NJU72015 2Vrms Ground Referenced Stereo Line Amplifier PACKAGE OUTLINE GENERAL DESCRIPTION The NJU72015 is an audio line Amplifier . It can swing 2Vrms (5.6V peak-to-peak) signal at 3.3V operating voltage. Ground-referenced outputs eliminate output coupling capacitor. It contains differential input. The pop noise suppression circuit removes a pop noise at the power-on and power-off. NJU72015V APPLICATIONS Audio applications requiring 2Vrms outputs FEATURES Operating Voltage +3.0 to +3.6V + Operating Current IDD=5mA typ.at V =3.3V, No Signal, No Load Output Coupling Capacitor-less Differential Input Pop Noise Suppression Circuit C-MOS Technology Package Outline SSOP14 BLOCK DIAGRAM PIN CONFIGURATION 1uF 10k +INL +INR 1 2 -INL -INR 14 7 8 10k 1uF 13 20k 20k 3 4 V+ Active 5 OUTL OUTR External Under Voltage Detector AGND MUTE UVP DGND Bias 12 11 No. Symbol 10 Mute V+ 6 V+ V- 1uF 9 Charge Pump 7 CN CP 1uF Ver.2.8E 1 20k 20k 1uF 10k 10k 1uF 14 8 Function 1 +INL Lch Noninverted Input 2 -INL Lch Inverted Input 3 OUTL Lch Output 4 GND Ground 5 MUTE Mute Control 6 V- V- Power Supply 7 CN Flying Capacitor Negative Terminal 8 CP Flying Capacitor Positive Terminal 9 V+ V+ Power Supply 10 DGND 11 UVP 12 OUTR 13 -INR Rch Inverted Input 14 +INR Rch Noninverted Input Ground Undervoltage Protection Input Rch Output -1- NJU72015 ABSOLUTE MAXIMUM RATING (Ta=25C) PARAMETER SYMBOL Supply Voltage Power Dissipation V RATING UNIT +4 V + 530 PD + (Note1)) mW + Maximum Input Voltage VIMAX -V -0.3 ~ V +0.3 V Operating Temperature Range Topr -40 ~ +85 C Storage Temperature Range Tstg -40 ~ +125 C (Note1) EIA/JEDEC STANDARD Test board (76.2x114.3x1.6mm, 2layer, FR-4) mounting RECOMMENDED OPERATING CONDITIONS + (V =3.3V, Ta=25C unless otherwise specified) PARAMETER Operating Voltage SYMBOL V TEST CONDITION + MIN. TYP. MAX. UNIT 3.0 3.3 3.6 V MIN. TYP. MAX. UNIT - 5 10 mA - 80 - dB ELECTRICAL CHARACTERISTICS DC CHARACTERISTICS (V =3.3V, Mute=OFF, RL=10kTa=25Cunless otherwise specified) + PARAMETER Operating Current Power Supply Rejection Ratio SYMBOL IDD PSRR TEST CONDITION No signal, No load + V =3V to 3.6V External undervoltage detection Vuvp - 1.25 - V External undervoltage detection hysteresis current IHys - 5 - uA Output Offset Voltage VOS - - 1 mV Rg=0 AC CHARACTERISTICS (V =3.3V, f=1kHz, Vin=1Vrms [differential input], Mute=OFF, RIN=10k, Rfb=20k, RL=10kTa=25C unless otherwise specified) + PARAMETER SYMBOL TEST CONDITION MIN. TYP. MAX. UNIT Maximum Output Voltage Level VOMAX THD=1% - 2.3 - Vrms Mute Level VMUTE Rg=0, Mute=ON - -80 - dB Rg=0, A-weighted - -106 - dB BW:400Hz-22kHz - 0.003 - % Rg=600, Bandpass - 110 - dB TYP. MAX. UNIT Equivalent Input Noise Voltage Total Harmonic Distortion Channel Separation VNI THD CS CONTROL CHARACTERISTICS + (V =3.3V, Ta=25C unless otherwise specified) PARAMETER Mute terminal High Mute terminal Low -2- SYMBOL MuteH MuteL TEST CONDITION Mute=OFF Mute=ON MIN. 0.7V 0 + - V + V + 0.3V V NJU72015 TEST CIRCUIT IDD 1 PSRR +INL +INR -INL -INR 1uF 10k 1 14 +INL +INR -INL -INR 20k 20k 2 1uF 10k 2 13 20k 3 OUTL OUTR 3 12 10k 1uF 14 10k 1uF 13 20k OUTL OUTR 12 V RL=10k RL=10k V V+ V+ 4 External Under Voltage Detector AGND UVP 4 11 External Under Voltage Detector AGND UVP 11 20k 20k V+ 5 MUTE DGND Bias 5 10 MUTE DGND Bias 10 V+ V+ A 6 V+ V- 6 9 V+ V- 9 1uF 1uF Charge Pump Charge Pump 7 CN CP 7 8 CN CP 1uF 1uF VUVP, IHys, VOMAX, VMUTE 1uF 10k 1 8 VOS +INL +INR 1uF 10k 1uF 10k 14 1 Vp +INL +INR -INL -INR 10k 1uF 14 Vp 20k 20k Inverted Phase 1uF10k 2 -INL -INR 20k 1uF 10k 1uF 13 Vn 10k 2 20k 10k 1uF 13 Vn 20k 3 OUTL OUTR 12 V RL=10k 20k 20k 20k 3 OUTL RL=10k V RL=10k OUTR 12 RL=10k V V V+ 4 External Under Voltage Detector AGND UVP A 11 4 External Under Voltage Detector AGND UVP 11 20k V V+ Active V+ 5 MUTE DGND Bias 10 5 MUTE DGND Bias 10 Mute V+ 6 V+ V- V+ 9 1uF 6 V+ V- 9 1uF Charge Pump 7 Charge Pump CN CP 1uF 8 7 CN CP 8 1uF -3- NJU72015 VNI THD VNI = Measurement - 12dB 1uF 10k 1 +INL 10k 1uF +INR 1uF10k 14 1 +INL +INR 10k 1uF 14 Vp 1uF 10k 2 Vp 20k 20k -INL -INR 20k 20k Inverted Phase 1uF10k 10k 1uF 13 2 -INL -INR Vn 20k RL=10k Vn 20k 20k 3 OUTL Filter OUTR 12 V Filter 20k 3 OUTL Filter V OUTR 12 V RL=10k RL=10k Filter External Under Voltage Detector AGND UVP V+ 11 4 External Under Voltage Detector AGND UVP 11 20k 20k V+ V+ 5 MUTE DGND Bias 5 10 MUTE DGND Bias 10 V+ 6 V+ V- V+ 9 6 Charge Pump 7 8 7 CN OUTL: CS = 20*Log(OUTR/OUTL) OUTR: CS = 20*Log(OUTL/OUTR) 1uF 10k 1 +INL +INR 10k 1uF 14 Vp Vp 20k 20k Inverted Phase 1uF 10k 2 Inverted Phase -INL -INR 13 Vn 20k 20k 3 OUTL OUTR 12 V RL=10k V V+ 4 External Under Voltage Detector AGND UVP 11 20k V+ Active 5 MUTE DGND Bias 10 Mute V+ 6 V+ V- 9 1uF Charge Pump 7 CN CP 1uF -4- 600 10k 1uF Vn RL=10k CP 1uF CS 600 9 Charge Pump CP 1uF 600 V+ V- 1uF 1uF CN V RL=10k V+ 4 Inverted Phase 10k 1uF 13 8 600 8 NJU72015 APPLICATION CIRCUIT CIN RIN +INL +INR 1 RFB CIN RIN 2 RIN CIN RIN CIN RFB -INL -INR RFB 13 RFB 3 OUTL 4 14 OUTR External Under Voltage Detector AGND UVP 12 R13 R12 11 R11 V+ Active 5 MUTE Bias DGND 10 Mute V+ CV- 6 D1 7 V+ V- 9 1uF Charge Pump CN CP 8 CFLY *1) Connect a zener diode between V- terminal and GND terminal to prevent connecting V- terminal[6pin] and V+ terminal[9pin]. -5- NJU72015 Technical Information APPLICATION NOTES Operating Overview Gain Setting Resistor The drawing in Fig 1 illustrates the internal circuit in NJU72015. The NJU72015 has a charge-pump for negative power supply, pop noise suppression circuit, external under voltage detector, and a line amplifier. The NJU72015 operates from a single supply voltage from 3.0V to 3.6V and the NJU72015's line drivers use a charge pump to invert the positive power supply (V+) to negative power supply (V-), see Fig 2. The output voltages are centered at zero volts with the capability to swing to the positive rail or negative rail. This feature eliminates the output capacitor that is using in conventional line driver operating by a single-supply voltage. The drawing in Fig.1 illustrates the gain setting circuit configuration of NJU72015. The differential input gain of the NJU72015 is set by: CIN RIN CIN RIN +INL +INR 1 14 RFB 2 4 CIN -INR RIN CIN 13 OUTR External Under Voltage Detector AGND 12 R13 UVP The value of Gain setting resistors, RIN and RFB, affect noise, stability and input capacitor size. Selecting values that are too low demands a large input ac-coupling capacitor, CIN. Selecting values that are too high increases the noise of the amplifier. An input capacitor, CIN, is required to be added in series with the audio signal into the input pins of the NJU72015. The capacitor allows the amplifier to bias the input signal to the proper DC level for optimum operation. These capacitors form a high-pass filter with the input resistor, RIN. The cutoff frequency is set by: RFB OUTL RFB RIN Input Coupling Capacitor RFB -INL RFB 3 RIN AV R12 11 R11 V+ Active 5 MUTE Bias DGND f C(HPF ) 10 Mute V+ CV- 6 7 V+ V- D1 9 CN The value of CIN must be considered carefully because it directly affects the low frequency response and can distort the audio signal. 1uF Charge Pump CP 8 CFLY Fig.1 NJU72015 Block diagram V+ VOUT VOUT V+ V+/2 GND GND V- Conventional Line Driver NJU72015 Fig.2 Capacitor-free Operation -6- 1 2R IN CIN NJU72015 Technical Information Flying Capacitor External Under Voltage Protection The flying capacitor is required to generate a negative power supply. To achieve a high efficiency, low-ESR capacitors (ceramic capacitor) are to be selected, and to be placed near the CP terminal (pin7) and CN terminal (pin8) so as to reduce the resistance caused by the PCB trace. The recommended value of this capacitor is 1uF. Selecting values that are too low might reduce the maximum output voltage and might not be operated to specifications. External under voltage detection can be used to mute the NJU72015's output before an input device can generate a pop noise. The active-mute threshold at the UVP pin is 1.25V. The user selects a resistor divider to obtain the active-mute threshold and hysteresis for the specific application. The threshold is set by: 7 CN CP 8 VHYS 5 R13 VUVP 1.25 R11 R12 R12 R11 R12 VHYS R12 C FLY Fig.3 Flying capacitor @ 7pin/8pin (1.25 5 R13 ) R11 R12 R12 with the condition R13 >> R11//R12 Negative supply decoupling Capacitor To achieve a high efficiency on the negative voltage regulator (negative supply for the amplifier circuit), low ESR capacitor (ceramic capacitor) is to be used for this decoupling capacitor. This capacitor is to be placed near the V terminal (pin6) so as to reduce the resistance caused by the PCB trace. The recommended value of this capacitor is 1uF. For example, to obtain VUVP=4V and 1V hysteresis, R11=3k, R12=1k and R13=50k. If the UVP function is not used, A pull-up resistance ,RPULL is to be connected between UVP terminal and V+ terminal. Application Circuit for Using UVP Sy stem Power R 12 C V6 V- 11 UVP R 13 R 11 Fig.4 Decoupling capacitor @ 6pin Application Circuit for Not Using UVP Protection Diode R PULL>10k For protection purpose, it is advisable to place a low Vf diode (Schottky diode) to Ground at V terminal (pin 6). The external diodes will protect the IC negative supply terminal when a positive voltage is accidentally applied to the pin. 9 V+ 11 UVP Sequence of UVP Function Output V6 C V- D1 Active VHYS Mute VUVP VUVP+VHYS System Power Fig.5 Negative supply terminal @ 6pin Fig.6 UVP function -7- NJU72015 Technical Information Power up & down sequence to minimize pop noise To further reduce pop noise, Recommend to Fig.7 how Power up and down sequence. When power supply is turned ON To further reduce pop noise during power ON, the MUTE terminal should switch L->H after the power supply terminal has turned ON. It is recommended to have a time interval of 10msec (TON) or more between these two transitions. When power supply is turned OFF To further reduce pop noise during power OFF, the MUTE terminal should switch H->L after the power supply terminal has turned OFF. It is recommended to have a time interval of 10msec (TOFF) or more between these two transitions. Positiv e Power Supply [9pin] Mute [5pin] T ON >10msec T OFF>10msec Fig.7 Timing diagram when turning on power supply and intercepting it -8- NJU72015 TERMINAL DESCRIPTION Terminal SYMBOL FUNCTION EQUIVALENT CIRCUIT VOLTAGE V+ 1 2 13 14 +INL -INL -INR +INR AC Input 0V V- V+ 2 9 OUTL OUTR 100 AC Output 0V V- GND V+ 10k 5 MUTE MUTE Control 0V 205k VGND V+ 7 CN 8 CP 9 DGND Flying Capacitor Negative Terminal Flying Capacitor Positive Terminal Ground CP - DGND - CN 0V V- Ver.2.8E -9- NJU72015 TERMINAL DESCRIPTION Terminal SYMBOL FUNCTION EQUIVALENT CIRCUIT VOLTAGE V+ 11 UVP 100 Undervoltage Protection Input - V- - 10 - GND NJU72015 TYPICAL CHARACTERISTICS IDD vs Supply Voltage IDD vs Supply Voltage No Signal, No Load No Signal, No Load 6 10 VDD=0V to 3V VDD=3V to 0V 8 85o C IDD [mA] IDD [mA] 4 6 4 -40o C -40/25o C 2 2 105o C 85/105o C 25o C 0 0 0 1 2 3 4 2.5 2.6 2.7 Supply Voltage [V] 2.8 2.9 3 Supply Voltage [V] IDD vs Tempreature VSS vs Tempreature No Signal, No Load No Signal, No Load -2 6 V+=3.6V -2.5 5 VSS [V] IDD [mA] V+=3.0V V+=3.3V 4 V+=3.3V -3 V+=3.0V -3.5 3 V+=3.6V 2 -50 0 50 100 -4 -50 150 0 50 100 150 Temperature [OC] Temperature [OC] PSRR vs Tempreature PSRR vs Frequency V+=3V to 3.6V V+=3.3V, Vripple=100mVrms, RL=10k, Bandpass 90 -50 -40o C 80 -55 25o C 70 -60 60 PSRR [dB] VSS [V] -65 -70 -75 85/105o C 40 30 -80 20 -85 -90 -50 50 10 0 0 50 Temperature [OC] 100 150 10 100 1000 10000 100000 Frequency [Hz] - 11 - NJU72015 TYPICAL CHARACTERISTICS UVP Control UVP Control V+=3/3.3/3.6V,VIN=1Vrms[dif ferential], f=1kHz, RL=10k, R1=3k, R2=1k, R3=50k, Ta=25oC V+=3.3V,VIN=1Vrms[dif ferential], f=1kHz, RL=10k, R1=3k, R2=1k, R3=50k, Ta=-40/25/85/105oC 10 10 UVP ON 0 UVP ON -10 -10 -20 -20 -40oC Voltage Gain [dB] Voltage Gain [dB] 0 -30 -40 V+=3/3.3/3.6V -50 -30 -40 -50 -60 -60 -70 -70 -80 25/85/105oC -40oC 25/85/105oC UVP OFF -80 UVP OFF -90 -90 2 3 4 5 6 2 3 UVP Input [V] 4 5 6 UVP Input [V] UVP Control UVP Control V+=3/3.3/3.6V,V IN=1Vrms[differential], f=1kHz, RL=10k R1=3k, R2=1k, R3=50k, Ta=25oC V+=3.3V,V IN=1Vrms[dif ferential], f =1kHz, RL=10k R1=3k, R2=1k, R3=50k, Ta=-40/25/85/105oC 7 7 UVP ON 6 6 5 5 4 4 UVP ON 3 IHYS [uA] IHYS [uA] 25/85/105oC V+=3/3.3/3.6V -40oC 3 -40oC 2 2 25/85/105oC 1 1 UVP OFF UVP OFF 0 0 2 3 4 5 2 6 5 6 UVP Input [V] Maximum Output Voltage vs Supply Voltage Maximum Output Voltage vs Frequency V +=3.3V, THD=1%, RL=10k 3 2.6 2.8 2.5 Maximum Output Voltage [Vrms] __ Maximum Output Voltage [Vrms] __ 4 UVP Input [V] f=1kHz, THD=1%, RL=10k 2.6 -40/25/85/105o C 2.4 2.2 2.4 -40/25o C 2.3 2.2 85/105o C 2.1 2 2 1.8 2.5 3 3.5 Supply Voltage [V] - 12 - 3 4 10 100 1k Frequency [Hz] 10k 100k NJU72015 TYPICAL CHARACTERISTICS Maximum Output Voltage vs Temperature V MUTE vs Temperature V+=3.3V, f=1kHz, THD=1%, RL=10k V+=3.3V, f=1kHz, V MUT E =Gv [MUT E]/Gv [ACT IVE], .A-w eighted 2.4 -60 2.35 -70 Lch/Rch -75 V MUTE [dB] Maximum Output Voltage [Vrms] -65 2.3 -80 Lch / Rch -85 -90 2.25 -95 2.2 -50 0 50 100 -100 -50 150 0 50 Mute Control Mute Control V+=3/3.3/3.6V,V IN=1Vrms[differential], f=1kHz, RL=10k Ta=25oC V+=3.3V,V IN=1Vrms[differential], f=1kHz, RL=10k Ta=-40/25/85/105oC 10 0 0 -10 -10 -20 -20 -30 ACTIVE MUTE MUTE ACTIVE -40 -50 Voltage Gain [dB] Voltage Gain [dB] 150 Temperature [OC] Temperature [OC] 10 100 -30 -40 ACTIVE MUTE MUTE ACTIVE -50 -60 -60 V+=3V -70 -70 85/105oC V+=3.3V -80 -90 0V+ -90 0 0.2 0.4 0.6 0.8 25oC -80 V+=3.6V 1 0.2V+ Mute Terminal [x V+] -40oC 0.4V+ 0.6V+ 0.8V+ 1V+ Mute Terminal [V] V NI vs Temperature THD+N vs Temperature V+=3.3V, Rg=0, A-w eighted V+=3.3V,,V IN=1Vrms[differential], f=1kHz, RL=10k, BW:400-22kHz -100 10 1 Lch THD+N [%]_ V NI [dB] -105 -110 Rch 0.1 Lch/Rch 0.01 -115 0.001 -120 -50 0 50 Temperature [OC] 100 150 0.0001 -50 0 50 100 150 Temperature [OC] - 13 - NJU72015 THD+N vs Output Voltage THD+N vs Output Voltage V +=3.3V, BW:10-22kHz(f=100/1kHz), 10-80kHz(f=10kHz) V +=3.3V, f =100Hz, BW:10-22kHz, RL=10k 10 10 1 1 0.1 0.1 THD+N [%] THD+N [%] TYPICAL CHARACTERISTICS f=10kHz 0.01 -40/25/85/105o C 0.01 0.001 0.001 f=100Hz f=1kHz 0.0001 0.01 0.1 1 10 0.0001 0.01 0.1 THD+N vs Output Voltage V +=3.3V, f=10kHz, BW:10-80kHz, RL=10k 10 10 1 1 -40/25/85/105o C THD+N [%] THD+N [%] THD+N vs Output Voltage V +=3.3V, f=1kHz, BW:10-22kHz, RL=10k 0.01 0.1 -40/25/85/105o C 0.01 0.001 0.001 0.0001 0.01 0.1 1 10 0.0001 0.01 0.1 10 THD+N vs Frequency THD+N vs Frequency V +=3.3V, Vo=1.8Vrms, BW:10-80kHz V +=3.3V, Vo=2.0Vrms, BW:10-80kHz 10 10 1 1 0.1 0.1 THD+N [%] THD+N [%] 1 Output Voltage [Vrms] Output Voltage [Vrms] 85/105o C 0.01 0.001 85o C 105o C 0.01 0.001 -40o C -40/25o C 0.0001 25o C 0.0001 10 100 1000 Frequency [Hz] - 14 - 10 Output Voltage [Vrms] Output Voltage [Vrms] 0.1 1 10000 100000 10 100 1000 Frequency [Hz] 10000 100000 NJU72015 TYPICAL CHARACTERISTICS Channel Separation vs Frequency V +=3.3V, V O=2Vrms, Rg=600, BW:BandPass, RL=10k 160 160 150 150 140 130 120 110 -40/25/85/105o C 140 Lin - Rout Channel Separation [dB] Channel Separation [dB] Channel Separation vs Frequency V +=3.3V, V O=2Vrms, Rg=600, BW:BandPass, RL=10k Rin - Lout 100 90 130 120 110 100 90 80 80 70 70 60 60 10 100 1000 10000 10 100000 100 1000 Frequency [Hz] Negative Supply Voltage vs Load Current V+=3.3V, f =1kHz, THD=1% V+=3.3V, No Signal, No Load -2.8 3 105o C Negative Supplyt Voltage [Vrms] -40/25/85/105o C 2.5 Output Voltage [Vrms] 100000 Frequency [Hz] Output Voltage vs Load Resistance 2 1.5 1 100 10000 -2.9 85o C -3 -40o C -3.1 o 25 C -3.2 -3.3 1k 10k Load Resistance [] 100k 0 5 10 15 Load Current [mA] [CAUTION] The specifications on this databook are only given for information , without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights. - 15 - Mouser Electronics Authorized Distributor Click to View Pricing, Inventory, Delivery & Lifecycle Information: NJR: NJU72015 NJU72015V-TE1 NJU72015V-TE2