 1 0x00
0x00 50A1 EXTI_CR2 External interrupt control register 2 0x00
0x00 50A2 to
0x00 50B2 Reserved area (17 bytes)
0x00 50B3 RST RST_SR Reset st atus register 0xXX(1)
0x00 50B4 to
0x00 50BF Reserved area (12 bytes)
0x00 50C0 CLK CLK_ICKR Internal clock control register 0x01
0x00 50C1 CLK_ECKR External clock control register 0x00
0x00 50C2 Reserved area (1 byte)
0x00 50C3
CLK
CLK_CMSR Clock master status register 0xE1
0x00 50C4 CLK_SWR Clock master switch register 0xE1
0x00 50C5 CLK_SWCR Clock switch control register 0xXX
0x00 50C6 CLK_CKDIVR Clock divider register 0x18
0x00 50C7 CLK_PCKENR1 P eripheral clock gating register 1 0xFF
0x00 50C8 CLK_CSSR Clock security system register 0x00
0x00 50C9 CLK_CCOR Configurable clock control register 0x00
0x00 50CA CLK_PCKENR2 Peripheral clock gating register 2 0xFF
0x00 50CB CLK_CANCCR CAN clock control register 0x00
Memory and register map STM8S207xx STM8S208xx
38/117 DocID14733 Rev 13
0x00 50CC CLK CLK_HSITRIMR HSI clock calibration trimming register 0x00
0x00 50CD CLK_SWIMCCR SW IM clock control register 0bXXXX
XXX0
0x00 50CE to
0x00 50D0 Reserved area (3 bytes)
0x00 50D1 WWDG WWDG_CR WWDG control register 0x7F
0x00 50D2 WWDG_WR WWDR window register 0x7 F
0x00 50D3 to
0x00 50DF Reserved area (13 bytes)
0x00 50E0
IWDG
IWDG_KR IWDG key register 0xXX(2)
0x00 50E1 IWDG_PR IWDG prescaler register 0x00
0x00 50E2 IWDG_RLR IWDG reload register 0xFF
0x00 50E3 to
0x00 50EF Reserved area (13 bytes)
0x00 50F0
AWU
AWU_CSR1 AWU control/status register 1 0x00
0x00 50F1 A WU_APR A WU asynchronous prescaler buffer register 0x3F
0x00 50F2 A W U_TBR AWU timebase selection register 0x00
0x00 50F3 BEEP BEEP_CSR BEEP control/status register 0x1F
0x00 50F4 to
0x00 50FF Reserved area (12 bytes)
0x00 5200
SPI
SPI_CR1 SPI control register 1 0x00
0x00 5201 SPI_CR2 SPI control register 2 0x00
0x00 5202 SPI_ICR SPI interrupt control register 0x00
0x00 5203 SPI_SR SPI status register 0x02
0x00 5204 SPI_DR SPI data register 0x00
0x00 5205 SPI_CRCPR SPI CRC polynomial register 0x07
0x00 5206 SPI_RXCRCR SPI Rx CRC register 0xFF
0x00 5207 SPI_TXCRCR SPI Tx CRC register 0xFF
0x00 5208 to
0x00 520F Reserved area (8 bytes)
0x00 5210
I2C
I2C_CR1 I2C control register 1 0x00
0x00 5211 I2C_CR2 I2C control register 2 0x00
0x00 5212 I2C_FREQR I2C frequency register 0x00
0x00 5213 I2C_OARL I2C own address register low 0x00
0x00 5214 I2C_OARH I2C own address regist er hi g h 0x00
0x00 5215 Reserved
Table 9. General hardware register map (continued)
Address Bloc k Register label Register name Reset
status
DocID14733 Rev 13 39/117
STM8S207xx STM8S208xx Memory and register map
116
0x00 5216
I2C
I2C_DR I2C data register 0x00
0x00 5217 I2C_SR1 I2C status register 1 0x00
0x00 5218 I2C_SR2 I2C status register 2 0x00
0x00 5219 I2C_SR3 I2C status register 3 0x00
0x00 521A I2C_ITR I2C interrupt control register 0x00
0x00 521B I2C_CCRL I2C clock control register low 0x00
0x00 521C I2C_CCRH I2C clock control register high 0x00
0x00 521D I2C_TRISER I2C TRISE register 0x02
0x00 521E to
0x00 522F Reserved area (18 bytes)
0x00 5230
UART1
UART1_SR UART1 status register 0xC0
0x00 5231 UART1_DR UART1 data register 0xXX
0x00 5232 UART1_BRR1 UART1 baud rate register 1 0x00
0x00 5233 UART1_BRR2 UART1 baud rate register 2 0x00
0x00 5234 UART1_ C R 1 UART1 cont ro l re gi ste r 1 0x00
0x00 5235 UART1_ C R 2 UART1 cont ro l re gi ste r 2 0x00
0x00 5236 UART1_ C R 3 UART1 cont ro l re gi ste r 3 0x00
0x00 5237 UART1_ C R 4 UART1 cont ro l re gi ste r 4 0x00
0x00 5238 UART1_ C R 5 UART1 cont ro l re gi ste r 5 0x00
0x00 5239 UART1_GTR UART1 guard time register 0x00
0x00 523A UART1_PSCR UART1 prescaler register 0x00
0x00 523B to
0x00 523F Reserved area (5 bytes)
0x00 5240
UART3
UART3_SR UART3 status register C0h
0x00 5241 UART3_DR UART3 data register 0xXX
0x00 5242 UART3_BRR1 UART3 baud rate register 1 0x00
0x00 5243 UART3_BRR2 UART3 baud rate register 2 0x00
0x00 5244 UART3_ C R 1 UART3 cont ro l re gi ste r 1 0x00
0x00 5245 UART3_ C R 2 UART3 cont ro l re gi ste r 2 0x00
0x00 5246 UART3_ C R 3 UART3 cont ro l re gi ste r 3 0x00
0x00 5247 UART3_ C R 4 UART3 cont ro l re gi ste r 4 0x00
0x00 5248 Reserved
0x00 5249 UART3_ C R 6 UART3 cont ro l re gi ste r 6 0x00
0x00 524A to
0x00 524F Reserved area (6 bytes)
Table 9. General hardware register map (continued)
Address Bloc k Register label Register name Reset
status
Memory and register map STM8S207xx STM8S208xx
40/117 DocID14733 Rev 13
0x00 5250
TIM1
TIM1_CR1 TIM1 control register 1 0x00
0x00 5251 TIM1_CR2 TIM1 control register 2 0x00
0x00 5252 TIM1_SMCR TIM1 slave mode control register 0x00
0x00 5253 TIM1_ETR TIM1 external trigger register 0x00
0x00 5254 TIM1_IER TIM1 Interrupt enable register 0x00
0x00 5255 TIM1_SR1 TIM1 status register 1 0x00
0x00 5256 TIM1_SR2 TIM1 status register 2 0x00
0x00 5257 TIM1_EGR TIM1 event generation register 0x00
0x00 5258 TIM1_CCMR1 TIM1 capture/compare mode register 1 0x00
0x00 5259 TIM1_CCMR2 TIM1 capture/compare mode register 2 0x00
0x00 525A TIM1_CCMR3 TIM1 capture/compare mode register 3 0x00
0x00 525B TIM1_CCMR4 TIM1 capture/compare mode register 4 0x00
0x00 525C TIM1_CCER1 TIM1 capture/compare enable register 1 0 x00
0x00 525D TIM1_CCER2 TIM1 capture/compare enable register 2 0 x00
0x00 525E TIM1_CNTRH TIM1 counter high 0x00
0x00 525F TIM1_CNTRL TIM1 counter low 0x00
0x00 5260 TIM1_PSCRH TIM1 prescaler register high 0x00
0x00 5261 TIM1_PSCRL TIM1 prescaler register low 0x00
0x00 5262 TIM1_ARRH TIM1 auto-reload register high 0xFF
0x00 5263 TIM1_ARRL TIM1 auto-reload register lo w 0xFF
0x00 5264 TIM1_RCR TIM1 repetition counter register 0x00
0x00 5265 TIM1_CCR1H TIM1 capture/compare register 1 high 0x00
0x00 5266 TIM1_CCR1L TIM1 capture/compare register 1 low 0x00
0x00 5267 TIM1_CCR2H TIM1 capture/compare register 2 high 0x00
0x00 5268 TIM1_CCR2L TIM1 capture/compare register 2 low 0x00
0x00 5269 TIM1_CCR3H TIM1 capture/compare register 3 high 0x00
0x00 526A TIM1_CCR3L TIM1 capture/compare register 3 low 0x00
0x00 526B TIM1_CCR4H TIM1 capture/compare register 4 high 0x00
0x00 526C TIM1_CCR4L TIM1 capture/co mpare register 4 low 0x00
0x00 526D TIM1_BKR TIM1 break register 0x00
0x00 526E TIM1_DTR TIM1 dead-time register 0x00
0x00 526F TIM1_OISR TIM1 output idle state register 0x 00
0x00 5270 to
0x00 52FF Reserved area (147 bytes)
Table 9. General hardware register map (continued)
Address Bloc k Register label Register name Reset
status
DocID14733 Rev 13 41/117
STM8S207xx STM8S208xx Memory and register map
116
0x00 5300
TIM2
TIM2_CR1 TIM2 control register 1 0x00
0x00 5301 TIM2_IER TIM2 interrupt enable register 0x00
0x00 5302 TIM2_SR1 TIM2 status register 1 0x00
0x00 5303 TIM2_SR2 TIM2 status register 2 0x00
0x00 5304 TIM2_EGR TIM2 event generation register 0x00
0x00 5305 TIM2_CCMR1 TIM2 capture/compare mode register 1 0x00
0x00 5306 TIM2_CCMR2 TIM2 capture/compare mode register 2 0x00
0x00 5307 TIM2_CCMR3 TIM2 capture/compare mode register 3 0x00
0x00 5308 TIM2_CCER1 TIM2 capture/compare enable register 1 0x00
0x00 5309 TIM2_CCER2 TIM2 capture/compare enable register 2 0x00
0x00 530A TIM2_CNTRH TIM2 counter high 0x00
0x00 530B TIM2_CNTRL TIM2 counter low 0x00
00 530C0x TIM2_PSCR TIM2 prescaler register 0x00
0x00 530D TIM2_ARRH TIM2 auto-reload register high 0xFF
0x00 530E TIM2_ARRL TIM2 auto-reload registe r low 0xFF
0x00 530F TIM2_CCR1H TIM2 capture/compare register 1 high 0x00
0x00 5310 TIM2_CCR1L TIM2 capture/compare register 1 low 0x00
0x00 5311 TIM2_CCR2H TIM2 capture/compare reg. 2 high 0 x 00
0x00 5312 TIM2_CCR2L TIM2 capture/compare register 2 low 0x00
0x00 5313 TIM2_CCR3H TIM2 capture/compare register 3 high 0x00
0x00 5314 TIM2_CCR3L TIM2 capture/compare register 3 low 0x00
0x00 5315 to
0x00 531F Reserved area (11 bytes)
0x00 5320
TIM3
TIM3_CR1 TIM3 control register 1 0x00
0x00 5321 TIM3_IER TIM3 interrupt enable register 0x00
0x00 5322 TIM3_SR1 TIM3 status register 1 0x00
0x00 5323 TIM3_SR2 TIM3 status register 2 0x00
0x00 5324 TIM3_EGR TIM3 event generation register 0x00
0x00 5325 TIM3_CCMR1 TIM3 capture/compare mode register 1 0x00
0x00 5326 TIM3_CCMR2 TIM3 capture/compare mode register 2 0x00
0x00 5327 TIM3_CCER1 TIM3 capture/compare enable register 1 0x00
0x00 5328 TIM3_CNTRH TIM3 counter high 0x00
0x00 5329 TIM3_CNTRL TIM3 counter low 0x00
0x00 532A TIM3_PSCR TIM3 prescaler register 0x00
Table 9. General hardware register map (continued)
Address Bloc k Register label Register name Reset
status
Memory and register map STM8S207xx STM8S208xx
42/117 DocID14733 Rev 13
0x00 532B
TIM3
TIM3_ARRH TIM3 auto-reload register high 0xFF
0x00 532C TIM3_ARRL TIM3 auto-reload register low 0xFF
0x00 532D TIM3_CCR1H T IM3 capture /compare register 1 high 0x00
0x00 532E TIM3_CCR1L TIM3 capture/compare register 1 low 0x00
0x00 532F TIM3_CCR2H TIM3 capture/compare register 2 high 0x00
0x00 5330 TIM3_CCR2L TIM3 capture/compare register 2 low 0x00
0x00 5331 to
0x00 533F Reserved area (15 bytes)
0x00 5340
TIM4
TIM4_CR1 TIM4 control register 1 0x00
0x00 5341 TIM4_IER TIM4 interrupt enable register 0x00
0x00 5342 TIM4_SR TIM4 status regi st er 0x00
0x00 5343 TIM4_EGR TIM4 event generation register 0x00
0x00 5344 TIM4_CNTR TIM4 counter 0x00
0x00 5345 TIM4_PSCR TIM4 prescaler register 0x00
0x00 5346 TIM4_ARR TIM4 auto-reload register 0xFF
0x00 5347 to
0x00 53FF Reserved area (185 bytes)
0x00 5400
ADC2
ADC _CSR ADC control/status register 0x00
0x00 5401 ADC_CR1 ADC configuration register 1 0x00
0x00 5402 ADC_CR2 ADC configuration register 2 0x00
0x00 5403 ADC_CR3 ADC configuration register 3 0x00
0x00 5404 ADC_DRH ADC data register high 0xXX
0x00 5405 ADC_DRL ADC data register low 0xXX
0x00 5406 ADC_TDRH ADC Schmitt trigger disable register high 0x00
0x00 5407 ADC_TDRL ADC Schmitt trigger disable register low 0x00
0x00 5408 to
0x00 541F Reserved area (24 bytes)
0x00 5420
beCAN
CAN_MCR CAN master control register 0x02
0x00 5421 CAN_MSR CAN master status register 0x02
0x00 5422 CAN_TSR CAN transmit status register 0x00
0x00 5423 CAN_TPR CAN transmit priority register 0x0C
0x00 5424 CAN_RFR CAN receive FIFO register 0x00
0x00 5425 CAN_IER CAN interrupt enable register 0x00
0x00 5426 CAN_DGR CAN diagnosis register 0x0C
0x00 5427 CAN_FPSR CAN page selection register 0x00
Table 9. General hardware register map (continued)
Address Bloc k Register label Register name Reset
status
DocID14733 Rev 13 43/117
STM8S207xx STM8S208xx Memory and register map
116
0x00 5428
beCAN
CAN_P0 CAN paged register 0 0xXX(3)
0x00 5429 CAN_P1 CAN paged register 1 0xXX(3)
0x00 542A CAN_P2 CAN paged register 2 0xXX(3)
0x00 542B CAN_P3 CAN paged register 3 0xXX(3)
0x00 542C CAN_P4 CAN paged register 4 0xXX(3)
0x00 542D CAN_P5 CAN paged register 5 0xXX(3)
0x00 542E CAN_P6 CAN paged register 6 0xXX(3)
0x00 542F CAN_P7 CAN paged register 7 0xXX(3)
0x00 5430 CAN_P8 CAN paged register 8 0xXX(3)
0x00 5431 CAN_P9 CAN paged register 9 0xXX(3)
0x00 5432 CAN_PA CAN paged register A 0xXX(3)
0x00 5433 CAN_PB CAN paged register B 0xXX(3)
0x00 5434 CAN_PC CAN paged register C 0xXX(3)
0x00 5435 CAN_PD CAN paged register D 0xXX(3)
0x00 5436 CAN_PE CAN paged register E 0xXX(3)
0x00 5437 CAN_PF CAN paged register F 0xXX(3)
0x00 5438 to
0x00 57FF Reserved area (968 bytes)
1. Depends on the previous reset source.
2. Write only register.
3. If the bootloader is enabled, it is initialized to 0x00.
Table 9. General hardware register map (continued)
Address Bloc k Register label Register name Reset
status
Memory and register map STM8S207xx STM8S208xx
44/117 DocID14733 Rev 13
Table 10. CPU/SWIM/debug module/interrupt controller registers
Address Block Reg ister Label Register Name Reset
Status
0x00 7F00
CPU(1)
A Accumulator 0x00
0x00 7F01 PCE Program counter extended 0x00
0x00 7F02 PCH Program counter high 0x00
0x00 7F03 PCL Program counter low 0x00
0x00 7F04 XH X index register high 0x00
0x00 7F05 XL X index register low 0x00
0x00 7F06 YH Y index register high 0x00
0x00 7F07 YL Y index register low 0x00
0x00 7F08 SPH Stack pointer high 0x17(2)
0x00 7F09 SPL Stack pointer low 0xFF
0x00 7F0A CCR Condition code register 0x28
0x00 7F0B to
0x00 7F5F Reserve d area (85 bytes)
0x00 7F60 CPU CFG_GCR Global configuration register 0x00
0x00 7F70
ITC
ITC_SPR1 Interrupt software priority register 1 0xFF
0x00 7F71 ITC_SPR2 Interrupt software priority register 2 0xFF
0x00 7F72 ITC_SPR3 Interrupt software priority register 3 0xFF
0x00 7F73 ITC_SPR4 Interrupt software priority register 4 0xFF
0x00 7F74 ITC_SPR5 Interrupt software priority register 5 0xFF
0x00 7F75 ITC_SPR6 Interrupt software priority register 6 0xFF
0x00 7F76 ITC_SPR7 Interrupt software priority register 7 0xFF
0x00 7F77 ITC_SPR8 Interrupt software priority register 8 0xFF
0x00 7F78 to
0x00 7F79 Reserved area (2 byt es)
0x00 7F80 SWIM SWIM_CSR SWIM control status register 0x00
0x00 7F81 to
0x00 7F8F Reserve d area (15 bytes)
0x00 7F90
DM
DM_BK1RE DM breakpoint 1 register extended byte 0xFF
0x00 7F91 DM_BK1RH DM breakpoint 1 register high byte 0xFF
0x00 7F92 DM_BK1RL DM breakpoin t 1 regi ster low byte 0xFF
0x00 7F93 DM_BK2RE DM breakpoint 2 register extended byte 0xFF
0x00 7F94 DM_BK2RH DM breakpoint 2 register high byte 0xFF
0x00 7F95 DM_BK2RL DM breakpoin t 2 regi ster low byte 0xFF
0x00 7F96 DM_CR1 DM debug module control register 1 0x00
0x00 7F97 DM_CR2 DM debug module control register 2 0x00
DocID14733 Rev 13 45/117
STM8S207xx STM8S208xx Memory and register map
116
0x00 7F98
DM
DM_CSR1 DM debug module control/status register 1 0x10
0x00 7F99 DM_CSR2 DM debug module control/status register 2 0x00
0x00 7F9A DM_ENFCTR DM enable function register 0xFF
0x00 7F9B to
0x00 7F9F Reserved area (5 bytes)
1. Accessible by debug mo dule only
2. Product dependent value, see Figure 8: Memory map.
Table 10. CPU/SWIM/debug module/interrupt controller registers (continued)
Address Block Reg ister Label Register Name Reset
Status
Interrupt vector mapp ing STM8S207xx STM8S208xx
46/117 DocID14733 Rev 13
7 Interrupt vector mapping
Table 11. Interrupt mapping
IRQ
no. Source
block Description Wakeup from
Halt mode Wakeup from
Active-halt mode Vec tor address
RESET Reset Yes Yes 0x00 8000
TRAP Software interrupt - - 0x00 8004
0 TLI External top level interrupt - - 0x00 8008
1 AWU Auto wake up from halt - Yes 0x00 800C
2 CLK Clock controller - - 0x00 8010
3 EXTI0 Port A external interrupts Yes(1) Yes(1) 0x00 8014
4 EXTI1 Port B external interrupts Yes Yes 0x00 8018
5 EXTI2 Port C external interrupts Yes Yes 0x00 801C
6 EXTI3 Port D external interrupts Yes Yes 0x00 8020
7 EXTI4 Port E external interrupts Yes Yes 0x00 8024
8 beCAN beCAN RX interrupt Yes Yes 0x00 8028
9 beCAN beCAN TX/ER/SC interrupt - - 0x00 802C
10 SPI End of transfer Yes Yes 0x00 8030
11 TIM1 TIM1 update/overflow/underflow/
trigger/break - - 0x00 8034
12 TIM1 TIM1 capture/compare - - 0x00 8038
13 TIM2 TIM2 update /overflow - - 0x00 803C
14 TIM2 TIM2 capture/compare - - 0x00 8040
15 TIM3 Update/overflow - - 0x00 8044
16 TIM3 Capture/compare - - 0x00 8048
17 UAR T1 Tx complete - - 0x00 804C
18 UART1 Receive register DATA FULL - - 0x00 8050
19 I2CI
2C interrupt Yes Yes 0x00 8054
20 UAR T3 Tx complete - - 0x00 8058
21 UART3 Receive register DATA FULL - - 0x00 805C
22 ADC2 ADC2 end of conversion - - 0x00 8060
23 TIM4 TIM4 update/overflow - - 0x00 8064
24 Flash EOP/WR_PG_DIS - - 0x00 8068
Reserved 0x00 806C to
0x00 807C
1. Except PA1
DocID14733 Rev 13 47/117
STM8S207xx STM8S208xx Option bytes
116
8 Option bytes
Option bytes contain configurations for device hardware features as well as the memory
protection of the device. They are stored in a dedicated block of the memory. Except for the
ROP (read-out protection) byte, each option byte has to be stored twice, in a regular form
(OPTx) and a complemented one (NOPTx) for redundancy.
Option bytes can be modified in ICP mode (via SWIM) by accessing the EEPROM address
shown in Table 12: Option bytes below. Option bytes can also be modified ‘on the fly’ by the
application in IAP mode, except the ROP option that can only be modified in ICP mode (via
SWIM).
Refer to the STM8S Flash programming manual (PM0051) and STM8 SWIM
communication pro tocol and debug module user manual (UM0470) for infor mation on SWIM
programming procedures.
Table 12. Option bytes
Addr. Option
name Option
byte no.
Option bits Factory
default
setting
76543 2 1 0
4800h Read-out
protection
(ROP) OPT0 ROP[7:0] 00h
4801h User boot
code (UBC) OPT1 UBC[7:0] 00h
4802h NOPT1 NUBC[7:0] FFh
4803h Alternate
function
remapping
(AFR)
OPT2 AFR7 AFR6 AFR5 AFR4 AFR3 AFR2 AFR1 AFR0 00h
4804h NOPT2 NAFR7 NAFR6 NAFR5 NAFR4 NAFR3 NAFR2 NAFR1 NAFR0 FFh
4805h Watchdog
option
OPT3 Reserved LSI
_EN IWDG
_HW WWDG
_HW WWDG
_HALT 00h
4806h NOPT3 Reserved NLSI
_EN NIWDG
_HW NWWDG
_HW NWWDG
_HALT FFh
4807h Clock option OPT4 Reserved EXT
CLK CKAWU
SEL PRS
C1 PRS
C0 00h
4808h NOPT4 Reserved NEXT
CLK NCKAWU
SEL NPR
SC1 NPR
SC0 FFh
4809h HSE clock
startup OPT5 HSECNT[7:0] 00h
480Ah NOPT5 NHSECNT[7:0] FFh
480Bh Reserved OPT6 Reserved 00h
480Ch NOPT6 Reserved FFh
480Dh Flash wait
states OPT7 Reserved Wait state 00h
480Eh NOPT7 Reserved Nwait state FFh
487Eh Bootloader OPTBL BL[7:0] 00h
487Fh NOPTBL NBL[7:0] FFh
Option bytes STM8S207xx STM8S208xx
48/117 DocID14733 Rev 13
Ta ble 13. Option by te de sc rip tion
Option byte no. Description
OPT0
ROP[7:0] Memory readout protecti on (ROP)
0xAA: Enable readout protection (write access via SWIM protocol)
Note: Refer to the family reference manual (RM0016) section on
Flash/EEPROM memory readout protection for details.
OPT1
UBC[7:0] User boot code area
0x00: no UBC, no write-protection
0x01: Pages 0 to 1 defined as UBC, memory write-protected
0x02: Pages 0 to 3 defined as UBC, memory write-protected
0x03: Pages 0 to 4 defined as UBC, memory write-protected
...
0xFE: Pages 0 to 255 defined as UBC, memory write-protected
0xFF: Reserved
Note: Refer to the family reference manual (RM0016) section on
Flash/EEPROM write protection for more details.
OPT2
AFR7Alternate function remapping option 7
0: Port D4 alternate function = TIM2_CH1
1: Port D4 alternate function = BEEP
AFR6 Alternate function remapping option 6
0: Port B5 alternate function = AIN5, port B4 alternate function = AIN4
1: Port B5 alternate function = I2C_SDA, port B4 alternate function =
I2C_SCL
AFR5 Alternate function remapping option 5
0: Port B3 alternate function = AIN3, port B2 alternate function = AIN2,
port B1 alternate function = AIN1, port B0 alternate function = AIN 0
1: Port B3 alternate function = TIM1_ETR, port B2 alternate function =
TIM1_CH3N, port B1 alternate function = TIM1_CH2N, port B0 alternate
function = TIM1_CH1N
AFR4 Alternate function remapping option 4
0: Port D7 alternate function = TLI
1: Port D7 alternate function = TIM1_CH4
AFR3 Alternate function remapping option 3
0: Port D0 alternate function = TIM3_CH2
1: Port D0 alternate function = TIM1_BKIN
AFR2 Alternate function remapping option 2
0: Port D0 alternate function = TIM3_CH2
1: Port D0 alternate function = CLK_CCO
Note: AFR2 option has priority over AFR3 if both are activated
AFR1 Alternate function remapping option 1
0: Port A3 alternate function = TIM2_CH3, port D2 alternate function
TIM3_CH1
1: Port A3 alternate function = TIM3_CH1, port D2 alternate function
TIM2_CH3
AFR0 Alternate function remapping option 0
0: Port D3 alternate function = TIM2_CH2
1: Port D3 alternate function = ADC_ETR
DocID14733 Rev 13 49/117
STM8S207xx STM8S208xx Option bytes
116
OPT3
LSI_EN: Low speed internal clock enable
0: LSI clock is not available as CPU clock source
1: LSI clock is available as CPU clock source
IWDG_HW: Independent watchdog
0: IWDG Independent watchdog activated by software
1: IWDG Independent watchdog activated by hardware
WWDG_HW: Window watchdog activation
0: WWDG window watchdog activated by software
1: WWDG window watchdog activated by hardware
WWDG_HALT: Window watchdog reset on halt
0: No reset generated on halt if WWDG active
1: Reset generated on halt if WWDG active
OPT4
EXTCLK: External clock selection
0: External crystal connected to OSCIN/OSCOUT
1: External clock signal on OSCIN
CKAWUSEL: Auto wakeup unit/clock
0: LSI clock source selected for AWU
1: HSE clock with prescaler selected as clock source for AWU
PRSC[1:0] AWU clock prescaler
00: 24 MHz to 128 kHz prescaler
01: 16 MHz to 128 kHz prescaler
10: 8 MHz to 128 kHz prescaler
11: 4 MHz to 128 kHz prescaler
OPT5
HSECNT[7:0]: HSE crystal oscillator stabilization time
This configures the stabilization time.
0x00: 2048 HSE cycles
0xB4: 128 HSE cycles
0xD2: 8 HSE cycles
0xE1: 0.5 HSE cycles
OPT6 Reserved
OPT7
WAITSTATE Wait state configuration
This option configures the number of wait states inserted when reading
from the Flash/data EEPROM memory.
1 wait state is required if fCPU > 16 MHz.
0: No wait state
1: 1 wait state
Table 13. Option byte description (continued)
Option byte no. Description
Option bytes STM8S207xx STM8S208xx
50/117 DocID14733 Rev 13
OPTBL
BL[7:0] Bootloader option byte
For STM8S products, this option is checked by the boot ROM code
after reset. Depending on the content of addresses 0x487E, 0x487F,
and 0x8000 (reset vector), the CPU jumps to the bootloader or to
the reset vector. Refer to the UM0560 (STM8L/S bootloader manual)
for more details.
For STM8L products, the bootloader option bytes are on addresses
0xXXXX and 0xXXXX+1 (2 bytes). These option bytes control
whether the bootloader is active or not. For more details, refer to the
UM0560 (STM8L/S bootloader manual) for more details.
Table 13. Option byte description (continued)
Option byte no. Description
DocID14733 Rev 13 51/117
STM8S207xx STM8S208xx Unique ID
116
9 Unique ID
The devices feature a 96-bit unique device identifier which provides a reference number that
is unique for any device and in any context. The 96 bit s of the identifier can never b e altered
by the user.
The unique device identifier can be read in single bytes and may then be concatenated
using a custom algorithm.
The unique device identifier is ideally suited:
For use as serial numbers
For use as security keys to increase th e code security in the program memory while
using and combining this unique ID with software cryptographic primitives and
protocols before programming the internal memory.
To activate secure boot processes
Table 14. Unique ID registers (96 bits)
Address Content
description
Unique ID bits
76543 2 1 0
0x48CD X co-ordinate on the
wafer U_ID[7:0]
0x48CE U_ID[15:8]
0x48CF Y co-ordinate on the
wafer U_ID[23:16]
0x48D0 U_ID[31:24]
0x48D1 Wafer number U_ID[39:32]
0x48D2
Lot number
U_ID[47:40]
0x48D3 U_ID[55:48]
0x48D4 U_ID[63:56]
0x48D5 U_ID[71:64]
0x48D6 U_ID[79:72]
0x48D7 U_ID[87:80]
0x48D8 U_ID[95:88]
Electrical characteristics STM8S207xx STM8S208xx
52/117 DocID14733 Rev 13
10 Electrical characteristics
10.1 Parameter conditions
Unless otherwise specified, all voltages are referred to VSS.
10.1.1 Minimum and maximum values
Unless otherwise specified the minimum and maximum values are guaranteed in the worst
conditions of ambient temperature , supply voltage and fre quencies by tests in productio n on
100% of the devices with an ambient temperature at TA = 25 °C and TA = TAmax (given by
the selected tem p er at ur e range).
Data base d on chara cte rization re su lts, design simulation a nd/or techno log y characteristics
are indicated in the table footn otes and are not tested in productio n. Based on
characterization, th e minimum and maximu m values refer to sample test s and represent the
mean value plus or minus three times the standard deviation (mean ± 3 ).
10.1.2 Typical values
Unless otherwise specified , typical d ata are based o n TA = 25 °C, VDD = 5 V. They are given
only as design guidelines and are not tested.
T ypi cal ADC accuracy values are d etermined by characterization of a batch of samples fr om
a standard diffusion lot over the full temperature range, where 95% of the devices have an
error less than or equal to the value indicated (mean ± 2 ).
10.1.3 Typical curves
Unless otherwise specified, all typical curves are given only as design guidelines and are
not tested.
10.1.4 Typical current consumption
For typical current consumption measurements, VDD, VDDIO and VDDA are connected
together in the configuration shown in Figure 9.
Figure 9. Supply current measurement conditions
VDD
VDDA
VDDIO
VSS
VSSA
VSSIO
A
5 V or 3.3 V
DocID14733 Rev 13 53/117
STM8S207xx ST M8S2 08 xx Electrical chara cte ri st ic s
116
10.1.5 Pin loading conditions
10.1.6 Loading capacitor
The loading conditions used for pin parameter measurement are shown in Figure 10.
Figure 10. Pin loading conditions
10.1.7 Pin input voltage
The input voltage measurement on a pin of the device is described in Figure 11.
Figure 11. Pin input voltage
50 pF
STM8 pin
VIN
STM8 pin
Electrical characteristics STM8S207xx STM8S208xx
54/117 DocID14733 Rev 13
10.2 Absolute maximum ratings
Stresses above those listed as ‘absolute maximum ratings’ may cause permanent damage
to the device. This is a stress rating only and functional operation of the device under these
conditions is not implied. Exposure to maximum rating conditions for extended per iods m ay
affect device reliability.
Table 15. Voltage characteristics
Symbol Ratings Min Max Unit
VDDx - VSS Supply voltage (including VDDA and VDDIO)(1)
1. All power (VDD, VDDIO, VDDA) and ground (VSS, VSSIO, VSSA) pins must always be connected to the
external power supply
-0.3 6.5
V
VIN Input voltage on true open drain pins (PE1, PE2)(2)
2. IINJ(PIN) must never be exceeded. This is implicitly insured if VIN maximum is respected. If VIN maximum
cannot be respected, the injection current must be limited externally to the IINJ(PIN) value. A positive
injection is induced by VIN>VDD while a negative injection is induced by VIN<VSS. For true open-drain pads,
there is no positive injection current, and the corresponding VIN maximum must always be respected
VSS - 0.3 6.5
Input voltage on any other pin(2) VSS - 0.3 VDD + 0.3
|VDDx - VDD| Variations between different power pins 50 mV
|VSSx - VSS| Variations between all the different ground pins 50
VESD Electrostatic discharge voltage see Absolute maximum
ratings (electrical
sensitivity) on page 89
DocID14733 Rev 13 55/117
STM8S207xx ST M8S2 08 xx Electrical chara cte ri st ic s
116
Table 16. Current characteristics
Symbol Ratings Max.(1)
1. Data based on characterization results, not tested in production.
Unit
IVDD Total current into VDD power lines (source)(2)
2. All power (VDD, VDDIO, VDDA) and ground (VSS, VSSIO, VSSA) pins must always be connected to the
external supply.
60
mA
IVSS Tot al current out of VSS ground lines (sink)(2) 60
IIO Output current sunk by any I/O and control pin 20
Output current source by any I/Os and control pin 20
IIO
Total output current sourced (sum of all I/O and control pins)
for devices with two VDDIO pi n s (3)
3. I/O pins used simultaneously for high current source/sink must be uniformly spaced around the package
between the VDDIO/VSSIO pins.
200
Total output current sourced (sum of all I/O and control pins)
for devices with one VDDIO pin(3) 100
Total output current sunk (sum of all I/O and control pins) for
devices with two VSSIO pins(3) 160
Total output current sunk (sum of all I/O and control pins) for
devices with one VSSIO pin(3) 80
IINJ(PIN)(4)(5)
4. IINJ(PIN) must never be exceeded. This is implicitly insured if VIN maximum is respected. If VIN maximum
cannot be respected, the injection current must be limited externally to the IINJ(PIN) value. A positive
injection is induced by VIN>VDD while a negative injection is induced by VIN<VSS. For true open-drain pads,
there is no positive injection current, and the corresponding VIN maximum must always be respected
5. Ne gative injection disturbs the analog performance of the device. See note in Section 10.3.10: 10-bit ADC
characteristics on page 85.
Injected current on NRST pin ±4
Injected current on OSCIN pin ±4
Injected current on any other pin(6)
6. When several inputs are submitted to a current injection, the maximum IINJ(PIN) is the absolute sum of the
positive and negative injected currents (instant aneous values). These results are based on characterization
with IINJ(PIN) maximum current injection on four I/O port pins of the device.
±4
IINJ(PIN)(4) Total injected current (sum of all I/O and control pins)(6) ±20
Table 17. The rma l ch a racteristics
Symbol Ratings Value Unit
TSTG Storag e temperature range - 65 to 150 °C
TJMaximum junction temperature 150
Electrical characteristics STM8S207xx STM8S208xx
56/117 DocID14733 Rev 13
10.3 Operating conditions
The device must be use d in operating cond itions that re spect the p arameters in Table 18. In
addition, full account must be taken of all physical capacitor characteristics and tolerances.
Table 18. General operat ing conditions
Symbol Parameter Conditions Min M ax Unit
fCPU Internal CPU clock frequency TA 105 °C 0 24 MHz
0 16 MHz
VDD/VDD_IO Standard operating voltage 2.95 5.5 V
VCAP(1)
1. Care should be taken when selecting the capacitor, due to its tolerance, as well as the parameter
dependency on temperature, DC bias and frequency in addition to other factors. The parameter maximum
value must be respected for the full application range.
CEXT: capacitance of external
capacitor 470 3300 nF
ESR of external capacitor at 1 MHz(2)
2. This frequency of 1 MHz as a condition for VCAP parameters is given by design of internal regulator.
-0.3Ω
ESL of external capacitor - 15 nH
PD(3)
3. To calculate PDmax(TA), use the formula PDmax = (TJmax - TA)/JA (see Section 11.2: Thermal
characteristics on page 108) with the value for TJmax given in Table 18 above and the value for JA given in
Table 57: Thermal characteristics.
Power dissipation at
TA = 85° C for suffix 6
or TA = 125° C for suffix 3
44, 48, 64, and 80-pin
devices, with output on 8
standard ports, 2 high sink
ports and 2 open drain ports
simultaneously(4)
4. Refer to Section 11.2: Thermal characteristics on page 108 for the calculation method.
443
mW
32-pin package, with output
on 8 standard ports and 2
high sink ports
simultaneously(4) 360
TA
Ambient temperature for 6
suffix version Maximum power dissipation -40 85
°C
Ambient temperature for 3
suffix version Maximum power dissipation -40 125
TJJunction temperature range 6 suffix version -40 105
3 suffix version -40 130(5)
5. TJmax is given by the test limit. Above this value the product behavior is not guaranteed.
DocID14733 Rev 13 57/117
STM8S207xx ST M8S2 08 xx Electrical chara cte ri st ic s
116
Figure 12. fCPUmax versus VDD
10.3.1 VCAP external capacitor
Stabilization for the main regulator is achieved connecting an external capacitor CEXT to the
VCAP pin. CEXT is specified in Table 18. Care shou ld be taken to limit the series inductance
to less than 15 nH.
Figure 13. External capacitor CEXT
1. Legend: ESR is the equivalent series resistance and ESL is the equivalent inductance.
Table 19. Operating conditions at power-up/power-down
Symbol Parameter Conditions Min Typ Max Unit
tVDD VDD rise time rate 2(1)
1. Guaranteed by design, not tested in production.
µs/V
VDD fall time rate 2(1)
tTEMP Reset release
delay VDD rising 1.7(1) ms
VIT+ Power-o n reset
threshold 2.65 2.8 2.95 V
VIT- Brown-out reset
threshold 2.58 2.73 2.88 V
VHYS(BOR) Brown-out reset
hysteresis 70 mV
fCPU [MHz]
SUPPLY VOLTAGE [V]
24
12
8
4
02.95 4.0 5.0
FUNCTIONALITY
FUNCTIONALITY
GUARANTEED
@ TA -40 to 125 °C
NOT GUARANTEED
IN THIS AREA 16
5.5
FUNCTIONALITY GUARANTEED
@ TA -40 to 105 °C
C
Rleak
ESR ESL
Electrical characteristics STM8S207xx STM8S208xx
58/117 DocID14733 Rev 13
10.3.2 Supply current characteristics
The current consumption is measured as described in Figure 9 on page 52.
Total current consumption in run mode
The MCU is placed under the following conditions:
All I/O pins in input mode with a static value at VDD or VSS (no load)
All peripherals are disab led (clo ck sto ppe d by Peripheral Clock Gating registers)
except if explicitly mentioned.
When the MCU is clocked at 24 MHz, TA 105 °C and the WAITSTATE option bit is set.
Subject to general operating conditions for VDD and TA.
Table 20. Total current consumption with code execution in run mode at VDD = 5 V
Symbol Parameter Conditions Typ Max Unit
IDD(RUN)
Supply
current in
run mode,
code
executed
from RAM
fCPU = fMASTER = 24 MHz,
TA 105 °C HSE crystal osc. (24 MHz) 4.4
mA
HSE user ext. clock (24 MHz) 3.7 7.3(1)
fCPU = fMASTER = 16 MHz
HSE crystal osc. (16 MHz) 3.3
HSE user ext. clock (16 MHz) 2.7 5.8
HSI RC osc. (16 MHz) 2.5 3.4
fCPU = fMASTER/128 = 125 kHz HSE user ext. clock (16 MHz) 1.2 4.1(1)
HSI RC osc. (16 MHz) 1.0 1.3(1)
fCPU = fMASTER/128 = 15.625
kHz HSI RC osc. (16 MHz/8) 0.55
fCPU = fMASTER = 128 kHz LSI RC osc. (128 kHz) 0.4 5
Supply
current in
run mode,
code
executed
from Flash
fCPU = fMASTER = 24 MHz,
TA 105 °C HSE crystal osc. (24 MHz) 11.4
HSE user ext. clock (24 MHz) 10.8 18(1)
fCPU = fMASTER = 16 MHz
HSE crystal osc. (16 MHz) 9.0
HSE user ext. clock (16 MHz) 8.2 15.2(1)
HSI RC osc.(16 MHz) 8.1 13.2(1)
fCPU = fMASTER = 2 MHz. HSI RC osc. (16 MHz/8)(2) 1.5
fCPU = fMASTER/128 = 125 kHz HSI RC osc. (16 MHz) 1.1
fCPU = fMASTER/128 = 15.625
kHz HSI RC osc. (16 MHz/8) 0.6
fCPU = fMASTER = 128 kHz LSI RC osc. (128 kHz) 0.5 5
1. Data based on characterization results, not tested in production.
2. Default clock configuration measured with all peripherals off.
DocID14733 Rev 13 59/117
STM8S207xx ST M8S2 08 xx Electrical chara cte ri st ic s
116
Table 21. Total current consumption with code execution in run mode at VDD = 3.3 V
Symbol Parameter Conditions Typ Max(1) Unit
IDD(RUN)
Supply
current in
run mode,
code
executed
from RAM
fCPU = fMASTER = 24 MHz,
TA 105 °C HSE crystal osc. (24 MHz) 4.0
mA
HSE user ext. clock (24 MHz) 3.7 7.3
fCPU = fMASTER = 16 MHz
HSE crystal osc. (16 MHz) 2.9
HSE user ext. clock (16 MHz) 2.7 5.8
HSI RC osc. (16 MHz) 2.5 3.4
fCPU = fMASTER/128 = 125 kHz HSE user ext. clock (16 MHz) 1.2 4.1
HSI RC osc. (16 MHz) 1.0 1.3
fCPU = fMASTER/128 = 15.625
kHz HSI RC osc. (16MHz/8) 0.55
fCPU = fMASTER = 128 kHz LSI RC osc. (128 kHz) 0.4 5
Supply
current in
run mode,
code
executed
from Flash
fCPU = fMASTER = 24 MHz,
TA 105 °C HSE crystal osc. (24 MHz) 11.0
HSE user ext. clock (24 MHz) 10.8 18.0
fCPU = fMASTER = 16 MHz
HSE crystal osc. (16 MHz) 8.4
HSE user ext. clock (16 MHz) 8.2 15.2
HSI RC osc. (16 MHz) 8.1 13.2
fCPU = fMASTER = 2 MHz. HSI RC osc. (16 MHz/8)(2) 1.5
fCPU = fMASTER/128 = 125 kHz HSI RC osc. (16 MHz) 1.1
fCPU = fMASTER/128 = 15.625
kHz HSI RC osc. (16 MHz/8) 0.6
fCPU = fMASTER = 128 kHz LSI RC osc. (128 kHz) 0.5 5
1. Data based on characterization results, not tested in production.
2. Default clock configuration.
Electrical characteristics STM8S207xx STM8S208xx
60/117 DocID14733 Rev 13
Total current consumption in wait mode
Table 22. Total cu rrent consumption in wait mode at VDD = 5 V
Symbol Parameter Conditions Typ Max(1) Unit
IDD(WFI)
Supply
current in
wait mode
fCPU = fMASTER = 24 MHz,
TA 105 °C HSE crystal osc. (24 MHz) 2.4
mA
HSE user ext. clock (24 MHz) 1.8 4.7
fCPU = fMASTER = 16 MH z
HSE crystal osc. (16 MHz) 2.0
HSE user ext. clock (16 MHz) 1.4 4.4
HSI RC osc. (16 MHz) 1.2 1.6
fCPU = fMASTER/128 = 125 kHz HSI RC osc. (16 MHz) 1.0
fCPU = fMASTER/128 = 15.625
kHz HSI RC osc. (16 MHz/8)(2) 0.55
fCPU = fMASTER = 128 kHz LSI RC osc. (128 kHz) 0.5
1. Data based on characterization results, not tested in production.
2. Default clock configuration measured with all peripherals off.
Table 23. Total current consumption in wait mode at VDD = 3.3 V
Symbol Parameter Conditions Typ Max(1) Unit
IDD(WFI)
Supply
current in
wait mode
fCPU = fMASTER = 24 MHz,
TA 105 °C HSE crystal osc. (24 MHz) 2.0
mA
HSE user ext. clock (24 MHz) 1.8 4.7
fCPU = fMASTER = 16 MHz
HSE crystal osc. (16 MHz) 1.6
HSE user ext. clock (16 MHz) 1.4 4.4
HSI RC osc. (16 MHz) 1.2 1.6
fCPU = fMASTER/128 = 125 kHz HSI RC osc. (16 MHz) 1.0
fCPU = fMASTER/128 = 15.625
kHz HSI RC osc. (16 MHz/8)(2) 0.55
fCPU = fMASTER/128 = 15.625
kHz LSI RC osc. (128 kHz) 0.5
1. Data based on characterization results, not tested in production.
2. Default clock configuration measured with all peripherals off.
DocID14733 Rev 13 61/117
STM8S207xx ST M8S2 08 xx Electrical chara cte ri st ic s
116
Total current consumption in active halt mode
Table 24. Total current consumption in active halt mode at VDD = 5 V, TA -40 to 85° C
Symbol Parameter
Conditions
Typ Max(1) Unit
Main voltage
regulator
(MVR)(2) Flash mode(3) Clock source
IDD(AH) Supply current in
active halt mod e
On
Operating mode
HSE crystal oscillator
(16 MHz) 1000
µA
LSI RC oscillator
(128 kHz) 200 260
Power-down mode
HSE crystal oscillator
(16 MHz) 940
LSI RC oscillator
(128 kHz) 140
Off Operating mode LSI RC oscillator
128 kHz) 68
Power-down mode 11 45
1. Data based on characterization results, not tested in production.
2. Configured by the REGAH bit in the CLK_ICKR register.
3. Configured by the AHALT bit in the FLASH_CR1 register.
Table 25. Total current consumption in active halt mode at VDD = 3.3 V
Symbol Parameter
Conditions
Typ(1) Unit
Main voltage
regulator
(MVR)(2) Flash mode(3) Clock source
IDD(AH) Supply current in
active halt mode
On
Operating mode HSE crystal osc. (16 MHz) 600
µA
LSI RC osc. (128 kHz) 200
Power-down mode HSE crystal osc. (16 MHz) 540
LSI RC osc. (128 kHz) 140
Off Operating mode LSI RC osc. (128 kHz) 66
Power-down mode 9
1. Data based on characterization results, not tested in production.
2. Configured by the REGAH bit in the CLK_ICKR register.
3. Configured by the AHALT bit in the FLASH_CR1 register.
Electrical characteristics STM8S207xx STM8S208xx
62/117 DocID14733 Rev 13
Total current consumption in halt mode
Low power mode wakeup times
Table 26. Total current consumption in halt mode at VDD = 5 V
Symbol Parameter Conditions Typ Max at 85 °C Max at 125 °C Unit
IDD(H) Supply current in halt
mode
Flash in operating mode, HSI
clock after wakeup 63.5 µA
Flash in power-down mode,
HSI clock after wakeup 6.5 35 100
Table 27. Total current consumption in halt mode at VDD = 3.3 V
Symbol Parameter Conditions Typ Unit
IDD(H) Supply current in halt mode
Flash in operating mode, HSI clock after
wakeup 61.5 µA
Flash in power-down mode, HSI clock after
wakeup 4.5
Table 28. Wakeup times
Symbol Parameter Conditions Typ Max(1) Unit
tWU(WFI) Wakeup time from wait
mode to run mode(3)
See
note(2)
µs
fCPU = fMASTER = 16 MHz. 0.56
tWU(AH) Wakeup time active halt
mode to run mode.(3)
MVR voltage
regulator on(4)
Flash in operating
mode(5)
HSI (after
wakeup)
1(6) 2(6)
Flash in power-down
mode(5) 3(6)
MVR voltage
regulator off(4)
Flash in operating
mode(5) 48(6)
Flash in power-down
mode(5) 50(6)
tWU(H) Wakeup time from halt
mode to run mode(3) Flash in operating mode (5) 52
Flash in power-down mode(5) 54
1. Data guaranteed by design, not tested in production.
2. tWU(WFI) = 2 x 1/fmaster + 7 x 1/fCPU
3. Measured from interrupt event to interrupt vector fetch.
4. Configured by the REGAH bit in the CLK_ICKR register.
5. Configured by the AHALT bit in the FLASH_CR1 register.
6. Plus 1 LSI clock depending on synchronization.
DocID14733 Rev 13 63/117
STM8S207xx ST M8S2 08 xx Electrical chara cte ri st ic s
116
Total current consumption and timing in forced reset state
Current consumption of on-chip peripherals
Subject to general operating conditions for VDD and TA.
HSI internal RC/fCPU = fMASTER = 16 MHz.
Table 29. Total current consumption and timing in forced reset state
Symbol Parameter Conditions Typ Max(1) Unit
IDD(R) Supply cur rent in reset state VDD = 5 V 1.6 mA
VDD = 3.3 V 0.8
tRESETBL Reset release to bootloader vector
fetch 150 µs
1. Data guaranteed by design, not tested in production.
Table 30. Peripheral current consumption
Symbol Parameter Typ. Unit
IDD(TIM1) TIM1 supply current (1)
1. Data based on a differential IDD measurement between reset configuration and timer counter running at
16 MHz. No IC/OC programmed (no I/O pads toggling). Not tested in production.
220
µA
IDD(TIM2) TIM2 supply current (1) 120
IDD(TIM3) TIM3 timer supply current (1) 100
IDD(TIM4) TIM4 timer supply current (1) 25
IDD(UART1) UART1 supply current (2)
2. Data based on a differential IDD measurement between the on-chip peripheral when kept under reset and
not clocked and the on-chip peripheral when clocked and not kept under reset. No I/O pads toggling. Not
tested in production.
90
IDD(UART3) UART3 supply current (2) 110
IDD(SPI) SPI supply current (2) 40
IDD(I2C) I2C supply current (2) 50
IDD(CAN) beCAN supply current (2) 210
IDD(ADC2) ADC2 supply current when converting (3)
3. Data based on a differential IDD measurement between reset configuration and continuous A/D
conversions. Not tested in production.
1000
Electrical characteristics STM8S207xx STM8S208xx
64/117 DocID14733 Rev 13
Current consumption curves
Figure 14 and Figure 15 show typical current consumption measured with code executing in
RAM.
Figure 14. Typ. IDD(RUN) vs VDD, HSI RC osc, fCPU = 16 MHz
Figure 15. Typ. IDD(WFI) vs VDD, HSI RC osc, fCPU = 16 MHz




   
Û&
Û&
Û&
Û&
069
,''581+6>P$@
9''>9@



   
Û&
Û&
Û&
Û&
*%%8'*)4<N">
7%%<7> .47
DocID14733 Rev 13 65/117
STM8S207xx ST M8S2 08 xx Electrical chara cte ri st ic s
116
10.3.3 External clock sources and timing characteristics
HSE user external clock
Subject to general operating conditions for VDD and TA.
Figure 16. HSE external clock source
HSE crystal/ceramic resonator oscillator
The HSE clock can be supplied with a 1 to 24 MHz crystal/ceramic resonator oscillator. All
the information given in this paragraph is based on characterizatio n results with specified
typical external components. In the application, the resonator and the load capacitors have
to be placed as close as possible to the oscillator pins in order to minimize output distortion
and start-up stabilization time. Refer to the crystal resonator manufacturer for more details
(frequency, package, accuracy...).
Table 31. HSE user external clock characteristics
Symbol Parameter Conditions Min Typ Max Unit
fHSE_ext User external clock source
frequency 024MHz
VHSEH(1)
1. Data based on characterization results, not tested in production.
OSCIN input pin high level
voltage 0.7 x VDD VDD + 0.3 V V
VHSEL(1) OSCIN input pin low level
voltage VSS 0.3 x VDD
ILEAK_HSE OSCIN input leakage
current VSS < VIN < VDD -1 1 µA
OSCIN
fHSE
External clock
STM8
source
VHSEL
VHSEH
Electrical characteristics STM8S207xx STM8S208xx
66/117 DocID14733 Rev 13
Figure 17. HSE oscillator circuit diagram
HSE oscillator critical gm formula
Rm: Notional resistance (see crystal specification)
Lm: Notional inductance (see crystal specification)
Cm: Notional capacit ance (see crystal specification)
Co: Shunt capacitance (see crystal specification)
CL1=CL2=C: Grounde d external capacitance
gm >> gmcrit
Table 32. HSE oscillator characteristics
Symbol Parameter Conditions Min Typ Max Unit
fHSE External high speed oscillator
frequency 124MHz
RFFeedback resistor 220 k
C(1) Recommended load capacitance (2) 20 pF
IDD(HSE) HSE oscillator power consumption
C = 20 pF,
fOSC = 24 MHz 6 (startup)
2 (stabilized)(3) mA
C = 10 pF,
fOSC = 24 MHz 6 (startup)
1.5 (stabilized)(3)
gmOscillator transconductance 5 mA/V
tSU(HSE)(4) Startup time VDD is stabilized 1 ms
1. C is approximately equivalent to 2 x crystal Cload.
2. The oscillator selection can be optimized in terms of supply current using a high quality resonator with small Rm value.
Refer to crystal manufacturer for more details
3. Data based on characterization results, not tested in production.
4. tSU(HSE) is the start-up time measured from the moment it is enabled (by software) to a stabilized 24 MHz oscillation is
reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer.
OSCOUT
OSCIN
f
HSE
to core
C
L1
C
L2
R
F
STM8
Resonator
Consumption
control
g
m
R
m
C
m
L
m
C
O
Resonator
gmcrit 2 fHSE

2Rm
2Co C+
2
=
DocID14733 Rev 13 67/117
STM8S207xx ST M8S2 08 xx Electrical chara cte ri st ic s
116
10.3.4 Internal clock sources and timing characteristics
Subject to general operating conditions for VDD and TA. fHSE
High speed internal RC oscillator (HSI)
Figure 18. Typical HSI frequency variation vs VDD at 4 temperatures
Table 33. HSI oscillator characteristics
Symbol Parameter Conditions Min Typ Max Unit
fHSI Frequency 16 MHz
ACCHSI
Accuracy of HSI oscillator
Trimmed by the
CLK_HSITRIMR register
for given VDD and TA
conditions
-1.0(1)
1. Guaranteed by design, not tested in production.
1.0
%
Accuracy of HSI oscillator
(factory calibrated)
VDD = 5 V, TA = 25 °C -1.5 1.5
VDD 5 V,
25 °C TA 85 °C -2.2 2.2
2.95 V VDD 5.5 V,
-40 °C TA 125 °C -3.0(2)
2. Data based on characterization results, not tested in production
3.0(2)
tsu(HSI) HSI oscillator wakeup
time including calibration 1.0(1) µs
IDD(HSI) HSI oscillator power
consumption 170 250(2) µA







   
Û&
Û&
Û&
Û&
DL
9''9
DFFXUDF\
Electrical characteristics STM8S207xx STM8S208xx
68/117 DocID14733 Rev 13
Low speed internal RC oscillator (LSI)
Subject to general operating conditions for VDD and TA.
Figure 19. Typical LSI frequency variation vs VDD @ 25 °C
Table 34. LSI oscillator characteristics
Symbol Parameter Conditions Min Typ Max Unit
fLSI Frequency 110 128 146 kHz
tsu(LSI) LSI oscillator wakeup time 7(1)
1. Guaranteed by design, not tested in production.
µs
IDD(LSI) LSI oscillator power consumption 5 µA
DL







   
9
''
>9@
DFFXUDF\
DocID14733 Rev 13 69/117
STM8S207xx ST M8S2 08 xx Electrical chara cte ri st ic s
116
10.3.5 Memory characteristics
RAM and hardware registers
Flash program memory/data EEPROM memory
General conditions: TA = -40 to 125 °C.
Table 35. RAM and hardware registers
Symbol Parameter Conditions Min Unit
VRM Data retention mode(1)
1. Minimum supply voltage without losing data stored in RAM (in halt mode or under reset) or in hardware
registers (only in halt mode). Guaranteed by design, not tested in production.
Halt mode (or reset) VIT-max(2)
2. Refer to Table 19 on page 57 for the value of VIT-max.
V
Table 36. Flash program memory/data EEPROM memory
Symbol Parameter Conditions Min(1)
1. Data based on characterization results, not tested in production.
Typ Max Unit
VDD Operating voltage
(all modes, execution/write/erase) fCPU 24 MHz 2.95 5.5 V
tprog
Standard programming time (including
erase) for byte/word/block
(1 byte/4 bytes/128 bytes) 66.6ms
Fast programming time for 1 block
(128 bytes) 33.3ms
terase Erase time for 1 block (128 bytes) 3 3.3 ms
NRW
Erase/write cycles(2)
(program memory)
2. The physical granularity of the memory is 4 bytes, so cycling is performed on 4 bytes even when a
write/erase operation addresses a single byte.
TA 85 °C 10 k cycles
Erase/write cycles (data memory)(2) TA 125 ° C 300 k 1M
tRET
Data retention (program memory)
after 10 k erase/write cycles at
TA 85 °C TRET = 55° C 20
years
Data retention (dat a memory) after 10
k erase/write cycles at TA 85 °C TRET = 55° C 20
Data retention (data memory) after
300k erase/write cycles at
TA 125 °C TRET = 85° C 1
IDD Supply current (Flash programming or
erasing for 1 to 128 bytes) 2mA
Electrical characteristics STM8S207xx STM8S208xx
70/117 DocID14733 Rev 13
10.3.6 I/O port pin characteristics
General characteristics
Subject to general operating conditions for VDD and TA unless otherwise specified. All
unused pins must be ke pt at a fixed volta ge: using the output mode of the I/O for example or
an external pull-up or pull-down r esistor.
Tabl e 37. I/O static characteris tic s
Symbol Parameter Conditions Min Typ Max Unit
VIL Input low level
voltage
VDD = 5 V
-0.3 0.3 x VDD V
VIH Input high level
voltage 0.7 x VDD VDD + 0.3 V
Vhys Hysteresis(1) 700 mV
Rpu Pull-up resistor VDD = 5 V, VIN = VSS 30 55 80 k
tR, tFRise and fall time
(10% - 90%)
Fast I/Os
Load = 50 pF 20 (2)
ns
Standard and high sink I/Os
Load = 50 pF 125 (2)
Fast I/Os
Load = 20 pF 35(3)
Standard and high sink I/Os
Load = 20 pF 125(3)
Ilkg
Input leakage
current,
analog and digital VSS VIN VDD ±1 µA
Ilkg ana Analog input
leakage current VSS VIN VDD ±250 (2) nA
Ilkg(inj) Leakage current in
adjacent I/O(2) Injection current ±4 mA ±1(2) µA
1. Hysteresis voltage between Schmitt trigger switching levels. Based on characterization results, not tested in production.
2. Data based on characterization results, not tested in production.
3. Guaranteed by design.
DocID14733 Rev 13 71/117
STM8S207xx ST M8S2 08 xx Electrical chara cte ri st ic s
116
Figure 20. Typical VIL and VIH vs VDD @ 4 temperatures
Figure 21. Typical pull-up resistance vs VDD @ 4 temperatures
   
Û&
Û&
Û&
Û&
9''>9@
9,/9,+>9@
069







Û&
Û
&
Û&
Û
&
3XOOXSUHVLVWDQFH > :@
   
9''>9@ 069
Electrical characteristics STM8S207xx STM8S208xx
72/117 DocID14733 Rev 13
Figure 22. Typical pull-up current vs VDD @ 4 temperatures
1. The pull-up is a pure resistor (slope goes through 0).








Û&
Û&
Û&
Û&
DL
3XOOXSFXUUHQW>$@
9''>9@
Table 38. Output driving current (standard ports)
Symbol Parameter Conditions Min Max Unit
VOL Output low level with 8 pins sunk IIO = 10 mA, VDD = 5 V 2 V
Output low level with 4 pins sunk IIO = 4 mA, VDD = 3.3 V 1(1)
VOH Output high level with 8 pins sourced IIO = 10 mA, VDD = 5 V 2.8 V
Output high level with 4 pins sourced IIO = 4 mA, VDD = 3.3 V 2.1(1)
1. Data based on characterization results, not tested in production
Table 39. Output driving current (true open drain ports)
Symbol Parameter Conditions Max Unit
VOL Output low level with 2 pins sunk
IIO = 10 mA, VDD = 5 V 1
VIIO = 10 mA, VDD = 3.3 V 1.5(1)
IIO = 20 mA, VDD = 5 V 2(1)
1. Data based on characterization results, not tested in production
Table 40. Output driving current (high sink ports)
Symbol Parameter Conditions Min Max Unit
VOL
Output low level with 8 pins sunk IIO = 10 mA, VDD = 5 V 0.8
V
Output low level with 4 pins sunk IIO = 10 mA, VDD = 3.3 V 1(1)
Output low level with 4 pins sunk IIO = 20 mA, VDD = 5 V 1.5(1)
VOH
Output high level with 8 pins sourced IIO = 10 mA, VDD = 5 V 4.0
Output high level with 4 pins sourced IIO = 10 mA, VDD = 3.3 V 2.1(1)
Output high level with 4 pins sourced IIO = 20 mA, VDD = 5 V 3.3(1)
1. Data based on characterization results, not tested in production
DocID14733 Rev 13 73/117
STM8S207xx ST M8S2 08 xx Electrical chara cte ri st ic s
116
Typical output level curves
Figure 24 to Figure 31 show typical output level curves measured with output on a single
pin.
Figure 23. Typ. VOL @ VDD = 5 V (standard ports)
Figure 24. Typ. VOL @ VDD = 3.3 V (stan d a rd ports)
Û&
Û&
Û&
Û&
Û&
Û&
Û&
Û&
Electrical characteristics STM8S207xx STM8S208xx
74/117 DocID14733 Rev 13
Figure 25. Typ. VOL @ VDD = 5 V (true open drain ports)
Figure 26. Typ. VOL @ VDD = 3.3 V (true open dr ain ports)
Û&
Û&
Û&
Û&
Û&
Û&
Û&
Û&
DocID14733 Rev 13 75/117
STM8S207xx ST M8S2 08 xx Electrical chara cte ri st ic s
116
Figure 27. Typ. VOL @ VDD = 5 V (high sink ports)
Figure 28. Typ. VOL @ VDD = 3.3 V (high sink ports)
Û&
Û&
Û&
Û&
Û&
Û&
Û&
Û&
Electrical characteristics STM8S207xx STM8S208xx
76/117 DocID14733 Rev 13
Figure 29. Typ. VDD - VOH @ VDD = 5 V (standard ports)
Figure 30. Typ. VDD - VOH @ VDD = 3.3 V (standard ports)







Û&
Û&
Û&
Û&
9''92+>9@
,2/>P$@
069
Û&
Û&
Û&
Û&
DocID14733 Rev 13 77/117
STM8S207xx ST M8S2 08 xx Electrical chara cte ri st ic s
116
Figure 31. Typ. VDD - VOH @ VDD = 5 V (high sink ports)
Figure 32. Typ. VDD - VOH @ VDD = 3.3 V (high sink ports)
Û&
Û&
Û&
Û&
Û&
Û&
Û&
Û&
Electrical characteristics STM8S207xx STM8S208xx
78/117 DocID14733 Rev 13
10.3.7 Reset pin characteristics
Subject to general operating conditions for VDD and TA unless otherwise specified.
Figure 33. Typical NRST VIL and VIH vs VDD @ 4 temperatures
Table 41. NRST pin characteristics
Symbol Parameter Conditions Min Typ 1) Max Unit
VIL(NRST) NRST Input low level voltage (1) -0.3 V 0.3 x VDD
VVIH(NRST) NRST Input high level voltage (1) 0.7 x VDD VDD + 0.3
VOL(NRST) NRST Output low level voltage (1) IOL= 2 mA 0.5
RPU(NRST) NRST Pull-up resistor (2) 30 55 80 k
tIFP(NRST) NRST Input filtered pulse (3) 75 ns
tINFP(NRST) NRST Input not filtered pulse (3) 500 ns
tOP(NRST) NRST output pulse (1) 15 µs
1. Data based on characterization results, not tested in production.
2. The RPU pull-up equivalent resistor is based on a resistive transistor
3. Data guaranteed by design, not tested in production.
Û&
Û&
Û&
Û&
DocID14733 Rev 13 79/117
STM8S207xx ST M8S2 08 xx Electrical chara cte ri st ic s
116
Figure 34. Typical NRST pull-up resistance vs VDD @ 4 temperatures
Figure 35. Typical NRST pull -u p current vs VDD @ 4 temperatures
The reset network shown in Figure 36 protects the device against parasitic resets. The user
must ensure that the level on the NRST pin can go below the VIL max. level specified in
Table 41. Otherwise the reset is not taken into account internally. For power consumption
sensitive applications, the cap acity of the external reset capacitor can be reduced to limit
charge/discharge current. If the NRSTsignal is used to reset the external circuitry, care must
be taken of the charge/discharge time of the external capacitor to fulfill the external device’s
reset timing conditions. The minimum recommended capacity is 10 nF.
Figure 36. Recommended reset pin protection
Û&
Û&
Û&
Û&
0.1µF
External
reset
circuit
STM8
Filter
RPU
VDD
Internal rese t
NRST
(optional)
Electrical characteristics STM8S207xx STM8S208xx
80/117 DocID14733 Rev 13
10.3.8 SPI serial peripheral interface
Unless otherwise specified, the parameters given in Table 42 are derived from tests
performed under ambient temperature, fMASTER frequency and VDD supply voltage
conditions. tMASTER = 1/fMASTER.
Refer to I/O port characteristics for more details on the input/output alternate function
characteristics (NSS, SCK, MOSI, MISO).
Tabl e 42 . SPI ch ara ct e ri st ic s
Symbol Parameter Conditions Min Max Unit
fSCK
1/tc(SCK) SPI clock frequency Master mode 0 10 MHz
Slave mode 0 6
tr(SCK)
tf(SCK) SPI clock rise and fall time Capacitive load: C = 30 pF 25
ns
tsu(NSS)(1) NSS setup time Slave mode 4 x tMASTER
th(NSS)(1) NSS hold time Slave mode 70
tw(SCKH)(1)
tw(SCKL)(1) SCK high and low time Master mode tSCK/2 - 15 tSCK/2 + 15
tsu(MI) (1)
tsu(SI)(1) Data input setup time Master mode 5
Slave mode 5
th(MI) (1)
th(SI)(1) Data input hold time Master mode 7
Slave mode 10
ta(SO)(1)(2) Data output access time Slave mode 3 x tMASTER
tdis(SO)(1)(3) Data output disable time Slave mode 25
tv(SO) (1) Data output valid time Slave mode (after enable edge) 75
tv(MO)(1) Data output valid time Master mode (after enable edge) 30
th(SO)(1) Data output hold time Slave mode (after enable edge) 31
th(MO)(1) Master mode (after enable edge) 12
1. Values based on design simulation and/or characterization results, and not tested in production.
2. Min time is for the minimum time to drive the output and the max time is for the maximum time to validate the data.
3. Min time is for th e minimum time to invalidate the output and the max time is for the maximum time to put the data in Hi-Z.
DocID14733 Rev 13 81/117
STM8S207xx ST M8S2 08 xx Electrical chara cte ri st ic s
116
Figure 37. SPI timing diagram - slave mode and CPHA = 0
Figure 38. SPI timing diagram - slave mode and CPHA = 1(1)
1. Measurement points are done at CMOS levels: 0.3 VDD and 0.7 VDD.
DL
6&.,QSXW
026,
,1387
W68166 WF6&. WK166
WD62
WZ6&.+
WZ6&./
WY62 WK62 WU6&.
WI6&.
WGLV62
WVX6,
WK6,
166LQSXW
&3+$ 
&32/ 
&3+$ 
&32/ 
0,62
287387 /6%287
/6%,106%,1
06%287 %,7287
%,7,1
DL
W68166 WF6&. WK166
WD62
WZ6&.+
WZ6&./
WY62 WK62 WU6&.
WI6&.
WGLV62
WVX6, WK6,
166LQSXW
/6%287
/6%,1
%,7287
%,7,106%,1
06%287
026,
,1387
0,62
287387
&3+$ 
&32/ 
&3+$ 
&32/ 
6&.LQSXW
Electrical characteristics STM8S207xx STM8S208xx
82/117 DocID14733 Rev 13
Figure 39. SPI timing diagram - master mode(1)
1. Measurement points are done at CMOS levels: 0.3 VDD and 0.7 VDD.
DL
WF6&.
WZ6&.+
WZ6&./
WU6&.
WI6&.
WK0,
+LJK
WVX0,
WY02 WK02
166LQSXW
&3+$ 
&32/ 
&3+$ 
&32/ 
&3+$ 
&32/ 
&3+$ 
&32/ 
6&.LQSXW6&.LQSXW
0,62
,1387
026,
287387
06%,1
06%287
%,7,1
%,7287
/6%,1
/6%287
DocID14733 Rev 13 83/117
STM8S207xx ST M8S2 08 xx Electrical chara cte ri st ic s
116
10.3.9 I2C interface characteristics
Table 43. I2C characteristics
Symbol Parameter Standard mode I2CFast mode I
2C(1)
1. fMASTER, must be at least 8 MHz to achieve max fast I2C speed (400kHz)
Unit
Min(2)
2. Data based on standard I2C protocol requirement, not tested in production
Max(2) Min(2) Max(2)
tw(SCLL) SCL clock low time 4.7 1.3 µs
tw(SCLH) SCL clock high time 4.0 0.6
tsu(SDA) SDA setup time 250 100
ns
th(SDA) SDA data hold time 0(3)
3. The maximum hold time of the start condition has only to be met if the interface does not stretch the low
time
0(4)
4. The device must internally provide a hold time of at least 300 ns for the SDA signal in order to bridge the
undefined region of the falling edge of SCL
900(3)
tr(SDA)
tr(SCL) SDA and SCL rise time 1000 300
tf(SDA)
tf(SCL) SDA and SCL fall time 300 300
th(STA) START cond iti o n ho l d ti me 4.0 0.6 µs
tsu(STA) Repeated START condition setu p time 4.7 0.6
tsu(STO) STOP co nd iti o n setup time 4.0 0.6 µs
tw(STO:STA) STOP to START condition time
(bus free) 4.7 1.3 µs
CbCapacitive load for each bus line 400 400 pF
Electrical characteristics STM8S207xx STM8S208xx
84/117 DocID14733 Rev 13
Figure 40. Typical application with I2C bus and timing diagram
1. Measurement points are made at CMOS levels: 0.3 x VDD and 0.7 x VDD
AI
34!24
3$ !
)£#BUS
6$$
6$$
34-3XXX
3$!
3#,
TF3$! TR3$!
3#,
TH34!
TW3#,(
TW3#,,
TSU3$!
TR3#, TF3#,
TH3$!
3 4!242%0%!4%$
34!24
TSU34!
TSU34/
34/0 TSU34!34/
DocID14733 Rev 13 85/117
STM8S207xx ST M8S2 08 xx Electrical chara cte ri st ic s
116
10.3.10 10-bit ADC characteristics
Subject to general operating conditions for VDDA, fMASTER, and TA unless otherwise
specified.
Table 44. ADC characteristics
Symbol Parameter Conditions Min Typ Max Unit
fADC ADC clock frequency VDDA = 3 to 5.5 V 1 4 MHz
VDDA = 4.5 to 5.5 V 1 6
VDDA Analog supply 3 5.5 V
VREF+ Positive reference voltage 2.75(1)
1. Da ta guaranteed by design, not tested in production.
VDDA V
VREF- Negative reference voltage VSSA 0.5(1) V
VAIN Conversion voltage range(2)
2. During the sample time the input capacitance CAIN (3 pF max) can be charged/discharged by the external
source. The internal resistance of the analog source must allow the capacitance to reach its final voltage
level within tS. After the end of the sample time tS, changes of the analog input voltage have no effect on
the conversion result. Values for the sample clock tS depend on programming.
VSSA VDDA V
Devices with external
VREF+/VREF- pins VREF- VREF+ V
CADC Internal sample and hold
capacitor 3pF
tS(2) Sampling time fADC = 4 MHz 0.75 µs
fADC = 6 MHz 0.5
tSTAB Wakeup time from standby 7 µs
tCONV Total conversion time (including
sampling time, 10-bit resolution)
fADC = 4 MHz 3.5 µs
fADC = 6 MHz 2.33 µs
14 1/fADC
Electrical characteristics STM8S207xx STM8S208xx
86/117 DocID14733 Rev 13
Table 45. ADC accuracy with RAIN < 10 k, VDDA = 5 V
Symbol Parameter Conditions Typ Max(1)
1. Data based on characterization results for LQFP80 device with VREF+/VREF-, not tested in production.
Unit
|ET| Total unadjusted error (2)
2. ADC accuracy vs. negative injection current: Injecting negative current on any of the analog input pins
should be avoided as this significantly reduces the accuracy of the conversion being performed on another
analog input. It is recommended to add a Schottky diode (pin to ground) to standard analog pins which may
potentially inject negative current. Any positive injection current within the limits specified for IINJ(PIN) and
IINJ(PIN) in Section 10.3.6 does not affect the ADC accuracy.
fADC = 2 MHz 1 2.5
LSB
fADC = 4 MHz 1 .4 3
fADC = 6 MHz 1.6 3.5
|EO| Offset error (2)
fADC = 2 MHz 0 .6 2
fADC = 4 MHz 1.1 2.5
fADC = 6 MHz 1.2 2.5
|EG| Gain error (2)
fADC = 2 MHz 0 .2 2
fADC = 4 MHz 0.6 2.5
fADC = 6 MHz 0.8 2.5
|ED| Differential linearity error (2)
fADC = 2 MHz 0.7 1.5
fADC = 4 MHz 0.7 1.5
fADC = 6 MHz 0.8 1.5
|EL| Integral linearity error (2)
fADC = 2 MHz 0.6 1.5
fADC = 4 MHz 0.6 1.5
fADC = 6 MHz 0.6 1.5
Table 46. ADC accuracy with RAIN < 10 kRAIN, VDDA = 3.3 V
Symbol Parameter Conditions Typ Max(1) Unit
|ET| Total unadjusted error(2) fADC = 2 MHz 1.1 2
LSB
fADC = 4 MHz 1.6 2.5
|EO| Offset error(2) fADC = 2 MHz 0.7 1.5
fADC = 4 MHz 1 .3 2
|EG| Gain error(2) fADC = 2 MHz 0.2 1.5
fADC = 4 MHz 0 .5 2
|ED| Differential linearity error(2) fADC = 2 MHz 0.7 1
fADC = 4 MHz 0 .7 1
|EL| Integral linearity error(2) fADC = 2 MHz 0.6 1.5
fADC = 4 MHz 0.6 1.5
DocID14733 Rev 13 87/117
STM8S207xx ST M8S2 08 xx Electrical chara cte ri st ic s
116
Figure 41. ADC accuracy characteristics
1. Example of an actual transfer curve.
2. The ideal transfer curve
3. End point correlation line
ET = Total unadjusted error: maximum deviation between the actual and the ideal transfer curves.
EO = Offset error: deviation between the first actual transition and the first ideal one.
EG = Gain error: deviation between the last ideal transition and the last actual one.
ED = Differential linearity error: maximum deviation between actual steps and the ideal one.
EL = Integral linearity error: maximum deviation between any actual transition and the end point correlation
line.
Figure 42. Typical application with ADC
EO
EG
1LSB
IDEAL
1LSBIDEAL VDDA VSSA
1024
-----------------------------------------=
1023
1022
1021
5
4
3
2
1
0
7
6
1234567 1021102210231024
(1)
(2)
ET
ED
EL
(3)
V
DDA
VSSA
AINx
STM8
VDD
IL
±1µA
VT
0.6V
VT
0.6V CADC
VAIN
RAIN 10-bit A/D
conversion
CAIN
Electrical characteristics STM8S207xx STM8S208xx
88/117 DocID14733 Rev 13
10.3.11 EMC characteristics
Susceptibility tests are performed on a sample basis during product characterization.
Functional EMS (electromagnetic susceptibility)
While executing a simple application (toggling 2 LEDs through I/O ports), the product is
stressed by two electromagnetic events until a failure occurs (indicated by the LEDs).
ESD: Electrostatic discharge (p ositive and n egati ve) is applie d on all pins of the device
until a functional disturbance occurs. This test conforms with the IEC 61000-4-2
standard.
FTB: A burst of fa st transient volt age (positive and negative) is a pplied to V DD and VSS
through a 100 pF capacitor, until a functional disturbance occu rs. This test conforms
with the IEC 61000-4-4 standard.
A device reset allows normal operations to be resumed. The test results are given in the
table be low based on the EMS levels and classes defined in application note AN1709.
Designing hardened software to avoid noise problems
EMC characterization and optimization are performed at component level with a typical
application environment and simplified MCU software. It should be noted that go od EMC
performance is highly dependent on the user application and the software in particular.
Therefore it is recommended that the user applies EMC software optimization and
prequalification tests in relation with the EMC level requested for his application.
Software recommendations
The software flowchar t must include the management of runaway conditions such as:
Corrupted program counter
Unexpected reset
Critical data corruption (control registers...)
Prequalification trials
Most of the common failures (unexpected reset and pr ogram counter corruption) can be
recovered by applying a low state on the NRST pin or the oscillator pins for 1 second.
To complete these trials, ESD stress can be applied directly on the device, over the range of
specification values. When unexpe cted beh avior is detected, the software can be hardened
to prevent unrecoverable errors occurring (see application note AN1015).
Table 47. EMS data
Symbol Parameter Conditions Level/class
VFESD Voltage limits to be applied on any I/O pin to
induce a functional disturbance
VDD 5 V, TA 25 °C,
fMASTER 16 MHz,
conforming to IEC 61000-4-2 2B
VEFTB
Fast transient voltage burst limits to be
applied through 100pF on VDD and VSS pins
to induce a functional disturbance
VDD 5 V, TA 25 °C,
fMASTER 16 MHz,
conforming to IEC 61000-4-4 4A
DocID14733 Rev 13 89/117
STM8S207xx ST M8S2 08 xx Electrical chara cte ri st ic s
116
Electromagnetic interference (EMI)
Emission tests conform to the SAE IEC 61967-2 standard for test software, board layout
and pin loading.
Absolute maximum ratings (electrical sensitivity)
Based on two different tests (ESD and LU) using specific measurement methods, the
product is stressed in order to determine its performance in terms of electrical sensitivity.
For more details, refer to the application note AN1181.
Electrosta tic discharge (ESD)
Electrostatic discharges (3 positive then 3 negative pulses separated by 1 second) are
applied to the pins of each sample according to each pin combination. The sample size
depends on the number of supply pins in the device (3 parts*(n+1) supply pin). This test
conforms to the JESD22-A114A/A115A standard. For more det ails, refer to the application
note AN1181.
Table 48. EMI data
Symbol Parameter
Conditions
Unit
General conditions Monitored
frequency band
Max fHSE/fCPU(1)
8 MHz/
8 MHz 8 MHz/
16 MHz 8 MHz/
24 MHz
SEMI
Peak level VDD 5 V
TA 25 °C
LQFP80 package
conforming to SAE IEC
61967-2
0.1MHz to 30 MHz 15 20 24
dBµV30 MHz to 130 MHz 18 21 16
130 MHz to 1 GHz -1 1 4
SAE EMI
level SAE EMI level 2 2.5 2.5
1. Data based on characterization results, not tested in production.
Table 49. ESD absolute maximum ratings
Symbol Ratings Conditions Class Maximum
value(1)
1. Data based on characterization results, not tested in production.
Unit
VESD(HBM) Electrost atic discharge volt age
(Human body model) TA 25°C, conforming to
JESD22-A114 A 2000 V
VESD(CDM) Electrostatic discharge voltage
(Charge device model) TA 25°C, conforming to
JESD22-C101 IV 1000 V
Electrical characteristics STM8S207xx STM8S208xx
90/117 DocID14733 Rev 13
Static latch-up
Two comp lem e ntary static tests are required on 10 parts to assess the latch-up
performance:
A supply overvoltage (applied to each power supply pin)
A current injection (applie d to each input, o utput and con figurable I/O pin) is p erformed
on each sample.
This test conforms to the EIA/JESD 78 IC latch-up standard. For mo re details, refer to the
application note AN1181.
Table 50. Electrical sensitivities
Symbol Parameter Conditions Class(1)
1. Class description: A Class is an STMicroelectronics internal specification. All its limits are higher than the
JEDEC specifications, that means when a device belo ngs to class A it exceeds the JEDEC standard. B
class strictly covers all the JEDEC criteria (international standard).
LU Static latch-up class
TA 25 °C A
TA 85 °C A
TA 125 °C A
DocID14733 Rev 13 91/117
STM8S207xx STM8S208xx Package characteristics
116
11 Package characteristics
To meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environment al compliance. ECOPACK®
specifications, grade definitions and product status are available at www.st.com.
ECOPACK® is an ST trademark.
Package characteristics STM8S 207xx STM8S208xx
92/117 DocID14733 Rev 13
11.1 Package information
11.1.1 LQF P80 package information
Figure 43. LQFP80 - 80-pin, 14 x 14 mm low-profile quad flat package outline
1. Drawing is not to scale.
Table 51. LQFP80 - 80-pin, 14 x 14 mm low-profile quad flat package mechanical
data(1)
Symbol millimeters inches
Min Typ Max Min Typ Max
A - - 1.600 - - 0.0630
A1 0.050 - 0.150 0.0020 - 0.0059
A2 1.350 1.400 1.450 0.0531 0.0551 0.0571
b 0.220 0.320 0.380 0.0087 0.0126 0.0150
c 0.090 - 0.200 0.0035 - 0.0079







B
$
$
$
%
%
%
)$%.4)&)#!4)/.
0).
,
,
K
C
#
3%!4).'
0,!.%
'!5'%0,!.%
MM
#
CCC
!
!
!
3?-%
E
!
DocID14733 Rev 13 93/117
STM8S207xx STM8S208xx Package characteristics
116
Figure 44. LQFP80 recommended footprint
D 15.800 16.000 16.200 0.6220 0.6299 0.6378
D1 13.800 14.000 14.200 0.5433 0.5512 0.5591
D3 - 12.350 - - 0.4862 -
E 15.800 16.000 16.200 0.6220 0.6299 0.6378
E1 13.800 14.000 14.200 0.5433 0.5512 0.5591
E3 - 12.350 - - 0.4862 -
e - 0.650 - - 0.0256 -
L 0.450 0.600 0.750 0.0177 0.0236 0.0295
L1 - 1.000 - - 0.0394 -
k 0°3.5°7° 0°3.5°7°
ccc - - 0.100 - - 0.0039
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Table 51. LQFP80 - 80-pin, 14 x 14 mm low-profile quad flat package mechanical
data(1) (continued)
Symbol millimeters inches
Min Typ Max Min Typ Max














4@'1
Package characteristics STM8S 207xx STM8S208xx
94/117 DocID14733 Rev 13
Device marking
The following figure shows the markin g for the LQFP80 pa ckage.
Figure 45. LQFP80 marking example (package top view)
1. Parts marked as “ES”,”E” or accompanied by an Engineering Sample notification letter, are not yet
qualified and therefore not yet ready to be used in production and any consequences deriving from such
usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering
samples to run qualification activity.
DocID14733 Rev 13 95/117
STM8S207xx STM8S208xx Package characteristics
116
11.1.2 LQF P64 package information
Figure 46. LQFP64 - 64-pin 14 mm x 14 mm low- profile quad flat package outline
5B0(
/
$ .
/
$
$
FFF &
'
'
'
( ( (




E

3LQ
LGHQWLILFDWLRQ
H

F

Table 52. LQFP64 - 64-pin, 14 x 14 mm low-profile quad flat package mechanical
data
Symbol mm inches(1)
Min Typ Max Min Typ Max
A1.600 0.0630
A1 0.050 0.150 0.0020 0.0059
A2 1.350 1.400 1.450 0.0531 0.0551 0.0571
b0.300 0.370 0.450 0.0118 0.0146 0.0177
C0.090 0.200 0.0035 0.0079
D 15.800 16.000 16.200 0.6220 0.6299 0.6378
D1 13.800 14.000 14.200 0.5433 0.5512 0.5591
D3 12.000 0.4724
E 15.800 16.000 16.200 0.6220 0.6299 0.6378
E1 13.800 14.000 14.200 0.5433 0.5512 0.5591
E3 12.000 0.4724
e0.800 0.0315
L0.450
0.600 0.750 0.0177 0.0236 0.0295
L1 1.000 0.0394
Package characteristics STM8S 207xx STM8S208xx
96/117 DocID14733 Rev 13
Figure 47. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package outline
k 0.0 ° 3.5 ° 7.0 ° 0.0 ° 3.5 ° 7.0 °
ccc 0.100 0.0039
1. Values in inches are converted from mm and rounded to four decimal places.
Table 53. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package mechanical
data
Symbol mm inches(1)
Min Typ Max Min Typ Max
A - - 1.600 - - 0.0630
A1 0.050 - 0.150 0.0020 - 0.0059
A2 1.350 1.400 1.450 0.0531 0.0551 0.0571
b 0.170 0.220 0.270 0.0067 0.0087 0.0106
c 0.090 - 0.200 0.0035 - 0.0079
Table 52. LQFP64 - 64-pin, 14 x 14 mm low-profile quad flat package mechanical
data (continued)
Symbol mm inches(1)
Min Typ Max Min Typ Max
:B0(B9
$
$
$
6($7,1*3/$1(
FFF &
E
&
F
$
/
/
.
,'(17,),&$7,21
3,1
'
'
'
H







(
(
(
*$8*(3/$1(
PP
DocID14733 Rev 13 97/117
STM8S207xx STM8S208xx Package characteristics
116
Figure 48. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat recommended footprint
D - 12.000 - - 0.4724 -
D1 - 10.000 - - 0.3937 -
D3 - 7.500 - - 0.2953 -
E - 12.000 - - 0.4724 -
E1 - 10.000 - - 0.3937 -
E3 - 7.500 - - 0.2953 -
e - 0.500 - - 0.0197 -
3.5° 3.5°
L 0.450 0.600 0.750 0.0177 0.0236 0.0295
L1 - 1.000 - - 0.039 4 -
ccc - - 0.080 - - 0.0031
1. Values in inches are converted from mm and rounded to four decimal places.
Table 53. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package mechanical
data (continued)
Symbol mm inches(1)
Min Typ Max Min Typ Max



 










AIC
Package characteristics STM8S 207xx STM8S208xx
98/117 DocID14733 Rev 13
Device marking
The following figure shows the markin g for the LQFP64 pa ckage.
Figure 49. LQFP64 marking example (package top view)
1. Parts marked as “ES”,”E” or accompanied by an Engineering Sample notification letter, are not yet
qualified and therefore not yet ready to be used in production and any consequences deriving from such
usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering
samples to run qualification activity.
069
3URGXFWLGHQWLILFDWLRQ
3LQLGHQWLILHU
5HYLVLRQFRGH
'DWHFRGH
:88
3
435$
6WDQGDUG67ORJR
DocID14733 Rev 13 99/117
STM8S207xx STM8S208xx Package characteristics
116
11.1.3 LQF P48 package information
Figure 50. LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package outline
Table 54. LQFP48 - 48-pin, 7x 7 mm low-profile quad flat package mechanica l
Symbol mm inches(1)
Min Typ Max Min Typ Max
A - - 1.600 - - 0.0630
A1 0.050 - 0.150 0.0020 - 0 .0059
A2 1.350 1.400 1.450 0.0531 0.0551 0.0571
b 0.170 0.220 0.270 0.0067 0.0087 0.0106
c 0.090 - 0.200 0.0035 - 0.0079
D 8.800 9.000 9.200 0.3465 0.3543 0.3622
D1 6.800 7.000 7.200 0.2677 0.2756 0.2835
D3 - 5.500 - - 0.2165 -
E 8.800 9.000 9.200 0.3465 0.3543 0.3622
"?-%?6
0).
)$%.4)&)#!4)/.
CCC #
#
$
MM
'!5'%0,!.%
B
!
!
!
C
!
,
,
$
$
%
%
%
E







3%!4).'
0,!.%
+
Package characteristics STM8S 207xx STM8S208xx
100/117 DocID14733 Rev 13
Figure 51. LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat recommended footprint
1. Dimensions are expressed in millimeters.
E1 6.800 7.000 7.200 0.2677 0.2756 0.2835
E3 - 5.500 - - 0.2165 -
e - 0.500 - - 0.0197 -
L 0.450 0.600 0.750 0.0177 0.0236 0.0295
L1 - 1.000 - - 0.0394 -
k 3.5° 3.5°
ccc - - 0.080 - - 0.0031
1. Values in inches are converted from mm and rounded to four decimal places.
Table 54. LQFP48 - 48-pin, 7x 7 mm low-profile quad flat package mechanica l
(continued)
Symbol mm inches(1)
Min Typ Max Min Typ Max
  













AID

DocID14733 Rev 13 101/117
STM8S207xx STM8S208xx Package characteristics
116
Device marking
The following figure shows the markin g for the LQFP48 pa ckage.
Figure 52. LQFP48 marking example (package top view)
1. Parts marked as “ES”,”E” or accompanied by an Engineering Sample notification letter, are not yet
qualified and therefore not yet ready to be used in production and any consequences deriving from such
usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering
samples to run qualification activity.
Package characteristics STM8S 207xx STM8S208xx
102/117 DocID14733 Rev 13
11.1.4 LQF P44 package information
Figure 53. LQFP44 - 44-pin, 10 x 10 mm low-profile quad flat package outline
3%!4).'
0,!.%
%
%
%
$
$
$
0).
)$%.4)&)#!4)/.
CCC #
B
!
!
!
E
!
,
,
'!5'%0,!.%
MM
+


 



#
:@.&
DocID14733 Rev 13 103/117
STM8S207xx STM8S208xx Package characteristics
116
Table 55. LQFP44 - 44-pin, 10 x 10 mm low-profile quad flat package mechanical
data
Symbol mm inches(1)
1. Values in inches are converted from mm and rounded to four decimal places.
Min Typ Max Min Typ Max
A - - 1.600 - - 0.0630
A1 0.050 - 0.150 0.0020 - 0.0059
A2 1.350 1.400 1.450 0.0531 0.0551 0.0571
b 0.300 0.370 0.450 0.0118 0.0146 0.0177
c 0.090 - 0.200 0.0035 0.0079
D 11.800 12.000 12.200 0.4646 0.4724 0.4803
D1 9.800 10.000 10.200 0.3858 0.3937 0.4016
D3 - 8.000 - - 0.3150 -
E 11.800 12.000 12.200 0.4646 0.4724 0.4803
E1 9.800 10.000 10.200 0.3858 0.3937 0.4016
E3 - 8.000 - - 0.3150 -
e - 0.800 - - 0.0315 -
L 0.450 0.600 0.750 0.0177 0.0236 0.0295
L1 - 1.000 - - 0.0394 -
k 0.0° 3.5° 7.0° 0.0° 3.5° 7.0°
ccc - - 0.100 - - 0.0039
Package characteristics STM8S 207xx STM8S208xx
104/117 DocID14733 Rev 13
Figure 54. LQFP44 - 44-pin, 10 x 10 mm low-profile quad flat recommended footprint
1. Dimensions are expressed in millimeters.
Device marking
The following figure shows the markin g for the LQFP44 pa ckage.
Figure 55. LQFP44 marking example (package top view)
1. Parts marked as “ES”,”E” or accompanied by an Engineering Sample notification letter, are not yet
qualified and therefore not yet ready to be used in production and any consequences deriving from such
usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering
samples to run qualification activity.















<B)3
069
3URGXFWLGHQWLILFDWLRQ
3LQLGHQWLILHU
5HYLVLRQFRGH
3
'DWHFRGH
:88
45.4
45$
8QPDUNDEOHVXUIDFH
DocID14733 Rev 13 105/117
STM8S207xx STM8S208xx Package characteristics
116
11.1.5 LQF P32 package information
Figure 56. LQFP32 - 32-pin, 7 x 7 mm low-profile quad flat package outline
$
$
$
%
%
%





!
,
,
+
!
!
!
C
B
'!5'%0,!.%
MM
3%!4).'
0,!.%
#
0).
)$%.4)&)#!4)/.
CCC #
7@.&@7
E
Package characteristics STM8S 207xx STM8S208xx
106/117 DocID14733 Rev 13
Figure 57. LQFP32 - 32-pin, 7 x 7 mm low-profile quad flat recommended footprint
1. Dimensions are expressed in millimeters.
Table 56. LQFP32 - 32-pin, 7 x 7 mm low- profile quad flat package mecha nical
data
Symbol mm inches(1)
1. Values in inches are converted from mm and rounded to four decimal places.
Min Typ Max Min Typ Max
A - - 1.600 - - 0.0630
A1 0.050 - 0.150 0.0020 - 0.0059
A2 1.350 1.400 1.450 0.0531 0.0551 0.0571
b 0.300 0.370 0.450 0.0118 0.0146 0.0177
c 0.090 - 0.200 0.0035 - 0.0079
D 8.800 9.000 9.200 0.3465 0.3543 0.3622
D1 6.800 7.000 7.200 0.2677 0.2756 0.2835
D3 - 5.600 - - 0.2205 -
E 8.800 9.000 9.200 0.3465 0.3543 0.3622
E1 6.800 7.000 7.200 0.2677 0.2756 0.2835
E3 - 5.600 - - 0.2205 -
e - 0.800 - - 0.0315 -
L 0.450 0.600 0.750 0.0177 0.0236 0.0295
L1 - 1.000 - - 0.0394 -
k 0°3.5°7° 0°3.5°7°
ccc - - 0.100 - - 0.0039
6?&0?6
















DocID14733 Rev 13 107/117
STM8S207xx STM8S208xx Package characteristics
116
Device marking
The following figure shows the markin g for the LQFP32 pa ckage.
Figure 58. LQFP32 marking example (package top view)
1. Parts marked as “ES”,”E” or accompanied by an Engineering Sample notification letter, are not yet
qualified and therefore not yet ready to be used in production and any consequences deriving from such
usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering
samples to run qualification activity.
069
3URGXFWLGHQWLILFDWLRQ
3LQLGHQWLILHU
'DWHFRGH
5HYLVLRQFRGH
:88
3
45.4
,5$
Package characteristics STM8S 207xx STM8S208xx
108/117 DocID14733 Rev 13
11.2 Thermal characteristics
The maximum chip junction temperature (TJmax) must never exceed the values given in
Table 18: General operating conditions on page 56.
The maximum chip-jun ction temperature, TJmax, in degrees Celsius, may be calculated
using the following equation:
TJmax = TAmax + (PDmax x JA)
Where:
TAmax is the maximum ambient temperature in C

JA is the package junction-to-ambient thermal resistance in C/W
PDmax is the sum of PINTmax and PI/Omax (PDmax = PINTmax + PI/Omax)
PINTmax is the product of IDD and VDD, expressed in Watts. This is the maximum chip
internal power.
PI/Omax represents the maximum power dissipation on output pin s , wher e:
PI/Omax = (VOL*IOL) + ((VDD-VOH)*IOH), and ta king account of the actual V OL/IOL and
VOH/IOH of the I/Os at low and high level in the application.
11.2.1 Reference document
JESD51-2 integrated circuits thermal test method environment conditions - natural
convection (still air). Available from www.jedec.org.
Table 57. Thermal characteristics(1)
1. Thermal resistances are based on JEDEC JESD51-2 with 4-layer PCB in a natural convection
environment.
Symbol Parameter Value Unit
JA Thermal resistance junction-ambient
LQFP 80 - 14 x 14 mm 38 °C/W
JA Thermal resistance junction-ambient
LQFP 64 - 14 x 14 mm 45 °C/W
JA Thermal resistance junction-ambient
LQFP 64 - 10 x 10 mm 46 °C/W
JA Thermal resistance junction-ambient
LQFP 48 - 7 x 7 mm 57 °C/W
JA Thermal resistance junction-ambient
LQFP 44 - 10 x 10 mm 54 °C/W
JA Thermal resistance junction-ambient
LQFP 32 - 7 x 7 mm 60 °C/W
DocID14733 Rev 13 109/117
STM8S207xx STM8S208xx Package characteristics
116
11.2.2 Selecting the product temperature range
When ordering the microcontr oller , the te mperature range is specified in the orde r code (see
Figure 59: STM8S207xx/208xx performance line ordering information scheme(1) on
page 112).
The following example shows how to calculate the temperature range needed for a given
application.
Assuming the following application conditions:
Maximum ambient temperature TAmax= 82 °C (measured according to JESD51-2)
IDDmax = 15 mA, VDD = 5.5 V
Maximum eight stan dard I/Os used at the same time in o utput at low level with IOL = 10
mA, VOL= 2 V
Maximum four high sink I/Os used at the same time in output at low level with IOL = 20
mA, VOL= 1.5 V
Maximum two true open drain I/Os used at the same time in output at low level with
IOL = 20 mA, VOL= 2 V
PINTmax = 15 mA x 5.5 V = 82.5 mW
PIOmax = (10 mA x 2 V x 8) + (20 mA x 2 V x 2) + (20 mA x 1.5 V x 4) = 360 mW
This gives: PINTmax = 82.5 mW and PIOmax 360 mW:
PDmax = 82.5 mW + 360 mW
Thus: PDmax = 443 mW
Using the values obtained in Table 57: Thermal characteristics on page 108 TJmax is
calculated as follows for LQFP64 10 x 10 mm = 46 °C/W:
TJmax = 82 °C + (46 °C/W x 443 mW) = 82 °C + 20 °C = 102 °C
This is within the range of the suffix 6 version parts (-40 < TJ < 105 °C).
In this case, parts must be ordered at least with the temperature range suffix 6.
STM8 development tools STM8S207xx STM8S208xx
110/117 DocID14733 Rev 13
12 STM8 development tools
Development tools for the STM8 microcontrollers include the full-featured STice emulation
system supported by a comple te software tool package including C compiler, assembler and
integrated developmen t environment with high-level language debugger. In addition, the
STM8 is to be supported by a complete range of tools including starter kits, evaluation
boards and a low-cost in-circuit debugger/programmer.
12.1 Emulation and in-circuit debugging tools
The STice emulation system offers a complete range of emulation and in-circuit debugging
features on a platform that is designed for versatility and cost-effectiveness. In addition,
STM8 application development is su pported by a low-cost in-circuit debugger/programmer.
The STice is the fourth generation of full featured emulators from STMicroelectronics. It
offers new advanced debugging capabilities including profiling and coverage to help detect
and eliminate bottlenecks in applicatio n execution and dead code when fine tuning an
application.
In addition, STice offers in-circuit debugging and programming of STM8 microcontro llers via
the STM8 single wire interface module (SWIM), which allows non-intrusive debugging of an
application while it runs on the target microcontroller.
For improved cost effectiveness, STice is based on a modular design that allows you to
order exactly what you need to meet the de velopment requirements and to adapt the
emulation system to support existing and future ST microcontrollers.
STice key features
Occurrence and time profiling and code coverage (new features)
Advanced breakpoints with up to 4 levels of conditions
Data breakpoint s
Program and data trace recording up to 128 KB records
Read/write on the fly of memor y during emulation
In-circuit debugging/programming via SWIM protocol
8-bit probe analyzer
1 input and 2 output triggers
Power supply follower managing application voltages between 1.62 to 5.5 V
Modularity that allows you to specify the components you need to meet the
development requirements and adapt to future requirements
Supported by free software tools that include integrated development environment
(IDE), programming software interface and asse mbler for STM8.
DocID14733 Rev 13 111/117
STM8S207xx STM8S208xx STM8 development tools
116
12.2 Software tools
STM8 development tools are supported by a complete, free sof tware package from
STMicroelectronics that includes ST Visual Develop (STVD) IDE and the ST Visual
Programmer (STVP) sof tware interf ace. STVD provides seamless inte gration of th e Cosmic
and Raisonance C compilers for STM8. A free version that outputs up to 32 Kbytes of code
is available.
12.2.1 STM8 toolset
STM8 toolset with STVD integrated development environment and STVP programming
software is available for free download at www.st.com/mcu. This package includes:
ST Visual Develop – Full-featured integrated development environment from ST, featuring
Seamless integratio n of C and ASM tool sets
Full-featured debugger
Project management
Syntax highlighting editor
Integrated programming interface
Support of advanced emulation features for STice such as code profiling and coverage
ST Visual Programmer (STVP) – Easy-to-use, unlimited graphical interface allowing read,
write and verification of the ST M8 microcontroller Flash program memory, data EEPROM
and option bytes. ST VP also offers project mode for saving programming configu rations and
automating programming sequences.
12.2.2 C and assembly toolchains
Control of C and assembly toolchains is seamles sly integrated into th e STVD inte gr at ed
development environment, making it possible to configure and control the building of the
application directly from an easy-to-use graphical interface.
Available toolchains include:
Cosmic C compiler for STM8 – One free version that output s up to 32 Kbytes of code
is available. For more information, see www.cosmic-software.com.
Raisonance C compiler for STM8 – One free version that outputs up to 32 Kbytes of
code. For more information, see www.raisonance.com.
STM8 assembler linker – Free assembly toolchain included in the STVD toolset,
which allows you to assemble and link the application source code.
12.3 Programming tools
During the development cycle, STice provides in-circuit programming of the STM8 Flash
microcontroller on the app lication board via the SWIM protocol. Additional tools are to
include a low-cost in-circuit programmer as well as ST socket boards, which pr ovide
dedicated programm ing platforms with sockets for programming the STM8.
For production environments, programmers will include a complete range of gang and
automated programming solutions from third-party tool developers already supplying
programmers for the STM8 family.
Ordering information STM8S207xx STM8S208xx
112/117 DocID14733 Rev 13
13 Ordering information
Figure 59. STM8S207xx/208xx performance line ordering information scheme (1)
1. For a list of available options (e.g. memory size, package) and order-able part numbers or for further
information on any aspect of this device, please go to www.st.com or contact the ST Sales Office nearest
to you.
2. Refer to Table 2: STM8S20xxx performance line features for detailed description.
STM8 S 208 M B T 6 B TR
Product class
STM8 microcontroller
Pin count
K = 32 pins
S = 44 pins
C = 48 pins
R = 64 pins
M = 80 pins
Package type
T = LQFP
Example:
Sub-family type(2)
208 = Full peripheral set
207 = Intermediate peripheral set
Family type
S = Standard
Temperature range
3 = -40 °C to 125 °C
6 = -40 °C to 85 °C
Program memory size
6 = 32 Kbyte
8 = 64 Kbyte
B = 128 Kbyte
Package pitch
No character = 0.5 mm
B = 0.65 mm
C = 0.8 mm
Packing
No character = Tray or tube
TR = Tape and re el
DocID14733 Rev 13 113/117
STM8S207xx STM8S208xx Revision history
116
14 Revision history
Table 58. Document revision history
Date Revision Changes
23-May-2008 1 Initial release.
05-Jun-2008 2 Added part numbers on page 1 and in Table 2 on page 11.
Updated Section 4: Product overview.
Updated Section 10: Electrical characte ristics.
22-Jun-2008 3 Added part numbers on page 1 and in Table 2 on page 11.
12-Aug-2008 4
Added 32 pin device pinout and ordering information.
Updated UBC option description in Table 13 on page 48.
USART renamed UART1, LINUART renamed UART3.
Max. ADC frequency increased to 6 MHz.
20-Oct-2008 5
Removed STM8S207K4 part number.
Removed LQFP64 14 x 14 mm package.
Added medium and high density Flash memo ry categories.
Added Section 6: Memory and register map on page 34.
Replaced beCAN3 by beCAN in Section 4.14.5: beCAN.
Updated Section 10: Electrical characteristics on page 52.
Updated LQFP44 (Figure 53 and Table 55), and LQFP32 outline and
mechanical data (Figure 56, and Table 56).
08-Dec-2008 6
Changed VDD minimum value from 3.0 to 2.95 V.
Updated number of High Sink I/Os in pinout.
Removed FLASH _NFPR and FLASH _FPR registers in Table 9:
General hardware register map.
30-Jan-2009 7
Removed prelimi nary status.
Removed VQFN 32 package.
Added STM8S207C6, STM8S207S6.
Updated external interrupts in Table 2 on page 11.
Updated Section 10: Electrical characte ristics.
10-Jul-2009 8
Document status changed from “preliminary data” to “datasheet”.
Added LQFP64 14 x 14 mm package.
Added STM8S207M8, STM8S207SB, STM8S208R8, STM8S208R6,
STM8S208C8, and STM8S20 8C6, STM8S208SB, STM8S208S8,
and STM8S208S6.
Replaced “CAN” with “beCAN”.
Added Table 3 to Section 4.5: Clock controller.
Updated Section 4.8: Auto wakeup counter.
Added beCAN peripheral (impacting Table 1 and Figure 6).
Added footnote about CAN_RX/T X to pinout figures 5, 4, and 6.
Table 6: Removed ‘X’ fro m wpu column of I 2C pins (no wpu
available).
Added Table 11: Interrupt mapping.
Revision history STM8S207xx STM8S208xx
114/117 DocID14733 Rev 13
10-Jul-2009 8
cont’d
Section 10: Electrical characteristics: Adde d data for TBD values;
updated Table 15: V oltage characteristics and Table 1 8 : General
operating conditions; updated VCAP specifications in Table 18 and
in Section 10.3.1: VCAP external capacitor; updated Figure 18;
replaced Figure 19; updated Table 35: RAM and hardware registers;
updated Figure 22 and Figure 35; added Figure 40: Typical
application with I2C bus and timing diagram.
Removed Table 56: Junction temperature range.
Added link between ordering information Figure 59 and STM8S20xx
features Table 2.
13-Apr-2010 9
Document status changed from “pre liminary data” to “datasheet”.
Table 2: STM8S20xxx performance line features: high sink I/O for
STM8S207C8 is 16 (not 13).
Table 3: Peripheral clock gating bit assignments in
CLK_PCKENR1/2 registers: updated bit positions for TIM2 and
TIM3.
Figure 5: LQFP 48-pin pinout: added CAN_TX and CAN_RX to pins
35 and 36; noted that these pins are available onl y in STM8S208 xx
devices.
Figure 7: LQFP 32-pin pinout: replaced uart2 with uart3.
Table 6: Pin description: added footnotes concerning be CAN
availability and UART1_RX and UART3_RX pins.
Table 13: Option byte description: added descriptio n of STM8 L
bootloader option bytes to the option byte description table.
Added Section 9: Unique ID (and listed this attribute in Features).
Section 10.3: Operating conditions: added introductory text.
Table 18: General operating conditions: replaced “CEXT” with “VCA P”
and added data for ESR and ESL; removed “low power dissipation”
condition for TA.
Table 26: Total current consumpti on in halt mode at VDD = 5 V:
replaced max value of IDD(H) at 85 °C from 30 µA to 35 µA for the
condition “Flash in power-down mode, HSI clock after wakeup”.
Table 33: HSI oscillator characteristics: updated the ACCHSI factory
calibrated values.
Functional EMS (electromagnetic susceptibility) and Table 47:
replaced “IEC 1000” with “IEC 61000”.
Electromagnetic interference (EMI) and Table 48: replaced “SAE
J1752/3” with “IEC 61967-2”.
Table 57: Thermal characteristics: changed the thermal resistance
junction-ambient value of LQFP32 (7x7 mm) from 59 °C/W to 60
°C/W.
Table 58. Document revision history (continued)
Date Revision Changes
DocID14733 Rev 13 115/117
STM8S207xx STM8S208xx Revision history
116
14-Sep-2010 10
Added part number STM8S208M8 to Table 1: Device summary.
Updated “reset state” of Table 5: Legend/abbreviations for pinout
table.
Added footnote 4 to Table 6: Pin description.
Table 9: General hardware register map: standardized all reset state
values; updated the reset state values of RST_SR, CLK_SWCR,
CLK_HSITRIMR, CLK_SWIMC CR, IWDG_KR, and ADC_DRx
registers; added the reset values of the CAN paged registers.
Figure 36: Recommended reset pin protection: replaced 0.01 µF with
0.1 µF.
Figure 40: Typical applica tion with I2C bus and timing diagram:
tw(SCKH), tw(SCKL), tr(SCK), and tf(SCK) replaced by tw(SCLH), tw(SCLL),
tr(SCL), and tf(SCL) respectively.
22-Mar-2011 11
Table 1: Device summary: added STM8S207K8.
Table 2: STM8S20xxx performance line features: added
STM8S207K8 device and changed the RAM value of all other
devices to 6 Kbytes.
Figure 5, Figure 4, Figure 5, and Figure 7: removed TIM1_CH4 from
pins 80, 64, 48, and 32 respectively.
Table 6: Pin description: updated note 3 and added note 5.
Table 9: General hardware register map: removed I2C_PECR
register.
Section 10.3.7: Reset pin characteristics: add ed text regarding the
rest network.
10-Feb-2012 12
Figure 1: STM8S20xxx block diagram: updated POR/PDR and BOR;
updated LINUART input; added legend.
Table 18: General operati ng conditions: updated VCAP.
Table 26: Total current consumption in halt mode at VDD = 5 V:
updated title, modified existing max column, and added new max
column (at 125 °C) with data.
Table 37: I/O static characteristics: added new condition and new
max values for rise and fall time; added footnote 3; updated T yp and
max pull-up resistor values.
Section 10.3.7: Reset pin characteristics: updated cross reference in
text below Figure 35
Table 41: NRST pin charac teristics: updated Typ and max values of
the NRST pull-up resistor.
Table 58. Document revision history (continued)
Date Revision Changes
Revision history STM8S207xx STM8S208xx
116/117 DocID14733 Rev 13
18-Feb-2015 13
Updated:
Figure 43: LQFP80 - 80-pin, 14 x 14 mm low-profile quad flat
package outline
Table 51: LQFP80 - 80-pin, 14 x 14 mm low-profile quad flat
package mechanical data
Figure 51: LQFP80 - 80-pin, 14 x 14 mm low-profile quad flat
package mechanical data
Figure 47: LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat
package outline
Table 53: LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat
package mechanical data
Figure 50: LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat
package outline
Table 54: LQFP48 - 48-pin, 7x 7 mm low-profile quad flat package
mechanical
Figure 56: LQFP32 - 32-pin, 7 x 7 mm low-profile quad flat
package outline
Table 56: LQFP32 - 32-pin, 7 x 7 mm low-profile quad flat package
mechanical data
Added:
Figure 44: LQFP80 recommended footprint
Figure 45: LQFP80 marking example (package top view)
Figure 48: LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat
recommended footprint
Figure 49: LQFP64 marking example (package top view)
Figure 51: LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat
recommended footprint
Figure 52: LQFP48 marking example (package top view)
Figure 54: LQFP44 - 44-pin, 10 x 10 mm low-profile quad flat
recommended footprint
Figure 55: LQFP44 marking example (package top view)
Figure 57: LQFP32 - 32-pin, 7 x 7 mm low-profile quad flat
recommended footprint
Figure 58: LQFP32 marking example (package top view)
Table 58. Document revision history (continued)
Date Revision Changes
DocID14733 Rev 13 117/117
STM8S207xx STM8S208xx
117
IMPORTANT NO TICE – PLEASE READ CAREFULLY
STMicroelec tronics NV and its subs idiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursu ant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchaser s’ products.
No license, express or implied, to any intellectual property right is granted by ST herein.
Resale of ST products with provisions different fr om the information set forth herein shall void any warranty granted by ST for such produ ct.
ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.
Information in this document supersedes and repla ces informat ion previously supplied in any prior versions of th is document.
© 2015 STMicroelectronics – All rights reserved